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Abstract. We provide a suite of impossibility results and lower bounds for the required number
of processes and rounds for synchronous consensus under transient link failures. Our results show
that consensus can be solved even in presence of O(n2) moving omission and/or arbitrary link failures
per round, provided that both the number of affected outgoing and incoming links of every process is
bounded. Providing a step further towards the weakest conditions under which consensus is solvable,
our findings are applicable to a variety of dynamic phenomena such as transient communication
failures and end-to-end delay variations. We also prove that our model surpasses alternative link
failure modeling approaches in terms of assumption coverage.
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1. Introduction. Most research on fault-tolerant distributed algorithms con-
ducted in the past rests on process failure models. Every failure occurring in a system
is attributed to either the sending or receiving process here, irrespectively of whether
the actual error occurs at this process or rather on the intermediate communication
path. Moreover, a process that commits a single failure is often “statically” considered
faulty during the whole execution, even if its failure is transient.

Although such process failure models adequately capture many important scenar-
ios, including crash failures where a faulty process just stops operating, and Byzantine
failures where a faulty process can do anything, they are not particularly suitable
for modeling more dynamic phenomena. In particular, given the steadily increasing
dominance of communication over computation in modern distributed systems, in
conjunction with the high reliability of modern processors and robust operating sys-
tem designs, transient communication failures such as lost or non-recognized packets
(synchronization errors), CRC errors (data corruption), and receiver overruns (packet
buffer overflow) are increasingly dominating real-world failures. Another dynamic
phenomenon that is encountered frequently in practice is unpredictable variations of
the end-to-end delays in multi-hop networks such as the Internet, which are caused,
for example, by temporary network congestion and intermediate router failures. Since
excessive end-to-end delays appear as omissions in classic (semi-)synchronous systems
and other time(out)-based approaches, for example, [3–5,7,39,43,51,53], such timing
variations can also be considered as transient link failures.

The distinguishing properties of such failures are (a) that they affect the path
(termed link in the sequel) connecting two processes, rather than the endpoints (the
processes), and (b) that they are mobile [58], as different links may fail at different
times. Hence, the ability to communicate [in a timely manner] with other processes
in the system cannot be statically attributed to a process here: If the link failure
rate is sufficiently high, there will never be a non-empty set of processes that appear
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non-faulty to each other, i.e., never send [timing] faulty messages to each other. As a
consequence, classic process failure models are inappropriate for such applications.

This paper focuses on impossibility results and lower bounds for synchronous de-
terministic consensus in the presence of such mobile link failures. In the consensus
problem (also called “Byzantine agreement” [47]), processes have to agree on a com-
mon output value, despite failures, based on some input values distributed among the
processes. Consensus is widely recognized as one of the most fundamental problems
in fault-tolerant distributed computing. Synchronous consensus algorithms execute
in a sequence of lock-step rounds k = 1, 2, . . ., which consist of sending, receiving and
processing round k messages exchanged among all the processes.

Unfortunately, there is a discouraging impossibility result for deterministic syn-
chronous consensus in the presence of general link failures (see Theorem 1 in Sec-
tion 3), which goes back to Gray’s 1978 paper [33] on atomic commitment in dis-
tributed databases. This result was strengthened by Santoro and Widmayer [58], who
introduced the mobile omissive process failure model: In each round, some process
can be send omissive (or omissive for short), in the sense that it can experience any
number of transmission failures on its outgoing links. Even a single mobile omissive
process failure was shown to render consensus unsolvable [58].

Despite those negative results, however, there are synchronous consensus algo-
rithms for restricted link failure patterns. For example, it has been known for a
long time that consensus can be solved when sufficient connectivity is always main-
tained [20, 37, 46].

More recently, Schmid, Weiss, and Rushby introduced a hybrid failure model for
synchronous systems [66], which—in addition to classic process failures—admits up to
O(n2) moving link failures per round. The link failure patterns must be such, however,
that no more than fs

ℓ outgoing links and no more than f r
ℓ incoming links are affected

at any process per round. An analysis of the assumption coverage [62] in the presence
of independent, identically distributed probabilistic link failures confirmed that this
model is suitable even for substantial link failure rates. Most existing consensus
algorithms [10, 32, 47, 48, 68] were shown to work essentially unchanged under this
hybrid failure model [11,14,64,65,71], provided that the number of processes n in the
system is increased by Crf

r
ℓ +Csf

s
ℓ for some small integers Cr, Cs that depend on the

particular algorithm.

Naturally, the different values of Cr and Cs obtained for different consensus algo-
rithms raised the question of lower bounds, both on the number of failures that can
be tolerated, and on the number of rounds required to solve consensus. In the present
paper, we provide the results of our comprehensive theoretical study of this subject:

1. In Section 2, we provide a precise definition of our system model, which
involves both moving omission and moving arbitrary link failures (but no
process failures).

2. In Section 3, we use a refinement of the bivalency proof techniques introduced
in [58] for proving a versatile generalization of Gray’s result, which reveals the
importance of unimpaired bidirectional communication for solving consensus.

3. Using this general result, as well as a new instance of an easy impossibil-
ity proof [28], we provide a complete suite of impossibility results and lower
bounds for the required number of processes (Section 4) and rounds (Sec-
tion 5).

4. In Section 6, we show that our lower bounds are tight and characterize the
threshold that, when exceeded, turn a correct process exhibiting omission
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resp. arbitrary link failures according to our model into a classic omission
resp. Byzantine faulty process.

5. In Section 7, we survey alternative approaches for modeling link failures and
analyze their assumption coverage in a simple probabilistic setting. It turns
out that our model is the only one with a coverage that approaches 1 (rather
than 0) for large n.

Some conclusions and directions of future work in Section 8 eventually complete our
paper.

2. System Model. We consider a system of n distributed processes , each iden-
tified by a unique id p ∈ Π = {1, . . . , n}. The processes are fully connected by a
point-to-point network made up of unidirectional links . Every pair of processes p and
q 6= p is hence connected by a pair of links (p, q), from sender process p to receiver
process q, and (q, p), from sender process q to receiver process p, which are consid-
ered independent of each other. To simplify our presentation, we also assume that
there is a link (p, p) from every process p ∈ Π to itself. Our system hence contains
n2 unidirectional links. Links may reorder messages, that is, are not assumed to be
FIFO.

2.1. Computing model. For our computing model, we employ the standard
lock-step round model as used in [58]. Every process p is modeled as a deterministic
state machine—acting on some local state statep ∈ Statep—that can send and receive
messages from some (possibly infinite) alphabet M. The initial state of process p is
drawn from a set of initial states Initp ⊆ Statep. All processes execute, in perfect
synchrony, a sequence of atomic computing steps forming a sequence of lock-step
rounds k ∈ K = {1, 2, . . .}: In round k, process p performs the following steps:

1. Initializes its received messages vector Rmp to ∀q ∈ Π : rmp[q] = ∅, where ∅
represents “no message”, and sends at most one message msgk

p = Msgp(statep, k)
to every process q ∈ Π (including itself); Msgp : Statep×K → M∪{∅} denotes
the message sending function of the algorithm executed by p.

2. Waits for some time while receiving messages into Rmp. This time must be
sufficiently long to allow delivery of (most of) the round k messages. We
assume that no messages arrive after this waiting period is over; practically,
if late messages arrive, they are discarded.

3. Performs a state transition from statep to state′p = Transp(statep, rmp, k),
where Transp : Statep × Rmp × K → Statep denotes the state transition
function of the algorithm executed by p.

Note that the round number k can be viewed as global time in this model, and is
typically part of statep.

The distributed algorithm executed by the processes is hence specified by the pairs
of message sending function and message transition function {(Msgp,Transp)| p ∈ Π}.

The configuration Ck of the system at the end of round k is the vector of states
(statek

1 , . . . , statek
n) obtained at the end of round k (after the state transition); the

initial configuration is C0 = (init1, . . . , initn) with ∀p ∈ Π : initp ∈ Initp. The
system-wide n × n received messages matrix Rk for round k is the column vector
(rmk

1 , . . . , rmk
n)T of all processes’ received messages vectors in round k, i.e.,

Rk =











rmk
1 [1] rmk

1 [2] . . . rmk
1 [n]

rmk
2 [1] rmk

2 [2] . . . rmk
2 [n]

...
...

...
...

rmk
n[1] rmk

n[2] . . . rmk
n[n]











,(2.1)
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with entry rmk
p[q] denoting the message that process p received from process q via its

incoming link in round k, or ∅ if no such messages was received.
A run (also termed execution) of the distributed algorithm is an infinite se-

quence C0,R1, C1,R2, . . . of configurations alternating with received messages matri-
ces, starting from some initial configuration C0 ∈ (Init1, . . . , Initn).

2.2. Failure model. We assume that all processes are correct1 but links may
fail transiently.

Consider the system-wide n × n sent messages matrix Sk for round k, which
consists of n identical rows containing the message sent by every process in round k,
i.e.,

Sk =











msgk
1 msgk

2 . . . msgk
n

msgk
1 msgk

2 . . . msgk
n

...
...

...
...

msgk
1 msgk

2 . . . msgk
n











,(2.2)

with msgk
p denoting the message process p sends to all processes via its outgoing links

in round k, or ∅ if no message is sent.
Clearly, in case of no link failures in round k, Rk = Sk since every message sent

by p via its outgoing link to q is received faithfully by q via its incoming link from
p. A link failure hitting the directed link (p, q) results in rmk

q [p] 6= msgk
p, however, so

Rk 6= Sk in this case. As in [58], we distinguish the following types of link failures of
(p, q) in a single round k:
Correct link: rmk

q [p] = msgk
p

Lossy link: ∅ = rmk
q [p] 6= msgk

p

Erroneous link (corruption): ∅ 6= rmk
q [p] 6= msgk

p 6= ∅
Erroneous link (spurious): ∅ 6= rmk

q [p] 6= msgk
p = ∅

For some round k, a lossy link is called omission faulty, an erroneous link (corrupted
or spurious) is termed arbitrary faulty. A link producing either type of failure is
termed faulty.

Our link failure model, originally introduced in [65,66], is such that, system-wide,
up to c · n2 links, for some c < 1, may be faulty in any round. We cannot allow any
set of c · n2 links to be hit by link failures, however, but require some restriction on
the allowed link failure patterns: Let Fk be the n × n failure pattern matrix with
entries

fk
q [p] =







ok if rmk
q [p] = msgk

p,
om if ∅ = rmk

q [p] 6= msgk
p,

arb(e) otherwise, where e encodes the type of the actual error

which is just the difference of Rk and Sk interpreted as ok, om, or arb(e) on a per
entry basis, depending on the corresponding link behavior. The feasible pattern of
system-wide link failures must be such that for every process p and every round k,

(Ar) p’s row (fp[1], . . . , fp[n]) in Fk contains at most f r
ℓ entries 6= ok, with at most

f r,a
ℓ ≤ f r

ℓ of those equal to arb(.). Since row p corresponds to p acting as a
receiver process, we say that p may perceive at most f r

ℓ receive link failures
(on its incoming links), with up to f r,a

ℓ arbitrary ones among those.

1Except for Section 5, where we also allow process crashes.
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(As) p’s column (f1[p], . . . , fn[p])T in Fk contains at most fs
ℓ entries 6= ok, with

at most fs,a
ℓ ≤ fs

ℓ of those equal to arb(.). Since column p corresponds to p
acting as a sender process, we say that p may experience at most fs

ℓ send link
failures (on its outgoing links), with up to fs,a

ℓ arbitrary ones among those.

Note that every process in the system may experience up to fs
ℓ send link failures

(fs,a
ℓ of them arbitrary), and up to f r

ℓ receive link failures (f r,a
ℓ of them arbitrary)

in every round. In addition, the particular links actually hit by a link failure may be
different in different rounds. Of course, they may also remain the same, which makes
our link failure model for example applicable to not fully-connected networks as well,
cf. [67].

In the above modeling, the primary failure instance is the link failure pattern
in the matrix Fk. It determines how many link failures could be experienced by
every process, both as a sender (send link failures fs

ℓ , fs,a
ℓ ) and as a receiver (receive

link failures f r
ℓ , f r,a

ℓ ). Clearly, assumptions (Ar) and (As) imply that at most nfs
ℓ

outgoing links and at most nf r
ℓ incoming links may be hit by a link failure. Since every

outgoing link is of course some receiver’s incoming link, it follows that the maximum
allowed number of link failures occurs when fs

ℓ = f r
ℓ = fℓ.

In our subsequent analysis, however, our assumptions on send link failures, as
captured by (As) and fs

ℓ , fs,a
ℓ , will be independent of the assumptions made on

receive link failures, as captured by (Ar) and f r
ℓ , f r,a

ℓ . Doing this allows us to extend
the range of applicability of our model. In particular, by restricting the assumption
“every process may commit up to fs

ℓ send link failures” to “at most f r
ℓ processes

in some fixed subset of the processes may commit up to fs
ℓ send link failures”, we

can also model restricted process failures: For example, a restricted omission faulty
process is perceived omission faulty only by at most fs

ℓ receiver processes per round
(rather than by all receivers, as allowed in case of a standard omission faulty process),
see Section 6 for details.

Note that adding classic process failures to the picture would provide a “fallback”
in cases where the link failure restrictions (As) and/or (Ar) are violated: As long as
the numbers of link failures experienced by a process p do not exceed the thresholds
f r

ℓ , f r,a
ℓ , fs

ℓ , and fs,a
ℓ , process p can be considered correct. Otherwise, p can just be

considered faulty, in which case the link failure restrictions do of course not apply.
The resulting hybrid perception-based failure model has been applied successfully in
the analysis of several different consensus algorithms [11,14,64–66,71,72]. In order to
focus on the intrinsic costs of link failures, we will not add standard process failures
to the model of this paper, however.

2.3. The consensus problem. Binary consensus is the problem of comput-
ing a common binary output value from binary input values distributed among all
processes. We assume that every process p has a read-only input value xp ∈ {0, 1}
in statep, which is supplied via the initial state initp ∈ Initp to p’s local instance
of a synchronous deterministic distributed consensus algorithm. In addition, p has a
write-once output value yp ∈ {0, 1} in statep, initially undefined. Process p irreversibly
computes (“decides upon”) yp according to the following requirements:

(C0) (Termination): Every process decides within a finite number of rounds (that
may be different for different processes, and may depend on the particular
execution).

(C1) (Agreement): Every two processes p and q compute the same output value
yp = yq.

(C2) (Weak Validity) [29]: If all processes start with the same input value, then
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every process p computes
• yp = 1 if ∀q : xq = 1 and no link failure has occurred in the entire

execution,
• yp = 0 if ∀q : xq = 0.

Note that practical consensus algorithms usually guarantee the following stronger
validity property:

(C2’) (Validity): If all processes start with the same input value ∀q : xq = v, then
every process p computes yp = v.

In particular, yp = 1 in case of ∀q : xq = 1 even when link failures have occurred.
We will employ the weaker form of validity in our proofs most of the time, since
impossibility of consensus under (C2) obviously implies impossibility of consensus
under (C2’) as well.

3. Basic Results. In this section, we will provide a generic analysis of consensus
in our setting, which essentially follows the approach taken in [58]:2 Using bivalence
arguments, we will show that consensus is impossible if every process p can withhold
its information from a non-empty subset Q = Q(p) of processes for an arbitrary
number of rounds. Withholding is a weaker property than “adjacency-preserving”
used in [58], however, so our generic results are slightly stronger than the ones of [58]
and hence need a different proof. In particular, our findings reveal the importance of
unimpaired bidirectional communication between processes for solving consensus.

In order to motivate the need for restricting failure patterns and to set the stage
for our more advanced proofs, we start with Gray’s well-known result [33], in the
formalization of [50, Thm. 5.1]. It is devoted to the coordinated attack problem,
which is just consensus with weak validity (C2) as stated in Section 2.3. This result
assumes, however, that there are no constraints on the link failure pattern matrices
(except that only omission failures are allowed).

Theorem 1 (Gray’s Impossibility [50, Thm. 5.1]). There is no deterministic
algorithm that solves the coordinated attack problem in a synchronous two-process
system with arbitrary lossy links.

Proof. Suppose that the failure-free execution E of a two-process system with
omission faulty links terminates at the end of round r when starting with initial
values [1, 1]. By validity, the common decision value must be 1 in E. Since decisions
are irreversible, we can safely drop all the messages some algorithm might send in
rounds > r without changing the decision value. The resulting “truncated” execution
E shown in Fig. 3.1 is obviously feasible.

By means of induction on the number of messages k sent in E, we show that the
decision value 1 does not change even when we drop all messages in E: For k = 0,
the claim holds trivially. For the induction step, assume that k > 0 messages are sent
in E where both processes decide by some round r and no messages are sent after
round r. Let m be the last message from, w.l.o.g., p1 → p2 in E (cp. the dotted one

in Fig. 3.1). If m is dropped, the resulting execution E
′
is indistinguishable from E

for p1, so p1 and, by agreement, also p2 must eventually decide upon 1. Clearly, in E
′
,

process p2 could decide after round r and even send out additional messages in some
round r′ > r — we can only guarantee that the decision value is the same. However,
p1 has already decided by round r and hence cannot make use of such “late” messages.

2Note that we could also have employed the layering framework [52] by Moses and Rajsbaum,
which provides generic consensus impossibility and lower bound results in a model-independent way.
Although similar in its general structure, it is based on quite different lower level “tools”, for example,
potence instead of valence, which are—contrary to [42]—not required in our relatively simple setting.
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t

p2

round 1

round r

1p [1] [1]

Fig. 3.1. Execution of a two-process synchronous consensus algorithm with unrestricted link
omission failures, starting with initial values [1, 1], truncated after round r by which both processes
decide.

Consequently, we can safely drop all those late messages in E
′
, if any, leading to an

execution E′ where only k − 1 messages are sent, both processes decide upon 1 by
some round r′ and no messages are sent after round r′. We can hence apply the
induction hypothesis to E′, which completes the induction step.

Since the processes are fully isolated from each other in the resulting execution
where all messages have been dropped, changing the initial values to [1, 0] and then
to [0, 0] cannot affect the decision value either, but now the outcome of the final
execution would violate validity.

As our first “real” result, we will now show that solving consensus is even impossi-
ble when a link—viewed as a pair of unidirectional links—loses or, in case of arbitrary
link failures, corrupts messages only in one direction, i.e., when either process (but
not necessarily both) can withhold information for an arbitrary number of rounds
from the other. Eventually bidirectional communication is hence mandatory for any
deterministic consensus algorithm. Solutions exist, however, if the direction of the
message loss is fixed, see the remarks following Theorem 2 below.

Unfortunately, this stronger result cannot be shown by generalizing the proof of
Theorem 1: We are not allowed to simply drop all messages in later rounds to “hide”
the effect of dropping/restoring round r-messages here, since this would amount to a
link failure in both directions and hence an infeasible execution. It was shown in [58],
however, that bivalency arguments [29] can successfully be applied in this setting.

We start with some notation: Recall that we defined an execution as an infi-
nite sequence C0,R1, C1,R2, . . . of configurations alternating with received messages
matrices, starting from some initial configuration C0 ∈ (Init1, . . . , Initn). For a con-
figuration Ck = (ck

1 , . . . , ck
n), let statep(C

k) = ck
p denote the local state of process p in

Ck. Since we are dealing with deterministic algorithms, executions are uniquely deter-
mined by the initial configuration, i.e., the initial values xp for all processes p, and the
sequence of link failure pattern matrices Fk in rounds k ≥ 1. Consequently, we can
unambiguously specify executions as infinite sequences C0,F1, C1,F2, . . . of configu-
rations alternating with failure pattern matrices. Moreover, a finite sequence of failure
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pattern matrices Fx = Fk, . . . ,Fk+x starting from configuration Ck−1 uniquely de-
termines the finite execution segment Ck−1,Fk, Ck,Fk+1, Ck+1, . . . ,Fk+x, Ck+x, and
we write Ck+x = Fx(Ck−1). An execution is called feasible if all Fk are feasible, i.e.,
adhere to the link failure pattern constraints (Ar) and (As) in Section 2.2. Finally, a
configuration C′ is called reachable from configuration C, if there is a feasible finite
sequence of failure pattern matrices Fx such that C′ = Fx(C). A configuration C is
reachable if it is reachable from some initial configuration.

A configuration is called v-decided (decided for short) if all processes have decided
on a common decision value v ∈ {0, 1}. A configuration C is v-valent (univalent if v is
not known or irrelevant) if all decided configurations reachable from C are v-decided;
in particular, it is impossible to reach a 1-decided configuration from a 0-valent C.
On the other hand, C is bivalent if both 0-decided and 1-decided configurations can
be reached from C.

For example, in case of n = 2, given any configuration Ck−1 = (ck−1
1 , ck−1

2 ), there
are only four possible successor configurations Ck

00, Ck
01, Ck

10, and Ck
11 in the case

of message omissions: Configuration Ck−1 is followed by the successor configuration
Ck

xy, depending on whether the message p2 → p1 (x) and/or p1 → p2 (y) is lost

(x, y = 0) or correct (x, y = 1) in round k ≥ 1.3 Note that Ck
00 is feasible only in the

setting of Theorem 1, where unrestricted losses are allowed, since both messages are
lost there. In the context of the following Theorem 2, however, Ck

00 cannot be reached
from Ck−1 since losing both messages is not feasible.

The situation is more complicated in case of arbitrary link failures, however,
where Ck−1 can have more than 4 successor configurations: After all, different errors
e experienced, for example, by the message from p2 → p1 due to an arbitrary link
failure with fk

1 [2] = arb(e) in the failure pattern matrix Fk might result in different
states of p1. Fortunately, we can keep the convenient assumption of just 4 successors
if we replace a single successor state Ck

xy by the set of possible successor states. Using

this extended interpretation, Ck
01 actually consists of all configurations reachable from

Ck−1 where only the message p2 → p1 is lost or erroneous, for example. Univalence
of a set of configurations Ck

xy means that all individual configurations Ck ∈ Ck
xy are

univalent, whereas bivalence means that at least one individual configuration Ck ∈
Ck

xy is bivalent. Bivalence proofs are easily generalized to this extended interpretation.
Finally, our notation can be easily generalized to n > 2: (Sets of) successor

configurations are indexed by strings of n(n − 1) 0’s or 1’s, corresponding to every
link in a system of n processes, with 0 denoting a lost or faulty message, and 1 denoting
a non-faulty one.

Two successor configurations Ck
v and Ck

w are called neighbors if the received mes-
sage matrices Rk

v and Rk
w that lead to Ck

v and Ck
w, respectively, differ in at most one

entry: W.l.o.g., this entry contains the correct message in Rk
v but a lost/erroneous

one in Rk
w. Consequently, all configurations in Ck

00 and Ck
01 are neighbors in the

above system, but the ones in Ck
01 and Ck

10 are not. The successor graph GC of some
configuration C consists of all successor configurations of C, where all neighbors are
connected by an edge. We can make the following well-known observation:

Lemma 1. The successor graph GC of any configuration C of a consensus algo-
rithm under our system model is connected.

Proof. Let k ≥ 1 be the round at the end of which the transition from C to
one of its successor configurations takes place. Obviously, the failure-free successor

3Message “self-transmission”, from p1 → p1 and p2 → p2, is always assumed to be failure-free
here. Since we are dealing with impossibility results and lower bounds, this can safely be assumed.
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configuration C1..1 where no round k messages has been lost or corrupted must be
in GC . Let CX be any other successor configuration caused by a feasible link failure
pattern, with MX denoting the corresponding set of lost or faulty messages. Since

the link failure pattern M′

X , obtained from MX by removing (= repairing) exactly
one of the lost or faulty messages, is of course also feasible, the resulting successor

configuration C′
X is a neighbor of CX and obviously C′

X ∈ GC . Since |M′

X | = |MX |−
1, this argument can be repeated until the failure-free successor configuration C′

X =
C1..1 is reached. Hence, there is a path from any CX to C1..1 in the successor graph
GC .

The result of Lemma 1 will be used primarily in conjunction with the following
Lemma 2:

Lemma 2. Suppose that all successor configurations of some configuration C with
successor graph GC are univalent. If there are two arbitrary successor configurations
C′ and C′′ among those that are 0-valent and 1-valent, respectively, then there are also

two neighboring successor configurations C
′
and C

′′
that are 0-valent and 1-valent.

Proof. Since C′ and C′′ are connected in GC and have different valences, there
is a path of configurations connecting C′ and C′′. This implies that there must be

neighbors C
′
and C

′′
on this path where the valence changes.

With these two lemmas, it is fairly easy to show that eventually bidirectional
communication is mandatory for solving consensus in a 2-process system: The follow-
ing Theorem 2 considers link omission failures only (that may change arbitrarily from
round to round, however) and strengthens Gray’s Theorem 1. Note that it could also
be derived from the impossibility of consensus under a single moving process omission
failure [58] in a system of n = 2 processes.

Theorem 2 (Unidirectional 2-Process Impossibility). There is no deterministic
algorithm that solves consensus in a synchronous system with two non-faulty processes
connected by a lossy link, even if communication is reliable in one direction in every
round.

Proof. Assume that there are algorithms Ap1 and Ap2 running on processes
p1 and p2 that jointly solve consensus in a two-process system with unidirectional
communication. We will show inductively that every bivalent configuration has at
least one bivalent successor. This implies that it is impossible to always reach a final
decision within any finite number of rounds.

For the base case k = 0 of our inductive construction, we have to show that there
is a bivalent initial configuration. Consider the configuration C0(01) where p1 starts
with initial value 0 and p2 starts with initial value 1. If C0(01) is bivalent, we are
done. If C0(01) is 0-valent, the execution where all messages from p1 → p2 are lost
in all rounds must also lead to a 0-decided configuration. However, this execution is
indistinguishable for p2 from the equivalent execution that starts from C0(11) (where
p1 has initial value 1 instead of 0), which implies that the common decision value
must also be 0 here. Since C0(11) must lead to a 1-decided configuration in case of
no link failures by validity, we have shown that C0(11) is bivalent in this case. An
analogous argument can be used to show that C0(00) would be bivalent when C0(01)
is 1-valent.

For the induction step k ≥ 1, we assume that we have already reached a bivalent
configuration Ck−1 at the end of round k−1 and show that at least one of the feasible
successor configurations Ck

01, Ck
10, and Ck

11 reached at the end of round k is bivalent.
Assuming the contrary, all of those must be univalent. The bivalence of Ck−1 implies
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that at least one of Ck
01, Ck

10, and Ck
11 must be 0-valent and one must be 1-valent (i.e.,

Ck−1 must be a fork [69]). By Lemma 2 in conjunction with Lemma 1, either the
neighbors Ck

11 and Ck
01, or Ck

11 and Ck
10 must be v-valent and (1 − v)-valent. W.l.o.g.

assume that Ck
11 is v-valent and Ck

01 is (1 − v)-valent for some v ∈ {0, 1}. Since the
only difference between those two configurations is that the message from p2 → p1

arrives in the former but not in the latter, we only have to consider the execution Ck∗
11

where all messages from p1 → p2 are lost in all rounds > k. However, as p1 cannot tell
p2 whether it has received a round k message, the execution Ck∗

11 starting from Ck
11

is indistinguishable for p2 from the same execution starting from Ck
01. Since p2 must

eventually decide upon the same value, Ck
11 and Ck

01 cannot have different valences.

Remarks:

1. If message losses can only occur in one direction, and if that direction is
known to the algorithm, then there is a trivial 1-round algorithm that solves
consensus in a 2-process system: The process that can communicate with its
peer sends its own value and decides upon it; the other process decides upon
the value received from its peer.

2. If message losses can only occur in one and the same but unknown direction,
there is a simple 2-round algorithm that solves consensus in a 2-process sys-
tem: Every pi initially sets vi := xi. In the first round, p1 sends v1 to p2.
If p2 receives v from p1, it sets v2 := v. In the second round, p2 sends its
value v2 to p1. If p1 receives v from p2, it sets v1 := v. At the end of the
second round, process pi, i = 1, 2, decides upon vi. It is easy to verify that
the decision values satisfy validity and agreement.

Our next goal will be to show that consensus cannot be solved in any system
of n ≥ 2 processes if, for every process, eventually bidirectional communication with
every peer cannot be guaranteed. More specifically, we will show that this is the
case when every process p can withhold its information from some non-empty subset
Q = Q(p) of processes (but not necessarily vice versa) from any round k + 1 on,
namely, when there is a sequence of failure pattern matrices for rounds k+1, k+2, . . .
such that every q ∈ Q has the same view of the resulting execution after round k + x,
independently of the state of p in the starting configuration Ck.

Definition 1 (Withholding). A process p, in some reachable configuration Ck,
can withhold its information from round k + 1 on, if there is an infinite sequence
of failure pattern matrices F = Fk+1,Fk+2, . . . and a non-empty set Q of processes
with p 6∈ Q (where both F and Q may depend on p and Ck) such that, for any

reachable configuration C
k

with ∀q ∈ Q : stateq(C
k) = stateq(C

k
), it also holds that

∀q ∈ Q : stateq

(

Fx(Ck)
)

= stateq

(

Fx(C
k
)
)

for any finite prefix Fx = Fk+1, . . . ,Fk+x

of F .

We say that p can withhold its information if it can withhold its information from
round k + 1 on, for every k ≥ 0, starting from any reachable configuration Ck.

Definition 1 implies that if p can withhold its information, then, since |Q| ≥ 1,
there is at least one process q = q(p) which never gets any useful information from p
at all during F , neither directly nor indirectly via other processes.

It is important to note that withholding is a weaker property than adjacency-
preserving, on which the generic results of [58] are based: The latter requires that

all processes 6= p have the same state in Fx(Ck) and Fx(C
k
), i.e., corresponds to p

withholding its state from every q 6= p. Consequently, adjacency-preserving implies
withholding, but not vice versa. In fact, the proofs of Theorems 3 and 6 will show that
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withholding—but not adjacency-preservation—is possible under our failure model for
certain parameter values. Basically, this is due to some “unidirectional” partitioning
of the n processes in the system, which is possible when (As) and (Ar) hold, provided
that n is small enough.

As a consequence, we cannot use the generic consensus impossibility results from
[58]. The following Lemma 3 reveals, however, that the ability of every process p to
withhold its information from some non-empty subset of the processes arbitrarily long
already prohibits a solution to the consensus problem.

Lemma 3 (n-Process Impossibility). Consider a synchronous n-process system
with omission and/or arbitrary link failures. There is no deterministic algorithm that
solves consensus in such a system if every process p can withhold its information in
any configuration.

Proof. The proof is a generalization of the proof of Theorem 2, although more
involved: We assume here that there are n algorithms A1, . . . , An running on the n
processes p1, . . . , pn in the system that jointly solve consensus. We will show induc-
tively that there is an infinite execution involving bivalent configurations only, which
makes it impossible to always reach a decision within a finite number of rounds.

For the base case k = 0 of our inductive construction, we have to show that there
is a bivalent initial configuration C0. As in [29], we consider the initial configuration
C0(111..1), where all processes start with the initial value 1. If this configuration
is bivalent, we are done. Otherwise, C0(111..1) can only be 1-valent, since validity
requires a decision value 1 in the failure-free case. Now consider C0(011..1), where
process p1 starts with 0 and all others with 1. If this configuration is bivalent, we are
done. If not, we assume first that it is 0-valent and choose the execution starting from
C0(011..1) where p1 witholds its value from some process q(p1) = px 6= p1; such an
execution must exist according to Definition 1 since p can withhold its information.
This execution is indistinguishable for px from the analogous execution starting from
C0(111..1), however, so px’s (and hence the common) decision must be 1 here. This
contradicts the stipulated 0-valence of C0(011..1), however, which could hence only
be 1-valent.

The whole argument can now be repeated for p2 in place of p1, etc., until either
a bivalent initial configuration has been found or the 1-valent initial configuration
C0(0..001) has been reached; in C0(0..001), the processes p1, . . . , pn−1 start with 0 and
pn starts with 1. We again consider the execution where pn withholds its information
from some process q(pn) = py 6= pn. For py, this execution is indistinguishable from
the same one starting from C0(0..000), which must lead to a decision value of 0 by
weak validity (C2). This contradicts the stipulated 1-valence of C0(0..001), however.

For the induction step k ≥ 1, we assume that we have already reached a bivalent
configuration Ck−1 at the end of round k − 1. We must show that at least one of
the feasible successor configurations Ck that can be reached at the end of round k is
bivalent. If this is true in the first place, we are done. If not, all successor configura-
tions Ck must be univalent. However, the bivalence of Ck−1 implies that at least one
of those must be 0-valent and one must be 1-valent (i.e., Ck−1 must be a fork [69]).
By Lemma 2, there must also be 0-valent and 1-valent successor configurations Ck

0

and Ck
1 , respectively, that are neighbors. Assume that they differ only in the state of

process r that has got some specific round k message correct in Ck
0 but not or faulty

in Ck
1 (or vice versa). Now consider the two executions starting with Ck

0 and Ck
1 ,

where r withholds its round k-information from some process q(r) = pz 6= r in any
future round > k. They are indistinguishable for pz, which means that pz and, by
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agreement, all other processes must compute the same decision in both executions.
This contradicts the stipulated different valences of Ck

0 and Ck
1 , however.

Lemma 3 has a number of important consequences. First of all, it reveals an
interesting asymmetry in the “severeness” of receive link failures (Ar) vs. send link
failures (As). This can be seen by considering two instances of a 3-process system,
where two processes A, B cannot communicate bidirectionally due to receive and/or
send link failures: In the system shown in Fig. 3.2 (called of type R), processes A and
B may not receive the messages from both peers due to excessive receive link failures
(f r

ℓ = 2 and fs
ℓ = 1). In the system shown in Fig. 3.3 (of type S), processes A and B

may fail to send to both peers due to excessive send link failures (f r
ℓ = 1 and fs

ℓ = 2).

C

A B

C

A B

Fig. 3.2. 3-process system (type R), where processes A and B cannot communicate in one
direction due to excessive receive link failures (fr

ℓ
= 2 and fs

ℓ
= 1). The left scenario shows the case

A 6→ B, the right one B 6→ A, which may alternate arbitrarily.

It follows from Lemma 3 that no algorithm can solve consensus in a system of
type R, even if process C is fixed and known to the algorithm. For, since A may fail
to receive any information from any other process in the system, choosing q(p) = A
secures withholding by every p 6= A. Similarly, since B may also fail to receive the
information from any peer, it provides the required q(p) for withholding by process
p = A. Hence, consensus is impossible in a 3-process system with f r

ℓ = 2 and fs
ℓ = 1;

note that C is not fixed here, which makes consensus even harder to solve.

C

A B

C

A B

Fig. 3.3. 3-process system (type S), where processes A and B cannot communicate in one
direction due to excessive send link failures (fr

ℓ
= 1 and fs

ℓ
= 2). The left scenario shows the case

A 6→ B, the right one B 6→ A, which may alternate arbitrarily.

On the other hand, for systems of type S where C is fixed and known to the
algorithm, there is a trivial solution that lets all processes decide upon the value of
process C. If process C is fixed but not known, consensus can be solved by means of
the algorithm described in [34]. No solution exists in a system of type S only if C is
not fixed — as is the case in a 3-process system with f r

ℓ = 1 and fs
ℓ = 2.

As a final remark, we note that the above observations are in accordance with
the results of [43], where it was shown that bounded-time consensus is impossible in
the ⋄MFM (“Majority from Majority”) link timing model.
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4. Number of Processes. Using the results of Section 3, we will first establish
a lower bound for purely omissive link failures (f r,a

ℓ = fs,a
ℓ = 0).

For the special case fs
ℓ = f r

ℓ = fℓ > 0, such a lower bound can be inferred
from Theorem 2 (even from Theorem 1), by a straightforward simulation-type proof:
Assume that there is a deterministic algorithm C that solves consensus for n = 2fℓ.
Using C, it is possible to construct a solution for consensus in a 2-process system with
lossy links, which is impossible, however.

The detailed proof is as follows: Partition the n processes into two subsets PA and
PB of size fℓ each. Two super-processes A and B are used to simulate the execution
of the processes in PA and PB , respectively. All the links between the simulated
processes in the two super-processes are routed over a single super-link . For a super-
process’ decision value, any simulated process’ decision value can be taken. In order
to ensure that C achieves consensus among all (simulated) processes, we must show
that our link failure assumptions are not violated for any simulated process in any
super-process in case of a super-link failure: Any simulated process must not get more
than f r

ℓ = fℓ receive link failures, and must not produce more than fs
ℓ = fℓ send link

failures. This is trivially satisfied since fs
ℓ = f r

ℓ = fℓ, however. Hence, our solution
would achieve consensus among the two super-processes, which violates Theorem 2
(even Theorem 1, since bidirectional partitioning could happen here).

For the general case of arbitrary fs
ℓ and f r

ℓ , the lower bound for omission link
failures can immediately be derived from Lemma 3:

Theorem 3 (Lower Bound Processes 1). Any deterministic algorithm that solves
consensus under our system model with fs

ℓ , f r
ℓ > 0 needs n > f r

ℓ + fs
ℓ .

Proof. We first show that, for any process p, we can arbitrarily choose a set P
of f r

ℓ processes including p, where no process in P sends any messages to a process
in Q = Π\P in case of n = fs

ℓ + f r
ℓ in some feasible execution: Since there are

fs
ℓ ≥ 1 processes in Q, every process in P may commit send link failures that omit

all processes in Q. Any process in Q thus experiences exactly f r
ℓ receive link failures,

which is also feasible with respect to our failure model. Hence, there is no information
flow from processes in P to processes in Q at all, such that every process p can trivially
withhold its information. According to Lemma 3, solving consensus is impossible here.

Remarks:
1. According to Corollary 1 in Section 6, the lower bound n > f r

ℓ +fs
ℓ provided by

Theorem 3 is tight; it is for example matched by the authenticated algorithm
ZA [65].

2. The result of Theorem 3 implies that, in order to be able to solve consensus,
link failures (As) and (Ar) may affect at most a minority of processes only.
In the setting of Gray’s Theorem 1, however, there is no point in considering
this case at all: There is no non-empty minority of processes for n = 2.
Focusing on overly simple cases hence sometimes hides ways to escape from
impossibility results.

In order to find a lower bound for arbitrary link failures, we will again start with
the special case fs

ℓ = f r
ℓ = fs,a

ℓ = f r,a
ℓ = fℓ > 0. Our derivation will be based on

the following Theorem 4, which shows that no algorithm can solve consensus [with
validity (C2’)] in a 4-process system in the presence of a single arbitrary link failure
per process (f r,a

ℓ = fs,a
ℓ = 1).

Theorem 4 (4-Process Impossibility). There is no deterministic algorithm that
solves consensus with validity (C2’) under our system model for a single arbitrary link
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failure in a 4-process system.
Proof. We employ a new instance of the “easy impossibility proof techniques”

of [28] to show that any deterministic algorithm violates agreement if every process
may see an inconsistent value from one of its neighbors. Suppose that our 4 processes
execute a distributed algorithm consisting of specific programs A, B, C, D, which
solve consensus under our system model with f r,a

ℓ = fs,a
ℓ = fs

ℓ = f r
ℓ = 1. In order

to derive a contradiction, we arrange 8 processes in a cube as shown in Fig. 4.1. For
example, the lower leftmost process labeled A[0] executes algorithm A starting with

initial value 0 (the 0 on its left displays this process’s decision value, as explained
below). Note carefully that all processes and all links are assumed to be non-faulty
here.

10

10

10

10

A[0]

B[0] C[1]

D[1]

View X

D[0] A[1]

B[1]C[0]

View
 0

View
 1

Fig. 4.1. Topology used for proving the violation of agreement in a 4-process system. 8 non-
faulty processes with perfect links are arranged in a cube in a neighborhood-preserving way. The
assignment of initial values ensures that all processes in view 0 (resp. view 1) decide 0 (resp. 1), but
this violates agreement in view X.

Of course, dealing with a solution for a 4-process system, we cannot expect to
achieve consensus in the 8-process system of Fig. 4.1. However, due to the special
assignment of algorithms to processes, each process observes a neighborhood as in a
4-process system. More specifically, the 4 processes at any side of the cube (we call it
a view) can be interpreted as an instance of a legitimate 4-process system. In fact, as
can be checked easily, our assignment ensures that any process in a view is connected
to exactly one process outside this view. Since we assumed that every process may
see an arbitrary faulty input from at most one neighbor, the input from the process
outside the view may be arbitrary—it just appears as a process the links of which
deliver arbitrary faulty messages.

Now consider the processes in view 0, which all have initial value 0. By the
validity property for consensus, all processes must decide 0 here (the initial value 1
of the processes outside view 0 do not matter, as the links to them are considered
arbitrary faulty w.r.t. view 0). Similarly, in view 1, all processes must decide 1 since
they have initial value 1. But now the processes in view X face a problem: Since
e.g. the lower leftmost process A[0] observes exactly the same messages in view X
as in view 0 by construction, it must decide 0 as observed above. Similarly, as the
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lower rightmost process D[1] observes exactly the same messages in view X as in
view 1, it must decide 1—but this would violate agreement in the 4-process system
corresponding to view X . We hence established the required contradiction, thereby
completing the proof of Theorem 4.

Using Theorem 4, a similar simulation-type argument as in the pure omission
failure case can be used to show the lower bound n > 4fℓ for fs

ℓ = fs,a
ℓ = f r

ℓ =
f r,a

ℓ = fℓ > 0 arbitrary link failures. Corollary 1 in Section 6 reveals that this lower
bound is also tight; it is for example matched by the non-authenticated algorithm
OMH [65,66].

Theorem 5 (Lower Bound Processes 2). Any deterministic algorithm that solves
consensus with validity (C2’) under our system model with f r

ℓ = fs
ℓ = fs,a

ℓ = f r,a
ℓ =

fℓ > 0 needs n > 4fℓ.
Proof. Assume that there is a deterministic algorithm C that solves consensus for

n = 4fℓ in our model. We use C to construct a solution for a 4-process system of
Theorem 4, which provides the required contradiction.

We partition the set of all processes P into 4 subsets PA, PB , PC , PD of the same
cardinality fℓ, and let each super-process A, B, C, D simulate all the instances of the
algorithm in the respective subset. For the super-process’ decision value, any simu-
lated process’ decision value can be taken. In order to ensure that C achieves consensus
among all (simulated) processes, we must show that our link failure assumptions are
not violated for any process in any super-process if at most one super-link per process
may experience an arbitrary link failure. Since any super-link hosts the links to and
from exactly fℓ processes, this is trivially fulfilled, however: In case of a super-link
failure, every sender process commits at most fℓ send link failures (affecting the fℓ

processes in the receiving super-process), and every receiver process experiences at
most fℓ receive link failures (from the fℓ processes in the sending super process).

Therefore, we have constructed an implementation of a consensus algorithm for
a 4-process system, which can withstand a single arbitrary link failure. Since this is
impossible by Theorem 4, the proof of Theorem 5 is completed.

Unfortunately, we did not find an easy way to generalize the above simulation-
type argument for an arbitrary number fs

ℓ , fs,a
ℓ , f r

ℓ , f r,a
ℓ ≥ 0 of link failures [and weak

validity (C2)]. In order to derive a lower bound for n for this general case, we must
hence resort to our key Lemma 3 again. What needs to be shown here, however, is
that every process p can withhold its information: Lemma 5 below will prove that as
many as f r

ℓ + f r,a
ℓ processes can withhold their information from as many as fs

ℓ + fs,a
ℓ

processes in case of n = f r
ℓ + f r,a

ℓ + fs
ℓ + fs,a

ℓ , provided that

f r,a
ℓ

f r
ℓ

=
fs,a

ℓ

fs
ℓ

.(4.1)

Hence, by Lemma 3, n > f r
ℓ +f r,a

ℓ +fs
ℓ +fs,a

ℓ is a lower bound for solving consensus if
(4.1) holds. If (4.1) does not hold, there are cases where consensus can be solved also
for n ≤ f r

ℓ + f r,a
ℓ + fs

ℓ + fs,a
ℓ . A lower bound in this case is n > f

r

ℓ + f
ra

ℓ + f
s

ℓ + f
sa

ℓ ,

however, where f
r

ℓ ≤ f r
ℓ , f

ra

ℓ ≤ f r,a
ℓ , f

s

ℓ ≤ fs
ℓ , f

sa

ℓ ≤ fs,a
ℓ are such that (4.1) holds

and n is maximal (see the comments prior to Theorem 6 for details).

Diving into the details of our lower bound proof, we start with a simple “balls and
boxes” technical lemma. It shows that it is possible to drop white, orange and purple
balls into a matrix such that each row and each column contains some specific numbers
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of balls of each color. This result will be used subsequently to assert the existence of a
certain mapping of send and receive link failures, by interpreting a white, orange, and
purple ball as a correct, omission faulty, and arbitrary faulty transmission between a
particular sender process (column index) and receiver process (row index).

Lemma 4 (Balls and Boxes). Consider a matrix with s + sa rows and r + ra

columns, where s ≥ sa > 0 and r ≥ ra > 0 and

r/ra = s/sa.(4.2)

Then it is possible to drop white, orange, and purple balls into the matrix (one ball
per entry), such that any single row contains exactly ra white, r − ra orange, and ra

purple balls, whereas any single column contains exactly sa white, s− sa orange, and
sa purple balls.

Proof. First, we note that summing up the number of balls of the same color
by rows and columns, respectively, in any such assignment yields the same result:
For example, we need wr = (s + sa)ra white balls when summing over rows, and
wc = sa(r+ra) white balls when summing over columns. Since (4.2) implies sra = sar,
it follows that wr = wc. We will now construct such an assignment explicitly.

Consider the first row in our matrix, and let

π0, π1, . . . , πr+ra−1

with πi ∈ {white, orange, purple} be its assignment of balls to places according to the
following rule: For any integer x ≥ 0,

πx =







orange ∨ purple if x = c(i) for some integer i ≥ 0,
purple if and only if x = c

(

a(j)
)

for some integer j ≥ 0,
white otherwise,

where

c(i) =
⌊r + ra

r
· i

⌋

a(j) =
⌊ r

ra
· j

⌋

p(j) = c
(

a(j)
)

=

⌊

r + ra

r
·
⌊ r

ra
· j

⌋

⌋

.

This assignment distributes colored (orange or purple), as well as purple balls alone,
as regularly as possible over the r + ra available places in the first row. The following
periodicity properties are immediately apparent from the above definitions: For 0 ≤
i ≤ r − 1, 0 ≤ j ≤ ra − 1, and any integer y ≥ 0,

0 ≤ c(i) ≤ r + ra − 1 and c(i + r) = c(i) + r + ra(4.3)

0 ≤ p(j) ≤ r + ra − 1 and p(j + r) = p(j) + r + ra(4.4)

πy+r+ra = πy.(4.5)

From the properties of c(i) and p(j), it follows immediately that π0, π1, . . . , πr+ra−1

contains exactly r colored balls and ra white ones. Clearly, every cyclic permutation
(rotation) πy, πy+1, . . . , πy+r+ra−1 of the original π0, π1, . . . , πr+ra−1 has this property
as well. Note that index addition in this cyclic permutation should actually be modulo
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r + ra; (4.5) reveals that this is automatically taken care of, however. Below, we will
assign πy , πy+1, . . . , πy+r+ra−1 to row y of our matrix to prove our lemma.

By using the equivalences (r + ra)/r = (s + sa)/s and r/ra = s/sa, which follow
immediately from (4.2), in the definitions of c(i) and p(i), we obtain similar periodicity
properties for 0 ≤ i ≤ s − 1, 0 ≤ j ≤ sa − 1 and any integer x ≥ 0:

0 ≤ c(i) ≤ s + sa − 1 and c(i + s) = c(i) + s + sa(4.6)

0 ≤ p(j) ≤ s + sa − 1 and p(j + s) = p(j) + s + sa(4.7)

πx+s+sa = πx.(4.8)

As before, this implies that π0, π1, . . . , πs+sa−1 contains exactly s colored balls and
sa white ones. Even more, the periodicity properties (4.6) and (4.7) imply that every
cyclic permutation (rotation) πx, πx+1, . . . , πx+s+sa−1 of π0, π1, . . . , πs+sa−1 has this
property as well; again, (4.8) takes care of index addition modulo s + sa.

Hence, we just have to assign πy, πy+1, . . . , πy+r+ra−1 to row y of our matrix,
meaning that the entry in column 0 of row y contains the same ball as the entry
in column y of row 0, for example. Our findings on the number of balls in cyclic
permutations of π0, . . . , πr+ra−1 shows that this assignment respects our lemma’s
requirement on rows. Similarly, inspection of the resulting matrix shows that column
x contains the pattern πx, πx+1, . . . , πx+s+sa−1, which respects our requirement on
the number of balls in columns as well. For example, for r = 4, ra = 2, s = 2, sa = 1,
we obtain the following assignment:





p o w p o w
o w p o w p
w p o w p o





Now we are ready to prove our major Lemma 5, which shows that, in case of
n = f r

ℓ + f r,a
ℓ + fs

ℓ + fs,a
ℓ processes satisfying (4.1), any two executions that lead to

two sufficiently “similar” configurations, in the sense that |Q| = fs
ℓ + fs,a

ℓ processes
have identical state in both, can be extended by one round in a way that again yields
two “similar” configurations for the processes in Q. This implies that all the remaining
f r

ℓ + f r,a
ℓ processes can withhold their information in the resulting execution. Hence,

Lemma 3 can be applied again, which will finally establish our general lower bound
result.

Lemma 5 (Similarity). Consider two configurations C = (c1, . . . , cn) and C′ =
(c′1, . . . , c

′
n) generated by executions E and E′ in a system of n = f r

ℓ + f r,a
ℓ + fs

ℓ +
fs,a

ℓ processes satisfying f r
ℓ /f r,a

ℓ = fs
ℓ /fs,a

ℓ , where the states c1 = c′1, . . . , cfs
ℓ
+fs,a

ℓ
=

c′fs
ℓ
+fs,a

ℓ

of fs
ℓ + fs,a

ℓ processes are the same. Then, E and E′ can be feasibly extended

by one round, such that the same fs
ℓ + fs,a

ℓ processes have again the same states d1 =
d′1, . . . , dfs

ℓ
+fs,a

ℓ
= d′fs

ℓ
+fs,a

ℓ

in the resulting successor configurations D = (d1, . . . , dn)

and D′ = (d′1, . . . , d
′
n).

Proof. Let Q = {q0, . . . , qfs
ℓ
+fs,a

ℓ
−1} be the set of processes with equal states in

C and C′, and P = {p0, . . . , pfr
ℓ
+fr,a

ℓ
−1} be the set of the remaining processes with

possibly different states in C and C′. We claim that there is a feasible link failure
pattern F extending E by one round, yielding the execution E ∪ (F , D), where ∪
denotes the concatenation operation. Therefore, every process in Q gets exactly f r,a

ℓ

arbitrary link failures from some processes in P , delivering the message that would
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have been sent in the failure-free extension of E′ (i.e., in the absence of link failures).
In addition, every process in Q also experiences exactly f r

ℓ −f r,a
ℓ omission link failures

from some processes in P , whereas the messages from the remaining f r,a
ℓ processes in

P are received correctly. All messages from processes in Q to processes in Q, as well
as all messages to processes in P are failure-free.

Not surprisingly, the required link failure pattern has already been established
in Lemma 4: We just have to map r = f r

ℓ , ra = f r,a
ℓ , s = fs

ℓ and sa = fs,a
ℓ and

interpret white, orange, and purple balls as correct, omission faulty, and arbitrary
faulty transmissions from the f r

ℓ + f r,a
ℓ processes in P (columns) to the fs

ℓ + fs,a
ℓ

processes in Q (rows). The results of Lemma 4 reveal that the corresponding link
failure pattern respects both the maximum number of send and receive link failures.

Knowing that such an F indeed exists, our lemma follows from extending E with
F and E′ with the pattern matrix F ′, which is exactly F except that a process that
committed an arbitrary send link failure in F transmits correctly in F ′, whereas a
process that transmitted correctly in F commits an arbitrary send link failure in F ′,
which (erroneously) delivers the message that would have been transmitted in the
failure-free extension of E: After this round, every process in Q has the same view
of the execution both in E ∪ (F , D) and E′ ∪ (F ′, D′) and hence reaches the same
configuration in D and D′ as asserted.

Now it is not difficult to prove our general lower bound result as given by Theo-
rem 6. It reveals that n > f r

ℓ +f r,a
ℓ +fs

ℓ +fs,a
ℓ is required for solving consensus if (4.1)

holds. According to Corollary 1 in Section 6, this bound is tight and is for example
matched by the exponential algorithm OMH [65,66]. If (4.1) does not hold, consensus
can be solved with fewer processes, namely, with n > f

r

ℓ + f
ra

ℓ + f
s

ℓ + f
sa

ℓ ones. The
quantities f

r

ℓ , f
ra

ℓ , f
s

ℓ and f
sa

ℓ are non-negative integers solving (4.1), subject to the
constraints f

r

ℓ ≤ f r
ℓ , f

ra

ℓ ≤ f r,a
ℓ , f

s

ℓ ≤ fs
ℓ and f

sa

ℓ ≤ fs,a
ℓ , such that f

r

ℓ +f
ra

ℓ +f
s

ℓ +f
sa

ℓ

is maximal. Note that this is in accordance with the observation that, if (4.1) does
not hold, OMH solves consensus also for n = f r

ℓ + f r,a
ℓ + fs

ℓ + fs,a
ℓ (if it is allowed to

execute some additional rounds). Although we do not know whether the lower bound
given by Theorem 6 is also tight in this case, we nevertheless conjecture that this is
the case.

Theorem 6 (Lower Bound Processes 3). Any deterministic algorithm that solves
consensus under our system model needs n > f

r

ℓ + f
ra

ℓ + f
s

ℓ + f
sa

ℓ , where f
r

ℓ ≤ f r
ℓ ,

f
ra

ℓ ≤ f r,a
ℓ , f

s

ℓ ≤ fs
ℓ , f

sa

ℓ ≤ fs,a
ℓ are such that f

r

ℓ/f
ra

ℓ = f
s

ℓ/f
sa

ℓ holds and the sum

f
r

ℓ + f
ra

ℓ + f
s

ℓ + f
sa

ℓ is maximal.
Proof. Due to Theorem 3, it only remains to provide an impossibility proof for

fs,a
ℓ , f r,a

ℓ > 0. According to Lemma 3, we just have to show that every process p
can withhold its information under the conditions of our theorem: More specifically,
for every k ≥ 0, we need a failure pattern for rounds k + 1, k + 2, . . . such that a
non-empty set of processes Q = Q(p) has the same view of the resulting execution
after round r ≥ k + 1, independent of the information p has gathered by round r.

This follows easily from inductively applying Lemma 5, however: If we assume
that p is just one of the f r

ℓ + f r,a
ℓ processes in P that may have a different state in

two k-round executions E (resp. E′) leading to configurations C (resp. C′), we are
guaranteed that the remaining |Q| = fs

ℓ + fs,a
ℓ processes that had identical state in E

and E′ have identical state in some 1-round extension E ∪ (F , D) and E′∪ (F ′, D′) of
E and E′ again. Hence, no such process ever gets information from p. Since this can
go on for an arbitrary number of rounds, Definition 1 reveals that every p can indeed
withhold its information as required.
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5. Number of Rounds. In this section, we will show that being able to handle
link failures comes at the price of additional running time. More specifically, compared
to the case without link failures, solving consensus in case of fs

ℓ , f r
ℓ > 0 requires one

additional round. Our proofs are again based on bivalency arguments and re-use some
of the results developed in the previous sections.

Theorem 7 (Lower Bound Rounds 1). Any deterministic algorithm that solves
consensus under our system model for fs

ℓ , f r
ℓ > 0 needs at least 2 rounds.

Proof. Assume that there is a 1-round algorithm that solves consensus in the
presence of link failures. Obviously, since any process p may suffer from a send link
failure to any receiver process q, any process p can withhold its information from at
least one process q(p) here: The 1-round assumption does not allow other processes
to learn about p’s information in some later round. Therefore, Lemma 3 reveals that
solving consensus is impossible here. Note that Lemma 3 is applicable here, since x-
round consensus is an instance of consensus where no messages are sent in rounds > x.
So if no consensus algorithms exists, as guaranteed by Lemma 3, x-round consensus
is impossible either.

The above result can be extended to the case where both process and link failures
can occur. Using our ideas in the simple bivalency proof of the well-known f + 1
lower bound for the number of rounds required for solving consensus in the presence
of f process crashes developed in [6], it is possible to show that f + 2 is a tight lower
bound (matched for example by algorithm OMH of [65, 66], and also confirmed by
Corollary 1 for f = 0).

Theorem 8 (Lower Bound Rounds 2). Any deterministic algorithm that solves
consensus under our system model with n ≥ f+fs

ℓ +f r
ℓ , where f denotes the maximum

number of process crash failures and fs
ℓ , f r

ℓ > 0, needs at least f + 2 rounds in the
worst case.

Proof. In [6], a simple forward induction based on a bivalency argument involving
message losses due to process crashes is used to show that any consensus algorithm has
executions that lead to at least one bivalent configuration at the end of round f − 1.
The executions considered in this proof are such that at most one process may crash
in every round; clearly, no link failures are assumed to occur here. The impossibility
of consensus within f rounds follows by contradiction: It is shown in [6, Lemma 1]
that the existence of such a solution would imply that all configurations reached after
f − 1 rounds must be univalent.

In order to prove Theorem 8, we only have to provide an analogue to [6, Lemma
1]: That the existence of a consensus algorithm that decides after f + 1 rounds in
our failure model would imply that all configurations reached after f − 1 rounds are
univalent. The proof is by contradiction: Assuming that not all configurations reached
after f − 1 rounds are univalent, there must be a bivalent configuration Cf−1 after
round f − 1. Since at most one process may have crashed during each of the first
f − 1 rounds, there is still one process p that may crash in round f or f + 1. Note
that it is the crash of this process p and/or the occurrence of link failures in round f
or f + 1 that “allows” Cf−1 to be bivalent.

Let v be the algorithm’s decision in the execution E, where no failure (i.e., neither
a crash of p nor any link failure) occurs in the two rounds following Cf−1. Due to
the bivalence of Cf−1, there must be a different execution E also starting from Cf−1,
where the decision is 1− v. Assume first that p crashes in round f in E. Then, there
must be two executions Eq leading to the decision value v, and E

q
leading to 1 − v,

which differ only in that the (crashing) p sends its round f message to q in Eq but
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not in E
q
: Starting from E where p sends all its messages, we remove the messages p

succeeds to send one by one until the decision value changes; this happens at latest
when we arrive at the execution E

q
.

By construction, q is the only process that can distinguish between Eq and E
q

after round f . If we allow q to produce a send link failure to some other correct
process r (this process must exist since n ≥ f + 2) in the final round f + 1, then r
has the same view at the end of Eq and E

q
. Hence, the resulting decisions cannot

be different, providing the required contradiction of some Cf−1 being bivalent in this
case.

We still have to deal with the case where p does not crash in round f in E.
Then, we claim that there is some bivalent configuration Cf reachable from Cf−1

in round f . For the sake of contradiction, assume that all configurations reachable
from Cf−1 in a single round (where no process crashes) are univalent. Since Cf−1 is
bivalent, the configuration Cf reached by the link-failure-free single-round extension

of Cf−1 must be v-valent, whereas some configuration C
f

reached by another single-
round extension with link failures must be (1− v)-valent. Due to Lemma 2, there are

two neighboring configurations Cf
q and C

f

q that are also v-valent and (1 − v)-valent,
respectively. Those configurations differ only in a single link failure from some sender

s → q in round f , perceived by q in C
f

q but not in Cf
q .

Again, q is the only process that can distinguish between the resulting executions
Eq and E

q
after round f . If we allow q to produce a send link failure to some other

correct process r (this process must exist since n ≥ f + 2) in the final round f + 1,
then r has the same view at the end of Eq and E

q
. Therefore, the resulting decisions

cannot be different, contradicting the stipulated univalence of all Cf . Hence, there is
indeed some reachable bivalent configuration Cf at the end of round f .

Since we still have a processor p to crash in round f + 1 in this case, however,
the original [6, Lemma 1] applies: In order to decide at the end of round f + 1, all
configurations at the end of round f must be univalent. Since Cf is bivalent, we have
established the required contradiction also in this case.

As a concluding remark, we note that the additional round required for solving
consensus in the presence of link failures is not a new result. For f = 0, it has been
shown in [45] that 2 rounds are needed for solving consensus. Interestingly, the general
case follows also from the general result of [25] on indulgent consensus algorithms.
More specifically, link omission failures can be interpreted as false suspicions of a
local failure detector module. Our algorithms tolerate such link failures, hence must
be indulgent w.r.t. their “failure detectors” (= message reception). Note that our
constraints (As) and (Ar) also ensure termination of such algorithms.

6. Other Results. In this section, we will elaborate on some consequences of
our model and the results obtained so far. We start with some considerations related
to connectivity in the underlying communication graph in our model, which can be
used for confirming the tightness of our lower bounds n > fs

ℓ +f r
ℓ and n > fs

ℓ +fs,a
ℓ +

f r
ℓ + f r,a

ℓ .
Consider the single-round communication graph G for some round k. It consists

of n vertices corresponding to the processes in Π, and contains a directed edge (p, q) iff
there is no link failure on the link connecting p → q in round k. Recall from elementary
graph theory that a graph G is at least c-connected if it remains connected when at
most c − 1 vertices and their adjacent edges are removed. Two paths connecting
processes p and q are called process-disjoint iff they do not have common processes



CONSENSUS LOWER BOUNDS UNDER LINK FAILURES 21

except p and q.

Theorem 9 (Connectivity). Every single-round communication graph G of a
system of n > fs

ℓ + f r
ℓ processes complying to our system model is at least c-connected

with c = n − fs
ℓ − f r

ℓ > 0. In fact, every pair of processes p, q is connected by c
process-disjoint paths consisting of at most 2 non-faulty links.

Proof. Since at least c-connectivity follows trivially if every pair of processes
is connected by c process-disjoint paths, it suffices to show the latter: From (As),
we know that p is connected to at least n − fs

ℓ processes (possibly including itself)
via non-faulty links. From (Ar), it follows that q is connected to a set of at least
n− fs

ℓ − f r
ℓ = c of these processes via non-faulty links. Let I with |I| ≥ c be this set

of processes. If p 6∈ I and q 6∈ I (i.e., if p and q are not adjacent), then p and q are
connected by c paths consisting of 2 non-faulty links routed over the processes in I.
Otherwise, there are only c− 1 paths of length 2 and a direct path from p to q, which
are of course also process disjoint.

Theorem 9 implies that one can build a 2-round simulation of reliable communica-
tion in our model, by using the well-known echo broadcasting scheme [15] (“crusader’s
agreement” [23]): p sends (msg, p) to all in the first round, and every q rebroadcasts
(msg, p) in the second round. One can easily show that this broadcasting scheme
allows every q to deliver (msg, p) correctly if c = n − fs

ℓ − f r
ℓ > 0. Interestingly, as

proved in [11, 12], this simulation even works in case of arbitrary link failures if n is
sufficiently large:

Corollary 1 (Reliable link simulation [11, Thm.2]). There is a 2-round sim-
ulation, which implements reliable broadcasting in our link failure model if n − fs

ℓ −
fs,a

ℓ − f r
ℓ − f r,a

ℓ > 0.

Any synchronous consensus algorithm resilient to f classic process failures can
hence be used in conjunction with this simulation for solving consensus in the hybrid
failure model of [65, 66] (and therefore, trivially, in the model of Section 2). Note,
however, that this simulation doubles the number of rounds and is hence sub-optimal:
Theorem 8 revealed a lower bound of f +2 rounds for solving consensus in our model,
and the algorithms provided in [65] confirm that this bound is tight.

Certain consequences of the results of the previous sections also shed some light
on classic process failures. After all, the effect of an omission (resp. arbitrary) faulty
process on its peers is principally the same as the effect of omission (resp. arbitrary)
send link failures (As) committed by a non-faulty process: Some receiving processes
inconsistently get no (resp. erroneous) messages instead of the correct ones. So the
question arises why f omission faulty processes require at least f +1 rounds of execu-
tion (Theorem 8), whereas any number of processes committing send link failures can
be handled in just 2 rounds according to Corollary 1, cp. the exponential algorithm
OMH [65, Thm. 5.4], for example.

From our link failure model, it is apparent that arbitrary send link failures (As)
can also be viewed as the consequence of a restricted process failure with inconsistency
limited to fs

ℓ . Since fs
ℓ < n, however, the inconsistency caused by send link failures is

strictly less than that of an arbitrary faulty process, since the latter is not restricted
in the number of recipients that may get an erroneous message. If at most f r

ℓ = f r,a
ℓ

processes suffer from restricted process failures with inconsistency limited to fs
ℓ = fs,a

ℓ ,
both (As) and (Ar) are satisfied, which implies that this alternative interpretation
leads to feasible link failure patterns in our model. Note carefully that (As) and (Ar)
admit more general failure patterns than just restricted process failures, however: A
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receive failure may hit any incoming link in the former, but is restricted to one of the
links from the f r

ℓ restricted faulty processes in the latter.

Anyway, using the alternative interpretation of arbitrary link failures as restricted
arbitrary process failures, the result of Theorem 6 allows us to characterize what makes
a process failure a truly arbitrary (Byzantine) one: Choosing f r

ℓ = f r,a
ℓ > 0 arbitrary

and fixing n > 2f r,a
ℓ , an optimal consensus algorithm such as OMH solves consensus

with n ≥ 2fs,a
ℓ + 2f r,a

ℓ + 1 in only two rounds. It hence tolerates f r,a
ℓ restricted

arbitrary process failures with inconsistency limited to

fs,a
ℓ ≤ ⌊(n − 1)/2⌋ − f r,a

ℓ .(6.1)

For example, n = 9 processes are required for tolerating two restricted arbitrary
failures with inconsistency fs,a

ℓ = 2 in just two (instead of three) rounds. Due to (6.1),
at least ⌈(n−1)/2⌉+f r,a

ℓ processes, i.e., a majority4 of the non-faulty processes, get the
correct message even in the broadcast of a restricted arbitrary faulty process. Provided
that n is chosen appropriately, any number f r,a

ℓ of process failures with inconsistency
limited to fs,a

ℓ can hence be tolerated in just two rounds here, i.e., in a number of
rounds that does not depend on the number of failures f r,a

ℓ . If, on the other hand,
more than fs,a

ℓ , i.e., more than a minority of the non-faulty processes, can get a faulty
message in the broadcast of a process, then the sender must be considered arbitrary
faulty and thus increases the number of rounds required for solving consensus.

A similar observation can be made for omission failures. Choosing fs,a
ℓ = f r,a

ℓ = 0,
f r

ℓ > 0 arbitrary and fixing n > f r
ℓ , an optimal consensus algorithm such as ZA [65]

solves consensus for n ≥ f r
ℓ +fs

ℓ +1 in only two rounds. It hence tolerates f r
ℓ restricted

omission process failures with inconsistency

fs
ℓ ≤ n − 1 − f r

ℓ(6.2)

It follows from (6.2) that at least f r
ℓ +1 processes, i.e., at least one non-faulty process,

must get the correct message even in the broadcast of a restricted omission faulty
process. If this is warranted, any number f r

ℓ of such restricted process failures can be
tolerated within 2 rounds.

It hence follows that a process that disseminates inconsistent information cannot
do much harm—in the sense of requiring additional rounds for solving consensus—if
at most a certain number of recipients can get inconsistent information:

• A process must be considered arbitrary faulty if it can supply erroneous in-
formation to a majority of the non-faulty processes.

• A process must be considered omission faulty if it can fail to provide infor-
mation to any and all non-faulty processes.

For sub-optimal algorithms, the thresholds (numbers of affected receivers) are of
course smaller.

Note finally that our observations do not contradict the lower bound f +1 for the
number of rounds required for consensus in the presence of f faulty processes, recall
Theorem 8 or [8, Sec. 5.1.4], since this result relies heavily on the fact that a faulty
process can disseminate inconsistent information to as many processes as desired.

4For a sub-optimal algorithm, even more than a majority of the non-faulty processes must get
the correct message here.
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7. Relation to other Models. In this section, we will relate our model to
alternative link failure modeling approaches. Particular emphasis will be put on the
issue of assumption coverage, which will be analyzed and compared in detail in a
simple probabilistic setting.

7.1. Overview of related approaches. It has long been known that consensus
is impossible with arbitrarily lossy links [33]. Therefore, every useful failure model
must restrict link failures in some way. Some previous work has considered links that
eventually become reliable “for sufficiently long”, at least among a majority of the
processes, (e.g., [24,46]), or “stubborn links” [36] that eventually deliver every message
provided the message is sent sufficiently many times. These models in essence provide
safety despite link failures, but require communication to eventually become reliable
in order to ensure liveness. A similar approach is employed in the crash-recovery
model [2], which also deals with transient failures, albeit at the level of whole processes
and on a much larger time-scale. There are only a few failure models for synchronous
systems in the literature that deal with transient link failures that continue to occur
indefinitely.

One straightforward way to deal with link failures is to map link failures to sender
process failures [32] or, preferably, to general send/receive-omission failures [54]. Un-
fortunately, this approach suffers from poor model coverage (see Section 7.2), and is
also quite restrictive in the sense that only specific processes—the faulty ones—may
experience link failures.

Another class of models [55,61,67] considers a small number of link failures explic-
itly: Those papers assume that at most O(n) links may be faulty system-wide during
the entire execution. Obviously, such models can only be applied when link failures
are rare. Hadzilacos [37] presents a theoretical study of connectivity requirements for
solving consensus in case of arbitrary networks with stopping and omission failures.

The most severe problem of the models surveyed so far is their inability to deal
with the “moving” nature of transient link failures: In a real network, there is a
positive probability for message loss (or delay) on every link. In the aforementioned
models, once a single message is lost, either the link or the process is deemed faulty.
Since failures are considered persistent during an execution in the above models, the
“exhaustion” of non-faulty processes and links progresses rapidly with every round.
This makes any attempt to solve consensus in models such as those presented in
[32, 37, 54] void in case of significant link failure rates (see Section 7.2 for a detailed
analysis). A more adequate approach to capture message loss is to allow for transient
failures that hit different processes or links in different communication rounds.

Santoro and Widmayer were the first to introduce this assumption: In [58, 60],
they showed that consensus cannot be solved in the presence of n − 1 (resp. ⌊n/2⌋)
omission (resp. Byzantine) link failures per round, in particular, if those link failures
hit the same sender process. As a consequence, consensus cannot be solved in the
presence of just a single mobile omission or Byzantine faulty process, i.e., a single
process—which may be different in different rounds—that suffers from omission or
even Byzantine failures. This result has been proven in [58] by means of a similar
approach as employed in Section 3, and re-proven in the layering framework by Moses
and Rajsbaum [52].

On the other hand, if the number of moving link failures is further restricted to less
than n− 1 (resp. ⌊n/2⌋) per round in case of omission (resp. Byzantine) link failures,
consensus can be solved in a constant number of rounds [49, 59]. Other distributed
computing problems [21] and special system architectures [22] have also been studied
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under this model.

The failure model introduced in [56] can be seen as a first step in the direction
of increasing the link failure resilience from O(n) to O(n2): For a system with n ≥
20f +1 processes, at most f of which may be Byzantine faulty per round, a consensus
algorithm was given that tolerates a small number l = n/20 of link failures at every
node. A different (but related) model has been proposed in [31], which considers
at most f Byzantine process failures per round that may move from one process to
another with a certain maximum speed.

Cristian et al. [20] provide a suite of synchronous atomic broadcast protocols
with much better link failure resilience (which is comparable to results we presented
in an earlier paper [65]). Although atomic broadcast is usually investigated in a more
communications-oriented context, it can be used to solve consensus as well, see e.g. [38]
for an overview. The three algorithms of Cristian et al. [20] tolerate an arbitrary
number of processes with omission, timing, or Byzantine failures (if authentication is
available) and work on general communication graphs subject to link failures. Instead
of making the number of link failures explicit, however, it is just assumed that any
two processes in the system are always connected via a path of non-faulty links.

Unlike in the deterministic setting, link failures are easily tolerated by random-
ized consensus algorithms such as the one of [70]. Such algorithms circumvent Gray’s
impossibility result (cf. Theorem 1) by adding non-determinism (coin tossing) to
the computations. Still, due to the inherent non-zero probability of failure/non-
termination within a fixed number of rounds, randomized algorithms are unsuitable
for some applications. Moreover, there is a lower bound 1/(R + 1) for the probability
of disagreement after R rounds with arbitrary loss [50, Thm. 5.5]. It is interesting
to note, however, that our link failure modeling approach also circumvents this lower
bound: For a well-known randomized algorithm, Schmid and Fetzer established a
probability of disagreement of only (1/2)R [64].

Though our paper primarily deals with message omissions in the synchronous
timing model, our model can also be used to reason about timeliness of some links in
otherwise asynchronous round-based systems (where late messages are discarded). In
this context, our threshold f r

ℓ (resp. fs
ℓ ) can be seen as a restriction on the number of

late (or untimely) messages a process receives (resp. sends) in a round. Restrictions
of this type have received much attention recently: A suite of papers [3–5, 7, 39, 43,
44, 51, 53] provided weaker and weaker models that are still sufficiently strong for
implementing failure detectors and/or solving consensus in the presence of at most f
process crash failures and dynamic timing variations.

In particular, Keidar and Shraer introduced a model called All From Majority
(⋄AFM) in their round-by-round GIRAF framework [43], which is closely related
to the moving link failure model introduced in Section 2.2: It allows O(n2) links
per round to be non-timely, provided that every process has at least m + 1 timely
outgoing links and n−m timely incoming links at any time, for some suitable m. The
set of timely links may be moving. ⋄AFM was shown in [44] to be the only model
(out of those defined thus far in this context) that scales with n, in the sense that
consensus can be guaranteed to terminate in a constant expected number of rounds
in the independent identically distributed probabilistic link failure model even for
n → ∞.

Our model is also related to the Heard-of Model (HO Model) developed by
Charron-Bost and Schiper [18]. The HO Model is a round-based distributed comput-
ing model, which unifies synchrony and (benign) failures of both processes and links.
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It has recently been extended to Byzantine failures [13] as well. Our link failure restric-
tions (As) and (Ar) can be elegantly expressed as simple communication predicates
in the HO model, namely, ∀p ∈ Π, k ≥ 1 : |HO(p, k)| ≥ n − f r

ℓ ∧ |TT (p, k)| ≥ n − fs
ℓ

in case of omission link failures, where HO(p, k) is the set of processes p hears from
in round k and TT (p, k) is the set of processes p talks to in round k. Moreover, the
reliable link simulation that led to Corollary 1 can be seen as a 2-round translation
that simulates a global kernel (of size n, i.e., a failure-free system) in our model. It
is also interesting to compare the upper bound results of [13] with our lower bounds:
Theorem 5 reveals that we can allow at most n/4 arbitrary link failures per round.
The algorithm AT,E in [13] admits up to n/4 arbitrary receive link failures per round,
without posing a restriction to send link failures, however. There is no contradiction
here, due to the fact that the analysis of AT,E separates safety and liveness: The
algorithm actually needs some rounds with much less than n/4 link failures for guar-
anteed termination. By contrast, our lower bounds guarantee both safety and liveness
simultaneously.

Finally, we already noted that, in the context of round-by-round fault detectors
[30], false suspicions of a local failure detector [16] can also be interpreted as transient
link failures. Our results, such as the lower bound of f+2 rounds for solving consensus,
are hence also applicable to stable periods [26] and stable runs [25,41] of indulgent [35]
consensus algorithms.

An alternative way to cope with transient link failures are reliable link simulation
protocols based on retransmissions [1, 2, 9]. Asynchronous algorithms can then be
used atop of such protocols for solving consensus. However, since retransmission
protocols can obviously mask omissions only (but not timing failures and/or erroneous
messages), they are no panacea. Moreover, using time redundancy for tolerating link
failures necessarily increases the end-to-end delay in case of a failure, which eventually
affects the consensus algorithms’ termination time. And last but not least, since it
is impossible to solve consensus in asynchronous systems with even a single crash
failure [29], one has to add some synchrony to the system anyway [3–5, 7, 39, 43,
51, 53]. This makes our synchronous lower bound results applicable again, at least
to asynchronous algorithms designed for round-by-round-based frameworks such as
[19,43,64]. A detailed survey of link failures in partially synchronous and asynchronous
systems can be found in [63].

Note that using reliable link protocols in conjunction with synchronous consensus
algorithms is not particularly useful, since the duration of the rounds must be fixed
a priori. As a consequence, only a certain number of retransmissions can be accomo-
dated in a round, which is not sufficient for simulating reliable links in the presence of
high link failure rates. In sharp contrast, our approach towards handling link failures
uses additional processes (i.e., some larger value of n) instead of retransmissions and
therefore does not suffer from this problem: The duration of a round just needs to
encompass a single end-to-end delay.

7.2. Model coverage. In this section, we will prove that our link failure model
also surpasses alternative approaches in terms of assumption coverage.

If link failures are just mapped to sender process failures, as in [32], even a single
link failure per process and round (fℓ = 1 in our terminology) would end up with
f = n faulty processes in some runs. Fig. 7.1 shows an example for n = 4 and fℓ = 1.

In the more elaborate send/receive-omission failure model of [54], an omission
can be attributed to either the sender or the receiver process. Still, in the example
of Fig. 7.1, only at most two processes can be considered correct. Ending up with
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Received msgs. Rm1:

msg1 msg2 ∅ msg4

Received msgs. Rm4:

msg1 ∅ msg3 msg4

p1 p2

p3p4

∅ msg2 msg3 msg4

fℓ omissions/process Received msgs. Rm2:

msg1 msg2 msg3 ∅
Received msgs. Rm3:

Fig. 7.1. Example of a 4-process system with fℓ = 1 send and receive omission failures per
process in each round, where all processes must be considered faulty in traditional process failure
models.

less than a majority of correct processes renders uniform consensus unsolveable [17],
however. Hence, by attributing link failures to processes, we may miss the opportunity
to solve consensus in scenarios which can be handled in our model.

We now turn to examine whether the additional scenarios captured by our model
are significant. After all, one could argue that failure patterns as depicted above al-
most never occur in practice, such that more refined models have only marginal added
value. We counter this argument by quantifying the coverage5 of various models, using
a simple probabilistic “benchmarking scenario”:

Definition 2. Consider a synchronous system of n processes, where each of
the n(n − 1) unidirectional links fails with some independent probability 0 ≤ p < 1,
independently in every round. The coverage Cov(M) of a model M is the probability
that the model assumptions hold true during the execution of an m-round algorithm,
for some arbitrary m ≥ 1.

Combining ideas from [62] and [44], we analyze the coverage of the following
failure models:

• f general omission-faulty processes (GOf ) [54],
• at least one process with f non-moving timely links (TLf) [5],
• at most n − 2 moving link failures per round (MLn−2) [58],
• fℓ moving link failures per process and round (MLOfℓ

), the model of Sec-
tion 2.2.

It will turn out that the link failure model introduced in Section 2.2 surpasses all other
modeling approaches above in terms of coverage. In particular, it is the only model
that scales with n, in the sense that for example Cov(MLOn/2) → 1 for n → ∞. By
contrast, the coverage of all the other models even goes to 0 for n → ∞ in comparable
settings.

We should mention, though, that our coverage analysis does not aim at replacing
a direct analysis of a distributed algorithm in our probabilistic “benchmarking sce-
nario”. A particular algorithm A may perform much better than our coverage analysis
predicts, since A may also work well in executions where the deterministic model M
is violated. Hence, Cov(M) is just a lower bound on the achievable performance of
A, but is of course a meaningful measure for assessing the quality of a deterministic

5We note that the term coverage suffers from overloading in the literature; throughout this paper,
“coverage” must be read as “model coverage in synchronous systems with independent link failure
probability p”.
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model independently of a particular protocol.

Analysis of f general omission-faulty processes GOf . Under this failure
model, there must be a set K of at least k = n − f processes that never commit a
send nor a receive omission. This requirement is mapped to our probabilistic link
failure setting as follows: All the links among the processes in K must be correct in
all rounds, and the links connecting processes in Π\K with processes in Π\K may
be either correct or faulty. The links to/from processes in K from/to processes in
Π\K may also be either correct or faulty, since we can attribute a link failure to the
adjacent process in Π\K.

So let K be a subset of k = n − f ≥ 1 distinct processes where all k(k − 1) links
among processes in K never experience any omission failure during m rounds. Since
there are

(

n
k

)

different sets K of k processes out of n processes, the probability Pn(k)
that there is at least one such set in a run satisfies

Pn(k) ≤
(

n

k

)

(1 − p)k(k−1)m.(7.1)

Note that Pn(k) is not equal to
(

n
k

)

(1 − p)k(k−1)m, since there may be multiple sets
K in a given run [recall that the links outside K can also be correct].

Hence, the model coverage of the standard general omission failure model with
at most f faulty processes GOf satisfies

Cov(GOf ) = Pn(n − f) ≤
(

n

n − f

)

(1 − p)(n−f)(n−f−1)m.(7.2)

In case of f = λn for any 0 < λ < 1, it is not difficult to prove that Cov(GOλn) → 0
for n → ∞. We will use asymptotic analysis for this purpose6, with Stirling’s formula

n! ∼
√

2πn ·
(n

e

)n

for n → ∞(7.3)

as our major ingredient.
Lemma 6 (Asymptotic expansion

(

n
nλ

)

). For any 0 < λ < 1 and n → ∞,

(

n

λn

)

∼ 1
√

2πnλ(1 − λ)
·
(

(1 − λ)−(1−λ) · λ−λ
)n

.(7.4)

Proof. Using Stirling’s formula in
(

n
k

)

= n!
(n−k)! k! , we find

(

n

λn

)

∼

(

n
e

)n

(

n(1−λ)
e

)n(1−λ)(
λn
e

)λn
·

√
2πn

√

2πn(1 − λ) ·
√

2πλn

∼
( n

n(1 − λ)

)n

·
(n(1 − λ)

λn

)λn

· 1√
1 − λ ·

√
2πλn

∼ (1 − λ)−n ·
(1 − λ

λ

)λn

· 1
√

2πnλ(1 − λ)
,

from which (7.4) follows immediately.

6We use the notation f(n) ∼ g(n) ⇔ limn→∞ f(n)/g(n) = 1, and f(n) ∝ g(n) ⇔ 0 ≤
limn→∞ f(n)/g(n) ≤ 1.
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Using the result of Lemma 6 in (7.2), the coverage of GOnλ evaluates to

Cov(GOnλ) ∝
(

(1 − λ)−(1−λ) · λ−λ
)n

√

2πnλ(1 − λ)
· (1 − p)

(

n(1−λ)
)(

n(1−λ)−1
)

m.(7.5)

Since the exponent of 1 − p < 1 is quadratic in n, it is obvious that Cov(GOnλ) → 0
for n → ∞, for any p > 0, 0 < λ < 1, and m ≥ 1. In particular, for f = n/2, we
obtain

Cov(GOn/2) ∝
2n

√

πn/2
(1 − p)(n/2)(n/2−1)m.(7.6)

Cov(GOn/2) hence very quickly goes to 0 for n → ∞ for any 0 < p < 1 and any
m ≥ 1. The following Figure 7.2 gives some numerical values, which reveal that the
coverage of the general omission process failure model in our benchmarking scenario
is indeed very poor. For example, for p = 0.01 and m = 2 (first plot in the left figure),
the coverage is only about 10−25 in a system of n = 40 processes (log-scale)!
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Fig. 7.2. Coverage general process omission failure model: Upper bound on log10

(

Cov(GOn/2)
)

over n with p = 0.01 and p = 0.1, for m = 2 (left) and m = 20 (right).

Analysis of at least one process with f non-moving timely links (TLf ).
We now turn our attention to the “non-moving” link timing models [3–5] used for
solving Ω and consensus in an (almost) asynchronous system of n processes with up
to f process crash failures and eventually reliable links. The weakest model among
those (denoted TLf here) assumes that (eventually) there is at least one process p
with at least f timely outgoing links in each of its broadcasts. Note that those f links
are fixed throughout the (suffix of the) execution.

We note that the model TLf is actually too weak for solving consensus within
bounded time: As shown in [43, 44], considerably more timely links are required to
solve consensus within a bounded number m of (timely) rounds. We incorporate
the analysis of TLf here, however, since it provides sort of an “upper bound” w.r.t.
coverage: Any model that, in addition to TLf , requires additional timely links must
have an even lower coverage in our benchmarking scenario. Bear in mind, however,
that the number of rounds m should be considered large here.

With p representing the probability that a link is non-timely in a round here, the
probability Pn−1(f) = Cov(TLf) that some process has at least f timely links during
m rounds is at most n

(

n−1
f

)

(1 − p)fm: We have n processes, and there are
(

n−1
f

)

different subsets of f processes among the n − 1 neighbors of a process; (1 − p)fm
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gives the probability that the links to a fixed set of f neighbors are correct during all
m rounds. Hence,

Cov(TLf) ≤ n ·
(

n − 1

f

)

(1 − p)fm.(7.7)

As in the analysis of GOf , this is only a [quite conservative] upper bound for Pn−1(f),
however, since the involved events are not independent.

For f = λ(n − 1) = λn′, 0 < λ < 1, where we employed the abbreviation

n′ = n − 1,

used throughout this section, we obtain

Cov(TLλn′) ≤ (n′ + 1) ·
(

n′

λn′

)

(1 − p)mλn′

∝
√

n′

2πλ(1 − λ)
·
(

(1 − λ)−(1−λ) · λ−λ
)n′

· (1 − p)mλn′

.(7.8)

Choosing λ = 1/2, i.e., f = (n − 1)/2 = n′/2 to facilitate comparison with our other
results, we obtain

Cov(TLn′/2) ∝
√

2n′

π

(

4(1 − p)m
)n′/2

.(7.9)

The above bound goes to 0 for n′ → ∞ if 4(1 − p)m < 1, i.e., when the number of
rounds satisfies

m > − log 4

log(1 − p)
>

log 4

p
,(7.10)

according to the series expansion log(1 − x) = −∑

k≥1 xk/k, valid for |x| < 1. For
smaller values of m, (7.9) increases exponentially. Since Cov(TLn′/2) = Pn′(n′/2) is
a probability and hence ≤ 1, however, the question arises whether the range of m
where Cov(TLn′/2) → 0 could be extended by a refined analysis.

Some advanced results on the distribution of the maximum degree of nodes in a
geometric random graph [57] can be used for this purpose: The sought probability
Pn−1(f) is just the probability that the maximum degree ∆ of the nodes in a random
graph with n nodes (where an edge exists, independently of the other edges, with
some fixed probability 0 < q < 1) satisfies ∆ ≥ f . More specifically, we have to
consider the random graph with n nodes, corresponding to our processes, where an
edge (x, y) exists if there is no link failure on the link x → y during m rounds. Clearly,
the probability of the latter event is q = (1 − p)m. Note that [57] actually deals with
undirected graphs. Considering the undirected random graph RG corresponding to
an execution, instead of its directed counterpart RG, provides an upper bound: Since
every directed edge in RG is also present in RG, it follows that P{∆RG ≥ f} ≥
P{∆RG ≥ f}.

Theorem 10 (Maximum degree in geometric random graphs [57]). Given a
geometric random graph with n nodes and edge probability q, the maximum degree ∆
is strongly concentrated, in the sense that almost always

∣

∣

∣

∣

∣

∆ − qn −
√

2q(1 − q)n log n + log log n

√

q(1 − q)n

8 log n

∣

∣

∣

∣

∣

≤ log log

√

n

log n
.(7.11)
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Moreover, the tail satisfies P{∆ < qn + b
√

nq(1 − q)} =
(

c(b) + o(1)
)n

for n → ∞,
where c(b) < 1 is the root of a certain equation; c(0) = 0.6102 and c(b) is independent
of q.

According to our exposition above, we must set q := (1−p)m, n := n′+1 and f =
n′/2. Now, if n′/2 > nq = (n′+1)(1−p)m with n′/2−(n′−1)(1−p)m ≥ C ·n′ for some
constant C > 0, then the area ∆ ≥ n′/2 is to the right of the area of concentration
[

nq−O(
√

n log n), nq + O(
√

n log n)
]

of ∆ given in (7.11) if n is sufficiently large. As
a consequence, Cov(TLn′/2) = P{∆RG ≥ n′/2} ≤ P{∆RG ≥ n′/2} actually goes to

0 for n → ∞ if (1 − p)m < 1/2, i.e., when m > log 2
p > log 2

p , cp. (7.10). For smaller

values of m, Cov(TLn′/2) → 1 for n → ∞ (with a fast transition phase in between,
as usual in random graphs).

The following Figure 7.3 provides some numerical values in a system with p = 0.1
for m = 20 rounds. It reveals that the coverage of n′/2 fixed timely links in our
benchmarking scenario is poor if m is above its critical value (7.10) w.r.t. p (which is
the case for m = 20 and p = 0.1).
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Fig. 7.3. Coverage of non-moving timely links: Upper bound on log10

(

Cov(TLn′/2)
)

over n

with p = 0.1 for m = 20. The number of rounds m = 20 is above its critical value (7.10) here.

Analysis of n− 2 moving link failures per round (MLn−2). Classic moving
link failure models, in particular [58], admit only O(n) link failures per round. Let
MLλn be the model that admits at most λn link failures per round, for some real
constant λ > 0. In [58], it was shown that consensus possibility demands at most
λn = n − 2 link failures per round, hence λ = (n − 2)/n here.

We start our derivations with a simple bound on the tail of the binomial distri-
bution taken from Feller’s book [27]7, which will also be required in the analysis of
the coverage of our model MLOfℓ

. Consider the binomial distribution B(n, p), where
p is the “success” probability, and let

pn(fℓ) =

fℓ
∑

l=0

(

n

l

)

pl(1 − p)n−l(7.12)

be the probability of at most fℓ “successes”, and qn(fℓ) = 1−pn(fℓ) be the probability

7This method gives a better bound than Chernoff’s, i.e., qn(fℓ) ≤ minz≥1 B(z; n, p)/zfℓ , where
B(z; n, p) = (pz + 1 − p)n is the generating function of the binomial distribution.
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of more than fℓ “successes”. Clearly,

qn(fℓ) =

n
∑

l=fℓ+1

(

n

l

)

pl(1 − p)n−l.(7.13)

The following Lemma 7 gives an upper bound for this quantity.
Lemma 7 (Upper bound for binomial tail [27]). For any 0 ≤ p ≤ 1, n ≥ 1 and

fℓ + 1 > np, we have

qn(fℓ) ≤
(1 − p)(fℓ + 1)

fℓ + 1 − np
·
(

n

fℓ + 1

)

pfℓ+1(1 − p)n−fℓ−1.(7.14)

Proof. Following the argument [27, p. 151, eq. (3.4)], let b(k; n, p) =
(

n
k

)

pk(1 −
p)n−k and note that qn(fℓ) =

∑∞
k=0 b(k + fℓ + 1; n, p). Using the straightforward

identity
(

n
k

)

= n−k+1
k

(

n
k−1

)

, one obtains for any k ≥ 1

b(k + fℓ + 1; n, p) =
(n − k − fℓ − 1 + 1)p

(k + fℓ + 1)(1 − p)
· b(k − 1 + fℓ + 1; n, p)

=
(

1 − k + fℓ + 1 − (n + 1)p

(k + fℓ + 1)(1 − p)

)

· b(k − 1 + fℓ + 1; n, p)

=

k
∏

j=1

(

1 − j + fℓ + 1 − (n + 1)p

(j + fℓ + 1)(1 − p)

)

· b(fℓ + 1; n, p)

=

k
∏

j=1

(

1 −
1 − (n+1)p

j+fℓ+1

1 − p

)

· b(fℓ + 1; n, p).

Since it is easily checked that, for any j ≥ 1,

1 −
1 − (n+1)p

j+fℓ+1

1 − p
≤ 1 −

1 − np
fℓ+1

1 − p

it follows that

b(k + fℓ + 1; n, p) ≤
(

1 −
1 − np

fℓ+1

1 − p

)k

· b(fℓ + 1; n, p),

which holds even for k ≥ 0. Consequently,

qn(fℓ) =

∞
∑

k=0

b(k + fℓ + 1; n, p) ≤ b(fℓ + 1; n, p)

∞
∑

k=0

(

1 −
1 − np

fℓ+1

1 − p

)k

≤ 1 − p

1 − np
fℓ+1

·
(

n

fℓ + 1

)

pfℓ+1(1 − p)n−fℓ−1

as asserted in (7.14).
In case of MLλn, we set n := n(n − 1), p := 1 − p and fℓ := n(n− 1)− λn− 1 =

n(n − 1 − λ) − 1 in Lemma 7, such that qn(n−1)

(

n(n − 1 − λ) − 1
)

is the probability
that at least n(n − 1 − λ) non-faulty links (and hence at most λn faulty links) occur
per round. It evaluates to

qn(n−1)

(

n(n−1−λ)−1
)

≤ pn(n − 1 − λ)

n(n − 1 − λ) − n(n − 1)(1 − p)
·
(

n(n − 1)

n(n − 1 − λ)

)

(1−p)n(n−1−λ)pλn.
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By independence, the probability that at most λn link failures occur during m rounds
is

[

qn(n−1)

(

n(n − 1 − λ) − 1
)]m

and thus

Cov(MLλn) ≤
[

p · (n − 1 − λ)

p · (n − 1) − λ
·
(

n(n − 1)

n(n − 1 − λ)

)

(1 − p)n(n−1−λ)pλn

]m

(7.15)

by Lemma 7. In order to determine the asymptotic value of Cov(MLλn), we will need
(

1 − x

n

)n

∼ e−x for any fixed x and n → ∞,

(

1 − x

n − 1

)n(n−1)

= en(n−1) log
(

1− x
n−1

)

= e
n(n−1)·

(

− x
n−1−

x2

2(n−1)2
+O(x3/n3)

)

= e−nx− nx2

2(n−1)
+O(x3/n)

∼ e−nx−x2

2 for |x| < 1,

where we used the series expansion log(1 − x) = −∑

k≥1 xk/k. Applying Stirling’s
formula (7.3) again yields

(

n(n − 1)

n(n − 1 − λ)

)

∼

(

n(n−1)
e

)n(n−1)

(

n(n−1−λ)
e

)n(n−1−λ)(
λn
e

)λn
·

√

2πn(n − 1)
√

2πn(n − 1 − λ) ·
√

2πλn

∼
( n − 1

n − 1 − λ

)n(n−1)

·
(n − 1 − λ

λ

)λn

· 1
√

1 − λ
n−1 ·

√
2πλn

∼ 1
(

1 − λ
n−1

)n(n−1)
·
(n

λ

)λn

·
(

1 − λ · (1 + λ)

λn

)λn

· 1√
2πλn

∼ eλn+λ2/2 ·
(n

λ

)λn

· e−λ(1+λ) · 1√
2πλn

∼ e−λ(1+λ/2)

√
2πλn

·
(en

λ

)λn

(7.16)

∼ eλn log n+λn(1−log λ)− 1
2 ·log n−λ(1+λ/2)− 1

2 ·log(2πλ).(7.17)

The dominant term in the exponent in (7.17) is clearly λn log n > 0. On the other
hand,

(1 − p)n(n−1−λ)pλn = en2 log(1−p)−(1+λ)n log(1−p)+(λn) log p,

which rapidly goes to 0 for n → ∞ since the dominant term in the exponent is
log(1 − p)n2 < 0. Multiplying this with (7.16) according to (7.15) hence yields

Cov(MLλn) ∝
[

e−λ(1+λ/2)

√
2πλn

·
(enp

λ

)λn

(1 − p)n(n−1−λ)

]m

,(7.18)

which quickly goes to 0 for n → ∞, for any λ and m.
For the special case λ = (n − 2)/n, which implies at most n − 2 link failures per

round, we obtain for n → ∞

λ ∼ 1
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e−λ(1+λ/2)

√
2πλn

∼ e−3/2

√
2πn

(enp

λ

)λn

=

(

enp
n−2

n

)n−2

=
(1 − 2/n)2 · (enp)n−2

(1 − 2/n)n
∼ (enp)n−2

e−2

(1 − p)n(n−1−λ) = (1 − p)n(n−1)−n+2 =
( 1

(1 − p)2

)n−2

(1 − p)n2−2.

Using this in expression (7.18) hence yields

Cov(MLn−2) ∼
( e−3/2

e−2
√

2πn

)m( enp

(1 − p)2

)(n−2)m

(1 − p)(n
2−2)m

∼
(

√

e

2πn

)m
( enp

(1 − p)2

)(n−2)m

(1 − p)(n
2−2)m,

which very quickly goes to 0 for n → ∞. The following Figure 7.4 gives some numerical
values, which reveal that the coverage of this model in our benchmarking scenario is
very poor even for relatively small system sizes n.
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Fig. 7.4. Coverage of O(n) moving link failures per round: Upper bound on

log10

(

Cov(MLn−2)
)

over n with p = 0.01 and p = 0.1, for m = 2 (left) and m = 20 (right).

Analysis of fℓ moving link failures per process and round (MLOfℓ
).

Finally, we will show that the moving link omission failure model MLOfℓ
with f r

ℓ =
fs

ℓ = fℓ introduced in Section 2.2 does not suffer from poor coverage: On the contrary,
in accordance with [44], we will show that Cov(MLOnλ) → 1 for n → ∞, for any
p < 1/2 and λ > p.

Recalling (7.12), we only have to set n := n−1 and choose p to be our link failure
probability p in this equation in order to obtain the probability pn−1(fℓ) that at most
fℓ outgoing links are faulty in the broadcast of a single process to its n − 1 receivers
in a round. Similarly, the probability qn−1(fℓ) = 1−pn−1(fℓ) that more than fℓ links
are faulty in this event is given by (7.13), and Lemma 7 provides an upper bound for
qn−1(fℓ) for fℓ + 1 > (n− 1)p. Since we will eventually choose fℓ = (n− 1)/2− 1 and
p < 1/2, the latter condition is indeed satisfied. Note that there is a reasonably small
upper bound for qn−1(fℓ) also in case of small values fℓ + 1 ≤ (n − 1)p, see [62].

The probability that none of the n processes in the system experiences more than
fℓ link failures on its outgoing links in a single round is Ps = pn−1(fℓ)

n, since the
failures on the outgoing links of different processes are independent.



34 U. SCHMID AND B. WEISS AND I. KEIDAR

Obviously, Equation (7.12) for pn−1(fℓ) also provides the probability that a single
receiver process experiences at most fℓ link failures on its incoming links. As before,
the probability that none of the n processes in the system experiences more than fℓ

link failures on its incoming links in a round is Pr = pn−1(fℓ)
n.

The probability Psr that none of the n processes in the system experiences more
than fℓ link failures on its outgoing links and no more than fℓ link failures on its
incoming links is not just the product of Ps and Pr, however, since they are not
independent. However, Psr = Pr|sPs, where Pr|s denotes the conditional probability
that no process perceives more than fℓ link failures on its incoming links, conditioned
on the fact that no process experiences more than fℓ link failures on its outgoing links.
Since trivially Pr|s ≥ Pr , we obtain Psr ≥ PsPr = pn−1(fℓ)

2n and hence

Cov(MLOfℓ
) = Pm

sr ≥ (1 − qn−1(fℓ))
2nm.

By the Bernoulli inequality (1 + α)n ≥ 1 + nα for any α > −1, we obtain

(1 − qn−1(fℓ))
2nm ≥ 1 − 2nmqn−1(fℓ),(7.19)

which is valid for qn−1(fℓ) < 1; since the latter is a probability < 1, this condition is
of course satisfied.

Consequently, using Lemma 7, 1 − Cov(MLOfℓ
) can be upper bounded by

1 − Cov(MLOfℓ
) ≤ 2nm(fℓ + 1)(1 − p)

fℓ + 1 − (n − 1)p

(

n − 1

fℓ + 1

)

pfℓ+1(1 − p)n−1−fℓ−1.(7.20)

A very similar analysis as for MLλn proves that Cov(MLOfℓ
) quickly approaches

1 as n → ∞ for any fℓ + 1 = λ(n − 1) with λ > p and p < 1/2: Recalling Lemma 6,
we immediately obtain

(

n

λn

)

pλn(1 − p)n(1−λ) ∼
(1 − p

1 − λ

)n(1−λ)(p

λ

)λn 1
√

2πnλ(1 − λ)
.

Plugging in n′ := n − 1 and fℓ + 1 = (n − 1)λ = n′λ according to (7.20) in the
above equation provides

1 − Cov(MLOn′λ−1) ∝
m(1 − p)

λ − p
·
√

2n′λ

π(1 − λ)

[

( 1 − p

1 − λ

)1−λ( p

λ

)λ
]n′

.

Since xλ ≤ x for any 0 ≤ λ ≤ 1, and p < λ,

( 1 − p

1 − λ

)1−λ( p

λ

)λ

=
1 − p

1 − λ

(p(1 − λ)

λ(1 − p)

)λ

≤ 1 − p

1 − λ
· p(1 − λ)

λ(1 − p)
=

p

λ
< 1,

so Cov(MLO(n−1)λ−1) indeed quickly approaches 1 as n → ∞. In the special case
λ = 1/2 > p, where fℓ + 1 = (n − 1)/2 = n′/2 with n = n′ + 1 ∼ n′ for n → ∞, we
obtain

1 − Cov(MLOn′/2−1) ∝
m(1 − p)

1/2 − p
·
√

2n′

π
·
(

4p(1 − p)
)n′/2

(7.21)

which rapidly goes to 0 for n → ∞, for any p < 1/2 and any m = O(nk), k arbitrary
but fixed. Figure 7.5 confirms that our link failure model8 indeed scales well with

8As well as the moving timely link model for Ω and consensus of [39,40], which can be analyzed
in a similar way.



CONSENSUS LOWER BOUNDS UNDER LINK FAILURES 35

n and gives excellent coverage for any reasonable choice of the parameters. Note
carefully that those figures, in sharp contrast to all previous ones, show an upper
bound on 1 − Cov(MLOn′/2), i.e., the difference to ideal coverage.

-30

-25

-20

-15

-10

-5

 0

 20  40  60  80  100  120  140

U
pp

er
 b

ou
nd

 lo
g_

10
 (

1 
- 

C
ov

er
ag

e)

n

MLO(n,0.01)
MLO(n,0.1)

-30

-25

-20

-15

-10

-5

 0

 20  40  60  80  100  120  140

U
pp

er
 b

ou
nd

 lo
g_

10
 (

1 
- 

C
ov

er
ag

e)

n

MLO(n,0.01)
MLO(n,0.1)

Fig. 7.5. Coverage of fℓ moving link failures per round per process: Upper bound on log10

(

1−

Cov(MLOn′/2)
)

over n with p = 0.01 and p = 0.1, for m = 2 (left) and m = 20 (right).

Finally, Figure 7.6 compares our upper bounds on Cov(GOn/2), Cov(TLn′/2) and
Cov(MLn−2) in a system of n = 30 processes, for m = 2 and m = 20 rounds, under
varying link failure rates p; Figure 7.7 does the same for n = 60. The numerical results
reveal that all those models provide poor coverage in our benchmarking scenario, in
particular under substantial link failure rates. Note that this is also true for TLn′/2,
unless the number of rounds m is not below the critical value (7.10) w.r.t. p.
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Fig. 7.6. Upper bound on Cov(GOn/2), Cov(TLn′/2) and Cov(MLn−1) over p for a system of
n = 30 processes, for m = 2 (left) and m = 20 (right) rounds.

By contrast, Figures 7.8 and 7.9 provide numerical results for our upper bound
on 1−Cov(MLOn′/2), under the same parameter values for n and m as in Figures 7.6
and 7.7. They reveal a high coverage also under substantial link failure rates, as well
as a remarkably low dependence on the number m of rounds. They finally justify our
claim that MLO is the only model that performs well in our benchmarking scenario.

8. Conclusions. We provided a complete theoretical treatment of the impossi-
bility of deterministic synchronous consensus under a novel link failure model, which
grants every process a certain maximum number of send and receive link failures per
round. Link failures may both be omissive and arbitrary and can hit messages to/from
different processes in every round. Using novel instances of “easy impossibility” and
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Fig. 7.7. Upper bound on Cov(GOn/2), Cov(TLn′/2) and Cov(MLn−1) over p for a system of
n = 60 processes, for m = 2 (left) and m = 20 (right) rounds.
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Fig. 7.8. Upper bound on log10

(

1 − Cov(MLOn′/2)
)

over p for a system of n = 30 processes,

for m = 2 (left) and m = 20 (right) rounds.

bivalency proofs, we provided related lower bounds for the number of processes and
rounds as well. Most of them are matched by existing consensus algorithms and hence
tight. An analysis of the assumption coverage in a simple probabilistic setting revealed
that our model is the only one with a coverage that approaches 1 (rather than 0) for
large n.

Part of our current/future theoretical research in this area is devoted to consen-
sus lower bounds under our fully-fledged hybrid failure model, which captures both
process and link failures simultaneously. We analyzed several algorithms under this
model and found that the respective numbers of processes required just add up. This
suggested that tolerating link failures and process failures is more or less orthogonal.
In [11], however, it was shown that this is not true in general. Generalized lower
bounds are hence required for reasoning about optimal algorithms here.
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