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Abstract

We present Omid – a transaction processing service that
powers web-scale production systems at Yahoo. Omid
provides ACID transaction semantics on top of tradi-
tional key-value storage; its implementation over Apache
HBase is open sourced as part of Apache Incubator.
Omid can serve hundreds of thousands of transactions
per second on standard mid-range hardware, while in-
curring minimal impact on the speed of data access in
the underlying key-value store. Additionally, as expected
from always-on production services, Omid is highly
available.

1 Introduction

In recent years, there is an increased focus on support-
ing large-scale distributed transaction processing; exam-
ples include [6, 7, 11, 17, 18, 20, 28]. Transaction sys-
tems have many industrial applications, and the need for
them is on the rise in the big data world. One prominent
use case is Internet-scale data processing pipelines, for
example, real-time indexing for web search [31]. Such
systems process information in a streamed fashion, and
use shared storage in order to facilitate communication
between processing stages. Quite often, the different
stages process data items in parallel, and their execution
is subject to data races. Overcoming such race conditions
at the application level is notoriously complex; the sys-
tem design is greatly simplified by using the abstraction
of transactions with well-defined atomicity, consistency,
isolation, and durability (ACID) semantics [27].

We present Omid, an ACID transaction processing
system for key-value stores. Omid has replaced an initial
prototype bearing the same name, to which we refer here
as Omid1 [25], as Yahoo’s transaction processing engine;
it has been entirely re-designed for scale and reliability,
thereby bearing little resemblance with the origin (as dis-
cussed in Section 3 below). Omid’s open source version

recently became an Apache Incubator project1.
Internally, Omid powers Sieve2, Yahoo’s web-scale

content management platform for search and personal-
ization products. Sieve employs thousands of tasks to
digest billions of events per day from a variety of feeds
and push them into a real-time index in a matter of sec-
onds. In this use case, tasks need to execute as ACID
transactions at a high throughput [31].

The system design has been driven by several im-
portant business and deployment considerations. First,
guided by the principle of separation of concerns,
Omid was designed to leverage battle-tested key-value
store technology and support transactions over data
stored therein, similar to other industrial efforts [6, 31,
17]. While Omid’s design is compatible with multi-
ple NoSQL key-value stores, the current implementation
works with Apache HBase [1].

A second consideration was simplicity, in order to
make the service easy to deploy, support, maintain, and
monitor in production. This has led to a design based
on a centralized transaction manager (TM)3. While its
clients and data storage nodes are widely-distributed and
fault-prone, Omid’s centralized TM provides a single
source of truth regarding the transaction history, and fa-
cilitates conflict resolution among updating transactions
(read-only transactions never cause aborts).

Within these constraints, it then became necessary
to find novel ways to make the service scalable for
throughput-oriented workloads, and to ensure its con-
tinued availability following failures of clients, storage
nodes, and the TM. Omid’s main contribution is in pro-
viding these features:

Scalability Omid runs hundreds of thousands of trans-
actions per second over multi-petabyte shared stor-

1http://omid.incubator.apache.org
2http://yahoohadoop.tumblr.com/post/129089878751
3The TM is referred to as Transaction Status Oracle (TSO)

in the open source code and documentation.

1

http://omid.incubator.apache.org
http://yahoohadoop.tumblr.com/post/129089878751


age. As in other industrial systems [31, 25, 6], scal-
ability is improved by providing snapshot isolation
(SI) rather than serializability [27] and separating
data management from control. Additionally, Omid
employs a unique combination of design choices in
the control plane: (i) synchronization-free transac-
tion processing by a single TM, (ii) scale-up of the
TM’s in-memory conflict detection (deciding which
transactions may commit) on multi-core hardware,
and (iii) scale-out of metadata (HBase).

High availability The data tier is available by virtue of
HBase’s reliability, and the TM is implemented as
a primary-backup process pair with shared access
to critical metadata. Our solution is unique in tol-
erating a potential overlap period when two pro-
cesses act as primaries, and at the same time avoid-
ing costly synchronization (consensus), as long as a
single primary is active. Note that, being generic,
the data tier is not aware of the choice of primary
and hence serves operations of both TMs in case of
such overlap.

We discuss Omid’s design considerations in Section 2
and related transaction processing systems in Section 3.
We detail the system guarantees in Section 4. Section 5
describes Omid’s transaction protocol, and Section 6 dis-
cusses high-availability. An empirical evaluation is given
in Section 7. We conclude, in Section 8, by discussing
lessons learned from Omid’s production deployment and
our interaction with the open source community, as well
as future developments these lessons point to.

2 Design Principles and Architecture

Omid was incepted with the goal of adding transactional
access on top of HBase, though it can work with any
strongly consistent key-value store that provides multi-
versioning with version manipulation and atomic putI-
fAbsent insertions as we now describe.

The underlying data store offers persistence (using
a write-ahead-log), scalability (via sharding), and high
availability (via replication) of the data plane, reliev-
ing Omid to manage only the transaction control plane.
Omid further relies on the underlying data store for fault-
tolerant and persistent storage of transaction-related
metadata. This metadata includes a dedicated table that
holds a single record per committing transaction, and in
addition, per-row metadata for items accessed transac-
tionally. The Omid architecture is illustrated in Figure 1.

Omid leverages multi-versioning in the underlying
key-value store in order to allow transactions to read con-
sistent snapshots of changing data as needed for snap-
shot isolation. The store’s API allows users to manipu-
late versions explicitly. It supports atomic put(key, val,

Figure 1: Omid architecture. Clients manipulate data
that resides in data tables in the underlying data store (for
example, HBase) and use the TM for conflict detection.
Only the primary TM is active, and the backup is in hot
standby mode. The TM maintains persistent metadata
in the data store as well as separately managed recovery
state (for example, using Zookeeper).

ver) and putIfAbsent(key, val, ver) operations for updat-
ing or inserting a new item with a specific version, and
an atomic get(key, ver) operation for retrieving the item’s
value with highest version not exceeding ver. Specifi-
cally, when the item associated with an existing key is
overwritten, the new version (holding the key, its new
value, and a new version number) is created, while the
previous version persists. An old version might be re-
quired as long as there is some active transaction that
had begun before the transaction that overwrote this ver-
sion has committed. Though this may take a while, over-
written versions eventually become obsolete. A cleaning
process, (in HBase, implemented as a coprocessor [2]),
frees up the disk space taken up by obsolete versions.

The transaction control plane is implemented by a cen-
tralized transaction manager. The TM has three roles: (i)
version (timestamp) allocation; (ii) conflict detection in
order to determine which transactions may commit; and
(iii) persistent logging of the commits. The TM provides
high availability via a primary-backup approach— if the
primary TM becomes unresponsive, then the backup be-
comes the new primary and takes over. This design of-
fers durability and high availability; it further facilitates
scalability of storage and compute resources separately
– metadata storage access scales out on the underlying
distributed data store, whereas conflict management is
done entirely in RAM, and scales up on a shared-memory
multi-core server.

Our high availability solution tolerates “false” fail-
overs, where a new primary replaces one that is simply
slow, (for example, due to a garbage collection stall),
leading to a period with two active primaries. Syn-
chronization between the two is based on shared persis-
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tent metadata storage, and induces overhead only in rare
cases when more than one TM acts as primary. Omid
uses time-based leases in order to minimize potential
overlap among primaries. The implementation employs
Apache Zookeeper [4] for lease management and syn-
chronization between primary and backup.

3 Related Work

Distributed transaction processing has been the focus of
much interest in recent years. Most academic-oriented
papers [7, 8, 11, 18, 20, 32, 36] build full-stack solu-
tions, which include transaction processing as well as a
data tier. Some new protocols exploit advanced hardware
trends like RDMA and HTM [19, 20, 33]. Generally
speaking, these solutions do not attempt to maintain sep-
aration of concerns between different layers of the soft-
ware stack, neither in terms of backward compatibility
nor in terms of development efforts. They mostly pro-
vide strong consistency properties such as serializability.

On the other hand, production systems such as
Google’s Spanner [17], Megastore [9] and Percola-
tor [31], Yahoo’s Omid1 [25], Cask’s Tephra [6], and
more [22, 30, 5], are inclined towards separating the re-
sponsibilities of each layer. These systems, like the cur-
rent work, reuse an existing persistent highly-available
data-tier; for example, Megastore is layered on top of
Bigtable [16], Warp [22] uses HyperDex [21], and Cock-
roachDB [5] uses RocksDB.

Omid most closely resembles Tephra [6] and
Omid1 [25], which also run on top of a distributed key-
value store and leverage a centralized TM (sometimes
called oracle) for timestamp allocation and conflict res-
olution. However, Omid1 and Tephra store all the infor-
mation about committed and aborted transactions in the
TM’s RAM, and proactively duplicate it to every client
that begins a transaction (in order to allow the client
to determine locally which non-committed data should
be excluded from its reads). This approach is not scal-
able, as the information sent to clients can consist of
many megabytes. Omid avoids such bandwidth over-
head by storing pertinent information in a metadata ta-
ble that clients can access as needed. Our performance
measurements in Section 7 below show that Omid signif-
icantly out-performs Omid1, whose design is very close
to Tephra’s. For high availability, Tephra and Omid1
use a write-ahead log, which entails long recovery times
for replaying the log; Omid, instead, reuses the inherent
availability of the underlying key-value store, and hence
recovers quickly from failures.

Percolator also uses a centralized “oracle” for times-
tamp allocation but resolves conflicts via two-phase com-
mit, whereby clients lock database records rendering
them inaccessible to other transactions; the Percolator

paper does not discuss high availability. Other systems
like Spanner and CockroachDB allot globally increas-
ing timestamps using a (somewhat) synchronized clock
service. Spanner also uses two-phase commit whereas
CockroachDB uses distributed conflict resolution where
read-only transactions can cause concurrent update trans-
actions to abort. In contrast, Omid never locks (or pre-
vents access to) a database record, and never aborts due
to conflicts with read-only transactions.

The use cases production systems serve allow them
to provide SI [31, 25, 6, 5], at least for read-only trans-
actions [17]. It is nevertheless straightforward to extend
Omid to provide serializability, similarly to a serializable
extension of Omid1 [35] and Spanner [17]; it is merely
a matter of extending the conflict analysis to cover read-
sets [24, 14], which may degrade performance.

A number of other recent efforts avoid the complexity
of two-phase commit [26] by serializing transactions us-
ing a global serialization service such as highly-available
log [11, 23, 13] or totally-ordered multicast [15]. Omid
is unique in utilizing a single transaction manager to re-
solve conflicts in a scalable way.

4 Service Semantics and Interface

Omid provides transactional access to a large collec-
tion of persistent data items identified by unique keys.
The service is highly available, whereas its clients are
ephemeral, i.e., they are alive only when performing op-
erations and may fail at any time.

Semantics. A transaction is a sequence of put and get
operations on different objects that ensures the so-called
ACID properties: atomicity (all-or-nothing execution),
consistency (preserving each object’s semantics), iso-
lation (in that concurrent transactions do not see each
other’s partial updates), and durability (whereby updates
survive crashes).

Different isolation levels can be considered for the
third property. Omid opts for snapshot isolation [12],
which is provided by popular database technologies such
as Oracle, PostgreSQL, and SQL Server. Note that under
SI, concurrent transactions conflict only if they update
the same item, whereas with serializability, a transac-
tion that updates an item conflicts with transactions that
get that item. Thus, for read-dominated workloads, SI
is amenable to implementations (using multi-versioned
concurrency control) that allow more concurrency than
serializable ones, and hence scale better.

API. Omid’s client API offers abstractions both for
control (begin, commit, and abort) and for data access
(get and put). Following a commit call, the transaction
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may successfully commit, whereby all of its operations
take effect; in case of conflicts, (i.e., when two concur-
rent transactions attempt to update the same item), the
transaction may abort, in which case none of its changes
take effect. An abort may also be initiated by the pro-
grammer.

5 Transaction Processing

We now explain how Omidmanages transactions so as
to guarantee SI semantics. For clarity of the exposition,
we defer discussion of the TM’s reliability to the next
section; for now, let us assume that this component never
fails. We describe Omid’s data model in Section 5.1, then
proceed to describe the client operation in Section 5.2
and the TM’s operation in Section 5.3.

5.1 Data and metadata

Omid employs optimistic concurrency control with
commit-time conflict resolution. Intuitively, with SI, a
transaction’s reads all appear to occur the time when it
begins, while its writes appear to execute when it com-
mits. Omid therefore associates two timestamps with
each transaction: a read timestamp tsr when it begins,
and a commit timestamp tsc upon commit. Both are pro-
vided by the TM using a logical clock it maintains. In ad-
dition, each transaction has a unique transaction id txid,
for which we use the read timestamp; in order to ensure
its uniqueness, the TM increments the clock whenever a
transaction begins.

The data store is multi-versioned. A write operation by
a transaction starting at some time t needs to be associ-
ated with a version number that exceeds all those written
by transactions that committed before time t. However,
the version order among concurrent transactions that at-
tempt to update the same key is immaterial, since at least
one of these transactions is doomed to abort. To ensure
the former, we use the writing transaction’s txid, which
exceeds those of all previously committed transactions,
as the version number.

Since transaction commit needs to be an atomic step,
Omid tracks the list of committed transactions in a per-
sistent Commit Table (CT), as shown in Table 1, which in
our implementation is also stored in HBase. Each entry
in the CT maps a committed transaction’s txid to its re-
spective tsc. To commit a transaction, the TM writes the
(txid, tsc) pair to the CT, which makes the transaction
durable, and is considered its commit point. Gets refer to
the CT using the txid in the data record in order to find
out whether a read value has been committed. In case
it has, they use the commit timestamp to decide whether
the value appears in their snapshot.

Data Table Commit Table
key value version commit txid commit

(txid) (cf) ts
k1 a 5 7 5 7
k1 b 8 nil

Table 1: Omid data and metadata. Data is multi-
versioned, with the txid as the version number. The com-
mit field indicates whether the data is committed, and if
so, its commit timestamp. The commit table (CT) maps
incomplete committed transaction ids to their respective
commit timestamps. Transaction 5 has already commit-
ted and updated cf for k1, but has not yet removed itself
from CT; transaction 8 is still pending.

While checking the CT for every read ensures cor-
rectness, it imposes communication costs and contention
on the CT. To avoid this overhead, Omid augments each
record in the data store with a commit field (cf), indicat-
ing whether the data is committed, and if it is, its commit
timestamp. Initially the commit field is nil, indicating
that the write is tentative, i.e., potentially uncommitted.
Following a commit, the transaction updates the com-
mit fields of its written data items with its tsc, and then
removes itself from the CT. Only then, the transaction
is considered complete. A background cleanup process
helps old (crashed or otherwise slow) committed trans-
actions complete.

Table 1 shows an example of a key k1 with two ver-
sions, the second of which is tentative. A transaction that
encounters a tentative write during a read still refers to
the CT in order to find out whether the value has been
committed. In case it has, it helps complete the transac-
tion that wrote it by copying its tsc to the commit field.
The latter is an optimization that might reduce accesses
to the commit table by ensuing transactions.

5.2 Client-side operation

Transactions proceed optimistically and are validated at
commit time. In the course of a transaction, a client’s
get operations read a snapshot reflecting the data store
state at their read timestamp, while put operations write
tentative values with txid. Since SI needs to detect only
write-write conflicts, only the transaction’s write-set is
tracked. The operations, described in pseudocode in Al-
gorithm 1, execute as follows:

Begin. The client obtains from the TM a read times-
tamp tsr, which also becomes its transaction id (txid).
The TM ensures that this timestamp exceeds all the com-
mit timestamps of committed transactions and precedes
all commit timestamps that will be assigned to commit-
ting transactions in the future.
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Algorithm 1 Omid’s client-side code.
1: local variables txid, write-set
2: procedure BEGIN

3: txid← TM.BEGIN()
4: write-set← /0
5: procedure PUT(key, value)
6: ds.put(key, value, txid, nil)
7: add 64-bit hash of key to write-set
8: procedure GET(key)
9: for rec← ds.get(key, versions down from tsr) do

10: if rec.commit 6=nil then . not tentative
11: if rec.commit < tsr then
12: return rec.value
13: else . tentative
14: value← GETTENTATIVEVALUE(rec, key)
15: if value 6=nil then
16: return value
17: return nil
18: procedure GETTENTATIVEVALUE(rec,key)
19: lookup rec.version in CT
20: if present then . committed
21: update rec.commit . helping
22: if rec.commit < tsr then return rec.value
23: else . re-read version not found in CT
24: rec← ds.get(key, rec.version)
25: if rec.commit6=nil ∧ rec.commit < tsr then
26: return rec.value
27: return nil
28: procedure COMMIT

29: tsc← TM.COMMIT(txid, write-set)
30: for all key in write-set do
31: rec← ds.get(key, txid)
32: if tsc =⊥ then . abort
33: remove rec
34: else
35: rec.cf← tsc

36: remove record with txid from CT

Put(key,val). The client adds the tentative record to
the data store (line 6) and tracks the key in its local write-
set. To reduce memory and communication overheads,
we track 64-bit hashes rather than full keys.

Get(key). A get reads from the data store (via ds.get())
records pertaining to key with versions smaller than tsr,
latest to earliest (line 9), in search of the value written
for this key by the latest transaction whose tsc does not
exceed tsr (i.e., the latest version written by a transaction
that committed before the current transaction began).

If the read value is committed with a commit times-
tamp lower than tsr, it is returned (line 12). Upon en-
countering a tentative record (with cf=nil), the algorithm
calls GETTENTATIVEVALUE (line 18) in order to search
its tsc in the CT. If this txid was not yet written, then
it can safely be ignored, since it did not commit. How-
ever, a subtle race could happen if the transaction has

updated the commit timestamp in the data store and then
removed itself from the CT between the time the record
was read and the time when the CT was checked. In
order to discover this race, a record is re-read after its
version is not found in the CT (line 23). In all cases, the
first value encountered in the backward traversal with a
commit timestamp lower than tsr is returned.

Commit. The client requests commit(txid, write-set)
from the TM. The TM assigns it a commit timestamp tsc
and checks for conflicts. If there are none, it commits the
transaction by writing (txid, tsc) to the CT and returns
a response. Following a successful commit, the client
writes tsc to the commit fields of all the data items it
wrote to (indicating that they are no longer tentative), and
finally deletes its record from the CT. Whether the com-
mit is successful or not a background process helps trans-
actions to complete or cleans their uncommitted records
from the data store, thereby overcoming client failures.

5.3 TM operation

The TM uses an internal (thread-safe) clock to assign
read and commit timestamps. Pseudocode for the TM’s
begin and commit functions is given in Algorithm 2;
both operations increment the clock and return its new
value. Thus, read timestamps are unique and can serve as
transaction ids. Begin returns once all transactions with
smaller commit timestamps are finalized, (i.e., written to
the CT or aborted).

Commit involves compute and I/O aspects for conflict
detection and CT update, resp. The TM uses a pipelined
SEDA architecture [34] that scales each of these stages
separately using multiple threads. Note that the I/O stage
also benefits from such parallelism since the CT can be
sharded across multiple storage nodes and yield higher
throughput when accessed in parallel.

In order to increase throughput, writes to the com-
mit table are batched. Both begin and commit opera-
tions need to wait for batched writes to complete before
they can return – begin waits for all smaller-timestamped
transactions to be persisted, while commit waits for the
committing transaction. Thus, batching introduces a
tradeoff between I/O efficiency, (i.e., throughput), and
begin/commit latency.

The CONFLICTDETECT function checks for conflicts
using a hash table in main memory. (The TM’s com-
pute aspect is scaled by running multiple instances of this
function for different transactions, accessing the same
table in separate threads.) For the sake of conflict de-
tection, every entry in the write-set is considered a key,
(though in practice it is a 64-bit hash of the appropriate
key). Each bucket in the hash table holds an array of
pairs, each consisting of a key hashed to this bucket and
the tsc of the transaction that last wrote to this key.
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CONFLICTDETECT needs to (i) validate that none of
the keys in the write-set have versions larger than txid
in the table, and (ii) if validation is successful, update
the table entries pertaining to the write-set to the trans-
action’s newly assigned tsc. However, this needs to be
done atomically, so two transactions committing in par-
allel won’t miss each other’s updates. Since holding a
lock on the entire table for the duration of the conflict
detection procedure would severely limit concurrency,
we instead limit the granularity of atomicity to a single
bucket: for each key in the write-set, we lock the cor-
responding bucket (line 52), check for conflicts in that
bucket (line 54), and if none are found, optimistically
add the key with the new tsc to the bucket (lines 56–61).
The latter might prove redundant in case the transaction
ends up aborting due to a conflict it discovers later. How-
ever, since our abort rates are low, such spurious addi-
tions rarely induce additional aborts.

Algorithm 2 TM functions.
37: procedure BEGIN

38: txid = Clock.FetchAndIncrement()
39: wait until there are no pending commit operations
40: with tsc < txid
41: return txid

42: procedure COMMIT(txid, write-set)
43: tsc← Clock.FetchAndIncrement()
44: if ConflictDetect(txid, write-set) = COMMIT then
45: UpdateCT(txid, tsc) . proceed to I/O stage
46: return tsc
47: else
48: return ABORT

49: procedure CONFLICTDETECT(txid,write-set)
50: for all key ∈ write-set do
51: b← key’s bucket
52: lock b
53: small← entry with smallest ts in b
54: if ∃ (key, t) ∈ b s.t. t > txid then . conflict
55: unlock b; return ABORT

. no conflict on key found – update hash table
56: if ∃ (key, t) ∈ b s.t. t < txid then
57: overwrite (key, t) with (key, tsc)
58: else if ∃ empty slot s ∈ b then
59: write (key, tsc) to s
60: else if small.t ≤ txid then
61: overwrite small with (key, tsc)
62: else . possible conflict
63: unlock b; return ABORT

64: unlock b
65: return COMMIT

A second challenge is to limit the table size and
garbage-collect information pertaining to old commits.
Since a transaction need only check for conflicts with

transactions whose tsc exceeds its txid, it is safe to re-
move all entries that have smaller commit times than the
txid of the oldest active transaction. Unfortunately, this
observation does not give rise to a feasible garbage col-
lection rule: though transactions usually last few tens of
milliseconds, there is no upper bound on a transaction’s
life span, and no way to know whether a given outstand-
ing transaction will ever attempt to commit or has failed.
Instead, we use the much simpler policy of restricting
the number of entries in a bucket. Each bucket holds a
fixed array of the most recent (key, tsc) pairs. In order
to account for potential conflicts with older transactions,
a transaction also aborts in case the minimal tsc in the
bucket exceeds its txid (line 62). In other words, a trans-
action expects to find, in every bucket it checks, at least
one commit timestamp older than its start time or one
empty slot, and if it does not, it aborts.

The size of the hash table is chosen so as to reduce
the probability for spurious aborts, which is the proba-
bility of all keys in a given bucket being replaced during
a transaction’s life span. If the throughput is T trans-
actional updates per second, a bucket in a table with e
entries will overflow after e/T seconds on average. For
example, if 10 million keys are updated per second, a
bucket in a one-million-entry table will overflow only af-
ter 100ms on average, which is much longer than most
transactions. We further discuss the impact of the table
size in Section 7.

Garbage collection. A dedicated background proce-
dure (co-processor) cleans up old versions. To this end,
the TM maintains a low water mark, which is used in two
ways: (1) the co-processor scans data store entries, and
keeps, for each key, the biggest version that is smaller
than the low water mark along with all later versions.
Lower versions are removed. (2) When a transaction at-
tempts to commit, if its txid is smaller than the low water
mark, it aborts because the co-processor may have re-
moved versions that ought to have been included in its
snapshot. The TM attempts to increase the low water
mark when the probability of such aborts is small.

6 High Availability

Very-high-end Omid-powered applications are expected
to work around the clock, with a mean-time-to-recover
of just a few seconds. Omid therefore needs to provide
high availability (HA). Given that the underlying data
store is already highly available and that client failures
are tolerated by Omid’s basic transaction processing pro-
tocol, Omid’s HA solution only needs to address TM fail-
ures. This is achieved via the primary-backup paradigm:
during normal operation, a single primary TM handles
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client requests, while a backup TM runs in hot standby
mode. Upon detecting the primary’s failure, the backup
performs a failover and becomes the new primary.

The backup TM may falsely suspect that the primary
has failed. The resulting potential simultaneous opera-
tion of more than one TM creates challenges, which we
discuss in Section 6.1. We address these in Section 6.2 by
adding synchronization to the transaction commit step.
While such synchronization ensures correctness, it also
introduces substantial overhead. We then optimize the
solution in Section 6.3 to forgo synchronization during
normal (failure-free) operation.

Our approach thus resembles many popular protocols,
such as Multi-Paxos [29] and its variants, which expe-
dite normal mode operation as long as an agreed leader
remains operational and unsuspected. However, by re-
lying on shared persistent state in the underlying highly
available data store, we obtain a simpler solution, elimi-
nating the need to synchronize with a quorum in normal
mode or to realign state during recovery.

6.1 Failover and concurrent TMs

The backup TM constantly monitors the primary’s live-
ness. Failure detection is timeout-based, namely, if the
primary TM does not re-assert its existence within a con-
figured period, it is deemed failed, and the backup starts
acting as primary. Note that the primary and backup
run independently on different machines, and the time it
takes the primary to inform the backup that it is alive can
be unpredictable due to network failures and processing
delays, (e.g., garbage-collection stalls or long I/O opera-
tions). But in order to provide fast recovery, it is undesir-
able to set the timeout conservatively so as to ensure that
a live primary is never detected as faulty.

We therefore have to account for the case that the
backup performs failover and takes over the service
while the primary is operational. Though such simulta-
neous operation of the two TMs is a necessary evil if one
wants to ensure high availability, our design strives to
reduce such overlap to a minimum. To this end, the pri-
mary TM actively checks if a backup has replaced it, and
if so, “commits suicide”, i.e., halts. However, it is still
possible to have a (short) window between the failover
and the primary’s discovery of the existence of a new
primary when two primary TMs are active.

When a TM fails, all the transactions that began with it
and did not commit (i.e., were not logged in the CT) are
deemed aborted. However, this clear separation is chal-
lenged by the potential simultaneous existence of two
TMs. For example, if the TM fails while a write it is-
sued to the CT is still pending, the new TM may begin
handling new transactions before the pending write takes
effect. Thus, an old transaction may end up committing

Figure 2: The challenge with two concurrent TMs. An
old transaction, tx1, commits while a new one tx2 is pro-
cessed, causing tx2 to see an inconsistent snapshot.

after the new TM has begun handling new ones. Unless
handled carefully, this can cause a new transaction to see
partial updates of old ones, as illustrated in Figure 2. To
avoid this, we must ensure that once a new transaction
obtains a read timestamp, the status of all transactions
with smaller commit timestamps does not change.

A straightforward way to address the above challenge
is via mutual exclusion, i.e., making sure that at most
one TM commits operations at a time. However, this so-
lution would entail synchronization upon each commit,
not only at failover times, which would adversely affect
performance. We therefore forgo this option.

6.2 Basic HA algorithm

Upon failover from T M1 (the old primary) to T M2 (the
new one), we strive to ensure the following properties:

P1 all timestamps assigned by T M2 exceed all those as-
signed by T M1;

P2 after a transaction tx2 with read timestamp ts2r be-
gins, no transaction tx1 that will end up with a com-
mit timestamp ts1c < ts2r can update any additional
data items (though it may still commit); and

P3 when a transaction reads a tentative update, it can de-
termine whether this update will be committed with
a timestamp smaller than its read timestamp or not.

Properties P1–P3 are sufficient for SI: P1 implies that
commit timestamps continue to be totally ordered by
commit time, P2 ensures that a transaction encounters
every update that must be included in its snapshot, and
P3 stipulates that the transaction can determine whether
to return any read value.
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Figure 3: Addressing the challenge of two concurrent
TMs. The old transaction is invalidated by the new one
and therefore cannot commit.

To ensure the first two properties, the TMs publish the
read timestamps they allot as part of initiating a transac-
tion in a persistent shared object, maxTS. Before com-
mitting, the TM checks maxTS. If it finds a timestamp
greater than its last committed one, it deduces that a new
TM is active, aborts the transaction attempting to com-
mit, and halts.

In Figure 2 we saw a scenario where the third prop-
erty, P3, is violated— when tx2 reads key a it cannot tell
that tx1, which wrote it, will end up committing with a
smaller ts1c than ts2r. This leads to an inconsistent snap-
shot at tx2, as it sees the value of key b written by tx1.

To enforce P3, tx2 cannot wait for T M1, because the
latter might have failed. Instead, we have tx2 proactively
abort tx1, as illustrated in Figure 3. More generally, when
a read encounters a tentative update whose txid is not
present in the CT, it forces the transaction that wrote it
to abort. We call this invalidation, and extend the CT’s
schema to include an invalid field to this end. Invalida-
tion is performed via an atomic put-if-absent (supported
by HBase’s checkAndMutate API) to the CT, which adds
a record marking that tx1 has “invalid” status. The use of
an atomic put-if-absent achieves consensus regarding the
state of the transaction.

Commits, in turn, read the CT after adding the commit
record in order to check whether an invalidation record
also exists, and if so, halt without returning a commit re-
sponse to the client. In addition, every read of a tentative
update checks its invalid field in the CT, and ignores the
commit record if the transaction has been invalidated.

While this solution satisfies the three required prop-
erties, it also induces a large number of synchronization
steps: (i) writing allotted read timestamps to maxTS to
ensure P1; (ii) checking maxTS at commit time to ensure
P2; and (iii) checking the CT for invalidation at the end

of every commit to ensure P3. The next section presents
an optimization that reduces the cost of synchronization.

6.3 Synchronization-free normal operation

In order to eliminate the synchronization overhead most
of the time, Omid’s HA solution uses two mechanisms.
First, to reduce the overheads (i) and (ii) associated
with timestamp synchronization, it allocates timestamp
ranges in large chunks, called epochs. That is, instead
of incrementing maxTS by one timestamp at a time, the
TM increments it by a certain range, and is then free to
allot timestamps in this range without further synchro-
nization. Second, to reduce cost (iii) of checking for in-
validations, it uses locally-checkable leases, which are
essentially locks that live for a limited time. As with
locks, at most one TM may hold the lease at a given time
(this requires the TMs’ clocks to advance roughly at the
same rate). Omid manages epochs and leases as shared
objects in Zookeeper, and accesses them infrequently.

Algorithm 3 summarizes the changes to support HA.
On the TM side, CHECKRENEW is called at the start of
every commit and begin. It first renews the lease ev-
ery δ time, for some parameter δ (lines 68–70). This
parameter defines the tradeoff between synchronization
frequency and recovery time: the system can remain un-
available for up to δ time following a TM failure. Since
clocks may be loosely synchronized, Omid defines a
guard period of δ ′< δ , so that the lease must be renewed
at least δ ′ time before it expires. The production default
for δ ′ is δ/4. The primary TM fails itself (halts) if it can-
not renew the lease prior to that time. From the clients’
perspective, this is equivalent to a TM crash (line 70).
Second, CHECKRENEW allocates a new epoch if needed
(lines 71–74).

The backup (not shown in pseudocode) regularly
checks the shared lease, and if it finds that it has expired,
it immediately sets its clock to exceed maxTS, allocates
a new epoch for itself (by increasing maxTS), and be-
gins serving requests, without any special recovery pro-
cedure. Since the epoch claimed by a new TM always
exceeds the one owned by the old one, Property P1 holds.

Property P2 is enforced by having the TM (locally)
check that its lease is valid before committing a transac-
tion (lines 68–70). Since at most one TM can hold the
lease at a given time, and since the commit is initiated
after all writes to items that are part of the transaction
complete, Property P2 holds.

Nevertheless, the lease does not ensure Property P3,
since the lease may expire while the commit record is
in flight, as in the scenario of Figures 2 and 3. To this
end, we use the invalidation mechanism described above.
However, we limit its scope as follows: (1) A commit
needs to check whether the transaction has been invali-
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Algorithm 3 Omid’s HA algorithm.
66: procedure CHECKRENEW

67: . called by the TM at start of BEGIN and COMMIT

68: if lease < now + δ ′ then
69: renew lease for δ time . atomic operation
70: if failed then halt
71: if Clock = epoch then
72: epoch← Clock + range
73: extend maxTS from Clock to epoch
74: if failed then halt

75: procedure TMCHECKINVALIDATE(txid)
76: . called by the TM before COMMIT returns
77: if lease < now + δ ′ then
78: if txid invalid in CT then halt

79: procedure GETTENTATIVEVALUE(REC)
80: . replaces same function from Algorithm 1
81: lookup rec.version in CT
82: if present then
83: if invalidated then return nil
84: update rec.commit . helping
85: if rec.commit < tsr then return rec.value
86: else . new code – check if need to invalidate
87: if rec.version ∈ old epoch by an old TM then
88: invalidate t in CT . try to invalidate
89: if failed then
90: lookup rec.version in CT
91: if invalidated then return nil
92: update rec.commit . helping
93: if rec.commit < tsr then
94: return rec.value
95: else . invalidated
96: return nil
97: else . original code – no invalidation
98: rec← ds.get(key, rec.version)
99: if rec.commit6=nil ∧ rec.commit < tsr then
100: return rec.value
101: return nil

dated only if the TM’s lease has expired. This is done in
the TMCHECKINVALIDATE function. (2) A read needs
to invalidate a transaction only if it pertains to an earlier
epoch of a different TM. We extend client’s GETTEN-
TATIVEVALUE function to perform such invalidation in
Algorithm 3 lines 83, 87–96. Note that a transaction
reading a tentative update still checks its validity status
regardless of the epoch, in order to avoid “helping” in-
validated transactions complete their tentative updates.

Finally ,we note that on TM failover, some clients may
still be communicating with the old TM. While the old
TM may end up committing some of their requests, a
problem arises if the client times out on the old TM be-
fore getting the commit response, since the client might
unnecessarily retry a committed transaction. To avoid
this problem, a client that times out on its TM checks the

CT for the status of its transaction before connecting to
a new TM. If the status is still undetermined, the client
tries to invalidate the CT entry, thus either forcing the
transaction to abort or learning that it was committed (in
case the invalidation fails).

7 Evaluation

Omid’s implementation complements Apache HBase
with transaction processing. It exploits HBase to store
both application data and the CT metadata. HBase, the
TMs, and Zookeeper are all deployed on separate dedi-
cated machines.

In large-scale deployments, HBase tables are sharded
(partitioned) into multiple regions. Each region is man-
aged by a region server; one server may serve multiple
regions. HBase is deployed on top of Hadoop Distributed
Filesystem (HDFS), which provides the basic abstraction
of scalable and reliable storage. HDFS is replicated 3-
fold in all the settings described below.

Section 7.1 presents performance statistics obtained in
Omid’s production deployment, focusing on the end-to-
end application-level overhead introduced by transaction
processing. Section 7.2 further zooms in on the TM scal-
ability under very high loads.

7.1 End-to-end performance in production
We present statistics of Omid’s use in a production de-
ployment of Sieve – Yahoo’s content management sys-
tem. Sieve digests streams of documents from multiple
sources, processes them, and indexes the results for use
in search and personalization applications. Each docu-
ment traverses a pipeline of tasks, either independently
or as part of a mini-batch. A task is an ACID processing
unit, framed as a transaction. It typically reads one or
more data items generated by preceding tasks, performs
some computation, and writes one or more artifacts back.

Sieve scales across task pipelines that serve multiple
products, performing tens of thousands of tasks per sec-
ond on multi-petabyte storage. All are powered by a
single Omid service, with the CT sharded across 10 re-
gions managed by 5 region servers. Sieve is throughput-
oriented, and favors scalability over transaction latency.

Figure 4 presents statistics gathered for five selected
Sieve tasks. For each task, we present its average latency
broken down to components – HBase access (two bottom
components in each bar), compute time, and the TM’s
begin and commit (top two components). In this deploy-
ment, Omid updates the commit fields synchronously
upon commit, that is, commit returns only after the com-
mit fields of the transaction’s write-set have been up-
dated. Note that since a begin request waits for all
transactions with smaller txids to commit, its processing
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Figure 4: Transaction latency breakdown in produc-
tion deployment of Omid in Sieve. The top two com-
ponents represent transaction management overhead.

latency is similar to that of a commit operation, minus
the time commit takes to update the commit fields.

We see that for tasks that perform significant process-
ing and I/O, like document inversion and streaming to in-
dex, Omid’s latency overhead (for processing begin and
commit) is negligible – 2–6% of the total transaction du-
ration. In very short tasks such as duplicate detection and
out-link processing, Omid accounts for up to roughly one
third of the transaction latency.

The transaction abort rates observed in Sieve are neg-
ligible (around 0.002%). They stem from either transient
HBase outages or write-write conflicts, e.g., concurrent
in-link updates of extremely popular web pages.

7.2 TM microbenchmarks
We now focus on TM performance. To this end, our mi-
crobenchmarks invoke only the TM’s begin and commit
APIs, and do not access actual data. We run both the
TM and HBase (holding the CT) on industry-standard 8-
core Intel Xeon E5620 servers with 24GB RAM and 1TB
magnetic drive. The interconnects are 1Gbps Ethernet.

We generate workloads in which transaction write-
set sizes are distributed Zipf, i.e., follow a power-law
(Pr[X ≥ x] = x−α ) with exponent values of α = 1.2,
α = 1.6, and α = 2 (the smaller the heavier-tailed), cut-
off at 256 keys. Each transaction’s latency, (i.e., the time
we wait after invoking its begin and before invoking its
commit), is set to 5ms per write. Note that read-sets are
not sent to the TM and hence their size is immaterial.

We note that key selection affects real conflicts: if the
written keys are drawn from a heavy-tailed distribution,
then two concurrent transactions are likely to update the
same key, necessitating one of them to abort. Since this
is an artifact of the workload, which is unaffected by our
system design, we attempt to minimize this phenomenon

Figure 5: Scalability of Omid’s CT updates with the
number of HBase region servers, and comparison
with Omid1. Non-durable versions do not persist trans-
actions and thus provide upper bounds on throughput un-
der perfect storage scaling.

in our experiments. We therefore uniformly sample 64-
bit integers for the key hashes. Recall that our experience
in production shows that real conflicts are indeed rare.

We begin by evaluating scalability, which is our prin-
cipal design goal. The TM throughput is constrained
by two distinct resources – the storage access required
for persisting commits in the CT, and the compute re-
sources used for conflict detection. These resources scale
independently: the former, evaluated in Section 7.2.1,
scales out across multiple HBase region servers, whereas
the latter scales up on multi-core hardware, and is stud-
ied in Section 7.2.2. Section 7.2.3 then evaluates the
throughput-latency tradeoff that Omid exhibits when us-
ing a single region server. Finally, in Section 7.2.4, we
exercise Omid’s high-availability mechanism.

7.2.1 Commit table scalability

Since the commit records are fixed-length (two 64-bit in-
tegers), the CT performance does not depend on transac-
tion sizes, and so we experiment only with α = 1.6. Re-
call that in order to optimize throughput, the TM batches
writes to the CT and issues multiple batches in paral-
lel. Experimentally, we found that the optimal number of
concurrent CT writer threads is 4, and the batch size that
yields the best throughput is 2K transactions per writer.

Figure 5 depicts Omid’s commit rate as function of
the number of HBase region servers, which scales to al-
most 400K tps. It further compares Omid’s throughput
to that of Omid1 [25], which, similarly to Omid, runs
atop HBase, and uses a centralized TM. It is worth noting
that even in the single-server configuration, Omid outper-
forms Omid1 by more than 25x. This happens because
upon each begin request, Omid1 sends to the client a
large amount of information (equivalent to the combina-
tion of Omid’s CT and the in-memory conflict detection
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table). This saturates the CPU and network resources.
The “non-durable” bars – leftmost and second from

the right – represent experiments where commits are not
persisted to stable storage. In Omid this means forgoing
the write to the CT, whereas in Omid1 it means disabling
the write to BookKeeper in which the system stores its
commit log. These results provide upper bounds on the
throughput that can be obtained with perfect storage scal-
ing in both systems. Omid peaks at 518K transactions
per second, whereas Omid1 peaks at 50K.

7.2.2 Conflict detection scalability

In the experiment reported above, the conflict detection
algorithm is evaluated as part of the system. There, the
commit table I/O is the bottleneck, and the conflict detec-
tion process can keep up with the pace of four I/O threads
even when running sequentially, i.e., in a single thread.

We next focus on scale-up of this component running
by itself using 1 to 8 threads, in order to study its poten-
tial scalability in even larger configurations. The exper-
iment employs a conflict table of 128M 64-bit integers
(1G total size). The bucket size is 32 integers, i.e., the
table is 4M buckets big.

Figure 6(a) illustrates the processing rate. As ex-
pected processing shorter transactions (a bigger α) is
faster. The rate scales to 2.6M transactions per second
for α = 1.2, and to 5M for α = 2. Note that exercis-
ing such high throughput in a complete system would re-
quire an order of magnitude faster network to sustain the
request/response packet rate. Clearly the TM’s compute
aspect is far from being a bottleneck.

Finally, we analyze the false abort rate. (The uniform
sampling of key hashes and relatively short transaction
latencies render real collisions unlikely, hence all aborts
are deemed false). The overall abort rate is negligibly
small. In Figure 6(b) we zoom-in on transactions clus-
tered into three buckets: shorter than 8 writes, 8 to 63
writes, and 64+ writes. The worst abort rate is below
0.01%. It occurs, as expected, for long transactions in
the most heavy-tailed distribution. Further reduction of
the false abort rate would require increasing the table size
or using multiple hashes (similarly to Bloom filters).

7.2.3 Latency-throughput tradeoff

We now examine the impact of load on TM access la-
tency with a single region server managing the CT. We
use here α = 1.6. For every given system load, the batch
size is tuned for optimal latency: under light load, no
batching is employed, (i.e., commits are written one at a
time), whereas under high load, we use batches of 10K.

Figure 7 reports the average client-side latency of
commit operations, broken down to three components:

(1) network round-trip delay and conflict detection,
which are negligible, and do not vary with the load or
batch size; (2) HBase CT write latency, which increases
with the batch size; and (3) queueing delay at the TM,
which increases with the load. Begin latency is similar,
and is therefore omitted. We increase the load up to 70K
transactions per second, after which the latency becomes
excessive; to exceed this throughput, one may use multi-
ple region servers as in the experiment of Section 7.2.1.

Figure 7: Omid throughput vs. latency. Client-
perceived commit latency (average broken down and
90% of total); single region server; power-law transac-
tion sizes with α = 1.6; batch sizes optimized for mini-
mum latency (in square brackets below each bar).

Figure 8: Omid throughput with four failovers; recov-
ery takes around 4 seconds.

7.2.4 High availability

Finally, we exercise the high-availability mechanism. As
long as the primary TM does not fail, HA induces neg-
ligible overhead. We now examine the system’s recov-
ery following a primary TM failure. The failure detec-
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(a) Conflict detection scalability (b) Conflict detection false abort rate

Figure 6: Conflict detection scalability and false abort rate. Transaction write-set sizes are distributed power-law
(Pr[X ≥ x] = x−α ) with exponent values of α = 1.2, α = 1.6, and α = 2 (the smaller the heavier-tailed); the key hashes
are 64-bit integers, uniformly sampled to avoid real conflicts whp; transaction latency is 5ms per write.

tion timeout is δ = 1 sec. Figure 8 depicts the system
throughput over time, where the primary TM is force-
fully shut down after 40 sec, is then allowed to recover,
and the new primary (original backup) is shut down after
120 sec. The primary is shut down two more times at 180
and 220 sec; the failover completes within 4 sec.

8 Lessons Learned and Future Work

Omid was originally designed as a foundational building
block for Sieve – Yahoo’s next-generation content man-
agement platform. The need for transactions emerges
in scenarios similar to Percolator [31]. Analogously to
other data pipelines, Sieve is more throughput-sensitive
than latency-sensitive. This has led to a design that trades
off latency for throughput via batching. The original de-
sign of Omid1 [25] did not employ a CT, but instead
had the TM send clients information about all pending
transactions. This design was abandoned due to limited
scalability in the number of clients, and was replaced by
Omid, which uses the CT to track transaction states. The
CT may be sharded for I/O scalability, but its update rate
is bounded by the resources of the single (albeit multi-
threaded) TM; this is mitigated by batching.

Since becoming an Apache Incubator project, Omid is
witnessing increased interest, in a variety of use cases.
Together with Tephra, it is being considered for use by
Apache Phoenix – an emerging OLTP SQL engine over
HBase storage [3]. In that context, latency has increased
importance. We are therefore developing a low-latency
version of Omid that has clients update the CT instead
of the TM, which eliminates the need for batching and
allows throughput scaling without sacrificing latency.
Similar approaches have been used in Percolator [31],

Corfu [10], and CockroachDB [5]. We note, however,
that such decentralization induces extra synchronization
oerhead at commit time and may increase aborts (in par-
ticular, reads may induce aborts); the original design may
be preferable for throughput-oriented systems.

Another development is using application semantics
to reduce conflict detection. Specifically, some appli-
cations can identify scenarios where conflicts need not
be checked because the use case ensures that they won’t
happen. Consider, e.g., a massive table load, where
records are inserted sequentially, hence no conflicts can
arise. Another example is a secondary index update,
which is guaranteed to induce no conflict given that the
primary table update by the same transaction has been
successful. To reduce overhead in such cases, we plan to
extend the write API to indicate which written keys need
to be tracked for conflict detection.

On the scalability side, faster technologies may be
considered to maintain Omid’s commit metadata. In par-
ticular, since Omid’s commit table is usually written se-
quentially and infrequently read, it might be more effi-
cient to use log-structured storage that is better optimized
for the above scenario.
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