
On Liveness of Dynamic Storage

Alexander Spiegelman? and Idit Keidar

Viterbi EE Department, Technion, Haifa, Israel
{sashas, idish}@campus.technion.ac.il

Abstract. Dynamic distributed storage algorithms such as DynaStore, Reconfigurable Paxos, RAMBO,
and RDS, do not ensure liveness (wait-freedom) in asynchronous runs with infinitely many reconfigu-
rations. We prove that this is inherent for asynchronous dynamic storage algorithms. Our result holds
even if only one process may fail, provided that machines that were successfully removed from the sys-
tem’s configuration can be switched off by a system administrator. To circumvent this result, we define
a dynamic eventually perfect failure detector, and present an algorithm that uses it to emulate wait-free
dynamic atomic storage. Though some of the previous algorithms have been designed for eventually
synchronous models, to the best of our knowledge, our algorithm is the first to ensure liveness for all
operations without restricting the reconfiguration rate.

1 Introduction

Many works in the last decade have dealt with dynamic reliable distributed storage emulation [2, 5–9, 13–
15, 17, 18, 21, 25, 27]. The motivation behind such storage is to allow new processes (nodes) to be phased
in and old or dysfunctional ones to be taken offline. From a fault-tolerance point of view, once a faulty
process is removed, additional failures may be tolerated. For example, consider a system that can tolerate
one failure: once a process fails, no additional processes are allowed to fail. However, once the faulty process
is replaced by a correct one, the system can again tolerate one failure. Thus, while static systems become
permanently unavailable after some constant number of failures, dynamic systems that allow infinitely many
reconfigurations can survive forever.

Previous works can be categorized into two main types: Solutions of the first type assume a churn-based
model [19, 24] in which processes are free to announce when they join the storage emulation [4–7] via an
auxiliary broadcast sub-system that allows a process to send a message to all the processes in the system,
(which my be unknown to the sending processes). The second type solutions extend the register’s API with a
reconfiguration operation for changing the current configuration of participating processes [2,9,13–15,18,25],
which can be only invoked by members of the current configuration. In this paper we consider the latter.
Such an API allows administrators (running privileged processes), to remove old or faulty processes and add
new ones without shutting down the service; once a process is removed from the current configuration, a
system administrator may shut it down. Note that in the churn-based model, in contrast, if processes have
to perform an explicit operation in order to leave the system (as in [4, 7]), a faulty process can never be
removed. In addition, since in API-based models only processes that are already within the system invoke
operations, it is possible to keep track of the processes in the system, and thus auxiliary broadcast is not
required.

Though the literature is abundant with dynamic storage algorithms in both models, to the best of our
knowledge, all previous solutions in asynchronous and eventually synchronous models restrict reconfigurations
in some way in order to ensure completion of all operations. Churn-based solutions assume a bounded churn
rate [4,5,7], meaning that there is a finite number of joining and removing processes in a given time interval.
Some of the API-based solutions [2, 13, 18, 25] provide liveness only when the number of reconfigurations is
finite, whereas others discuss liveness only in synchronous runs [9,14,15]. Such restrictions may be problematic
in emerging highly-dynamic large-scale settings.

Baldoni et al. [5] showed that it is impossible to emulate a dynamic register that ensures completion
of all operations without restricting the churn rate in asynchronous churn-based models in which processes

? Alexander Spiegelman is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship.

can freely abandon the computation without an explicit leave operation. Since a leave and a failure are
indistinguishable in such models, the impossibility can be proven using a partition argument as in [3].

In this paper we revisit this question in the API-based model. First, we prove a similar result for asyn-
chronous API-based dynamic models, in which one unremoved process can fail and successfully removed
ones can go offline. Specifically, we show that even the weakest type of storage, namely a safe register [20],
cannot be implemented so as to guarantee liveness for all operations (i.e., wait-freedom) in asynchronous
runs with an unrestricted reconfiguration rate. Note that this bound does not follow from the one in [5] since
a process in our model can leave the system only after an operation that removes it successfully completes.

Second, to circumvent our impossibility result, we define a dynamic failure detector that can be easily
implemented in eventually synchronous systems, and use it to implement dynamic storage. We present
an algorithm, based on state machine replication, that emulates a strong shared object, namely a wait-
free atomic dynamic multi-writer, multi-reader (MWMR) register, and ensures liveness for all operations
without restricting the reconfiguration rate. Though a number of previous algorithms have been designed
for eventually synchronous models [5,7–9,14,15,21], to the best of our knowledge, our algorithm is the first
to ensure liveness of all operations without restricting the reconfigurations rate.

In particular, previous algorithms [8, 9, 14, 15, 21] that used failure detectors, only did so for reaching
consensus on the new configuration. For example, reconfigurable Paxos variants [8, 21], which implement
atomic storage via dynamic state machine replication, assume a failure detector that provides a leader in
every configuration. However, a configuration may be changed, allowing the previous leader to be removed
(and then fail) before another process p (with a pending operation) is able to communicate with it in the
old configuration. Though a new leader is elected by the failure detector in the ensuing configuration, this
scenario may repeat itself indefinitely, so that p’s pending operation never completes.

We, in contrast, use the failure detector also to implement a helping mechanism, which ensures that
eventually some process will help a slow one before completing its own reconfiguration operation even if the
reconfiguration rate is unbounded. Such mechanism is attainable in API-based models since only members
of the current configuration invoke operations, and thus helping process can know which processes may need
help. Note that in churn-based models in which processes announce their own join, implementing such a
helping mechanism is impossible, since a helping process cannot possibly know which processes need help
joining.

The remainder of this paper is organized as follows: In Section 2 we present the model and define the
dynamic storage object we seek to implement. Our impossibility proof appears in Section 3, and our algorithm
in Section 4. Finally, we conclude the paper in Section 5.

2 Model and Dynamic Storage Problem Definition

In Section 2.1, we present the preliminaries of our model, and in Section 2.2, we define the dynamic storage
service.

2.1 Preliminaries

We consider an asynchronous message passing system consisting of an infinite set of processes Π. Processes
may fail by crashing subject to restrictions given below. Process failure is modeled via an explicit fail action.
Each pair of processes is connected by a communication link. A service exposes a set of operations. For
example, a dynamic storage service exposes read, write, and reconfig operations. Operations are invoked and
subsequently respond.

An algorithm A defines the behaviors of processes as deterministic state machines, where state transitions
are associated with actions, such as send/receive messages, operation invoke/response, and process failures.
A global state is a mapping to states from system components, i.e., processes and links. An initial global state
is one where all processes are in initial states and all links are empty. A send action is enabled in state s if
A has a transition from s in which the send occurs.

2

A run of algorithm A is a (finite or infinite) alternating sequence of global states and actions, beginning
with some initial global state, such that state transitions occur according to A. We use the notion of time t
during a run r to refer to the tth action in r and the global state that ensues it. A run fragment is a contiguous
subsequence of a run. An operation invoked before time t in run r is complete at time t if its response event
occurs before time t in r; otherwise it is pending at time t. We assume that runs are well-formed [16], in that
each process’s first action is an invocation of some operation, and a process does not invoke an operation
before receiving a response to its last invoked one.

We say that operation opi precedes operation opj in a run r, if opi’s response occurs before opj ’s invocation
in r. Operations opi and opj are concurrent in run r, if opi does not precede opj and opj does not precede
opi in r. A sequential run is one with no concurrent operations. Two runs are equivalent if every process
performs the same sequence of operations (with the same return values) in both, where operations that are
pending in one can either be included in or excluded from the other.

2.2 Dynamic storage

The distributed storage service we consider is a dynamic multi-writer, multi reader (MWMR) register [2,
13, 15, 18, 23, 26], which stores a value v from a domain V, and offers an interface for invoking read, write,
and reconfig operations. Initially, the register holds some initial value v0 ∈ V. A read operation takes no
parameters and returns a value from V, and a write operation takes a value from V and returns “ok”. We
define Changes to be the set {remove, add} × Π, and call any subset of Changes a set of changes. For
example, {〈add, p3〉, 〈remove, p2〉} is a set of changes. A reconfig operation takes as a parameter a set of
changes and returns “ok”. For simplicity, we assume that a process that has been removed is not added
again.

Fig. 1. Notation illustration. add(p) (remove(p))
represents reconfig(〈add, p〉) (respectively,
reconfig(〈remove, p〉)).

Notation For every subset w of Changes, the re-
moval set of w, denoted w.remove, is
{pi|〈remove, pi〉 ∈ w}; the join set of w,
denoted w.join, is {pi|〈add, pi〉 ∈ w}; and
the membership of w, denoted w.membership,
is w.join \ w.remove. For example, for a set
w = {〈add, p1〉, 〈remove, p1〉, 〈add, p2〉}, w.join =
{p1, p2}, w.remove = {p1}, and w.membership =
{p2}. For a time t in a run r, we denote by V (t)
the union of all sets q s.t. reconfig(q) completes be-
fore time t in r. A configuration is a finite set of
processes, and the current configuration at time t is
V (t).membership. We assume that only processes in
V (t).membership invoke operations at time t. The
initial set of processes Π0 ⊂ Π is known to all and
we say, by convention, that reconfig({〈add, p〉|p ∈
Π0}) completes at time 0, i.e., V (0).membership =

Π0.
We define P (t) to be the set of pending changes at time t in run r, i.e., the set of all changes included

in pending reconfig operations. We denote by F (t) the set of processes that have failed before time t in r;
initially, F (0) = {}. For a series of arbitrary sets S(t), t ∈ N, we define S(∗) 4=

⋃
t∈N S(t). The notation is

illustrated in Figure 1.

Correct processes and fairness A process p is correct if p ∈ V (∗).join\F (∗). A run r is fair if every send action
by a correct process that is enabled infinitely often eventually occurs, and every message sent by a correct
process pi to a correct process pj is eventually received at pj . Note that messages sent to a faulty process
from a correct one may or may not be received. A process p is active if p is correct, and p 6∈ P (∗).remove.

3

Service specification A linearization of a run r is an equivalent sequential run that preserves r’s operation
precedence relation and the service’s sequential specification. The sequential specification for a register is as
follows: A read returns the latest written value, or v0 if none was written. An MWMR register is atomic, also
called linearizable [16], if every run has a linearization. Lamport [20] defines a safe single-writer register. Here,
we generalize the definition to multi-writer registers in a weak way in order to strengthen the impossibility
result. Intuitively, if a read is not concurrent with any write we require it to return a value that reflects some
possible outcome of the writes that precede it; otherwise we allow it to return an arbitrary value. Formally:
An MWMR register is safe if for every run r for every read operation rd that has no concurrent writes in r,
there is a linearization of the subsequence of r consisting of rd and the write operations in r.

A wait-free service guarantees that every active process’s operation completes regardless of the actions
of other processes.

Failure model and reconfiguration The reconfig operations determine which processes are allowed to fail at
any given time. Static storage algorithms [3] tolerate failures of a minority of their (static) universe. At a
time t when no reconfig operations are ongoing, the dynamic failure condition may be simply defined to allow
less than |V (t)membership|/2 failures of processes in V (t).membership. When there are pending additions
and removals, the rule must be generalized to take them into account. For our algorithm in Section 4, we
adopt a generalization presented in previous works [1, 2, 18,26]:

Definition 1 (minority failures).
A model allows minority failures if at all times t in r, fewer than |V (t).membership \ P (t).remove|/2

processes out of V (t).membership ∪ P (t).join are in F (t).

Note that this failure condition allows processes whose remove operations have completed to be (immediately)
safely switched off as it only restricts failures out of the current membership and pending joins. We say that
a service is reconfigurable if failures of processes in V (t).remove are unrestricted.

In order to strengthen our lower bound in Section 3 we weaken the failure model. Like FLP [12], our
lower bound applies as long as at least one process can fail. Formally, a failure is allowed whenever all failed
processes have been removed and the current membership consists of at least three processes1. We call such
a state “clean”, captured by the following predicate: clean(t) , (V (t).membership ∪ P (t).join) ∩ F (t) =
{} ∧ |V (t).membership \ P (t).remove| ≥ 3. The minimal failure condition is thus defined as follows:

Definition 2 (minimal failure).
A model allows minimal failure if in every run r ending at time t when clean(t), for every process

p ∈ V (t).membership ∪ P (t), there is an extension of r where p fails at time t+ 1.

Notice that the minority failure condition allows minimal failure, and so all algorithms that assume minority
failures [1, 2, 18,26] are a fortiori subject to our lower bound, which is proven for minimal failures.

3 Impossibility of Wait-Free Dynamic Safe Storage

In this section we prove that there is no implementation of wait-free dynamic safe storage in a model that
allows minimal failures. We construct a fair run with infinitely many reconfiguration operations in which a
slow process p never completes its write operation. We do so by delaying all of p’s messages. A message from
p to a process pi is delayed until pi is removed, and we make sure that all processes except p are eventually
removed and replaced.

Theorem 1. There is no algorithm that emulates wait-free dynamic safe storage in an asynchronous system
allowing minimal failures.

Proof (Proof (Theorem 1)). Assume by contradiction that such an algorithm A exists. We prove two lemmas
about A.

1 Note that with fewer than three processes, even static systems cannot tolerate failures [3].

4

Lemma 1. Consider a run r of A ending at time t s.t. clean(t), and two processes pi, pj ∈ V (t).membership.
Extend r by having pj invoke operation op at time t+ 1. Then there exists an extension of r where (1)
op completes at some time t′ > t,(2) no process receives a message from pi between t and t′, and (3) no
process fails and no operations are invoked between t and t′.

Proof (Lemma 1).
By the minimal failure condition, pi can fail at time t+ 2. Consider a fair extension σ1 of r, in which

pi fails at time t+ 2 and all of its in-transit messages are lost, no other process fails, and no operations
are invoked. By wait-freedom, op eventually completes at some time t1 in σ1. Since pi fails and all its
outstanding messages are lost, then from time t to t1 in σ1 no process receives any messages from pi.
Now let σ2 be identical to σ1 except that pi does not fail, but all of its messages are delayed. Note that
σ1 and σ2 are indistinguishable to all processes except pi. Thus, op returns at time t1 also in σ2.

Lemma 2. Consider a run r of A ending at time t s.t clean(t). Let v1 ∈ V \ {v0} be a value s.t. no
process invokes write(v1) in r. If we extend r fairly so that pi invokes w = write(v1) at time t+1 which
completes at some time t1 > t+ 1 s.t. clean(t′) for all t < t′ ≤ t1 then in the run fragment between t+ 1
and t1, some process pk 6= pi receives a message sent by pi.

Proof (Lemma 2).
Assume by way of contradiction that in the run fragment between t + 1 and t1 no process pk 6= pi

receives a message sent by pi, and consider a run r′ that is identical to r until time t1 except that pi
does not invoke w at time t. Now assume that some process pj 6= pi invokes a read operation rd at time
t1 + 1 in r′. By the assumption, clean(t1) and therefore clean(t1 + 1). Thus, by Lemma 1, there is a
run fragment σ beginning at the final state of r′ (time t1 + 1), where rd completes at some time t2, s.t.
between t1 + 1 and t2 no process receives a message from pi. Since no process invokes write(v1) in r′,
and no writes are concurrent with the read, by safety, rd returns some v2 6= v1.

Now notice that all global states from time t to time t1 in r and r′ are indistinguishable to all
processes except pi. Thus, we can continue run r with an invocation of read operation rd′ by pj at time
t1, and append σ to it. Operation rd′ hence completes and returns v2. A contradiction to safety.

To prove the theorem, we construct an infinite fair run r in which a write operation of an active process
never completes, in contradiction to wait-freedom.

Consider some initial global state c0, s.t. P (0) = F (0) = {} and V (0).membership = {p1 . . . pn}, where
n ≥ 3. An illustration of the run for n = 4 is presented in Figure 2. Now, let process p1 invoke a write
operation w at time t1 = 0, and do the following:

Let process pn invoke reconfig(q) where q = {〈add, pj〉|n + 1 ≤ j ≤ 2n − 2} at time t1. The state at the
end of r is clean (i.e., clean(t1)). So by Lemma 1, we can extend r with a run fragment σ1 ending at some
time t2 when reconfig(q) completes, where no process pj 6= p1 receives a message from p1 in σ1, no other
operations are invoked, and no process fails.

Then, at time t2 + 1, pn invokes reconfig(q′), where q′ = {〈remove, pj〉|2 ≤ j ≤ n− 1}. Again, the state
is clean and thus by Lemma 1 again, we can extend r with a run fragment σ2 ending at some time t3 when
reconfig(q’) completes s.t. no process pj 6= p1 receives a message from p1 in σ2, no other operations are
invoked, and no process fails.

Recall that the minimal failures condition satisfies reconfigurability, i.e., all the processes in V (t3).remove
can be in F (t3) (fail). Let the processes in {pj | 2 ≤ j ≤ n− 1} fail at time t3, and notice that the fairness
condition does not mandate that they receive messages from p1. Next, allow p1 to perform all its enabled
actions till some time t4.

Now notice that at t4, |V (t4).membership| = n, P (t4) = {}, (V (t4).membership∪P (t4).join)∩F (t4) =
{}, and |V (t4).membership\P (t4).removal| ≥ 3. We can rename the processes in V (t4).membership (except
p1) so that the process that performed the remove and add operations becomes p2, and all others get names
in the range p3 . . . pn. We can then repeat the construction above. By doing so infinitely many times, we get
an infinite run r in which p1 is active and no process ever receives a message from p1. However, all of p1’s

5

enabled actions eventually occur. Since no process except p1 is correct in r, the run is fair. In addition, since
clean(t) for all t in r, by the contrapositive of Lemma 2, w does not complete in r, and we get a violation
of wait-freedom.

Fig. 2. Illustration of the infinite run for n = 4.

4 Oracle-Based Dynamic Atomic Storage

We present an algorithm that circumvents the impossibility result of Section 3 using a failure detector. In
this section we assume the minority failure condition. In Section 4.1, we define a dynamic eventually perfect
failure detector. In Section 4.2, we describe an algorithm, based on dynamic state machine replication,
that uses the failure detector to implement a wait-free dynamic atomic MWMR register. The algorithm’s
correctness is proven in Appendix A.

4.1 Dynamic failure detector

Since the set of processes is potentially infinite, we cannot have the failure detector report the status of all
processes as static failure detectors typically do. Dynamic failure detectors addressing this issue have been
defined in previous works, either providing a set of processes that have been excluded from or included into
the group [22], or assuming that there is eventually a fixed set of participating processes [10]. In our model,
we do not assume that there is eventually a fixed set of participating processes, as the number of reconfig
operations can be infinite. And we do not want the failure detector to answer with a list of processes, because
in dynamic systems, this gives additional information about participating processes that could have been
unknown to the inquiring process, and thus it is not clear how such a failure detector can be implemented.

Instead, our dynamic failure detector is queried separately about each process. For each query, it answers
either fail or ok. It can be wrong for an unbounded period, but for each process, it eventually returns a
correct answer. Formally, a dynamic eventually perfect failure detector, 3PD, satisfies two properties:

– Strong completeness: For each process pi that fails at time ti, there is a time t > ti s.t. the failure
detector answers fail to every query about pi after time t.

– Eventual strong accuracy: There exists a time t, called the stabilization time, s.t. the failure detector
answers ok to every query at any time t′ > t about a correct process in V (t′).join.

Note that 3PD can be implemented in a standard way in the eventually (partially) synchronous model by
pinging the queried process and waiting for a response until a timeout.

6

4.2 Dynamic storage algorithm

We first give the overview of our algorithm and and then present the full description.

Algorithm overview The key to achieving liveness with unbounded reconfig operations is a novel helping
mechanism, which is based on our failure detector. Intuitively, the idea is that every process tries to help
all other processes it believes are correct, (according to its failure detector), to complete their concurrent
operations together with its own. At the beginning of an operation, a process p queries all other processes it
knows about for the operations they currently perform. The failure detector is needed in order to make sure
that (1) p does not wait forever for a reply from a faulty process (achieved by strong completeness), and (2)
every slow correct process eventually gets help (achieved by eventual strong accuracy).

State machine emulation of a register We use a state machine sm to emulate a wait-free atomic dynamic
register, DynaReg. Every process has a local replica of sm, and we use consensus to agree on sm’s state
transitions. Notice that each process is equipped with a failure detector FD of class 3PD, so consensus is
solvable under the assumption of a correct majority in a given configuration [21].

Each instance of consensus runs in some static configuration c and is associated with a unique times-
tamp. A process participates in a consensus instance by invoking a propose operation with the appropriate
configuration and timestamp, as well as its proposed decision value. Consensus then responds with a decide
event, so that the following properties are satisfied: Uniform Agreement – every two decisions are the same.
Validity – every decision was previously proposed by one of the processes in c. Termination – if a majority of
c is correct, then eventually every correct process in c decides. We further assume that a consensus instance
does not decide until a majority of the members of the configuration propose in it.

The sm (lines 2-5 in Algorithm 1) keeps track of dynaReg’s value in a variable val, and the configuration
in a variable cng, containing both a list of processes, cng.mem, and a set of removed processes, cng.rem.
Write operations change val, and reconfig operations change cng. A consensus decision may bundle a number
of operations to execute as a single state transition of sm. The number of state transitions executed by sm is
stored in the variable ts. Finally, the array lastOps maps every process p in cng.mem to the sequence number
(based on p’s local count) of p’s last operation that was performed on the emulated DynaReg together with
its result.

Each process partakes in at most one consensus at a time; this consensus is associated with timestamp
sm.ts and runs in sm.cng.mem. In every consensus, up to |sm.cng.mem| ordered operations on the emulated
DynaReg are agreed upon, and sm’s state changes according to the agreed operations. A process’s sm may
change either when consensus decides or when the process receives a newer sm from another process, in
which case it skips forward. So sm goes through the same states in all the processes, except when skipping
forward. Thus, for every two processes pk, pl, if smk.ts = sml.ts, then smk = sml. (A subscript i indicates
the variable is of process pi.)

Helping The problematic scenario in the impossibility proof of Section 3 occurs because of endless reconfig
operations, where a slow process is never able to communicate with members of its configuration before they
are removed. In order to circumvent this problem, we use FD to implement a helping mechanism. When
proposing an operation, process pi tries to help other processes in two ways: first, it helps them complete
operations they may have successfully proposed in previous rounds (consensuses) but have not learned about
their outcomes; and second, it proposes their new operations. To achieve the first, it sends a helping request
with its sm to all other processes in smi.cng.mem. For the second, it waits for each process to reply with a
help reply containing its latest invoked operation, and then proposes all the operations together. Processes
may fail or be removed, so pi cannot wait for answers forever. To this end, we use FD. For every process in
smi.cng.mem that has not been removed, pi repeatedly inquires FD and waits either for a reply from the
process or for an answer from FD that the process has failed. Notice that the strong completeness property
guarantees that pi will eventually continue, and strong accuracy guarantees that every slow active process
will eventually receive help in case of endless reconfig operations.

7

p1 p2-slow

Suspected

FD stabilization
time

op21

op11=<REC,(add,p3)>
helpRequest(sm,…)...

helpReply(op21,…)
...

Gather:

Agree&perform:

...propose({op21,op11})

Decide({op21,op11})

p3

...
...

rerurn op31

helpRequest(sm,…)

Update(sm)

rerurn

Wait
for p2

Wait for
majority

propose({op21,op11}) ...
propose({op21,op11})

propose({op21,op11})

Fig. 3. Flow illustration: process p2 is slow. After stabilization time, process p1 helps it by proposing its operation.
Once p2’s operation is decided, it is reflected in every up-to-date sm. Therefore, even if p1 fails before informing
p2, p2 receives from the next process that performs an operation, namely p3, an sm that reflects its operation, and
thus returns. Line arrows represent messages, and block arrows represent operation or consensus invocations and
responses.

Nevertheless, if the number of reconfig operations is finite, it may be the case that some slow process is
not familiar with any of the correct members in the current configuration, and no other process performs an
operation (hence, no process is helping). To ensure progress in such cases, every correct process periodically
sends its sm to all processes in its sm.cng.mem.

State survival Before the reconfig operation can complete, the new sm needs to propagate to a majority of
the new configuration, in order to ensure its survival. Therefore, after executing the state transition, pi sends
smi to smi.cng members and waits until it either receives acknowledgements from a majority or learns of
a newer sm. Notice that in the latter case, consensus in smi.cng.mem has decided, meaning that at least a
majority of smi.cng.mem has participated in it, and so have learned of it.

Flow example The algorithm flow is illustrated in Figure 3. In this example, a slow process p2 invokes
operation op21 before FD’s stabilization time, ST . Process p1 invokes operation op11 = 〈add, p3〉 after ST.
It first sends helpRequest to p2 and waits for it to reply with helpReply. Then it proposes op21 and op11 in
a consensus. When decide occurs, p1 updates its sm, sends it to all processes, and waits for majority. Then
op11 returns and p1 fails before p2 receives its update message. Next, p3 invokes a reconfig operation, but

8

this time when p2 receives helpRequest with the up-to-date sm from p3, it notices that its operation has been
performed, and op21 returns.

Detailed description The data structure of process pi is given in Algorithm 1. The type Ops defines
the representation of operations. The emulated state machine, smi, is described above. Integer opNumi

holds the sequence number of pi’s current operation; opsi is a set that contains operations that need to be
completed for helping; the flag pendi is a boolean that indicates whether or not pi is participating in an
ongoing consensus; and myOpi is the latest operation invoked at pi.

Algorithm 1 Data structure of process pi

1: Ops , {〈RD,⊥〉} ∪ {〈WR, v〉 | v ∈ V} ∪ {〈REC, c〉 | c ⊂ Changes}
2: smi.ts ∈ N, initially 0
3: smi.value ∈ V, initially v0
4: smi.cng = 〈mem, rem〉, where mem, rem ⊂ Π, initially 〈Π0, {}〉
5: smi.lastOps is a vector of size |smi.cng.mem|, where ∀pj ∈ smi.cng.mem, smi.lastOps[j] = 〈num, res〉,

where num ∈ N, res ∈ V ∪ {“ok”}, initially 〈0, “ok” 〉
6: pendi ∈ {true,false}, initially false
7: opNumi ∈ N, initially 0
8: opsi ⊂ Π ×Ops× N , initially {}
9: myOpi ∈ operation, initially ⊥

The algorithm of process pi is presented in Algorithms 2 and 3. We execute every event handler, (operation
invocation, message receiving, and consensus decision), atomically excluding wait instructions; that is, other
event handlers may run after the handler completes or during a wait (lines 16,18,27 in Algorithm 2). The
algorithm runs in two phases. The first, gather, is described in Algorithm 2 lines 11–16 and in Algorithm
3 lines 52–58. Process pi first increases its operation number opNumi, writes op together with opNumi to
the set of operations opsi, and sets myOpi to be op. Then it sends 〈“helpRequest”, . . .〉 to every member of
A = smi.cng.mem (line 15), and waits for each process in A that is not suspected by the FD or removed to
reply with 〈“helpReply”, . . .〉. Notice that smi may change during the wait because messages are handled,
and pi may learn of processes that have been removed.

When 〈“helpRequest”, num, sm〉 is received by process pj 6= pi, if the received sm is newer than smj ,
then process pj adopts sm and abandons any previous consensus. Either way, pj sends 〈“helpReply”, . . .〉
with its current operation myOpj in return.

Upon receiving 〈“helpReply”, opNumi, op, num〉 that corresponds to the current operation number opNumi,
process pi adds the received operation op, its number num, and the identity of the sender to the set opsi.

At the end of this phase, process pi holds a set of operations, including its own, that it tries to agree
on in the second phase (the order among this set is chosen deterministically, as explained below). Note that
pi can participate in at most one consensus per timestamp, and its propose might end up not being the
decided one, in which case it may need to propose the same operations again. Process pi completes op when
it discovers that op has been performed in smi, whether by itself or by another process.

The second phase appears in Algorithm 2 lines 17–28, and in Algorithm 3 lines 31–51. In line 17, pi
checks if its operation has not been completed yet. In line 18, it waits until it does not participate in any
ongoing consensus (pendi=false) or some other process helps it complete op. Recall that during a wait, other
events can be handled. So if a message with an up-to-date sm is received during the wait, pi adopts the sm.
In case op has been completed in sm, pi exits the main while (line 19). Otherwise, pi waits until it does not
participate in any ongoing consensus. This can be the case if (1) pi has not proposed yet, (2) a message with
a newer sm was received and a previous consensus was subsequently abandoned, or (3) a decide event has
been handled. In all cases, pi marks that it now participates in consensus in line 20, prepares a new request
Req with the operations in opsi that have not been performed yet in smi in line 27, proposes Req in the
consensus associated with smi.ts, and sends 〈“propose”, . . .〉 to all the members of smi.cng.mem.

9

Algorithm 2 Process pi’s algorithm: performing operations

10: upon invoke operation(op) do
. phase 1: gather

11: opNumi ← opNumi + 1
12: opsi ← {〈pi, op, opNumi〉}
13: myOpi ← op
14: A← smi.cng.mem
15: for all p ∈ A send 〈“helpRequest”, opNumi, smi〉 to p
16: for all p ∈ A wait for 〈“helpReply”, opNumi, . . .〉 from p or p is suspected or p ∈ smi.cng.rem

. phase 2: agree&perform
17: while smi.lastOps[i].num 6= opNumi

18: wait until ¬pendi or smi.lastOps[i].num = opNumi

19: if smi.lastOps[i].num = opNumi then break
20: pendi ← true
21: Req ← {〈pj , op, num〉 ∈ opsi | num > smi.lastOps[j].num}
22: propose(smi.cng, smi.ts, Req)
23: for all p ∈ smi.cng.mem send 〈“propose”, smi, Req〉 to p
24: if op.type = REC
25: ts← smi.ts
26: for all p ∈ smi.cng.mem send 〈“update”, smi, opNumi〉 to p
27: wait for 〈“ACK”, opNumi〉 from majority of smi.cng.mem or smi.ts > ts
28: return smi.lastOps[i].res

29: periodically:
30: for all p ∈ smi.cng.mem send 〈“update”, smi,⊥〉 to p

When 〈“propose”, sm,Req . . .〉 is received by process pj 6= pi, if the received sm is more updated than
smj , then process pj adopts sm, abandons any previous consensus, proposes Req in the consensus associated
with sm.ts, and forwards the message to all other members of smj .cng.mem. The same is done if sm is
identical to smj and pj has not proposed yet in the consensus associated with smj .ts. Otherwise, pj ignores
the message.

The event decidei(sm.cng, smi.ts, Req) indicates a decision in the consensus associated with smi.ts.
When this occurs, pi performs all the operations in Req and changes smi’s state. It sets the value of the
emulated DynaReg, smi.value, to be the value of the write operation of the process with the lowest id, and
updates smi.cng according to the reconfig operations. In addition, for every 〈pj , op, num〉 ∈ Req, pi writes
to smi.lastOps[j], num and op’s response, which is “ok” in case of a write or a reconfig, and smi.value in
case of a read. Next, pi increases smi.ts and sets pendi to false, indicating that it no longer participates in
any ongoing consensus.

Finally, after op is performed, pi exits the main while. If op is not a reconfig operation, then pi returns the
result, which is stored in smi.lastOps[i].res. Otherwise, before returning, pi has to be sure that a majority
of smi.cng.mem receives smi. It sends 〈“update”, sm, . . .〉 to all the processes in smi.cng.mem and waits for
〈“ACK”, . . .〉 from a majority of them. Notice that it may be the case that there is no such correct majority
due to later reconfig operations and failures, so, pi stops waiting when a more updated sm is received, which
implies that a majority of smi.cng.mem has already received smi (since a majority is needed in order to
solve consensus).

Upon receiving 〈“update”, sm, num〉 with a new sm from process pi, process pj adopts sm and abandons
any previous consensus. In addition, if num 6=⊥, pj sends 〈“ACK”, num〉 to pi (Algorithm 3 lines 59–63).

Beyond handling operations, in order to ensure progress in case no operations are invoked from some point
on, every correct process periodically sends 〈“update”, sm,⊥〉 to all processes in its sm.cng.mem (Algorithm
2 line 30).

10

Algorithm 3 Process pi’s algorithm: event handlers

31: upon decidei(smi.cng, smi.ts, Req) do
32: W ← {〈p, value〉|〈p, 〈WR, value〉, num〉 ∈ Req}
33: if W 6= {} . deterministically choose one of the writes to be the last
34: smi.value← value with smallest p in W
35: for all 〈pj , op, num〉 ∈ Req . apply op to sm
36: if op.type = WR
37: smi.lastOps[j]← 〈num,“ok”〉
38: else if op.type = RD
39: smi.lastOps[j]← 〈num, smi.value〉
40: else
41: smi.cng.rem← smi.cng.rem ∪ {p | 〈remove, p〉 ∈ op.changes}
42: smi.cng.mem← smi.cng.mem ∪ {p | 〈add, p〉 ∈ op.changes} \ smi.cng.rem
43: smi.lastOps[j]← 〈num,“ok”〉
44: smi.ts← smi.ts+ 1
45: pendi ← false

46: upon receiving 〈“propose”, sm,Req〉 from pj do
47: if (smi.ts > sm.ts) or (smi.ts = sm.ts ∧ pendi = true) then return
48: smi ← sm
49: pendi ← true
50: propose(smi.cng, smi.ts, Req)
51: for all p ∈ smi.cng.mem send 〈“propose”, smi, Req〉 to p

52: upon receiving 〈“helpRequest”, num, sm〉 from pj do
53: if smi.ts < sm.ts then . learn new sm
54: smi ← sm
55: pendi ← false
56: send 〈“helpReply”, num,myOpi, opNumi〉

57: upon receiving 〈“helpReply”, opNumi, op, num〉 from pj do
58: opsi ← opsi ∪ 〈pj , op, num〉

59: upon receiving 〈“update”, sm, num〉 from pj do
60: if smi.ts < sm.ts then . learn new sm
61: smi ← sm
62: pendi ← false
63: if num 6=⊥ then send 〈“ACK”, num〉 to pj

5 Conclusion

We proved that in an asynchronous API-based reconfigurable model allowing at least one failure, without
restricting the number of reconfigurations, there is no way to emulate dynamic safe wait-free storage. We
further showed how to circumvent this result using a dynamic eventually perfect failure detector: we presented
an algorithm that uses such a failure detector in order to emulate a wait-free dynamic atomic MWMR register.

Our dynamic failure detector is (1) sufficient for this problem, and (2) can be implemented in a dynamic
eventually synchronous [11] setting with no restriction on reconfiguration rate. An interesting question is
whether a weaker such failure detector exists. Note that when the reconfiguration rate is bounded, dynamic
storage is attainable without consensus, thus such a failure detector does not necessarily have to be strong
enough for consensus.

11

A Correctness Proof

In Section A.1 we prove that our algorithm satisfies atomicity, and in Section A.2 wait-freedom.

A.1 Atomicity

Every operation is uniquely defined by the process that invoked it and its local number. During the proof
we refer to operation op invoked by process pi with local number opNumi = n as the tuple 〈pi, op, n〉. We
begin the proof with three lemmas that link completed operations to sm states.

Lemma 3. Consider operation op invoked by some process pi in r with local number opNumi = n. If op
returns in r at time t, then there is at least one request Req that contains 〈pi, op, n〉 and has been chosen in
a consensus in r before time t.

Proof. When operation op return, smi.lastOps[i].num = n (line 17 or 18 in Algorithm 2). Processes up-
date sm during a decide handler, or when a newer sm is received, and the first update occurs when some
process pj writes n to smj .lastOps[i].num during a decide handler. In the decide handler, n is written to
sm.lastOps[i].num when the chosen request in the corresponding consensus contains 〈pi, op, n〉.

Lemma 4. For two processes pi, pj, let t be a time in a run r in which neither pi or pj is executing a decide
handler. Then at time t, if smi.ts = smj .ts, then smi = smj.

Proof. We prove by induction on timestamps. Initially, all correct processes have the same sm with timestamp
0. Now consider timestamp TS, and assume that for every two processes pi, pj at any time not during the
execution of decide handlers, if smi.ts = smj .ts = TS, then smi = smj . Processes increase their sm.ts to
TS+ 1 either at the end of a decide handler associated with TS or when they receive a message with sm s.t.
sm.ts = TS + 1. By the agreement property of consensus and by the determinism of the algorithm, all the
processes that perform the decide handler associated with TS perform the same operations, and therefore
move sm (at the end of the handler) to the same state. It is easy to show by induction that all the processes
that receive a message with sm s.t. sm.ts = TS + 1 receive the same sm. The lemma follows.

Observation 1 For two process pi, pj, let sm1 and sm2 be the values of smj at two different times in a run
r. If sm1.ts ≥ sm2.ts, then sm1.lastOps[i].num ≥ sm2.lastOps[i].num.

Lemma 5. Consider operation 〈pi, op, opNumi〉 invoked in r with opNumi = n. Then 〈pi, op, n〉 is part of
at most one request that is chosen in a consensus in r.

Proof. Assume by way of contradiction that 〈pi, op, n〉 is part of more than one request that is chosen in a
consensus in r. Now consider the earliest one, Req, and assume that it is chosen in a consensus associated
with timestamp TS. At the end of the decide handler associated with timestamp TS, sm.lastOps[i].num = n
and the timestamp is increased to TS+1. Thus, by Lemma 4 sm.lastOps[i].num = n holds for every sm s.t.
sm.ts = TS+ 1. Consider now the next request, Req1, that contains 〈pi, op, n〉, and is chosen in a consensus.
Assume that this consensus associated with timestamp TS′, and notice that TS′ > TS. By the validity of
consensus, this request is proposed by some process pj , when smj .ts is equal to TS′. By Observation 1, at
this point smj .lastOps[i].num ≥ n, and therefore pj does not include 〈pi, op, n〉 in Req1 (line 27 in Algorithm
2). A contradiction.

Based on the above lemmas, we can define, for each run r, a linearization σr, where operations are ordered
as they are chosen for execution on sm’s in r.

Definition 3. For a run r, we define the sequential run σr to be the sequence of operations decided in
consensus instances in r, ordered by the order of the chosen requests they are part of in r. The order among
operations that are part of the same chosen request is the following: first all writes, then all reads, and
finally, all reconfig operations. Among each type, operations are ordered by the process ids of the processes
that invoked them, from the highest to the lowest.

12

Note that for every run r, the sequential run σr is well defined. Moreover, σr contains every completed
operation in r exactly once, and every invoked operation at most once.

In order to prove atomicity we show that (1) σr preserves r’s real time order (lemma 6); and (2) every
read operation rd in r returns the value that was written by the last write operation that precedes rd in σr,
or ⊥ if there is no such operation (lemma 7).

Lemma 6. If operation op1 returns before operation op2 is invoked in r, then op1 appears before op2 in σr.

Proof. By Lemma 3, op1 is part of a request Req1 that is chosen in a consensus before op2 is invoked, and
thus op2 cannot be part of Req1 or any other request that is chosen before Req1. Hence op1 appears before
op2 in σr.

Lemma 7. Consider read operation rd = 〈pi, RD, n〉 in r, which returns a value v. Then v is written by the
last write operation that precedes rd in σr, or v =⊥ if there is no such operation.

Proof. By Lemmas 3 and 5, rd is part of exactly one request Req1 that is chosen in a consensus, associated
with some timestamp TS. Thus sm.lastOps[i] is set to 〈n, val〉 in the decide handler associated with TS.
By Lemma 4, sm.lastOps[i] = 〈n, val〉 for all sm s.t. sm.ts = TS + 1. By Lemma 5 and since we consider
only well-formed runs, smi.lastOps[i] = 〈n, val〉 when rd returns, and therefore rd returns val. Now consider
three cases:

– There is no write operation in Req1 or in any request that was chosen before Req1 in r. In this case,
there is no write operation before rd in σr, and no process writes to sm.value before sm.lastOps[i] is
set to 〈n, val〉, and therefore, rd returns ⊥ as expected.

– There is a write operation in Req1 in r. Consider the write operation w in Req1 that is invoked by the
process with the lowest id, and assume its argument is v′. Notice that w is the last write that precedes
rd in σr. By the code of the decide handler, sm.value equals v′ at the time when sm.lastOps[i] is set
to 〈n, val〉. Therefore, val = v′, rd returns the value that is written by the last write operation that
precedes it in σr.

– There is no write operation in Req1, but there is a request that contains a write operation and is chosen
before Req1 in r. Consider the last such request Req2, and consider the write operation w invoked by the
process with the lowest id in Req2. Assume that w’s argument is v′, and Req2 was chosen in a consensus
associated with timestamp TS′ (notice that TS′ < TS). By the code of the decide handler and Lemma 4,
in all the sm’s s.t. sm.ts = TS′ + 1, the value of sm.value is v′. Now, since there is no write operation in
any chosen request between Req2 and Req1 in r, no process writes to sm.value when TS′ < sm.ts < TS.
Hence, when sm.lastOps[i] is set to 〈n, val〉, sm.value equals v′, and thus val = v′. Therefore, rd returns
the value that is written by the last write operation that precedes rd in σr.

Corollary 1. Algorithms 1–3 implement an atomic storage service.

A.2 Liveness

Consider operation opi invoked at time t by a correct process pi in run r. Notice that r is a run with either
infinitely or finitely many invocations. We show that, in both cases, if pi is active in r, then opi returns in r.

We associate the addition or removal of process pj by a process pi with the timestamp that equals smi.ts
at the time when the operation returns. The addition of all processes in P0 is associated with timestamp 0.

First, we consider runs with infinitely many invocations. In Lemma 8, we show that for every process p,
every sm associated with a larger timestamp than p’s addition contains p in sm.cng.mem. In Observation
A.2, we show that in a run with infinitely many invocations, for every timestamp ts, there is a completed
operation that has a bigger timestamp than ts at the time of the invocation. Moreover, after the stabilization
time of the FD, operations must help all the slow active processes in order to complete. In Lemma 9, we use
the observation to show that any operation invoked in a run with infinitely many invocations returns.

Next, we consider runs with finitely many invocations. We show Lemma 10 that eventually all the active
members of the last sm adopt it. Then, in Lemma 11, we show that every operation invoked by an active
process completes. Finally, Theorem 2, stipulates that the algorithm satisfies wait-freedom.

13

Lemma 8. Assume the addition of pi is associated with timestamp TS in run r. If pi is active, then pi ∈
sm.cng.mem for every sm s.t. sm.ts ≥ TS.

Proof. The proof is by induction on sm.ts. Base: If pi ∈ P0, then pi ∈ sm.cng.mem for all sm s.t. sm.ts = 0.
Otherwise, 〈add, pi〉 is part of a request that is chosen in a consensus associated with timestamp TS′ = TS−1,
and thus, by Lemma 4, pi ∈ sm.cng.mem for all sm s.t. sm.ts = TS′ + 1 = TS. Induction: Process pi is
active, so no process invokes 〈remove, pi〉, and therefore, together with the validity of consensus, no chosen
request contains 〈remove, pi〉. Hence, if pi ∈ sm.cng.mem for sm with sm.ts = k, then pi ∈ sm.cng.mem
for every sm s.t. sm.ts = k + 1.

Claim. Consider a run r of the algorithm with infinitely many invocations. Then for every time t and
timestamp TS, there is a completed operation that is invoked after time t by a process with sm.ts > TS at
the time of the invocation.

Proof. Recall that r is well-formed and only processes in V (t).join can invoke operations at time t. Therefore,
there are infinitely many completed operations in r. Since a finite number of operations are completed with
each timestamp, the claim follows.

Lemma 9. Consider an operation opi invoked at time t by an active process pi in a run r with infinitely
many invocations. Then opi completes in r.

Proof. Assume by way of contradiction that pi is active and opi does not complete in r. Assume w.l.o.g. that
pi’s addition is associated with timestamps TS and opi is invoked with opNumi = n. Consider a time t′ > t
after pi invokes opi and the FD has stabilized. By Claim A.2, there is a completed operation opj in r, invoked
by some process pj at a time t′′ > t′ when smj .ts > TS, whose completion is associated with timestamp TS′.
By Lemma 8, pi ∈ smj .cng.mem, at time t′′. Now by the algorithm and by the eventual strong accuracy
property of the FD, pj proposes opj and opi in the same request, and continues to propose both of them
until one is selected. Note that it is impossible for opj to be selected without opi since any process that helps
pj after stabilization also helps pi. Hence, since opj completes, they are both performed in the same decide
handler. The run is well-formed, so pi does not invoke operations that are associated with opNumi > n.
Hence, following the time when opi is selected, for all sm s.t. sm.ts > TS′, sm.lastOps[i].num = n. Now,
again by Claim A.2, consider a completed operation opk in r, that is invoked by some process pk at time t′′′

after the stabilization time of the FD s.t. smk.ts > TS′ at time t′′′. Operation opk cannot complete until pi
receives pk’s sm. Therefore, pi receives sm s.t. sm.ts ≥ TS′, and thus sm.lastOps[i].num = n. Therefore, pi
learns that opi was performed, and opi completes. A contradiction.

We now proceed to prove liveness in runs with finitely many invocations.

Definition 4. For every run r of the algorithm, and for any point t in r, let TSt be the timestamp associated
with the last consensus that made a decision in r before time t. Define smt, at any point t in r, to be the sm’s
state after the completion of the decide handler associated with timestamp TSt at any process. By Lemma 4,
smt is unique. Recall that sm0 is the initial state.

Claim. For every run r of the algorithm, and for any point t in r, there is a majority of smt.cng.mem M
s.t. M ⊆ (V (t).membership ∪ P (t).join) \ F (t).

Proof. By the code of the algorithm, for every run r and for any point t in r, V (t).membership ⊆ smt.cng.mem
and smt.cng.mem ∩ V (t).remove = {}. The claim follows from failure condition.

Observation 2 Consider a run r of the algorithm with finitely many invocations. Then there is a point t
in r s.t. for every t′ > t, smt = smt′ . Denote this sm to be ˆsm.

The following lemma follows from Lemma 4, Claim A.2, and the periodic update messages; for space
limitations, we omit its proof.

14

Lemma 10. Consider a run r of the algorithm with finitely many invocations. Then eventually for every
active process pi ∈ ˆsm.cng.mem, smi = ˆsm.

Lemma 11. Consider an operation opi invoked at time t by an active process pi in a run r with finitely
many invocations. Then opi completes in r.

Proof. By Lemma 8, pi ∈ ˆsm.cng.mem, and by Lemma 10, there is a point t′ in r s.t. smi = ˆsm for all
t ≥ t′. Assume by way of contradiction that opi does not complete in r. Therefore, opi is either stuck in one
of its waits or continuously iterates in a while loop. In each case, we show a contradiction. Denote by con
the consensus associated with timestamp ˆsm.ts. By definition of ˆsm, no decision is made in con in r.

– Operation opi waits in line 16 (Algorithm 2) forever. Notice that ˆsm.cng.rem contains all the process
that were removed in r, so, after time t′, pi does not wait for a reply from a removed process. By the
strong completeness property of FD, pi does not wait for faulty processes forever. A contradiction.

– Operation opi waits in line 18 (Algorithm 2) forever. Notice that from time t′ till pi proposes in con,
pendi=false. Therefore, pi proposes in con in line 22 (Algorithm 2), and waits in line 18 after the propose.
By Observation A.2, there is a majority M of ˆsm.cng.em s.t. M ⊆ V (t).membership∪P (t).join \F (t).
Therefore, by the termination of consensus, eventually a decision is made in con. A contradiction to the
definition of ˆsm.

– Operation opi remains in the while loop in line 17 (Algorithm 2) forever. Since it does not waits in line 18
(Algorithm 2) forever, opi proposes infinitely many times, and since each propose is made in a different
consensus and pi can propose in a consensus beyond the first one only once a decision is made in the
previous one, infinitely many decisions are made in r. A contradiction to the definition of ˆsm.

– Operation opi waits in line 27 (Algorithm 2) forever. Consider two cases. First, smi 6= ˆsm when pi
performs line 26 (Algorithm 2). In this case, pi continues at time t′, when it adopts ˆsm, because smi.ts >
ts hold at time t′. In the second case (smi = ˆsm when pi performs line 26), pi sends update message to
all processes in ˆsm.cng.mem, and waits for a majority to reply. By Observation A.2, there is a correct
majority in ˆsm.cng.mem, and thus pi eventually receives the replies and continues. In both cases we
have contradiction.

Therefore, pi completes in r.

We conclude with the following theorem:

Theorem 2. Algorithms 1–3 implement wait-free atomic dynamic storage.

References

1. Marcos K Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin, Alexander Shraer, et al. Reconfiguring
replicated atomic storage: A tutorial. Bulletin of the EATCS, 2010.

2. Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic atomic storage without con-
sensus. J. ACM, 2011.

3. Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing systems. Journal
of the ACM (JACM), 42(1):124–142, 1995.

4. Hagit Attiya, Hyun Chul Chung, Faith Ellen, Saptaparni Kumar, and Jennifer L Welch. Simulating a shared regis-
ter in an asynchronous system that never stops changing. In International Symposium on Distributed Computing,
pages 75–91. Springer, 2015.

5. Roberto Baldoni, Silvia Bonomi, Anne-Marie Kermarrec, and Michel Raynal. Implementing a register in a
dynamic distributed system. In Distributed Computing Systems, 2009. ICDCS’09. 29th IEEE International
Conference on, pages 639–647. IEEE, 2009.

6. Roberto Baldoni, Silvia Bonomi, and Michel Raynal. Regular register: an implementation in a churn prone
environment. In International Colloquium on Structural Information and Communication Complexity, pages
15–29. Springer, 2009.

15

7. Roberto Baldoni, Silvia Bonomi, and Michel Raynal. Implementing a regular register in an eventually synchronous
distributed system prone to continuous churn. Parallel and Distributed Systems, IEEE Transactions on, 2012.

8. Ken Birman, Dahlia Malkhi, and Robbert Van Renesse. Virtually synchronous methodology for dynamic service
replication. 2010.

9. Gregory Chockler, Seth Gilbert, Vincent Gramoli, Peter M Musial, and Alex A Shvartsman. Reconfigurable
distributed storage for dynamic networks. Journal of Parallel and Distributed Computing, 69(1):100–116, 2009.

10. Gregory V Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications: a comprehensive
study. ACM Computing Surveys (CSUR), 2001.

11. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. J. ACM,
35(2):288–323, April 1988.

12. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one
faulty process. J. ACM, 32(2):374–382, April 1985.

13. Eli Gafni and Dahlia Malkhi. Elastic configuration maintenance via a parsimonious speculating snapshot solution.
In DISC. Springer, 2015.

14. Seth Gilbert, Nancy Lynch, and Alex Shvartsman. Rambo ii: Rapidly reconfigurable atomic memory for dynamic
networks. In DSN. IEEE Computer Society, 2003.

15. Seth Gilbert, Nancy A Lynch, and Alexander A Shvartsman. Rambo: A robust, reconfigurable atomic memory
service for dynamic networks. Distributed Computing, 2010.

16. Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., July 1990.

17. Leander Jehl and Hein Meling. The case for reconfiguration without consensus. In Proceedings of the 2016 ACM
symposium on Principles of distributed computing. ACM, 2016.

18. Leander Jehl, Roman Vitenberg, and Hein Meling. Smartmerge: A new approach to reconfiguration for atomic
storage. In DISC, 2015.

19. Steven Y Ko, Imranul Hoque, and Indranil Gupta. Using tractable and realistic churn models to analyze quies-
cence behavior of distributed protocols. In Reliable Distributed Systems, 2008. SRDS’08. IEEE Symposium on,
pages 259–268. IEEE, 2008.

20. Leslie Lamport. On interprocess communication. Distributed computing, 1(2):86–101, 1986.
21. Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconfiguring a state machine. ACM SIGACT News, 41(1):63–

73, 2010.
22. Kal Lin and Vassos Hadzilacos. Asynchronous group membership with oracles. In Distributed Computing.

Springer, 1999.
23. Nancy Lynch and Alex A Shvartsman. Rambo: A reconfigurable atomic memory service for dynamic networks.

In Distributed Computing, pages 173–190. Springer, 2002.
24. Achour Mostefaoui, Michel Raynal, Corentin Travers, Stacy Patterson, Divyakant Agrawal, and AE Abbadi.

From static distributed systems to dynamic systems. In Reliable Distributed Systems, 2005. SRDS 2005. 24th
IEEE Symposium on, pages 109–118. IEEE, 2005.

25. Alexander Shraer, Jean-Philippe Martin, Dahlia Malkhi, and Idit Keidar. Data-centric reconfiguration with
network-attached disks. LADIS ’10.

26. Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Dynamic reconfiguration: A tutorial. In OPODIS, 2015.
27. Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Dynamic reconfiguration: Abstraction and optimal

asynchronous solution. In DISC, 2017.

16

