arXiv:1705.02808v1 [cs.DC] 8 May 2017

Towards Reduced Instruction Sets for Synchronization

Rati Gelashvili Idit Keidar
MIT Technion
gelash@mit.edu idish@ee.technion.ac.il
Alexander Spiegelman Roger Wattenhofer
Technion ETH Zurich
sashas@tx.technion.ac.il wattenhoferQethz.ch
Abstract

Contrary to common belief, a recent work by Ellen, Gelashvili, Shavit, and Zhu has
shown that computability does not require multicore architectures to support “strong”
synchronization instructions like compare-and-swap, as opposed to combinations of
“weaker” instructions like decrement and multiply. However, this is the status quo,
and in turn, most efficient concurrent data-structures heavily rely on compare-and-swap
(e.g. for swinging pointers and in general, conflict resolution).

We show that this need not be the case, by designing and implementing a concurrent
linearizable Log data-structure (also known as a History object), supporting two oper-
ations: append(item), which appends the item to the log, and get-log(), which returns
the appended items so far, in order. Readers are wait-free and writers are lock-free,
and this data-structure can be used in a lock-free universal construction to implement
any concurrent object with a given sequential specification. Our implementation uses
atomic read, zor, decrement, and fetch-and-increment instructions supported on X86
architectures, and provides similar performance to a compare-and-swap-based solution
on today’s hardware. This raises a fundamental question about minimal set of syn-
chronization instructions that the architectures have to support.

1 Introduction

In order to develop efficient concurrent algorithms and data-structures in multiprocessor
systems, processes that take steps asynchronously need to coordinate their actions. In
shared memory systems, this is accomplished by applying hardware-supported low-level
atomic instructions to memory locations. An atomic instruction takes effect as a single
indivisible step. The most natural and universally supported instructions are read and
write, as these are useful even in uniprocessors to store and load data from memory.

A concurrent implementation is wait-free, if any process that takes infinitely many
steps completes infinitely many operation invocations. An implementation is lock-free if

in any infinite execution infinitely many operations are completed. The celebrated FLP
impossibility result [FLP85] implies that in a system equipped with only read and write in-
structions, there is no deterministic algorithm to solve binary lock-free/wait-free consensus
among n > 2 processes. Binary consensus is a synchronization task where processes start
with input bits, and must agree on an output bit that was an input to one of the processes.
For one-shot tasks like consensus, wait-freedom and lock-freedom are equivalent.

Herlihy’s Consensus Hierarchy [Her91] takes the FLP result further. It assigns a consen-
sus number to each object, namely, the number of processes for which there is a wait-free
binary consensus algorithm using only instances of this object and read-write registers. An
object with a higher consensus number is hence a more powerful tool for synchronization.
Moreover, Herlihy showed that consensus is a fundamental synchronization task, by devel-
oping a universal construction which allows n processes to wait-free implement any object
with a sequential specification, provided that they can solve consensus among themselves.

Herlihy’s hierarchy is simple, elegant and, for many years, has been our best explanation
of synchronization power. It provides an intuitive explanation as to why, for instance,
the compare-and-swap instuction can be viewed “stronger” than fetch-and-increment, as
the consensus number of a Compare-and-Swap object is n, while the consensus number of
Fetch-and-Increment is 2.

However, key to this hierarchy is treating synchronization instructions as distinct ob-
jects, an approach that is far from the real-world, where multiprocessors do let processes
apply supported atomic instructions to arbitrary memory locations. In fact, a recent work
by Ellen et al. [EGSZ16] has shown that a combination of instructions like decrement and
multiply-by-n, whose corresponding objects have consensus number 1 in Herlihy’s hierar-
chy, when applied to the same memory location, allows solving wait-free consensus for n
processes. Thus, in terms of computability, a combination of instructions traditionally
viewed as “weak” can be as powerful as a compare-and-swap instruction, for instance.

The practical question is whether we can really replace a compare-and-swap instruction
in concurrent algorithms and data-structures with a combination of weaker instructions.
This might seem improbable for two reasons. First, compare-and-swap is ubiquitous in
practice and used heavily for various tasks like swinging a pointer. Second, the proto-
col given by Ellen et al. solves only binary n-process consensus. It is not clear how to
use it for implementing complex concurrent objects, as utilizing Herlihy’s universal con-
struction is not a practical solution. On the optimistic side, there exists a concurrent
queue implementation based on fetch-and-add that outperforms compare-and-swap-based
alternatives [MA13]. Both a Queue and a Fetch-and-Add object have consensus number 2,
and this construction does not “circumvent” Herlihy’s hierarchy by applying different non-
trivial synchronization instructions to the same location. Indeed, we are not aware of any
practical construction that relies on applying different instructions to the same location.

As a proof of concept, we develop a lock-free universal construction using only read, zor,
decrement, and fetch-and-increment instructions. The construction could be made wait-
free by standard helping techniques. In particular, we implement a Log object [BMW T 13]

(also known as a History object [Dav04]), which supports high-level operations get-log()
and append(item), and is linearizable [HW90] to the sequential specification that get-log()
returns all previously appended items in order. This interface can be used to agree on a
simulated object state, and thus, provides the universal construction [Her91]. In practice,
we require a get-log() for each thread to return a suffix of items after the last get-log() by
this thread. We design a lock-free Log with wait-free readers, which performs as well as a
compare-and-swap-based solution on modern hardware.

In our construction, we could replace both fetch-and-increment and decrement with
the atomic fetch-and-add instruction, reducing the instruction set size even further.

2 Algorithm

We work in the bounded concurrency model where at most n processes will ever access
the Log implementation. The object is implemented by a single fetch-and-increment-based
counter C, and an array A of b-bit integers on which the hardware supports atomic zor
and decrement instructions. We assume that A is unbounded. Otherwise, processes can
use A to agree on the next array A’ to continue the construction. C and the elements of
A are initialized by 0. We call an array location invalid if it contains a negative value,
i.e., if its most significant bit is 1, empty if it contains value 0, and wvalid otherwise. The
least significant m = [logy (n + 1)| bits are contention bits and have a special importance
to the algorithm. The remaining b — m — 1 bits are used to store items. See Figure [1] for
illustration.
For every array location, at most one process will ever
b-m1 m=[log2(n+1) attempt to record a (b — m — 1)-bit item, and at most
[Y A \ n — 1 processes will attempt to invalidate this location.
[v] value | contention | No process will try to record to or invalidate the same
location twice. In order to record item x, a process invokes
zor(x'), where o’ is x shifted by m bits to the left, plus
2™ —1 > n, i.e., the contention bits set to 1. To invalidate
a location, a process calls a decrement. The following

Figure 1: Element of A.

properties hold:
1. After a zor or decrement is performed on a location, no read on it ever returns 0.

2. If a zor is performed first, no later read returns an invalid value. Ignoring the most
significant bit, the next most significant b — m — 1 bits contain the item recorded by
zor.

3. If a decrement is performed first, then all values returned by later reads are invalid.

A zor instruction fails to record an item if it is performed after a decrement.

To implement a get-log() operation, process p starts at index ¢ = 0, and keeps reading
the values of A[i] and incrementing 7 until it encounters an empty location A[i] = 0. By
the above properties, from every valid location A[j], it can extract the item z; recorded
by a zor, and it returns an ordered list of all such items (x;,, xi,, ..., ;). In practice, we
require p to return only a suffix of items appended after the last get-log() invocation by
p. This can be accomplished by keeping ¢ in static memory instead of initializing it to 0
in every invocation. To make get-log wait-free, p first performs I = C.read(). Then, if
becomes equal to | during the traversal, it stops and returns the items extracted so far.

To implement append(zx), process p starts by ¢ = C.fetch-and-increment(). Then it
attempts to record item x in A[l] using an atomic zor instruction. If it fails to record
an item, the process does another fetch-and-increment and attempts xor at that location,
and so on, until it is able to successfully record x. Suppose this location is A[¢']. Then p
iterates from j = ¢/ — 1 down to j = 0, reading each A[j], and if A[j] is empty, performing
a decrement on it. Afterwards, process p can safely return.

fetch-and-increment guarantees that each location is zored at most once, and it can be
decremented at most n — 1 times, once by each process that did not xzor. As a practical
optimization, each process can store the maximum ¢ from its previous append operations
and only iterate down to ¢ in the next invocation (all locations with lower indices will
be non-empty). Our implementation of append is lock-free, because if an operation takes
steps and does not terminate it must be repeatedly failing to record items in locations.
This only happens if other zor operations successfully record their items and invalidate
these locations.

At any time ¢ during the execution, let us denote by f(t) as the maximum index such
that, A[f(t)] is valid and A[j] is non-empty for all j < f(t). By the first property f(¢) is
non-decreasing, i.e., for ¢ >t we have f(t') > f(t). We linearize an append(x) operation
by p that records x at location A[{] at the smallest ¢t where f(t) > ¢. This happens
during the operation by p, as when p starts append(x), A[¢] is empty, and when p finishes,
AJ0] #0,...,A[¢ — 1] # 0 and A[(] is valid. Next, we show how to linearize get-log().

Consider a get-log() operation with the latest returned item x, extracted from A[(].
We show by contradiction that the execution interval of this get-log() must contain time ¢
such that f(t) = ¢. We then linearize get-log() at the smallest such ¢. It is an easy exercise
to deal with the case when multiple operations are linearized at exactly the same point by
slightly perturbing linerization points to enforce the correct ordering. Suppose the get-log()
operation extracts x, from A[(] at time T'. f(T') > ¢ as get-log() stops at an empty index,
and by the contradiction assumption we must have ¢/ = f(T') > . get-log() then reaches
valid location A[¢'] and extracts an item zy from it, contradicting the definition of z,.

We implemented the algorithm on X86 processor and with 32 threads. It gave the same
performance as an implementation that used compare-and-swap for recording items and
invalidating locations. It turns out that in today’s architectures, the cost of supporting
compare-and-swap is not significantly higher than that of supporting zor or decrement.
This may or may not be the case in future Processing-in-Memory architectures [PACT97].

Finding a compact set of synchronization instructions that, when supported, is equally
powerful as the set of instructions used today is an important question to establish in
future research.

References

[BMW*13] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prab-

[Dav04]

[EGSZ16]

[FLPS5]

[Her91]

[HW0]

[MA13]

[PAC*97]

hakaran, Michael Wei, John D Davis, Sriram Rao, Tao Zou, and Aviad Zuck.
Tango: Distributed data structures over a shared log. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles, SOSP 13, pages 325-340,
2013.

Matei David. Wait-free linearizable queue implementations, 2004.

Faith Ellen, Rati Gelashvili, Nir Shavit, and Leqi Zhu. A complexity-based hi-
erarchy for multiprocessor synchronization:[extended abstract]. In Proceedings
of the 35th ACM Symposium on Principles of Distributed Computing, 2016.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM (JACM),
32(2):374-382, 1985.

Maurice Herlihy. Wait-free synchronization. ACM Transactions on Program-
ming Languages and Systems, 1991.

Maurice Herlihy and Jeannette Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(3):463-492, 1990.

Adam Morrison and Yehuda Afek. Fast concurrent queues for x86 proces-
sors. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, volume 48 of PPoPP ’13, pages 103—
112, 2013.

David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kim-
berly Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick.
A case for intelligent ram. IEEE Micro, 17(2):34-44, 1997.

	1 Introduction
	2 Algorithm

