
Dynamic Reconfiguration: A Tutorial∗

Alexander Spiegelman1, Idit Keidar1, and Dahlia Malkhi2

1 Andrew and Erna Viterbi Dept. of Electrical Engineering, Technion, Haifa,
32000, Israel
sashas@tx.technion.ac.il, idish@ee.technion.ac.il

2 VMware, Palo Alto, USA
dahliamalkhi@gmail.com

Abstract
A key challenge for distributed systems is the problem of reconfiguration. Clearly, any pro-

duction storage system that provides data reliability and availability for long periods must be
able to reconfigure in order to remove failed or old servers and add healthy or new ones. This is
far from trivial since we do not want the reconfiguration management to be centralized or cause
a system shutdown.

In this tutorial we look into existing reconfigurable storage algorithms [7, 8, 1, 9, 6, 10]. We
propose a common model and failure condition capturing their guarantees. We define a recon-
figuration problem around which dynamic object solutions may be designed. To demonstrate
its strength, we use it to implement dynamic atomic storage. We present a generic framework
for solving the reconfiguration problem, show how to recast existing algorithms in terms of this
framework, and compare among them.

1998 ACM Subject Classification C.2.4 Distributed Systems

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

A key challenge for distributed systems is the problem of reconfiguration, i.e., changing
the active set of servers. Clearly, any production system that provides data reliability and
availability for long periods must be able to reconfigure in order to remove failed or old servers
and add healthy or new ones. The foundations of reconfigurable distributed algorithms are
key to understanding and designing dynamic distributed systems.

The study of reconfigurable replication has been active since at least the early 1980s, with
the development of group communication and virtual synchrony (see survey in [3]). In recent
years, there were several works on reconfigurable (dynamic) storage [7, 8, 1, 9, 6, 10], some
of which use consensus for reconfigurations [7, 8] while others assume fully asynchronous
systems [1, 9, 6, 10]. We feel that the time has come to provide a clear, unifying failure
model and a framework for studying the relationship among different solutions.

In this tutorial we define a clear model, and a generic reconfiguration abstraction that can
be used as a black-box in dynamic object emulations. In our model, a configuration is defined
by sets of changes (such as adding and removing servers). The sequential specification of
our reconfiguration problem says that there is a global sequence of configurations, totally
ordered in a way that will be defined below. Importantly, it does not require that clients
learn every configuration in the sequence, hence it does not necessitate (or imply) consensus.

∗ This work is partially suported by the Israeli Science Foundation. Alexander Spiegelman is grateful to
the Azrieli Foundation for the award of an Azrieli Fellowship.

© Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Dynamic Reconfiguration: A Tutorial

Despite this weak guarantee, we demonstrate the usefulness of our reconfiguration abstraction
by implementing a dynamic register on top of it. We also define a failure condition that
generalizes the correct majority (of servers) condition from static systems to dynamic ones.
On the one hand, our condition is strong enough to be useful, in that we allow servers to
fail (or to be switched off) immediately when an operation that removes them from the
current configuration returns. And on the other hand, it is sufficiently weak as to allow
implementations that preserve the objects’ states when the system is reconfigured.

We present a solution for the reconfiguration problem, which is based on the core
mechanism in DynaStore [1]. In order to make it generic and simple, we define a Speculating
Snapshot (SpSn) abstraction, based on [6], which is the core task clients have to solve in
order to coordinate. We then show how to recast existing dynamic storage algorithms [7,
8, 1, 9, 6, 10] in terms of this framework. Specifically, we show that the SpSn abstraction
can be implemented by extracting the core coordination mechanism from each of these
algorithms, (e.g., consensus from RAMBO [7, 8] and weak snapshot from DynaStore [1, 10]).
We use this unified presentation to compare their properties and the resulting complexity of
reconfiguration.

The remainder of this tutorial is organized as follows: In Section 2 we define the model
and failure condition. In Section 3 we define the reconfiguration problem. Then, in Section
4, we introduce the SpSn abstraction, present our generic reconfiguration algorithm, and
compare among different SpSn implementations. In Section 5 we demonstrate how to use
the reconfiguration algorithm in order to implement a dynamic atomic register. Finally, we
conclude in Section 6.

2 Model

A dynamic shared storage system consists of an infinite set Φ of object servers supporting
atomic read-modify-write (RMW) remote calls by an infinite set Π of clients. Calls may take
arbitrarily long to arrive and complete, hence the system is asynchronous. Any number of
clients may fail by crashing. The servers may also fail by crashing, but their failures are
restricted by the failure model, which we define later. A server or client is correct in a run r
if it does not fail in r, and otherwise, it is faulty.

We study algorithms that emulate reliable shared objects for the clients via dynamic
subsets of the servers.

2.1 Configurations
Our definition of configurations is based on [1]; here we extend it to client-server systems.
Intuitively, a configuration is a set of included or excluded servers. Fomally, we define Changes
to be the set {+,−} × Φ. For simplicity we refer to 〈+, s〉 as +s (and accordingly to 〈−, s〉
as −s). For example, +s3 is a change that denotes the inclusion of server s3. A configuration
is a finite subset of Changes, e.g., {+s1,+s2 − s2, and +s3〉} is a configuration representing
the inclusion of servers s1, s2, and s3, and the exclusion of s2. For every configuration C,
the membership of C, denoted C.membership, is the set of servers that are included but not
excluded from it: {s|+ s ∈ C ∧−s 6∈ C}. An excluded server cannot be included again later;
in practice, it might join with a different identity. Illustrations of a configuration and its
membership appear in Figure 1. Tracking excluded servers in addition to the configuration’s
membership is important in order to reconcile configurations suggested by different clients.
An initial configuration C0 is known to all clients.

Spiegelman, Keidar, and Malkhi 3

Figure 1 A configuration and its membership.

Configuration life-cycle At different times, configurations can be speculated, activated,
and expired. A client can speculate a configuration C by issuing an explicit speculate(C) event,
while configurations are activated and expired implicitly, as we later discuss. A configuration
begins its life cycle with its speculation, which occurs after the inclusions and exclusions
comprising it have been requested by clients. Then, if it “succeeds”, it becomes activated
when the system in some sense chooses to make it the new configuration, as we explain in
Section 3 below. The newly activated configuration must contain all previously activated ones.
(A server is removed by keeping its inclusion and adding its exclusion to the configuration.)
A configuration is expired, whether or not it was activated, when a “newer” configuration
is activated. Here, we refer to any configuration D as “newer” than C when C does not
contain D. The activation of D prevents the future activation of C. Formally:

I Definition 1 (life-cycle). The lifecycle of a configuration C is defined by the following
events:
speculate(C): An event that is invoked explicitly by clients.
activate(C): An event that is triggered automatically by certain client operations, as defined

below.
expire(C): An event that occurs automatically and immediately when some configuration

C ′ 6⊆ C is activated.

We later use these notions in order to define the failure model as well as the reconfiguration
problem.

Shared register emulation For every configuration C, as long as a majority of C.membership
is alive, clients can use ABD [2] to simulate a collection of atomic read/writer registers on
top of the servers in C.membership. Thus, we define:

I Definition 2 (availability). A configuration C is available if majority of the servers in
C.membership are correct.

For simplicity, we henceforth use this abstraction, and have clients invoke atomic
read/write operations on shared registers in a given configuration. Note that if a con-
figuration is unavailable, pending reads and writes to and from the configuration’s registers
might never return. We next define a failure condition that specifies which configurations
must be available.

4 Dynamic Reconfiguration: A Tutorial

Failure condition There are infinity many servers in the system, and they cannot all be
“alive” from the beginning. A speculate event indicates when we expect a configuration to
become available. And now, the question is when a configuration can become unavailable. In
our failure model we require reconfigurablity, which means that once we succeed to activate
a new configuration C, every server s that is excluded in C (i.e., −s ∈ C) can fail or be
switched off. To this end, we define the following failure condition, which is sufficiently weak
so as to allow reconfigurablity.

I Definition 3 (failure condition). If configuration C is speculated and not expired, then C
is available.

Recall that when a configuration C is activated then every configuration D 6⊇ C is expired.
Intuitively, we can think of the activated configuration as chosen, of activated ones that are
expired as replaced, and of speculated and not activated ones that are expired as abandoned.
Figure 2 shows how our failure condition satisfies reconfigurablity.

Figure 2 Example of activation and expiration. First client ca speculates configuration C1 in C0,
while client cb speculates configuration C2 in C0, client ca misses C2 and activates C1. Note that
C0, C2 6⊇ C1, and thus, according to our definition, both C0, C2 are expired and are allowed to be
unavailable. Therefore, the excluded servers in C1 (s1, s2, and s3) are no longer needed for liveness
and can be safely switched off.

2.2 Discovering available configurations
Since configurations can be expired and become unavailable, we cannot guarantee termination
of operations on emulated registers in expired configurations. Moreover, clients trying to
access the shared object would need to access newer configurations in order to complete their
operations. For example, a client that arrives after C0 is expired and does not know of any
newer configuration may hang forever because C0 can already be unavailable. It is easy to
see that this limitation is inherent in every model that separates clients from servers and
requires reconfigurability (or any other failure model that allows failures of servers in an old
configuration).

Therefore, clients have to somehow be notified about new activated configurations. Note
that a speculated configuration C can become unavailable only when some configuration

Spiegelman, Keidar, and Malkhi 5

C ′ 6⊆ C is activated. Thus, when a client tries to access an unavailable configuration C, we
want to help the client find an activated configuration.

To this end, we envision that the system would use some directory service, or oracle, that
stores information about configurations and ensures only a relaxed consistency notion1. A
client which activates a configuration C informs the directory that C is activated. A client
which tries to access a configuration D simultaneously posts queries to the directory about D.
If the directory service sees that a configuration C has been activated such that D does not
contain C, it reports back to the client that D has been expired by an activated configuration
C. It is important to note that two clients that post queries to the directory about D can
get different responses about activated configurations, and we do not require any eventual
consistency properties on these reports. Hence, this service is weak and does not provide
consensus.

Such a directory service can be easily implemented in a distributed manner with multiple
directory servers. A client informs its local directory server about new activated configurations,
and the server broadcasts it to all the other directory servers. When a client posts a request
about an expired configuration D to its local directory server, then eventually the server will
learn about some configuration that could have expired D and return it to the client.

In order to keep the model simple, we avoid using an explicit directory. Instead, we take
an abstraction from [6]:

I Definition 4 (oracle). When a client accesses an unavailable configuration C it gets an
error message referencing some activated configuration C ′ 6⊆ C.

3 Reconfiguration Problem

We want to allow clients that access a shared object to change the subset of servers over
which it is emulated. To this end, we define a reconfiguration abstraction, which has
one operation, reconfig. A reconfig operation gets as parameters a configuration C and a
proposal P ⊂ Changes. Intuitively, reconfig(C,P) is a request to reconfigure the system
from configuration C to a new configuration reflecting the changes in P . It returns two values.
The first is a configuration C ′ which is either C∪P or a superset of it, i.e., C ′ ⊇ C∪P , where
C ′ may contain additional, concurrently proposed changes. It also returns a set S consisting
of all the configurations that were speculated during the operation, and in particular, C ′ ∈ S.
We assume that C is a configuration that was previously returned by some reconfig operation
(note that this is an assumption on usage). By convention, we say that reconfig(C0, C0)
returns 〈C0, {C0}〉 at time 0.

Next we need to determine when configurations are activated. Since one of the purposes
of reconfiguration is to allow administrators to switch off removed servers, we want to make
sure that reconfig leads to the activation of a new configuration, which in turn expires
old ones. However, since at the moment when a configuration is activated all preceding
configurations may become unavailable, we want to allow clients to transfer object state
residing in the old configuration to the new one. Clearly every distributed service maintains
some state on behalf of clients. Thus, when reconfiguring, we need to be careful to not lose
this state. We want to define a generic way, without any specific knowledge of the higher

1 In today’s practical settings, it is reasonable to presume that some global directory is available, e.g.,
DNS.

6 Dynamic Reconfiguration: A Tutorial

level service, to make clients aware of a reconfiguration that is about to happen so they will
be able to transfer state to it. Therefore, in our model, a configuration C is not necessarily
immediately activated when reconfig returns it. Instead, when reconfig returns C, our model
allows clients to transfer state from previous configurations to C. Only when a client calls
reconfig(C,P) (for some P), and returns C (indicating no further changes) does C become
activated. Formally:

I Definition 5 (activation). A configuration C is activated when reconfig(C,P) returns 〈C, S〉
for some S and P for the first time.

Note that by the convention, the initial configuration C0 is activated at time 0.

Sequential specification The reconfiguration abstraction is linearizable with respect to
the sequential specification consisting of the three properties we now define. Briefly, the idea
is that we require that reconfig return to all clients configurations that are totally ordered
by containment. Importantly, we do not require reconfig to return to every client the entire
totally-ordered sequence. Rather, we allow clients to “skip” configurations.

First, we require that every change in a speculated configuration was previously proposed:

Validity: A reconfig operation rec returns 〈C, S〉 s.t. for every C ′ ∈ S for every e ∈ C ′,
∃reconfig(C ′′, P ′) that is either rec or precedes it s.t. e ∈ P ′.

Second, we require that new configurations contain all previous ones:

Monotonicity: If 〈C, S〉 is returned before 〈C ′, S′〉, then C ⊆ C ′.

Note that it is possible for one client to activate C ′ after C, while another client reconfigures
C to another configuration C ′′. The third property uses speculation to ensure that the second
client is aware of configuration activated by the first:

Speculation: If a configuration C ′ ⊃ C is activated before reconfig(C,P) returns 〈C ′′, S〉,
then C ′ ∈ S.

Liveness In addition, if the number of invoked reconfig operations is bounded, we require:

Termination: Every reconfig operation invoked by a correct client eventually returns.

It is easy to see that in this model (servers and clients are separated), if there is an
unbounded number of reconfigurations’ invocations, then a correct client may forever chase
after an available configuration and never be able to communicate with the servers, and thus,
never complete its operation2.

4 Reconfiguration Solution

In this section we give a generic algorithm for the reconfiguration problem. In Section
4.1 we define the Speculating Snapshot (SpSn) abstraction, which is the core task behind
the algorithm. In Section 4.2 we use the SpSn abstraction in order to present a generic
reconfiguration algorithm. In Section 4.3 we show different ways to implement SpSn by
recasting existing algorithms of atomic dynamic storage in terms of SpSn.

2 In [11], we show that even in a model where clients are not distinct from servers, and only clients that
are part of the last activated configuration’s membership are allowed to invoke operations, we cannot
guarantee progress in case of infinite number of reconfiguration even if we can solve consensus in every
configuration.

Spiegelman, Keidar, and Malkhi 7

Table 1 Possible SpSn outputs.
Client Input Output

c1 {+s1} { {{+s1}}, {{+s1}, {+s2}, {+s3}} }
c2 {+s2} { {{+s1}}, {{+s1}, {+s3}} }
c3 {+s3} { {{+s1}}, {{+s1}, {+s2}}, {{+s1}, {+s2}, {+s3}} }
c4 {} {}

4.1 SpSn abstraction
SpSn (based on [6]) is the core task clients solve in configurations in order to coordinate
configuration changes. It is a multi-input, multi-output task: each client inputs its proposal
P by calling SpSn(P), and the output is a set of sets of proposals proposed by different
clients. We will use SpSn for reconfig by proposing changes, and each of the sets returned by
SpSn will be speculated. SpSn is emulated in a given configuration C, and its invocation in
C with proposal P is denoted C.SpSn(P). Like other emulated objects, C.SpSn can return
an error message with some newer activated configuration if C is unavailable. Within an
available configuration C, the SpSn task is defined as follows:

Non-triviality: If P 6⊆ C, then SpSn(P) returns a non-empty set.
Intersection: There exists a non-empty set of proposals that appears in all non-empty
outputs.

An example of possible SpSn outputs appears in Table 1.

4.2 Generic algorithm for reconfiguration
In this section we show a simple generic algorithm for the reconfiguration problem, which
is based on the dynamic storage algorithm presented in DynaStore [1]. We use one SpSn
task in every configuration. When clients call C.SpSn with different proposals, they may
receive different configurations in return, which in turn leads them to speculate different
configurations.

The pseudocode of the algorithm appears in Algorithm 1. The idea is to track the
configurations that clients speculate, and try to merge them into one configuration that will
reflect them all. In addition, we want to make sure that later reconfig operations will be aware
of this configuration in order to guarantee monotonicity. We call this process traverse [1]
because it is a traversal of a configuration DAG (see Figure 2 above) whose nodes are the
speculated configurations and there is an edge from a configuration C to a configuration C ′

if some client receives C ′ in the output of C.SpSn.
Initially, the set ToTrack contains only the input configuration C in which the operation

started, proposal is the union of C and the input proposal P , and the set speculation is empty.
During the reconfig operation, a client repeatedly takes the smallest configuration in ToTrack,
speculates it, adds it to the speculation set, and proposes proposal in its SpSn. Then, if the
configuration is available, it adds the output from SpSn (set of configurations) to ToTrack (in
order to track them later), and adds the union of all the changes in configurations returned
from SpSn to proposal. Note that each client traverses a different sub-graph of the DAG of
configurations during its reconfig operation. However, since SpSn guarantees intersection,
the DAGs of different clients that start in the same configuration intersect (see example in
Figure 3). A reconfig operation completes when ToTrack is empty. The last configuration in
ToTrack is the configuration where the DAGs merge.

8 Dynamic Reconfiguration: A Tutorial

Figure 3 Clients ca, cb, and cc start reconfig in configuration C0. Client ca traverses the solid
blue arrows, cb traverses green dashed arrows, and cc traverses purple dotted arrows. For example,
ca first invokes C0.SpSn(C1) and receives {C1}. Next it invokes C1.SpSn(C1) and receives {C4, C5}.
Then, it invokes C4.SpSn(C6) and C5.SpSn(C6) and receives {C6} from both them. Finally, it
invokes C6.SpSn(C6), receives {C6}, and returns (no more configurations to track) C6 together with
a set consisting of the configurations in its DAG. Each of the clients traverses a different sub-graph
but since SpSn guarantees intersection, their traversals intersect and eventually merge. The circled
configurations are those where the sub-graphs intersect.

While traversing a DAG, if some configuration is unavailable, a client receives an error
message with a newer activated configuration Ca, and starts over from Ca. Note that since
we assume a bounded number of reconfigurations, clients with pending operations will (1)
eventually reach an available (forever) configuration, and (2) propose the same configuration.
Therefore, all the operations eventually complete.

Algorithm 1 Generic algorithm for reconfiguration
1: operation reconfig(C,P)
2: ToTrack← {C}
3: proposal← P ∪ C
4: speculation← {} . set of speculated configurations
5: while ToTrack 6= {} do
6: C ′ ← argmin

C′′∈T oT rack

(|C ′′|) . smallest configuration (in number of changes)

7: speculate(C ′)
8: speculation← speculation ∪ {C ′}
9: ret← C ′.SpSn(proposal)

10: if ret = 〈“error”, Ca〉 then . C ′ is expired - restart from Ca

11: speculation← {}
12: ToTrack← {Ca}
13: else
14: ToTrack← (ToTrack ∪ {

⋃
e∈E e | E ∈ ret}) \ {C ′}

15: proposal←
⋃

e∈ToTrack e ∪ proposal
16: return 〈proposal, speculation〉
17: end

Spiegelman, Keidar, and Malkhi 9

Table 2 Comparison among SpSn implementations extracted from existing dynamic storage
algorithms

Algorithm SpSn Cost DAG size reconfigurable rely on consensus
RAMBO [7, 8] O(1) n yes yes
DynaStore [1] O(1) min(mn, 2n) yes no
SmartMerge [9] O(1) n no no

Parsimonious SpSn [6] O(n) n yes no

4.3 Recasting existing algorithms in terms of SpSn

In this section we look into existing algorithms and extract their core mechanism for
implementing SpSn. As noted above, we assume a shared memory abstraction in every
configuration, and as long as the configuration is available, clients can access its read/write
registers. Therefore, we implement SpSn in shared memory, and when a configuration C
becomes unavailable, pending SpSn invocations in C return an error message with some
active configuration.

We make use of a collect operation, which returns a set of values of an array of registers.
This operation can be implemented by reading the registers one by one, or by opening
the ABD abstraction and collecting an entire array of registers in a constant number of
communication rounds. In our complexity analysis, we count a collect as one operation.

The SpSn implementations differ in their complexity (number of operations) and in the
number of configurations clients traverse in the generic reconfiguration algorithm (i.e., their
DAG size). Denote by m the total number of reconfig operations, where n of them propose
unique changes. As we will see in Section 5, when emulating a dynamic atomic register, read
and write operations invoke reconfig without proposing changes (they call reconfig in order
to ensure they execute in the up-to-date configuration), while reconfigurations of the register
propose changes. Table 2 compares the different SpSn implementations described in detail
below.

4.3.1 RAMBO

RAMBO [8, 7] was the first to implement a dynamic atomic register with asynchronous
read/write operations. The main idea is to use consensus to agree on the reconfigurations,
while read/write operations asynchronously read from all available configurations and write
to the “last” one. We now show how to use consensus in order to implement SpSn. The
pseudocode appears in Algorithm 2. It uses a shared array arr where client ci writes to
arr[i]. We assume that arr is dynamic: only cells that are written to are allocated.

Consider a client ci that proposes P in SpSn of configuration C. If P 6⊆ C (meaning that
the client has new changes to propose), it proposes P in C’s consensus object, and writes the
decision value to its place in arr. Otherwise, it does not invoke consensus and writes nothing
to arr. In both cases, it returns the set of sets of values collected from arr. (Only written
cells are collected). Note that this set is either empty, in case no changes were proposed, or
contains exactly one set of one configuration (the one agreed in the consensus). Therefore,
the SpSn non-triviality and intersection properties are preserved.

Note also that clients invoke consensus only if they propose new configurations. Thus, if
we use this SpSn in the register emulation of Section 5.2, we preserve the RAMBO property
of asynchronous read/write operations.

10 Dynamic Reconfiguration: A Tutorial

Algorithm 2 Consensus-based SpSn; protocol of client ci in configuration C
1: operation SpSn(P)
2: if P 6⊆ C then
3: arr[i]← C.consensus(P)
4: ret← collect(arr)
5: return {{C ′} | C ′ ∈ ret}
6: end

4.3.2 DynaStore

DynaStore [1] was the first algorithm to solve dynamic storage reconfiguration in completely
asynchronous systems (without consensus). It observes that clients do not have to agree on
the next configuration: different clients can return different configurations, as long as we make
sure that if one client writes in some configuration, others will traverse this configuration,
read its value, and transfer it to the new configuration they return.

The core mechanism behind the coordination of the algorithm is the weak snapshot
abstraction. We now show how to use it in order to implement SpSn. The pseudocode of
client ci implementing SpSn(P) in configuration C appears in Algorithm 3. Again, we use
an array arr. If ci proposes a new configuration (P 6⊆ C), then it writes P into its register
in arr. Otherwise, it writes nothing. Then it collects the registers in arr. If the collect is
empty, it returns {}, otherwise it collects again and returns the obtained set.

Note that both properties of SpSn are preserved. First, non-triviality is satisfied since
if P 6⊆ C then the client writes to its register and so the collects cannot return an empty
set. Second, intersection is satisfied since all the clients that return non-empty sets get a
non-empty set in the first collect, and thus collect again. Therefore, in the second collect
they all get the first value that is written (this value appears in all outputs).

Note that while the DAG size obtained in the generic algorithm by using consensus for
SpSn is exactly n, with a weak snapshot-based SpSn, the DAG can be much bigger. Without
consensus, clients can write (propose) different configurations in SpSn’s array (arr), and learn
different subsets of proposals (from the collect), which in turn leads to different proposals
being written in the next tracked configuration’s SpSn.

With n is unique proposals, there are 2n possible configurations that can be speculated
and traversed. But since clients propose in each SpSn during the traverse the union of
all the configurations and proposals they previously traversed, every client proposes at
most n different configurations during its traverse. Therefore, the worst-case DAG size is
min(nm, 2n).

Spiegelman, Keidar, and Malkhi 11

Algorithm 3 Weak snapshot-based SpSn; protocol of client ci in configuration C
1: operation SpSn(P)
2: if P 6⊆ C then
3: arr[i]← P

4: ret← collect(arr)
5: if ret = {} then
6: return ret
7: else
8: ret← collect(arr)
9: return {{C ′} | C ′ ∈ ret}
10: end

4.3.3 SmartMerge
SmartMerge [9] is very similar to DynaStore, but it uses a pre-computation in order to reduce
the DAG size to n. Before starting the generic algorithm, clients participate in an external
lattice agreement service [4], in which they input their proposals and each receives a set of
proposals s.t. all the outputs are related by containment. Then, they take the output of the
lattice agreement and use it as their proposal in the generic reconfig algorithm (Algorithm 1).

Notice that by ordering the proposals by containment, SmartMerge reduces the total
number of configurations that can be speculated and traversed (i.e., the DAG size) to n.
However, this solution assumes that the lattice agreement service is available forever, and
since it is not a dynamic service, the servers emulating it cannot fail or be switched off.
Therefore, SmartMerge is not reconfigurable.

4.3.4 Parsimonious SpSn
Parsimonious SpSn [6] uses multiple rounds of a mechanism similar to commit-adopt [5].
Similarly to SmartMerge, it relies on containment in order to reduce the DAG size, but
does not use an external service for it, and thus the solution is reconfigurable. Instead, all
the configurations in the sets returned from the commit-adopt-based SpSn are related by
containment.

In order to achieve the containment property, parsimonious SpSn pays in the SpSn’s
complexity. Instead of O(1) as in other implementations, the SpSn complexity here is O(n).
More details can be found in [6].

5 Dynamic Atomic Register

The reconfiguration problem can be used as an abstraction in order to implement many
dynamic atomic objects on top of it. Here we demonstrate it by presenting a protocol for
dynamic atomic register. In Section 5.1 we define the dynamic atomic register object, and in
Section 5.2 we present an algorithm that implements it in our model.

5.1 Definition
We consider a dynamic atomic multi-writer, multi-reader (MWMR) register object emulated
by a subset of the servers in φ, from which any client can read or write values from a domain
V. The sequential specification of the register requires that a read operation return the value
written by the latest preceding write operation, or ⊥ if there is no such write. In addition,

12 Dynamic Reconfiguration: A Tutorial

the object exposes an interface for invoking reconfiguration operations that allow clients to
change the set of servers emulating the register.

A reconfiguration gets as a parameter a set of changes Proposal ⊂ Changes and returns
a configuration C s.t. (1) C is activated, (2) C ⊇ Proposal, and (3) C is subset of changes
proposed by clients before the operation returns.

We assume that there is a bounded number of reconfiguration operations, and require
that every operation by a correct client eventually returns.

5.2 Solution

We present an algorithm for a dynamic atomic register, which uses the reconfiguration
problem abstraction (reconfig). The pseudocode appears in Algorithm 4.

The main procedure used by all operations, (read, write, and reconfiguration), is check-
config(P, v, op), where P is the reconfiguration proposal (⊥ in case of read or write), v ∈ V
is the value to write (⊥ in case of read or reconfig), and op is the operation type (READ,
WRITE, or REC). The procedure manipulates two local variables: Ccur, which stores the last
activated configuration returned from a reconfig operation, and version, a tuple consisting
of a value v and its timestamp ts. All operations first call check-config(P, v, op), and then
return according to the operation type: A write returns ok, a read returns version.v, and a
reconfiguration returns Ccur.

In order to emulate the dynamic register we use an idea that was first introduced in
RAMBO [7], and later adopted by DynaStore [1]. The idea is to read a version from each
configuration that other clients may have written to, and then write the most up-to-date
version (associated with the highest timestamp) to the configuration we want to activate and
return. To this end, we start check-config by calling reconfig(Ccur,Proposal), which returns
〈C, S〉. Next, we read the version from every configuration returned in S, and write the
latest/newer version into C. In case of a write operation we write a version consisting of v
and a new timestamp (higher than all those we read). Otherwise, we write back the version
with the highest timestamp we read.

Note that before we can return, we need to validate that future operations will not
miss our version. Therefore, after we write the version, we check if there are new activated
configurations. To this end, we call reconfig(C, {}) (line 27). If the operation returns 〈C ′, S′〉
where C ′ = C, it is guaranteed that no one “moved forward” before we wrote our version
to C, and every later operation will not miss our version. Note that in this case, by our
definition, C is activated and older configurations can become unavailable. This does not pose
a problem, since the state of the object (the up-to-date version) has already been transferred
to the new configuration. Otherwise, if the operation returns 〈C ′, S′〉 where C ′ 6= C, we
repeat the above process for C ′ and S′. Notice that since we assume a bounded number of
reconfiguration operations, it is guaranteed that every check-config, and thus every operation
performed by a correct client eventually returns.

In order to read and write versions from configurations we assume that every configuration
emulates a version object that has two functions: readVersion() and writeVersion(version). A
readVersion invoked in configuration C simply returns C’s version. A writeVersion(version)
overwrites C’s version if it has a higher timestamp, and returns ok. Again, if C is unavailable,
the operations return error messages. Note that readVersion() can be implemented by the
first phase of ABD [2], and writeVersion by the second.

Spiegelman, Keidar, and Malkhi 13

Algorithm 4 Dynamic Atomic register emulation
1: Local variable:
2: version, tmp ∈ N× V with selectors ts and v, initially 〈0, v0〉
3: Ccur ⊂ Changes, initially C0

4: operation reconfiguration(Proposal)
5: check-config(Proposal,⊥,REC)
6: return Ccur

7: end

8: operation read()
9: check-config(⊥,⊥,READ)
10: return version.v
11: end

12: operation write(v)
13: check-config(⊥, v,WRITE)
14: return ok
15: end

16: procedure check-config(P, v, op)
17: 〈C, S〉 ← reconfig(Ccur, P)
18: repeat
19: for each configuration C ′ ∈ S do . read in all speculated configurations
20: tmp← C ′.readV ersion()
21: if tmp 6= error(∗) ∧ tmp.ts > version.ts then . newer version found
22: version← tmp

23: if op = WRITE then
24: version← 〈version.ts+ 1, v〉
25: C.writeVersion(version)
26: Ctmp ← C

27: 〈C, S〉 ← reconfig(Ctmp, {}) . activate C or find newer configuration
28: until C = Ctmp

29: Ccur ← C . C is activated

6 Conclusion

Reconfiguration is a key challenge in implementing distributed dynamic shared objects, and
in particular, in distributed dynamic storage. Clearly, any long-lived shared object emulated
on top of fault-prone servers must be able to reconfigure in order to remove failed or old
servers and add healthy or new ones.

In this tutorial we first defined a clear model for studying reconfiguration. We defined a
failure condition that provides reconfigurability, that is, allows a server to fail or be switched
off immediately when it is no longer part of the current active configuration’s membership.
Then, we encapsulated a reconfiguration problem that is on the one hand implementable in
asynchronous systems satisfying our failure condition, and on the other hand can be used as
an abstraction for implementing many dynamic shared objects. Next, we presented a (simple)

14 Dynamic Reconfiguration: A Tutorial

general framework for solving the reconfiguration problem, and showed how existing dynamic
storage algorithms [7, 8, 1, 9, 6, 10] can be recast in terms of this framework. In order to
do so, we defined, (based on [6]), a core task called SpSn, which clients solve in order to
coordinate. We demonstrated how to extract different algorithms’ coordination mechanisms
in order to implement this task. This allowed us to compare the different algorithms.

Finally, we demonstrated the power of the reconfiguration abstraction by presenting a
simple algorithm for dynamic atomic storage on top of it.

Acknowledgements

We thank Eli Gafni for his contribution to the SpSn abstraction definition, and Christian
Cachin and Yoram Moses for insightful comments.

Spiegelman, Keidar, and Malkhi 15

References
1 Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic atomic

storage without consensus. J. ACM, 58(2):7:1–7:32, April 2011.
2 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-

passing systems. Journal of the ACM (JACM), 42(1):124–142, 1995.
3 Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications:

A comprehensive study. ACM Computing Surveys (CSUR), 33(4):1–43, December 2001.
4 Jose M Faleiro, Sriram Rajamani, Kaushik Rajan, G Ramalingam, and Kapil Vaswani.

Generalized lattice agreement. In Proceedings of the 2012 ACM symposium on Principles
of distributed computing, pages 125–134. ACM, 2012.

5 Eli Gafni. Round-by-round fault detectors (extended abstract): unifying synchrony and
asynchrony. In Proceedings of the seventeenth annual ACM symposium on Principles of
distributed computing, pages 143–152. ACM, 1998.

6 Eli Gafni and Dahlia Malkhi. Elastic configuration maintenance via a parsimonious specu-
lating snapshot solution. In Proceedings of the 29th International Symposium on Distributed
Computing, pages 140–153. Springer, 2015.

7 Seth Gilbert, Nancy Lynch, and Alex Shvartsman. Rambo ii: Rapidly reconfigurable
atomic memory for dynamic networks. In 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 259–259. IEEE Computer
Society, 2003.

8 Seth Gilbert, Nancy A Lynch, and Alexander A Shvartsman. Rambo: A robust, reconfigur-
able atomic memory service for dynamic networks. Distributed Computing, 23(4):225–272,
2010.

9 Leander Jehl, Roman Vitenberg, and Hein Meling. Smartmerge: A new approach to
reconfiguration for atomic storage. In Proceedings of the 29th International Symposium
on Distributed Computing, pages 154–169. Springer, 2015.

10 Alexander Shraer, Jean-Philippe Martin, Dahlia Malkhi, and Idit Keidar. Data-centric
reconfiguration with network-attached disks. In Proceedings of the 4th International Work-
shop on Large Scale Distributed Systems and Middleware, LADIS ’10, pages 22–26, New
York, NY, USA, 2010. ACM.

11 Alexander Spiegelman and Idit Keidar. On liveness of dynamic storage. CoRR,
abs/1507.07086, 2015.

	Introduction
	Model
	Configurations
	Discovering available configurations

	Reconfiguration Problem
	Reconfiguration Solution
	SpSn abstraction
	Generic algorithm for reconfiguration
	Recasting existing algorithms in terms of SpSn
	RAMBO
	DynaStore
	SmartMerge
	Parsimonious SpSn

	Dynamic Atomic Register
	Definition
	Solution

	Conclusion

