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Abstract— We consider the novel problem of dynamically
assigning application sessions of mobile users or user
groups to service points. Such assignments must balance the
tradeoff between two conflicting goals. On the one hand,
we would like to connect a user to the closest server, in
order to reduce network costs and service latencies. On the
other hand, we would like to minimize the number of costly
session migrations, or handoffs, between service points. We
tackle this problem using two approaches. First, we em-
ploy algorithmic online optimization to obtain algorithms
whose worst-case performance is within a factor of the
optimal. Next, we extend them with opportunistic versions
that achieve excellent practical average performance and
scalability. We conduct case studies of two settings where
such algorithms are required: wireless mesh networks with
mobile users, and wide-area groupware applications with
or without mobility.

I. INTRODUCTION

Recent advances in network technology, along with
the increasing demand for real-time networked appli-
cations, are bringing application service providers to
deploy multiple geographically dispersed service points,
or servers. This trend is expected to further expand with
the explosion of new applications and the expansion of
services to larger domains. In such settings, a given
application session is typically associated with some
server. In real-time applications, the association selection
is driven by quality of service (QoS) considerations,
which may depend, e.g., on the network distance of
the user from the server. As many of these applications
are becoming increasingly available to mobile users and
dynamic user groups, the factors that dictate the server
selection can vary with time. For example, due to a user’s
movement, a server providing optimal QoS at some
point may later provide poor QoS, rendering it desirable
to migrate the application session from one physical
server to another. We therefore believe that many future
distributed service infrastructures will employ nomadic
service points, and will transparently manage such dy-
namic session assignments.

One important domain where nomadic service points
can be exploited to serve mobile users is wireless mesh

networks (WMNs) [1], [8]. WMNs provide an increas-
ingly popular solution for Internet access from residential
areas with a limited wired infrastructure. These networks
are built around multiple stationary wireless routers.
Some of them, called access gateways, are wired to
the Internet. The mesh access protocol typically routes
the traffc of each mobile node through a single access
gateway. As the node travels away from its original
location, the network delay between it and the gateway
grows, and the protocol can re-route the traffic through
a different gateway to improve the QoS. For example,
a greedy protocol would always route the traffic via the
closest gateway. However, this optimization is not always
adequate for highly mobile users, which suffer from
QoS degradation caused by frequent handoffs. Intelligent
nomadic service assignment algorithms can mitigate the
tradeoff between access delay and session interruptions.

Server assignment quality also has special importance
in collaborative groupware applications like instant mes-
saging, push-to-talk, and massively multiplayer online
games, where the impact of a bad association can be
magnified with the group’s scale. The infrastructure for
these applications is typically based on servers that both
maintain the application state and act as forwarding
proxies. Intuitively, the server should reside close to the
group’s centroid in order to serve the group best. In
groups with a highly dynamic membership, the optimal
server selection changes as users join or leave the group.
Thus, there is a tradeoff between the cost of assignment
to a suboptimal server (e.g., increased delay) and the
cost of state transfer incurred upon the re-assignment.

In this paper, we introduce the problem of optimizing
the dynamic assignment of sessions to nomadic ser-
vice points. Such a service assignment should balance
the tradeoff between connecting sessions to the closest
servers at all times, and minimizing the number of
session migrations. We capture this tradeoff by assum-
ing two types of service costs: a setup cost, incurred
whenever the session is assigned to a new server, and
a hold cost, incurred every unit of time the server
is being used. The former reflects one-time expenses



like signaling overhead and application state transfer,
whereas the latter captures continuous expenses like
buffer space, processing power, network latency, and
bandwidth. The nomadic server assignment optimization
problem is to find a sequence of server assignments that
minimizes the total cost. We are interested in the online
version of this problem, in which the service costs are
received on the fly.

We treat the problem both as a theoretical online
optimization problem and as a practical system question.
To the best of our knowledge, this problem was not
previously addressed using either of these methodolo-
gies. We first treat the generic nomadic service problem,
independent of any specific application domain, and then
examine it more closely in two specific case studies
pertaining to specific example domains.

We formally define the problem in Section II. Then,
in Section III, we present an offline algorithm, OPT,
which computes the optimal solution assuming that the
costs are known in advance. This algorithm’s time and
space computation complexity is linear in the number
of servers k and in the algorithm’s duration. While
this result has little practical importance, it serves as a
baseline for evaluating the online algorithms described
in later sections.

In Section IV, we study nomadic server assignment as
an online optimization problem. We focus on the case
where the setup costs do not vary over time, and are
identical for all servers; the hold costs may vary in both
aspects. A common metric for an online algorithms is its
competitive ratio, which is the worst-case ratio between
the cost produced by the algorithm and the optimal cost.
We first prove a lower bound of k on the competitive
ratio of any deterministic online assignment algorithm.
We then present two simple online algorithms, DTrack
(deficit tracker) and CTrack (cost tracker), parameterized
by policies governing when transitions happen and which
server is chosen upon a transition. DTrack transitions
from its currently assigned server when the session accu-
mulates “significantly more” hold cost than it would have
paid had it been assigned to some other server, whereas
CTrack simply transitions when the session accumulates
“enough” hold cost at the currently assigned server. We
show that when instantiated with certain policies, these
algorithms achieve competitive ratios within a constant
factor of the lower bound. Specifically, when using a
round-robin (RR) policy to choose the next assignment,
DTrack achieves a competitive ratio of 2k, i.e., at most
twice as bad as the lower bound, whereas CTrack

achieves a competitive ratio of (2 + a)k, where a is an
upper bound on the ratio between the hold and setup

costs.
Although, as our lower bound shows, a worst-case cost

ratio that is linear in the number of servers is inevitable
in the general case, achieving such costs is hardly
useful for large-scale services that employ thousands of
servers world-wide. From a practical perspective, it is
more interesting to examine average costs in common
scenarios, and moreover, it is highly desirable for costs
not to increase significantly with the number of servers.
We address these practical issues in Sections V and VI,
via empirical case studies of a WMN with mobile
users and an Internet chatroom with dynamic groups,
respectively. Interestingly, the competitive versions of
DTrack and CTrack, which achieve the best worst-
case costs, are not very promising in practice. However,
opportunistic versions of these algorithms, which select
the next assignment based on current or past offered
costs (rather than in a round-robin manner), achieve
excellent results. Their costs are at most 50% above
the optimum in the average case in the WMN, and at
most 20% above optimal in the groupware service. More
importantly, this ratio, as well as the total cost, remains
almost constant as the problem size scales.

There is a tradeoff between our two algorithms: al-
though DTrack achieves better results (lower overall
costs), it has a higher computational time complexity,
and requires discovering the hold costs of a large number
of servers every time unit. In contrast, CTrack has a
constant per-unit time complexity, and does not need to
probe other servers for their costs except when it decides
to transition.

In Section V-A, we propose two motion-aware heuris-
tic algorithms, TargetAware and DirectionAware.
TargetAware assumes knowledge of the mobile node’s
current target and speed, whereas DirectionAware only
requires the knowledge of the node’s current direction,
which is used to estimate the target, and speed. These
hints can be received either from a higher-level applica-
tion, or from a positioning system like GPS. Although
their lookahead window is quite small (the node’s next
target), both motion-aware algorithms yield significant
cost improvements. Their costs are typically within 10%
of the optimal, and exhibit perfect scalability.

A. Related Work

The nomadic server problem is reminiscent of a num-
ber of previously studied online optimization problems.

In the classical k-server problem [5], k identical
mobile servers reside in a metric space M , and have
to serve a sequence of requests. When a request is
received at point p , one of the servers must move to p in
order to service the request. This problem fundamentally
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differs from ours, as the model model does not include
setup and hold costs, and these cannot be reduced to
a metric space with mobile servers. Consequently, the
algorithmic techniques used to tackle these problems are
very different.

The problem of dynamic session management was
studied in the context of routing virtual circuits in mobile
communication systems [3], with a similar model of
setup and hold costs. However, these costs were defined
per link, and the algorithm had to decide whether to
retain or to release a redundant link. In contrast, in our
model, the costs are defined per server, which leads to
very different results.

Optimal center location for a group of users is an in-
stance of the well-studied facility location problem [12],
which given a set of facility locations and a set of
customers in a metric space, chooses which customers
should be served from which facilities so as to mini-
mize the total service cost. Facility location was studied
as an online problem [11], and was used for various
applications, including optimizing the delivery of Web
content in CDN’s [7], maintenance of mobile centers
in ad-hoc networks [4] and adaptive server selection in
online games [10]. The problem differs from ours in
that multiple facilities are used per group, and the online
algorithm is allowed to add facilities over time, instead
of migrating sessions among existing ones.

Balazinska et al. [2] present a nomadic server archi-
tecture in the context of a loosely-coupled distributed
system for stream query processing. The optimization
goal was to achieve load balancing between nodes sub-
ject to bilateral agreements. This paper did not consider
the existence of migration costs.

II. SYSTEM MODEL

Consider an application session that can be hosted by
any one of k servers S = {s0, ..., sk−1}. The session is
assigned to some server at the beginning of the session
but can be re-assigned to a different server at each
discrete time slot.

There are two types of non-negative cost charged for
the session: a setup cost that is paid when the session is
assigned to a new server, including the initial one, and a
hold cost, paid for each time slot the session is assigned
to some server. From a session’s perspective, different
servers offer different costs at a given time slot, and
may also change them at the beginning of each slot. We
denote the setup cost offered by server s at time t by
setup(s, t) and the hold cost by hold(s, t).

The assignment schedule σ(t) in a time interval I is a
function, σ : I → S, which assigns the session to server
s ∈ S at each discrete time t ∈ I. For convenience, we

define σ(t) =⊥ (not assigned) for t 6∈ I. We define the
set of transitions on an interval I as

T (σ, I) = {t | t ∈ I ∧ σ(t) 6= σ(t− 1)}.
In particular, the initial assignment is also considered a
transition.

The assignment schedule σ on an interval [t1, t2)
incurs a total hold cost

hold(σ, [t1, t2)) ,
t2−1∑

t=t1

hold(σ(t), t),

a total setup cost

setup(σ, [t1, t2)) ,
∑

t∈T (σ,[t1,t2))

setup(σ(t), t),

and a total overall cost

cost(σ, [t1, t2)) , setup(σ, [t1, t2))+hold(σ, [t1, t2)).

The optimal nomadic server assignment problem for
interval [0, T ) is to compute an assignment schedule σ∗

that minimizes cost(σ∗, [0, T )).
The presence of positive setup costs is what makes the

problem nontrivial. Otherwise, the session would always
associate with the server that offers the minimum hold
cost. Hence, we always consider the positive setup costs.

III. AN OPTIMAL OFFLINE ALGORITHM

In this section, we describe an optimal offline algo-
rithm for the assignment problem, i.e., assuming that the
setup and hold cost functions are known in advance. The
algorithm is linear-time in the interval length T and the
number of servers k.

We first identify the structure of the optimal solution
σ∗. Let σ∗s,t : [t, T ) → S be a lowest cost schedule
among those in which s is the initial assignment, that is,
σ∗s,t(t) = s. We observe that if σ∗s,t(t+ 1) = s′, then

cost(σ∗s,t, [t+ 1, T )) = cost(σ∗s′,t+1, [t+ 1, T )).

In other words, the cost of an optimal schedule for
[t + 1, T ) that assigns s′ at t + 1 is identical to the
cost of the [t + 1, T )-suffix of the optimal schedule for
[t, T ) with the same assignment. Otherwise, the global
optimality is violated. If s′ = s, then setup(s′, t + 1)
does not contribute to cost(σ∗s,t, [t, T )). We define the
tail contribution function for t < T as follows:

tail(s, s′, [t, T )) ,{
cost(σ∗s,t, [t, T ))− setup(s′, t) if s = s′

cost(σ∗s,t, [t, T )) otherwise
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Then, cost(σ∗s,t, [t, T )) for t < T can be expressed as

cost(σ∗s,t, [t, T )) =

setup(s, t) + hold(s, t) +

min
s′∈S

tail(s, s′, [t+ 1, T )).

We define tail(s, s′, [T, T )) = cost(σ∗s,t[T, T )) = 0.
For t < T we get:

cost(σ∗s,t, [t, T )) =

setup(s, t) + hold(s, t) +

min(min
s′∈S

cost(σ∗s′,t+1, [t+ 1, T )),

cost(σ∗s,t+1, [t+ 1, T ))− setup(s, t+ 1)).

An optimal solution can be computed through dynamic
programming using the above recurrence. The algo-
rithm employs a two-dimensional table Table[1..k, 0..T ]
where an entry Table[s, t] holds the value of
cost(σ∗s,t, [t, T )) and the identity of s′ = σ∗s,t(t + 1).
The table is computed column by column from T − 1
down to 0. Column T is initialized by zeroes. During
the processing of column t, the value of

min
s′∈S

cost(σ∗s′,t, [t, T )) = min
1≤s≤k

Table[s, t]

is computed once to be used in computing all entries of
column t− 1. After the whole table is filled, the overall
optimal cost is computed as

cost(σ∗, [0, T )) = min
0≤s≤k−1

Table[s, 0],

and an optimal schedule is built by tracing the algo-
rithm’s choices through the columns 0 . . . T − 1.

The computation of a single table entry requires a con-
stant number of operations thanks to the pre-computation
of the previous column’s minimum cost, and therefore,
the algorithm’s time complexity is O(kT ). The space
complexity is also O(kT ) – as the table’s size.

IV. ONLINE SERVER ASSIGNMENT

In a realistic scenario, the costs are not known in ad-
vance. This is especially true for the hold cost, which can
reflect dynamic network conditions like user mobility,
group membership, etc. In this section, we study server
assignment as an online optimization problem [5]. The
cost for a time slot becomes known at the beginning
of that slot, and the algorithm must produce a new
scheduling decision. We restrict ourselves to the case
where the setup costs are identical and constant, that is,
setup(s, t) = C for all s and t, whereas the hold costs
are dynamic. We denote the schedule produced by the
optimal algorithm OPT as σ∗, and the schedule produced
by an online algorithm ALG as σ.

The competitive ratio is the common performance
measure for online algorithms. In our problem, an online
algorithm ALG is called r(ALG)-competitive if there is a
constant δ such that for all finite intervals I and for all
setup and hold costs

cost(σ, I) ≤ r(ALG) · cost(σ∗, I) + δ.

The rest of this section is structured as follows. In
Section IV-A, we show that no deterministic online
algorithm can achieve a competitive ratio better than
k. In Section IV-B, we present a generic online algo-
rithm called DTrack (deficit tracker). A version of this
algorithm termed DTrack − RR, that is, DTrack with
round-robin selection of server assignments, achieves a
competitive ratio of 2k with a certain parameter choice.
DTrack needs to track the cost of up to k servers every
time slot, and may thus have a large control message
overhead in a distributed implementation. In Section IV-
C, we present a simple and efficient algorithm called
CTrack (cost tracker), which yields a competitive ratio
of (2+a)k for a certain parameter choice, assuming that
a server’s per-slot hold cost never exceeds aC. The com-
petitive version of CTrack, called CTrack−RR, probes
the cost of only one server every slot. In Section IV-D,
we present opportunistic versions of these algorithms,
called CTrack−F, DTrack−F, and DTrack−B, which
greatly improve the cost in the average case, and achieve
good scalability.

A. A Lower Bound of k on the Competitive Ratio

Theorem 1: The lower competitive ratio of any deter-
ministic server assignment algorithm is at least k.
Proof : Consider k symmetric servers that offer the same
setup cost C > 0 and a zero hold cost each at t = 0,
that is, hold(si, 0) = 0. Consider the following simple
adversary strategy against any deterministic algorithm
ALG. When ALG connects to si at time t, set hold(si, t+
1) = 1. When ALG disconnects from the server at time
t′, set hold(si, t

′+1) = 0. Regardless of what the online
algorithm is, it will have to transition to a different server
at some point if it wishes to remain competitive. This
process continues until k−1 moves happen. At this point,
the adversary stops the run.

If ALG has visited every server exactly once, let s∗

be its last assignment. Otherwise, there exists a server
s∗ that has never been picked by ALG. The best offline
algorithm, OPT, assigns the session to server s∗ at time
0 and never changes the assignment.
OPT pays only C for the initial setup, whereas ALG

pays kC for setup and zero or more for hold. Therefore,
r(ALG) ≥ kC

C = k, and the algorithm’s competitive ratio
has a lower bound of k. 2
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B. DTrack - a 2k-Competitive Online Algorithm
We present a simple online algorithm called DTrack

(deficit tracker). It is parameterized by factor α ≥ 0,
which controls when transitions happen, and a sub-
routine nextchoice(), which controls which server is
chosen upon transition. In this section, we focus on a
2k-competitive version of DTrack, called DTrack−RR,
obtained by a round-robin nextchoice() policy. Its
pseudocode appears in Figure 1.

We begin with some definitions. The deficit between
the servers s and s′ during the interval [τ, t) is the
greatest total difference between the total hold costs in
a suffix [t′, t):

def(s, s′, [τ, t)) ,
max

τ≤t′≤t−1
(hold(s, [t′, t))− hold(s′, [t′, t))).

Let us denote the current assignment by sc. A server
s for which def(sc, s, [τ, t+ 1)) > 0 is called a leader
at time t.
DTrack maintains an invariant that the deficit between

sc and any other server s never exceeds αC. Initially,
DTrack makes an assignment to the server with the
minimal hold cost. It then keeps tracking the deficit
versus the other servers. A server becomes a leader when
it offers a smaller hold cost than sc, and stops being one
when the accumulated deficit value becomes negative.
Since the hold costs are published at the beginning
of each time slot, DTrack makes its decision using a
single-slot lookahead. When some server is about to
accumulate significantly less hold cost than the current
choice (a deficit of above αC), the algorithm changes
its assignment. Due to the lookahead mechanism, the
update() procedure that updates the deficit values is
invoked twice at transition times. First, for the current
choice in order to decide whether to transition, and then
for the new choice, which does not necessarily offer the
best hold cost, hence the new deficit must be computed.

In the instance of DTrack we consider now, termed
DTrack−RR, nextchoice() selects the next assignment
in a round-robin way, among servers whose a-priori
deficit versus any other server (that is, the hold cost gap)
does not exceed αC.

The intuition behind DTrack is that the current server
must be provably bad (costing αC more than the best)
in order to change the choice, and the next server
must also not be provably bad (not costing αC more
than any other server). When instantiated with α = 0
(this algorithm is termed Greedy), DTrack immediately
changes the assignment when some other server offers a
better hold cost. At the other extreme, when α = ∞, it
never changes its initial assignment. It is clear that the

1: Initialization:
2: c← i s.t. hold(si) = mins∈S hold(s)
3: reset()

4: Every time slot do
5: update()
6: if (def(sc, s) > αC) for some s ∈ Leaders then
7: nextchoice()
8: reset()

9: procedure reset()
10: Leaders← ∅
11: for all s 6= sc do
12: def(sc, s)← 0
13: update()

14: procedure update()
15: for all s s.t. s 6∈ Leaders ∧ hold(sc) > hold(s) do
16: def(sc, s)← 0
17: Leaders← Leaders ∪ {s}
18: for all s ∈ Leaders do
19: def(sc, s)← def(sc, s) + (hold(sc)− hold(s))
20: if (def(sc, s) < 0) then
21: Leaders← Leaders \ {s}

22: procedure nextchoice() /*RR version*/
23: repeat
24: c← (c+ 1) mod k
25: until hold(sc)−mins∈S hold(s) ≤ αC

Fig. 1. DTrack−RR - an Online Algorithm for Server Assignment.

algorithm is not competitive in either of these extreme
cases.

In Appendix A, we provide a detailed competitive
analysis of DTrack−RR, and get the following result:

Theorem 2: The competitive ratio of DTrack−RR is
bounded as follows:

r(DTrack−RR) < k(1 + 1
α ) α ≤ 1

r(DTrack−RR) < 1 + (k− 1)α+ k α ≥ 1

Corollary 1: For α = 1, DTrack−RR achieves a
competitive ratio of 2k.

The crux of the algorithm’s competitiveness lies in
the round-robin selection policy, and can be informally
explained as follows. If we consider a schedule σ by
DTrack−RR that either overtakes (that is, either leaves
or skips) every server while the optimal schedule σ∗

does not change its assignment s∗, then σ overtakes s∗

exactly once. This overtake implies that the total hold
cost incurred by σ∗ during the interval exceeds αC. The
total hold cost incurred by σ exceeds the one incurred
by σ∗ by at most (k − 1)αC. The subtle point in this
proof is the deficit bookkeeping, because upon transition
the hold cost lookahead affects the assignment but does
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not contribute to the total hold cost. The total setup cost
incurred by σ during this period is at most kC, whereas
σ∗ pays C upon the assignment to s∗. A careful analysis
of the worst-case ratio between the total costs concludes
the proof.

At each slot, DTrack checks the hold cost of every
server, which results in linear time complexity per slot.
Since the number of servers can be large, sublinear
complexity is desirable to achieve efficiency of commu-
nication in a distributed implementation.

C. CTrack - an Efficient Online Algorithm

We now present a simple online algorithm CTrack

(cost tracker), which achieves constant computation time
complexity at the expense of a weaker competitive
guarantee, under the assumption of an upper bound on
the ratio between the hold and the setup costs. CTrack
is also parameterized by a factor α and a subroutine
nextchoice(). Initially, it assigns the server with the
minimal hold cost. The assignment changes when the
total hold cost since the last transition exceeds αC (e.g.,
for α = 0, it transitions every time slot). The rationale
behind this policy is controlling the fraction of the setup
cost in the total cost. It only requires receiving the hold
cost of the current assignment every time slot, which
leads to constant per-slot time complexity.

In Appendix B, we provide a detailed competitive
analysis of CTrack−RR, the round-robin version of
CTrack, and get the following result:

Theorem 3: If hold(s, t) ≤ aC for all s and t, then
r(CTrack−RR) < (2 + a)k for α = 1.

D. Opportunistic Heuristics

While the competitive ratio is an accepted metric for
measuring the worst-case performance of an online algo-
rithm, the average-case performance is more important in
practice. An algorithm that behaves 2k times worse than
the optimal solution in the average case is impractical in
systems accommodating thousands of servers.

In this section, we introduce opportunistic versions of
CTrack and DTrack, in which nextchoice() selects
an assignment that is locally optimal for some metric,
instead of the round-robin traversal. This approach ex-
ploits the well-known locality principle to achieve good
performance in typical scenarios. Note that although
locality is common in practice, it is not a property that
holds in all possible runs, and hence, the cost of using
opportunistic selection policies is that they yield worse
competitive ratios than the round-robin ones.

In the forward heuristics DTrack−F and CTrack−F,
nextchoice() picks the server with the current minimal
hold cost. In [6], we prove that these heuristics are

not competitive. The backward heuristic DTrack−B aug-
ments DTrack−RR’s selection policy with the following
rule: the deficit between the next choice and the previous
assignment is greater than βC for some −∞ ≤ β ≤ α.
Using any β > 0 allows the algorithm to choose the next
server from those that presented good behavior since the
last transition. For β = −∞, the resulting algorithm is
DTrack−RR. For β = 0, DTrack−B chooses the next
server from the leader set. For β = α, it selects a
leader that triggered the transition. Theorem 2 can be
generalized to describe DTrack−B’s worst-case behavior
(the proof appears in [6]):

Theorem 4: The competitive ratio of DTrack−B is
bounded as follows:

r(DTrack) < k(1 + 1
α ) α ≤ 1 and β ≤ 0

r(DTrack) < 1 + (k− 1)α+ k α ≥ 1 and β ≤ α− 1

r(DTrack) < 1 + (k−1)α+k

α−β max(0, α− 1) ≤ β ≤ α
Corollary 2: For α = 1 and β ≤ 0, DTrack−B

achieves a competitive ratio of 2k.
The worst-case competitive ratio achieved by

DTrack−B with α = β is not limited by the problem
size k (see [6] for the proof):

Theorem 5: The competitive ratio of DTrack−B with
α = β is Ω(C).

V. CASE STUDY: MOBILE USERS IN A WMN

In this section, we study nomadic server assignment in
an urban WMN environment. The results of the optimal
algorithm OPT are used as a comparison baseline. For
each algorithm ALG, we measure its cost as well as
performance ratio, which is the average ratio between
the total costs incurred by ALG and OPT during multiple
runs. We average over 20 simulations, each 10,000 slots
long. This metric is analogous to the competitive ratio,
the theoretical worst-case metric.

The simulated network spans a square grid with
uniformly distributed wireless routers. The number of
routers that populate a 1000m × 1000m grid is 100,
that is, a single router spans an average area of 100m×
100m. A mobile node moves using the random waypoint
mobility model [13]. The node uniformly chooses the
destination and moves toward it at a constant urban
driving speed of 10 m/sec (36 km/hour). The time slot is
one second. The hold cost between mobile node n and
router r is defined as d(n,r)

100 , i.e., a normalized Euclidean
(L2) distance. Under these parameters, the average hold
cost offered by the closest router is roughly 0.5. The
setup cost is 50.

Our main interest is in the scalability of the online
solutions, i.e., how the total cost per second and the
performance ratio are affected as the problem size grows.

6



0 500 1000 1500 2000 2500

5

10

15

20

25

30

35

40

45

50

Number of Servers

To
ta

l C
os

t/S
ec

on
d

Optimal
CTrack−RR α=1
DTrack−RR α=1

Fig. 2. CTrack−RR and DTrack−RR with α = 1 do not scale
well with the network size.
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Fig. 3. Choosing a β value for DTrack−B with α = 1.0. The
values between 0.2 and 1 exhibit very close behavior and scale
well with the network size.

For this purpose, we gradually increase the grid size from
1000m×1000m to 5000m×5000m, and correspondingly
increase the number of routers from 100 to 2500, keeping
the router density fixed. We study the performance of
different versions of CTrack and DTrack with different
selections of α, β, and nextchoice().

Our first goal is to study the performance of
CTrack−RR and DTrack−RR with α = 1, which have
the best proven worst-case ratios. Figure 2 shows that
both algorithms scale poorly with the network size (their
costs grow approximately as

√
k, whereas OPT’s cost

remains nearly constant). This is intuitive, since the
round-robin selection policy tends to assign a session
to a random server, and the average distance grows as
O(
√
k).

DTrack−B requires selecting the β parameter for a
given α. Contrary to the worst-case analysis, our results
show that the algorithm’s performance improves as β
becomes closer to α. Figure 3 depicts the results for

α = 1. The curves for all β values from 0.2 to 1 are
barely distinguishable. Hence, a good worst case ratio
can be guaranteed by selecting small β values without
compromising the average performance by much (for
example, for α = 1 and β = 0.2, the competitive ratio is
bounded by 2.5k − 0.25). Further simulations [6] show
that α values between 0.5 and 1 exhibit nearly the same
average-case performance.

Figures 5(a) and 5(b) depict the results of simulat-
ing the opportunistic algorithms Greedy, CTrack−F,
DTrack−F, and DTrack−B with α = 1 and β = 1. The
performance curves of CTrack−F and DTrack−F are
almost indistinguishable. The algorithms’ performance
ratios remain constant as the problem scales – around
50% above the optimum. The total cost per second
also remains constant, since OPT itself is very scalable.
Greedy, which takes the opportunistic heuristic to the
extreme, exhibits a weaker performance ratio (more than
three times the optimum) although it scales well. In this
setting, Greedy’s reasonable behavior can be explained
by the moderate speed (hence, the hold cost changes
are slow), and by the moderate setup cost (hence, the
penalty for making a wrong decision is limited). The
fact that DTrack−F consistently produces better results
than DTrack−B can be explained by the motion’s nature.
Since the motion is random, the deficit values exhibit
poor locality. The result could have been different had
the motion happened around a small number of station-
ary points (home, office, cab station etc).

Figure 5(c) depicts the results of the same experiment
with an average simulated speed 25 m/sec (90 km/hour).
In this setting, DTrack−F starts producing a consistently
lower total cost (by 5-6%) than CTrack−F. This happens
because at higher speeds, the hold cost changes faster,
and the total cost becomes a worse transition indicator
than the deficit. This phenomenon cannot be further mag-
nified at reasonable driving speeds, but can be clearly
demonstrated in a different application (Section VI).
As expected, Greedy performs worse at higher speeds
(above five times the optimum).

DTrack’s computation overhead can be significantly
improved in a WMN environment since the hold cost
monotonically increases with distance. Therefore, main-
taining the deficit values requires accessing the hold
costs of the servers that are closer to the user than the
current assignment, as well as the servers that already
have a positive deficit. This can be achieved by using
data structures that support efficient nearest neighbor
queries in a multidimensional space like KD-trees or R-
trees [12]. Figure 4 depicts the percentage of hold costs
that need to be accessed by DTrack−F and DTrack−B
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Fig. 4. Percentage of useful hold cost accesses per second for
DTrack−F and DTrack−B with α = 1 and β = 1.

with α = β = 1. We can see that the fraction of
hold costs that must be accessed to maintain the positive
deficit values is very low.

A. Motion-Aware Heuristics

In order to achieve a better practical performance, we
employ two simple online heuristics tailored specifically
to the mobile user environment. These heuristics exploit
the near-term motion pattern, and therefore can project
the hold costs better than DTrack, which has only a
single-slot lookahead.

The first heuristic is called TargetAware. It requires
information regarding the mobile node’s current target
and speed. This target information can be provided from
a higher-level system, e.g., a car navigation system,
where the user can indicate the current status (e.g.,
“driving home”). TargetAware is informed every time
the mobile node changes its target, and applies OPT

as a subroutine in order to compute the assignment
schedule until the next target is reached. Every time
the target changes, TargetAware selects the best of
two choices: running OPT with the fixed first assignment
that is identical to the current one (i.e., no setup cost
is incurred for it), or letting OPT pick an arbitrary first
assignment.

If the target information is not available, a mobile
node equipped with a positioning system (e.g., GPS)
can use the direction information provided by it. In this
context, we propose the second heuristic that is called
DirectionAware. It receives information about the grid
size as well as the mobile node’s current direction and
speed, which are received upon the node’s direction
changes. The algorithm projects the next target as the
clipping point of its current trajectory and the grid’s
boundary, and applies TargetAware as a subroutine.

Figure 6 depicts the scalability of both motion-aware
heuristics, in the same environment as the previous
simulation. Both TargetAware and DirectionAware

are clearly superior to CTrack−F and DTrack−F. Their
performance ratios are less than 10% and 20% above
the optimum, respectively. As expected, TargetAware
performs slightly better than DirectionAware because
it uses an accurate motion forecast. The motion-aware
heuristics scale even better than OPT because their looka-
head window grows as the grid scales up.

Note that both heuristics perform very well despite
their small lookahead window. In the context of the
offline assignment problem, this means that a practically
good solution can be achieved with constant space com-
plexity, without the need to capture the entire data stream
before running the dynamic programming algorithm.

VI. CASE STUDY: WIDE-AREA CHATROOM SERVICE

The second environment studied is an Internet-scale
groupware application service [9], e.g., chat. The ser-
vice overlay network consists of 100 servers uniformly
selected among the nodes of a random network. Groups
of users run a chatroom application, where each group is
assigned to a single server. The users are stationary, and
their locations are uniformly distributed in the network.
The user arrival to a group is described by a Poisson
process with a mean of λ, and the membership lifetime
is distributed exponentially with a mean of T (that is,
the average number of users in a group is λT ). The hold
cost between group G and server s is proportional to
the maximal network distance between the server and
some node in the group, which reflects the application’s
buffer space requirements affected by the maximal delay.
In this context, the server is seen as the group’s center,
and the maximal distance is the group’s radius. We
study the same instances of CTrack−F, DTrack−F, and
DTrack−B as in Section V (that is, α = β = 1). We
explore the algorithms’ scalability with both the number
of servers and the average group size.

In the first experiment, we increase the number of
servers (in parallel with the network’s size) from 100 to
2500, without increasing the number of users. We set
λ = 0.1 users/second and T = 30 seconds, yielding
three users in the chatroom on average. Figure 7(a)
depicts the simulation results. Both versions of DTrack
are within 15-20% above the optimal cost. DTrack−F
consistently outperforms CTrack−F because individual
join or leave events in a small group trigger fast changes
in the hold costs. This is the same phenomenon that
happens in WMNs at high speeds (Figure 5(c)), but it is
more significant since the hold cost changes are faster.
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Fig. 7. Scalability of CTrack−F, DTrack−F and DTrack−B in a wide-area chatroom application service, α = 1.0 and β = 1.0.

In the second experiment, depicted in Figure 7(b),
we scale the average group size up from three to 75
(a large-scale conference) by increasing both λ and
T . The network size is not changed. Both versions of
DTrack exhibit a performance ratio of under 5% above
the optimum for groups with more than ten members,
and converge to the optimal cost as the group scales. This
happens because in dense groups, individual join and

leave events do not considerably affect the group radius.
Therefore, the algorithms perform fewer transitions.

Finally, we study the algorithms’ scalability to large
groups in large networks. For this purpose, we gradually
increase both the number of servers and the group size
by the same factor. The results depicted in Figure 7(c)
show that when the number of servers grows from 400 to
2500 and the number of users grows from 12 to 75, the
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performance ratios of both versions of DTrack remain
constant at less than 5% above the optimum, whereas the
performance ratio of CTrack−F also remains constant
but exceeds the optimum by 30%.

VII. CONCLUSION

In this paper, we have studied a novel problem of ser-
vice point assignment to mobile users or user groups in
a distributed infrastructure with multiple service points.
This problem will naturally arise in several emerging
practical environments. We have provided a rigorous
theoretical study, which includes competitive online al-
gorithms and a lower bound on the competitive ratio of
deterministic algorithms. We studied the performance of
the proposed algorithms when applied in an urban WMN
and in a wide-area chatroom service. We gave practical
algorithms that exhibit good performance relative to the
optimal solution and scale well with the network size.
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APPENDIX

A. A Competitive Analysis of DTrack

In this section, we give a competitive analysis of the
worst-case performance of DTrack−RR, and derive the
parameter value of α for which the best competitive
ratio is obtained. We first prove that the nextchoice()
subroutine always succeeds finding a new assignment.

Lemma 1: def(σ(t), s) ≤ αC for all s and t.
Proof : By induction on t. For t = 0, the claim holds
because the server with the minimal hold cost is selected.
For t > 0, if no transition happens at time t, then the
algorithm maintains the invariant. Otherwise, assume a
transition happened at time t, and consider the next
transition from sc = σ(t) at time t′ ≥ t + 1. By
definition, sc = σ(t′−1). Hence, def(sc, s, [t, t

′)) ≤ αC
for all s by induction hypothesis. However, for some
s, def(sc, s, [t, t + 1)) > αC. Therefore, there exists
some server s such that hold(s, t) > hold(sc, t). Hence,
hold(sc, t) is not the minimal hold cost at time t,
that is, some identity s 6= sc can be found such that
def(s, s′, [t′, t + 1)) ≤ αC, for all s′ (for example,
the server with the minimal hold cost satisfies this
requirement). 2

Corollary 3: If nextchoice() is invoked at time t, it
returns an identifier that is different from σ(t− 1).

We term an interval [τ, τ ′) between two consecutive
transitions of algorithm ALG or between ALG’s last tran-
sition and the end of the run as ALG-round. Where the
ALG is clear from the context, we simply say round.

It is convenient to describe the assignment choices
made by DTrack−RR with time as a movement in a cir-
cular server identifier space, with a clockwise direction
from s to (s+ 1) mod k. We say that σ overtakes s at
time t if s is encountered while moving clockwise from
σ(t − 1) to σ(t), and s 6= σ(t). In other words, either
σ(t− 1) is s, or s is skipped at t.

We now consider a DTrack−RR-round and an OPT-
round. We analyze the competitive ratio of DTrack−RR
for different values of α by comparing the cost it incurs
with the cost incurred by OPT during a single OPT-round
[τi, τi+1] and then generalizing for the whole run. We
denote OPT’s assignment during this OPT-round by s∗.

We define two partitions of the interval [τi, τi+1)
into sub-intervals. The first one partitions the interval
to phases {Pi,j = [ti,j , ti,j+1)}, defined as follows. The
first phase starts at τi. A phase completes at the earlier
between the time when σ overtakes s∗ and τi+1. The
second partition is to shifted phases {−−→Pi,j}, defined as
follows. The first shifted phase starts at τi. A shifted
phase completes at the earlier between one slot after
the completion of the corresponding phase and τi+1.
The number of phases and shifted phases is equal by
definition.

Figure 8 depicts the above definitions for an OPT-
round [10, 30), in which S∗ = S4. The first phase ends
at time 18 when the algorithm chooses S6 and overtakes
S4, which was its previous assignment. The second phase
ends at time 25 when the algorithm chooses S5 and
overtakes S4 for the second time, without choosing S4

in this phase.

Lemma 2: Consider an OPT-round [τi, τi+1) with p
phases produced by DTrack−RR. Then,

cost(σ, [τi, τi+1)) ≤
hold(σ∗, [τi, τi+1)) + pC(k + (k − 1)α).

Proof : Consider a DTrack−RR-round [t, t′) ⊆ Pi,j .
If σ(t) = s∗, then hold(σ∗, [t, t′)) = hold(σ, [t, t′)).

Otherwise, the difference in the accumulated hold cost
between s = σ(t) and every other server s′ is bounded
by def(s, s′, [t, t′)), which never exceeds αC. In partic-
ular,

hold(σ, [t, t′))− hold(σ∗, [t, t′)) ≤ αC.
There are at most k− 1 rounds during Pi,j in which the
assignment is different from s∗, and hence,

hold(σ,Pi,j)− hold(σ∗,Pi,j) ≤ (k − 1)αC.
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DTrack−RR performs at most k transitions during Pi,j ,
paying at most kC for setup. Therefore,

cost(σ,Pi,j) ≤ hold(σ∗,Pi,j) + (k − 1)αC + kC.

{Pi,j} is a partition of [τi, τi+1], and hence,

cost(σ, [τi, τi+1)) =

p∑

j=1

cost(σ,Pi,j) ≤

p∑

j=1

hold(σ∗,Pi,j) + pC(k + (k − 1)α) =

hold(σ∗, [τi, τi+1)) + pC(k + (k − 1)α).

2

Lemma 3: Consider an OPT-round [τi, τi+1) with p
phases produced by DTrack−RR. Then,

hold(σ∗, [τi, τi+1)) > (p− 1)αC.

Proof : If p = 1, the claim follows immediately because
the hold costs are non-negative.

Otherwise, consider a phase Pi,j such that j < p.
This phase ends at ti,j+1 that is strictly smaller than
τi+1. We first prove a claim that hold(σ∗,

−−→Pi,j) > αC.
Consider DTrack−RR’s assignment s during the last
DTrack−RR-round [t, ti,j+1) in Pi,j , that is, s = σ(t),
and σ overtakes s∗ at time ti,j+1. By definition, −−→Pi,j
ends at time ti,j+1 + 1. Consider two possible cases:

1) If s 6= s∗, then the algorithm considers picking
s∗ upon the transition from s at ti,j+1, and does
not select it because there exists a server s′ s.t.
hold(s∗, ti,j+1) − hold(s′, ti,j+1) > αC, and
hence, hold(s∗, ti,j+1) > αC. By definition of a
shifted phase, [ti,j+1, ti,j+1 +1) ⊆ −−→Pi,j . It follows
that hold(σ∗,

−−→Pi,j) > αC, and the claim holds.
2) Otherwise, s = s∗. Since the algorithm transi-

tions from s∗ at time ti,j+1, there exists s′ such
that def(s∗, s′, [t, ti,j+1 + 1)) > αC, that is,
hold(σ∗, [t, ti,j+1 + 1)) > αC. If Pi,j is the first
phase in [τi, τi+1), then [t, ti,j+1 + 1) ⊆ −−→Pi,j by
definition of shifted phase. Otherwise, consider the
preceding phase Pi,j−1. By definition, σ overtakes
s∗ at time ti,j . In particular, σ(ti,j) 6= s∗. Since at
least one time slot is spent at every assignment,
σ transitions to s∗ at time ti,j < t < ti,j+1,
that is, [t, ti,j+1 + 1) ⊆ −−→Pi,j . It follows that
hold(σ∗,

−−→Pi,j) > αC, and the claim holds.

It follows that hold(σ∗,
−−→Pi,j) > αC. {−−→Pi,j} is a partition

of [τi, τi+1), and therefore,

hold(σ∗, [τi, τi+1)) ≥
p−1∑

j=1

hold(σ,
−−→Pi,j) > (p− 1)αC.

2

Theorem 2: The competitive ratio of DTrack−RR is
bounded as follows:

r(DTrack−RR) < k(1 + 1
α ) α ≤ 1

r(DTrack−RR) < 1 + (k− 1)α+ k α ≥ 1

Proof : Consider the local ratio between the costs in-
curred by DTrack−RR and OPT during a single OPT-
round [τi, τi+1), that is, cost(σ,[τi,τi+1))

cost(σ∗,[τi,τi+1)) . OPT pays the
setup cost C for a single transition during [τi, τi+1) (at
τi), and therefore,

cost(σ∗, [τi, τi+1)) = C + hold(σ∗, [τi, τi+1)).

Substituting the ratio’s numerator from Lemma 2, we
receive

cost(σ, [τi, τi+1))

cost(σ∗, [τi, τi+1))
≤
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hold(σ∗, [τi, τi+1)) + pC((k − 1)α+ k

C + hold(σ∗, [τi, τi+1))
<

1 +
pC((k − 1)α+ k)

C + hold(σ∗, [τi, τi+1))
.

Substituting the denominator from Lemma 3,

cost(σ, [τi, τi+1))

cost(σ∗, [τi, τi+1))
<

1 +
pC(k + (k − 1)α)

C + (p− 1)αC
=

1 +
p((k − 1)α+ k)

1 + (p− 1)α
.

We denote %(α, p) , 1 + p(k+(k−1)α)
1+(p−1)α . In order to

compute p that produces the maximum ratio for a given
α, we derive ∂%

∂p . We get that ∂%
∂p = 0 for α = 1,

that is, the function is constant: %(1, p) = 2k for all
p. The derivative is strictly positive for α < 1 and
strictly negative for α > 1, therefore, the function is
monotonically increasing for α < 1 and monotonically
decreasing for α > 1. For α < 1,

sup
1≤p<∞

%(α, p) = lim
p→∞

%(α, p) =

1 +
(k − 1)α+ k

α
= k(1 +

1

α
),

whereas for α > 1,

sup
1≤p<∞

%(α, p) = %(α, 1) = 1 + (k − 1)α+ k.

Since this upper bound limits the algorithm’s competitive
ratio for every OPT-round, we conclude the same result
for the entire run. 2

B. A Competitive Analysis of CTrack

Theorem 3: If hold(s, t) ≤ aC for all s and t, then
r(CTrack−RR) < (2 + a)k for α = 1.

Proof : Consider an OPT-round [τi, τi+1) with p phases
produced by CTrack−RR as defined in Appendix A, in
which s∗ is OPT’s choice.

Consider a CTrack−RR round [t, t′) in which server
s is CTrack−RR’s choice. If t < t′ − 1, then

hold(σ, [t, t′)) =

hold(σ, [t, t′ − 1)) + hold(s, t′) ≤
hold(σ, [t, t′ − 1)) + aC.

hold(σ, [t, t′ − 1)) ≤ αC since no transition happened
at t′ − 1, and hence, hold(σ, [t, t′)) ≤ (α + a)C. If
t = t′ − 1, the same result holds trivially. There are p
phases in [τi, τi+1) and at most k rounds in each phase.

Summarizing over all CTrack−RR’s rounds, we get

cost(σ, [τi, τi+1)) ≤
pkC + hold(σ, [τi, τi+1)) ≤
pk(α+ a)C + pkC = pk(α+ a+ 1)C.

Consider the last CTrack−RR round [t, t′) in phase Pi,j
such that j < p. By definition, s∗ is the algorithm’s
choice in this round. A transition happens, therefore,
hold(σ, [t, t′)) > αC. Hence, hold(σ∗, [t, t′)) > αC.
Summarizing over all phases in [τi, τi+1), we get

cost(σ∗, [τi, τi+1)) =

C + hold(σ∗, [τi, τi+1)) > (1 + (p− 1)α)C.

Hence,

cost(σ, [τi, τi+1))

cost(σ∗, [τi, τi+1))
< k

p(α+ a+ 1)

1 + (p− 1)α
.

For α = 1, this ratio is smaller than (2 + a)k for all p.
Since this upper bound limits the algorithm’s competitive
ratio for every OPT-round, we conclude the same result
for the entire run. 2
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