Supporting Multiple Quality of Service Options
with High Performance Groupware*

Gregory V. Chockler Nabil Huleihel Idit Keidar
Danny Dolev

Email: {grishac,nabil,idish,dolev}@cs.huji.ac.il
Url: http://www.cs.huji.ac.il/{~grishac,~nabil,~idish,~dolev}

Institute of Computer Science
The Hebrew University of Jerusalem
Jerusalem, Israel

Technical Report CS96-3

March 1996

*This work was supported by Ministry of Science of Israel, grant number 032-7658



Abstract

Reliability carries different meanings for different applications. For example, in a
replicated database setting, reliability means that messages are never lost, and that
messages arrive in the same order at all sites. In order to guarantee this reliability
property, it is acceptable to sacrifice real-time message delivery: some messages may
be greatly delayed, and at certain periods message transmission may even be blocked.
While this is perfectly acceptable behavior for a reliable database application, this
behavior is intolerable for a reliable video server. For a continuous MPEG video
player [18, 17], reliability means real-time message delivery, at a certain bandwidth;
It is acceptable for some messages to be lost, as long as the available bandwidth
complies with certain predetermined stochastic assumptions. Introducing database
style reliability (i.e. message recovery and order constraints) may violate these as-
sumptions, rendering the MPEG decoding algorithm incorrect.

A desktop and multi-media conferencing tool [16], is a Computer Supported Co-
operative Work (CSCW) application incorporating various activities such as video
transmission and management of replicated work space. These activities obviously
require different qualities of service, and yet are part of the same application. Fur-
thermore, CSCW applications often need to be fault-tolerant, and need to support
smooth reconfiguration when parties join or leave. Groupware [1] is a powerful tool
for the construction of fault-tolerant applications, providing reliable multicast and
membership services with strong semantics. In this paper, we incorporate multiple
quality of service options within the framework of groupware systems. This way, a
single application can exploit multiple quality service options, and can also benefit
from the groupware semantics.



1 Introduction

In this paper we present a novel communication paradigm that provides multiple
quality of service (QoS) options for multi-media and Computer Supported Coopera-
tive Work (CSCW) [16] applications, e.g. video conferencing. We incorporate different
QoS multicast channels within the groupware framework; the channels are an exten-
sion of group communication systems (GCSs) that provide reliable multicast services
with strong order constraints as well as group membership services. A channel mul-
ticasts a segment of messages with a specific QoS option, independently of messages
that are not part of the segment. Each message segment is transmitted with the QoS
guarantees requested for this segment, as fast as this QoS allows. Stronger order
semantics are preserved for the entire segment and not for single messages in it. This
allows us to selectively impose order guarantees relative to a subset of the messages,
independently of other messages. As a test case, we describe the implementation of
QoS channels in two GCSs: Transis and Horus [1].

Our approach is most suitable for applications that require high bandwidth fast
multicast, with different QoS requirements for different messages, e.g. where most
of the multicast has weak order and reliability constraints, but for a small portion
of “critical” messages reliability and strong order constraints are vital. The strong
semantics and the reliable ordered multicast provided for the “critical” messages can
make the service fault-tolerant, without slowing down the mass of the messages. GCS
membership services allow the system to smoothly reconfigure when parties join or
leave.

Typical applications that may benefit from the concept presented in this paper
include video conferencing, replicated video on demand servers, cooperative network
management, and many more. Figure 1 depicts a video conferencing application, with
a new party wishing to join the discussion. In Section 6 we describe several examples
of applications that can benefit from our services among which is a multi-media and
desktop conferencing application [16].

1.1 The Benefits of Groupware

Groupware is a powerful tool for the development of fault-tolerant distributed ap-
plications and CSCW services: GCSs provide the application builder with reliable
multicast services with several message ordering paradigms, and with group member-
ship services that guarantee strong semantics. Some of the leading GCSs today are:
Transis, Totem, ISIS, Horus, Psync, Relacs, RMP, and Newtop; A survey of GCSs
may be found in [1].

A GCS usually runs in an environment in which processes and communication
links can fail, and in which messages may be lost or arbitrarily delayed. In such
“inconvenient” environments, the GCS simulates to its application a “benign” world
in which message delivery is reliable within the set of reachable (live and connected)



Figure 1: A New Party Joining a Video Conference

processes. The GCS also reports to the application which processes are reachable at
any given time. For example, the Virtual Synchrony [7], Strong Virtual Synchrony [9]
and Fzxtended Virtual Synchrony [14] models provide powerful semantics, that greatly
facilitate application design [7, 3, 10, 5]. GCSs today have begun to exploit new
technologies, and to run over fast networks e.g. ATM [6] in WAN environments.

1.2 Currently, Groupware is Problematic

In spite of its strengths, groupware is rarely used for applications that utilize high
throughput fast multicast, and require reliability for only a small portion of their
multicasts. Many multimedia applications are in this category, e.g. MPEG video
transmission consists of a few full images, which must be reliably delivered, followed
by incremental update frames which can be sent unreliably [17]. The loss of these
incremental frames will not seriously damage the video image. Such applications
often exploit fast networks, e.g. ATM, and do not recover lost packets (unless they
result in the loss of full image frames).

Such applications do not use GCSs because they require a different QoS than
provided by the GCS. Strong semantics, order and reliability guarantees significantly
slow down the application which is adequately supported by a “mostly reliable” multi-
cast. Most GCSs provide only reliable multicast services. Reliability requires message
buffering, managing acknowledgments for messages and retransmissions; Thus mes-
sage delivery is delayed, especially when messages are lost. Order constraints further



increase the delay. Consequently, smaller bandwidth is available. This can negatively
affect the application if, for example, the ATM constant bit rate QoS is requested.
Furthermore, the notion of reliability for an MPEG application is ironically different
than the GCS notion of reliability: MPEG decoding algorithms make assumptions re-
garding stochastic network bandwidth variability. The introduced delays may violate
these assumptions, rendering the decoding algorithm incorrect.

Some GCSs provide unordered and unreliable multicast services. For example,
the Horus system allows an application to send unreliable messages. However, within
the same connection to Horus, only one semantics is supported, so in this case all
the messages have to be unreliable. Applications can open more than one connection
and send different messages in different connections to get different semantics, but
then no interconnection semantics is provided. It is possible to extend Horus so
that more than one semantics will be supported in the same connection*. A similar
approach was taken in other systems, e.g. Highways [2], where messages with weak
order constraints interleave with messages with higher constraints. However, such an
approach is inadequate for the applications mentioned above.

This approach suffers from one main drawback: There’s no possibility to selec-
tively enforce order guarantees relative to a subset of the messages, independently
of other messages. Thus, two unrelated transmission channels (e.g. multicasting two
separate video channels or two large files) interfere with each other. Moreover, an un-
reliable message is either delayed by all messages with stronger ordering constraints,
or, alternatively, is delivered independently of all other messages. Often, neither so-
lution is appropriate: e.g. in an MPEG application, incremental update frames must
follow the corresponding full picture frame only, and have no restrictions w.r.t. other
messages. In a typical multi-media application, several types of data streams (e.g.
video, audio, translation subtitles) are each multicast independently [18], as shown
in Figure 2, and are synchronized at the receiving server.

Video
stream §

Audio-left
stream
Audio-right
stream

Text
stream

Figure 2: Data Streams in a Multi-media Application

*This idea was suggested by the Horus group.



1.3 QoS Multicast Channels within Groupware

We propose to incorporate several QoS channels into a groupware framework. A
QoS channel is a segment of multicast messages from a single source. A channel can
support any of several QoS options: A channel may directly provide the underlying
network properties, e.g. the constant bit rate QoS of ATM. Alternatively, it may
recover messages to provide reliable multicast. A channel may be unordered or may
enforce FIFO order. The messages within a channel neither interfere with messages
from other channels, nor with other messages multicast via the GCS. Thus, messages
within a channel may only be delayed because of other messages in the same channel,
due to the reliability or order constraint of the particular channel.

Each message segment is “wrapped” with a shell that is multicast via the reliable
services of the GCS, and thus semantics are provided for the entire segment, as if it
were a single message (or two messages: begin and end). This way the application
may benefit from the powertul semantics of membership service, and order guarantees
may be enforced among channels and regular reliable messages. The messages within
the segment are transmitted independently of the regular message flow in the GCS.

The challenge was to provide these semantics without imposing a high overhead
on messages within channels, so that the overall performance will not be degraded
because of the support for other QoS options of the GCS. Messages are delayed within
a channel only due to an application request to order the entire message segment
relative to other messages. In other words, the system imposes the minimum delay
needed to enforce only the order constraints explicitly requested by the application.

The integration between the reliable multicast and QoS channels has the following
advantages:

e A single application can exploit assorted QoS options.

e Applications can be made fault tolerant using powerful group communication
semantics (such as virtual synchrony). These semantics hold for the channel as
a whole, not for specific messages within a channel. This is usually what the
application requires.

e The entire channel is ordered with respect to reliable messages and other chan-
nels. This feature is useful for CSCW applications.

e Reliable “critical” messages may be used for synchronization and checkpointing,
e.g. full image messages in MPEG.

2 The Environment and Model

A set of processes communicate over the network. The system is asynchronous: there
is no bound on relative process speeds or message delay.



We consider the following types of failures: The network may partition into several
components’, and remerge. Processes may crash and recover. A message may be lost
by all members of a component, or only by part of them. The network may duplicate
messages, and it provides no message sequencing guarantees. We assume that failures
are detected using a (possibly unreliable) fault detector, e.g. a timeout mechanism.

2.1 Multicast Services

In this paper we discuss the implementation of several types of multicast services.
The basic operation in a multicast service, is to post a message to a set of processes.
A process may send a message to any subset of the processes. The multicast service
delivers the message to its multiple targets. Multicast services are characterized by
two properties: reliability and order constraints.

Reliability A multicast service is reliable if it delivers each message exactly once to
each of its currently operational and connected targetst, overcoming message
omission and duplication. Otherwise the service is unreliable.

Order constraints There exist various levels of constraints on the order of message
delivery. Typical examples of order constraints are:

None — no order constraints.

FIFO messages from a single source are delivered in the order of their trans-
mission.

Causal messages are delivered in an order preserving the “happened before”
(causal) partial order defined by Lamport [12]. The causal order is defined
as the transitive closure of: m == m/ if deliver,(m) — send,(m’) or if
send,(m) — send,(m').

Agreed messages are delivered in the same order at all targets. This order
preserves the causal partial order.

Order constraints cause a delay in message delivery: e.g. if a process sends two
reliable FIFO messages my and my, and my is lost, the delivery of my will be delayed
until the recovery of my. Moreover, messages may be further delayed by stronger
order constraints of preceding messages.

'A component is sometimes called a partition. In our terminology, a partition splits the
network into several components.

{Reliable multicast is sometimes defined to guarantee delivery at all correct targets. This defi-
nition is not appropriate for systems that tolerate network partitions, where two processes may be
disconnected, and yet both are correct. In this paper we require delivery at connected targets only.
This reliability guarantee is sometimes called atomic.



2.2 Group Multicast and Membership

Group communication systems provide several levels of reliable multicast services, as
well as group membership services. A group communication system (GCS) supports
reliable multicast communication among groups of processes. The basic communi-
cation primitive is to post (send) a message to a group. The GCS multicasts the
message over the network to other instances of the GCS. The instances of the GCS
receive the message from the network, and deliver the message to all the members of
the group.

After a group is created, the group undergoes membership changes when new
members are added to the group and when members are taken out of the group.
The membership service of the GCS reports these changes to the application through
special membership change messages, that contain a unique membership identifier
and a list of connected processes. Membership change messages are delivered among
the stream of regular messages. Thus, during the execution of an application, the
GCS delivers to it a sequence of regular messages interposed by membership change
messages.

The task of the GCS is to simulate to the application an environment in which
message delivery is reliable within the set of reachable (live and connected) processes,
and give the application an indication which processes are reachable at any given
time. The Virtual Synchrony [7], Strong Virtual Synchrony [9] and Eztended Virtual
Synchrony [14] models provide powerful semantics. For example, they guarantee that
if two processes p and ¢ deliver the same two consecutive membership changes M,
M, then for every message m that p delivers between M; and M,, ¢ also delivers m

between M; and M,.

deliver
messages and
membersh

deliver

active
channels

Network Network

(a) Basic Groupware (b) Groupware with QMC

Figure 3: Groupware Structure

A GCS may be seen as composed of two modules (or layers): a reliable multi-
cast module (RMM) and a membership module, as depicted in Figure 3(a). The
RMM delivers messages through the membership module, which delivers messages



and membership changes to the application. The membership module reports to the
RMM when membership changes occur. A GCS delays message delivery in order to
guarantee the reliability and order constraints.

3 Quality of Service Multicast Channels (QMC)

We propose to incorporate quality of service multicast channels (QMC) into group
communication systems (GCSs) that provide reliable multicast. The reliable multicast
module (RMM) of the GCS is extended with quality of service multicast channels with
weaker reliability and order constraints.

A quality of service (QoS) channel multicasts a segment of messages from a sin-
gle source, independent of messages which are not multicast via the channel. The
messages that are multicast via a QoS channel neither interleave nor interfere with
the regular flow of messages in the RMM or in other channels, and therefore are not
delayed by them. The whole segment is ordered relative to reliable messages and
other channels.

A message segment is “wrapped” with two reliable messages: begin-channel and
end-channel that are multicast via the RMM. The application builder chooses which
of the various reliable multicast services provided by the GCS RMM to use for these
messages, in order to guarantee the order constraints required for his application.
The structure of groupware with QMC is depicted in Figure 3(b).

Notation: For channel C' we denote by M¢ the set of messages sent via the channel
C, by S¢ the sender of M¢. begin-channelc and end-channels are the corresponding
begin-channel and end-channel messages.

3.1 QoS Multicast Channels Types

A QMC is characterized by the following parameters: the ordering level of its shell
(begin-channel and end-channel messages) and the constraints on reliability and order
of the messages within the channel. All the messages belonging to the same channel
are delivered before the begin-channel message and after the end-channel message,
and all have the same constraints. A channel is labeled according to the constraints
on messages within the channel. We propose the following types for a QoS channel

C:

Unreliable Unordered The unreliable unordered QMC preserves the properties of
the underlying network. The implementation: A message m € M is delivered
immediately upon its reception from the network.

Unreliable FIFO For any my, my; € M¢ such that m; was sent before my: if both
messages are delivered then m; is delivered before m;. The implementation: A



message m € M¢ is delivered immediately upon its reception from the network
if no successor of m in My was already delivered. Otherwise m is discarded.

Reliable Unordered All the messages in M¢ are guaranteed to be delivered exactly
once. No ordering constraints are guaranteed for any message in Mx. The
implementation: A message m € M is delivered immediately upon its reception
from the network provided that m was not delivered previously. Lost messages
are recovered using negative acknowledgments and retransmissions.

Reliable FIFO All the messages in Mg are guaranteed to be delivered exactly once
and the FIFO delivery order is preserved. The implementation: A message
m € M¢ is delivered if all of m’s predecessors in M¢ have been delivered. If m
was previously delivered it is discarded, and otherwise m is buffered.

3.2 Extensions

In this section we propose possible extensions to QMC. The first extension deals
with prioritized channels. This service is based on the cyclic-UDP [20] protocol,
which is a best-effort priority-driven network protocol especially designed for video
transmission [11]. The prioritized channel is unreliable, but it does use retransmissions
in order to increase the probability of successful delivery. The messages are multicast
via the channel sorted according to their priority: the first multicast message has
the highest priority, and the last message — the lowest. The probability of successtul
delivery of a message is proportional to its priority.

The implementation of the prioritized channel is similar to that of [20]: The
prioritized channel C retransmits messages as long as end-channelc was not delivered.
Messages from Mg are stored in a queue, and are multicast in bursts of a fixed
size. Each target sends a list of negative acknowledgments (NACKs) for each burst,
requesting retransmission of lost messages. For each burst, the sender scans the queue
from the beginning, so that higher priority NACKed messages are retransmitted first
in the burst. This way, higher priority messages get more chances for retransmission,
and therefore have a better chance to be delivered. Furthermore, these messages are
multicast earlier within the burst, and therefore an underlying unreliable multicast
protocol (e.g. UDP) has a better chance to deliver them.

The second extension deals with nesting of channels. Unreliable and prioritized
channels may be nested within reliable channels: the begin-channel and end-channel
of the inner channel are delivered as reliable messages within the outer channel, and
not via the RMM. This allows order constraints to be enforced among channels with-
out introducing redundant constraints, and thus increases the liberty to selectively
choose order dependencies.

For example, an MPEG video server multicasts picture frames, each followed by
unreliable incremental update frames. The picture frames delivery must be FIFO and
reliable, while the increment frames may be unreliable, and are ordered w.r.t. the



preceding picture frame. Picture frames can be multicast via a reliable FIFO channel,
and increments — in nested unreliable channels. This implementation imposes the
order relationship between pictures and increments, and imposes no order constraints
w.r.t. other messages or channels. Video representation languages (e.g. Rivl [19])
can be naturally extended to “compile” into this form of representation (for video
transmission).

3.3 QMUC in Presence of Membership Changes

The membership messages of the GCS have an important role in providing strong
semantics such as virtual synchrony. These semantics restrict the order of member-
ship messages w.r.t. regular messages. QMC provides these semantics for the entire
channel, and not for particular messages within the channel. This is usually what the
application requires.

Whenever a membership change occurs the following situations are possible for

channel C:

e Some process p disconnects from S¢ before end-channelc is received. In this
case, p delivers a special broken-channelc notification, indicating that some
messages in My are unrecoverably lost. The broken-channelc message auto-
matically forces C' to be closed.

e Some process p proceeds together with S¢. In this case, S¢ continues to mul-
ticast and p continues to deliver C'’s messages.

e Some new process p joins Sc. In this case, p delivers a special join-channelq
notification, and following it delivers the remainder of M.

4 QMC Implementation

We now discuss the implementation of QoS multicast channels (QMC) within the GCS
framework. The implementation makes use of three services: an unreliable multicast
facility (e.g. UDP), a reliable multicast module (RMM) and the membership service
of the GCS.

4.1 QMC Application Interface

The QMC application interface consists of three functions: open a QoS channel,
multicast a message via an open QoS channel, and close an open channel. For a
channel C, the open function multicasts begin-channelo along with C’s type, and the
close function multicasts end-channelc. Both messages are multicast via the RMM
using one of its reliable multicast services, or, if the channel is nested, via an outer
reliable channel. The type of service is determined according to the application’s
request. Prototypes of these functions are described in Figure 4.



e (QoS-Open(channel-type, message-type, user-data)
Multicasts, via the RMM, a message of type message-type containing user-data
and an indication that this message opens a QoS channel of the type channel-
type. Returns the unique channel-id that is used for further reference to the
channel. This message is called begin-channel.

For a nested channel, the message-type is replaced by the channel-id of the outer
channel.

o (JoS-send(channel-id, user-data):
Multicasts a message containing wuser-data through the open QoS channel
channel-id.

o (QoS-Close(channel-id, message-type, user-data)
Multicasts, via the RMM, a message of type message-type containing user-data
and an indication that this message closes the QoS channel. This message is
called end-channel.

For a nested channel, the message-type is replaced by the channel-id of the outer

channel.

Figure 4: The QMC Application Interface

4.2 Data Structures

Each channel has a single sending process, where the channel was opened. The
number of channels that can be simultaneously open for sending by the same process
is bounded, the process maintains a list of its open send-channels. A channel C is
identified through a unique channel identifier /d¢c. Each m € M is identified through
a pair Id,, = <ldg, counter>. The QMC multicast function stamps each message m
with Id,, and multicasts m through the unreliable multicast facility (bypassing the
RMM).

Each process also maintains a list of QoS channels open for delivery (active chan-
nels): active-list. Whenever a begin-channelc (end-channelc) is delivered, Idc is
inserted into (removed from) active-list. A record in active-list, corresponding to
a channel C', contains channel’s type: C.type, and the maximum counter value of
messages previously delivered via this channel: C.MaxDelivered®.

4.3 Unreliable QMC Message Delivery

Upon reception of a message m € M¢ from the network, Id¢ is looked up in active-
list. If Idc is in active-list, then the following situations are possible: First, if C' is an
unordered channel, m is immediately delivered. Second, if C' is a FIFO channel and

§ MaxDelivered is relevant only for unreliable FIFo channels.

10



HANDLE-MESSAGE-DELIVERY ()
{
let C' be m’s channel id.
if (C ¢ active-list) then
discard m;
return;
fi
if (C.type is FIFO) then
if (m’s counter <= C.MaxDelivered) then
discard m;
return;
fi
C.MazxDelivered = m’s counter;

fi

deliver m to the user;

Figure 5: Message Delivery in Unreliable QMC

m’s counter is greater than C.MaxDelivered, m is delivered and C.Max Delivered
is set to m’s counter. If not, m is discarded. If Idq is not in active-list then m is
discardedY. Pseudo-code describing the message delivery is presented in Figure 5.

4.4 Handling Membership changes

When a membership change message is delivered, each source multicasts the list of
its open channels. Open channels with newly joined senders are joined: For each
such channel C', join-channelc is delivered to the application and Id¢ is inserted into
active-list. Open channels with senders that have crashed or detached, are dropped:
For each channel C in active-list such that S¢ i1s not a member of the new mem-
bership, C’s record in active-list is removed and broken-channelc is delivered to the
application.

4.5 Reliable QMC Implementation

The implementation of the reliable QMC is a bit more complicated: lost messages have
to be recovered. This requires buffering of messages for retransmission. A garbage
collection protocol discards buffered messages when their reception is acknowledged by
all targets. The delivery of the end-channel message is delayed until all the channel
messages are delivered. In the case of reliable FIFO channels the delivery of the
messages that arrive out of order is additionally delayed.

TAs an optimization the messages that arrive before begin-channelc can be buffered.

11



Buffering and retransmissions introduce some difficulties that are solved by means
of a flow control (FC) mechanism. In particular, the following two problems are
addressed: buffers overflow and the network overload. The role of FC is to slow
down the transmission rate if there are many messages the reception of which is not
acknowledged by all the members of the current membership. A detailed description
of FC implementation using the network sliding window approach can be found in [4].

5 QMC Incorporation in Transis and Horus

We now present the incorporation of QMC in the Transis and in the Horus [1] GCSs.
QMC could be similarly implemented in other GCSs.

5.1 Incorporation of QMC in Transis

Transis provides three types of multicast services: Causal, Agreed!l and Safe. The
Safe messages are ordered in Agreed order w.r.t. all other messages of any type and
are guaranteed to be delivered by all the members of current membership unless they
crash.

O causal

candidates
for delivery

delivered messages

Figure 6: The Transis DAG

The main data structure of the Transis reliable multicast module (RMM) is a
directed acyclic graph, DAG, (see Figure 6) based on Trans [13] and on Psync [15].
The DAG contains only messages that have no missing causal predecessors. Each
new message emitted by a process p contains piggybacked acknowledgments (ACKs)
for all the messages that p received and inserted to the DAG so far; it is enough to
ACK only messages that are leaves in the DAG. There is an arc from a message m'
to a message m in the DAG if m' contains an ACK to m. The ACKs are used by the

IThe Causal and Agreed services are defined in Section 2.1.

12



target processes in order to detect lost messages and reconstruct the causal relations
between messages (for details see [8, 4]). Notice that the DAG reflects the causal
relationship among messages.

Since all Transis services preserve the causal order, a message does not become de-
liverable until it causally follows only delivered messages. All the deliverable messages
in the DAG form the set of candidates. The messages that were sent via the Causal
multicast service are delivered as soon as they become candidates. The Agreed or
Safe messages may be further delayed in the set of candidates because they demand
a higher level of coordination among the processes before delivery. Transis employs
sophisticated algorithms for the Agreed and Safe delivery. These algorithms are based
solely on the DAG structure without exchange of additional messages [8].

Q MC Service
/ Q\.v\ Horus connecti ons

; T‘?TAL \E(‘\ \QC\
%CAUSAL
g
£
(]
=
5 -
2 S Reliable £
Y| com gchannels %

£ =
) Network
(a) The QMC 3-D DAG in Transis (b) QMC in Horus

Figure 7: QMC Incorporation in Groupware

We extend the DAG data structure of the Transis RMM to incorporate QoS mul-
ticast channels. The begin-channel and end-channel messages are multicast using the
DAG. The regular channel’s messages are passed “in the background” and do not
intervene with the regular flow of messages in the DAG. Intuitively, this mechanism
resembles a three-dimensional DAG, as depicted in Figure 7(a). The channel’s mes-
sages are delivered after the corresponding begin-channel message is delivered and
before the end-channel message is delivered.

5.2 Incorporation of QMC in Horus

The Horus system has a layered structure. Each type of multicast service is im-
plemented as a separate layer, stacked on top of weaker service layers. QMC may
be easily incorporated in Horus. The service opens several connections to Horus as

depicted in Figure 7(b):

e One reliable connection (that represents the RMM) stacked on top of various re-
liable service layers and a membership layer. QMC multicasts regular messages

13



(that are not part of any channel) via this connection. This connection is also
used for begin-channel and end-channel messages, and for getting an indica-
tion of the membership. This guarantees virtual synchrony semantics of entire
channels w.r.t. other channels, regular messages, and membership changes.

e One unreliable unordered connection (bypassing all reliable layers), for unreli-
able channels.

o A separate reliable connection for each reliable channel.

The channel service needs only take care of ordering channel messages w.r.t. the
corresponding begin-channel and end-channel messages, as described in Section 4.

6 Applications and Concluding Remarks

In this paper, we presented the notion of quality of service multicast channels (QMC)
in group communication systems (GCSs). Below we describe a few applications that
may exploit QoS multicast channels within GCSs.

Multi-media and desktop conferencing systems are described in the survey of
CSCW systems [16]. Such a system consists of several conferees (users), that co-
operatively use a variety of application such as a meeting room (video and audio),
shared work space (e.g. cooperative editing or drawing on a board), etc. The con-
ference agent controls the communication among the conferees and the applications.
We now describe how a distributed agent can exploit GCS with QMC to provide the
services listed in [16]:

Multicast Application Inputs and Outputs: A typical application is a meeting
room which requires video and audio multicast. Video and audio are multicast
independently in separate channels [18]. Prioritized channels are most suitable
for video transmission [11, 20]. Audio transmission uses an unreliable FIFO
channel.

Other applications (e.g. cooperative editing) manage shared data, that has to be
consistently replicated. GCS semantics provide a powerful tool for replication,
as demonstrated in [10, 5, 3].

Floor Control: The agent allows input for a certain application to come from one
conferee, who is currently authorized to provide input. This is analogous to
passing the pen for the board in a meeting. GCS semantics is easily used to
guarantee that exactly one conferee holds the pen, and to give conferees a fair
chance of getting the pen.

Work Space Management: The agent consistently replicates the layout, grouping
and placement of shared windows among all conferees. Conferees may alter the

14



layout, and the changes will be identically reflected on all the conferees’ screens.
As mentioned above, replication is easily supported using GCS.

Dynamic Reconfiguration: Conferees may dynamically join and leave meeting
rooms. Fach addition or departure reconfigures the system. The GCS member-
ship service provides an indication when conferees join and leave. The ordering
semantics of channels w.r.t. membership changes allow for smooth and con-
sistent reconfiguration at all remaining members, with no need for additional
communication.

Logging: The agent is often requested to record the conference. All the communi-
cation in the system is routed through the agent, and thus the agent can easily
record it.

Replicated video on demand servers, may exploit QoS channels to transmit video.
The servers can consistently share information while each is serving clients. If one
server crashes or detaches from a client, the other servers get an indication, and can
smoothly take over. This is similar to the approach taken in the implementation
of [11] in Horus.

Our experience in [3] shows that a distributed system management application
can greatly benefit from the semantics of GCS. Distributed software installation and
upgrade application uses GCS to group target machines with the same installation
requirements into a single multicast group. Software packages are multicast to the
group by means of a reliable FIFO channel. The GCS membership service allows
to recognize hosts on which installation could be incomplete because of a network
partition or host crash.

The performance of QoS multicast greatly depends on the size of the segments, and
on the mixture of different QoS options, as well as on the properties of the underlying
network. There is a tradeoff in determining the ideal segment size: if segments are
small the overhead of handling begin-channel and end-channel messages is high. On
the other hand, large segments are less fault tolerant: failures may cause loss of
synchronization, and applications re-synchronize at the end of segments. The longer
the segment, the longer it takes to re-synchronize. It is our hope that further work
on this topic will identify segment sizes that induce low overhead and yet provide
reasonable quality of service for specific applications.

Acknowledgments

We are thankful to Ken Birman for his helpful comments and suggestions. Special
thanks to Tal Anker, David Breitgand, Zohar Levy and the other members of the
Transis project for their valuable remarks.



References

[1]

2]

[10]

[11]

[12]

[13]

Communications of the ACM 39(4), special issue on Group Communications
Systems, April 1996. To appear.

M. Ahuja. Assertionas about Past and Future in Highways: Global Flush Broad-
cast and Flush-vector-time. Information Processing Letters, 48(1):21-28, Octo-
ber 1993.

Y. Amir, D. Breitgand, G. Chockler, and D. Dolev. Group Communication as an
Infrastructure for Distributed System Management. In International Workshop
on Services in Distributed and Networked Environment, number 3rd, June 1996.
To appear.

Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A Communication Sub-
System for High Availability. In FTCS conference, number 22, July 1992.

Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. E. Moser. Robust and Efficient
Replication using Group Communication. Technical Report CS94-20, Institute
of Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel,

1994.
T. Anker, D. Breitgand, D. Dolev, and Z. Levy. The WAN according to GARP.

In preparation.

K. Birman and T. Joseph. Exploiting Virtual Synchrony in Distributed Systems.
In Symp. Operating Systems Principles, number 11, pages 123-138. ACM, Nov
87.

G. Chockler, N. Huleihel, and D. Dolev. ARTOP: An Adaptive Randomized
Total Ordering Protocol. In preparation.

R. Friedman and R. V. Renesse. Strong and Weak Virtual Synchrony in Horus.
TR 95-1537, dept. of Computer Science, Cornell University, August 1995.

[. Keidar and D. Dolev. Efficient Message Ordering in Dynamic Networks. In
ACM Symp. on Prin. of Distributed Computing (PODC), 1996. To appear.

D. Kozen, Y. Minsky, and B. Smith. Efficient Algorithms for Optimal Video
Transmission. TR 95-1517, Computer Science Department, Cornell University,

May 1995.

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558-565, July 78.

P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast Protocols for
Distributed Systems. IEEE Trans. Parallel & Distributed Syst., (1), Jan 1990.

16



[14]

[15]

[16]

[17]

[18]

[19]

[20]

L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended Vir-
tual Synchrony. In International Conference on Distributed Computing Systems,
number 14th, June 1994.

L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and Using Con-
text Information in Interprocess Communication. ACM Trans. Comput. Syst.,

7(3):217-246, August 89.

T. Rodden. A survey of CSCW systems. Interacting with Computers, 3(3):319—
353, 1991.

L. A. Rowe, K. D. Patel, B. C. Smith, and K. Liu. MPEG Video in Software:
Representation, Transmission, and Playback. In High Speed Networking and Mul-
timedia Computing, ISET/SPIE Symp. on Elec. Imaging Sci. & Tech., February
1994.

L. A. Rowe and B. C. Smith. A Continous Media Player. In Int. Workshop
on Network and OS Support for Digital Audio and Video, number 3, November
1992.

B. C. Smith. RIVL: A Resolution Independant Video Language. Submitted for
publication. Available in http://www.cs.cornell.edu/Info/Faculty /bsmith/rvl-
tel.ps.

B. C. Smith. Implementation Techniques for Continous Media Systems and Ap-
plications. PhD thesis, University of California at Berkeley, 1994.

17



