

Abstract — A new generation of high-performance engines

now combine graphics-oriented parallel processors with a cache

architecture. In order to meet this new trend, new highly-

parallel workloads are being developed. However, it is often

difficult to predict how a given application would perform on a

given architecture.

This paper provides a new model capturing the behavior of

such parallel workloads on different multi-core architectures.

Specifically, we provide a simple analytical model, which, for a

given application, describes its performance and power as a

function of the number of threads it runs in parallel, on a range

of architectures. We use our model (backed by simulations) to

study both synthetic workloads and real ones from the

PARSEC suite. Our findings recognize distinctly different be-

havior patterns for different application families and architec-

tures.

I. INTRODUCTION

Nowadays, high-performance engines– GPUs and similar

accelerators– are becoming increasingly popular. Such en-
gines serve the mounting computation needs of high-

throughput and graphics-processing applications. Meanwhile,
the body of applications targeted for such throughput-oriented
machines continues to enlarge: the term GPGPU [1] reflects a

broadening of the focus to include not only graphics, but also
a wide range of highly-parallel applications.

As memory access is a principal bottleneck in current-day
computer architectures [2], a key enabler for high perfor-
mance is masking the memory overhead. Today’s high-

performance engines employ two design principles to over-
come memory related issues: The first is based on a cache
architecture that takes advantage of locality of references to

memory. Intel's Larrabee [3] is a prominent example of this
approach. The second approach uses aggressive multithread-

ing so that whenever a thread is stalled, waiting for data, the
system can efficiently switch to execute another thread. This
approach is heavily used in current graphics processing en-

gines such as Nvidia's GT200 [4] and AMD/ATI's Radeon
R700 [5], which manage thousands of in-flight threads con-

currently. Moreover, we now see the emergence of systems,
like Nvidia’s Fermi [6], that employ both approaches by
combining large caches with numerous in-flight threads.

Since such a combination of two very different approaches
is used to overcome the memory bottleneck, performance

prediction becomes non-intuitive and challenging. The extent
to which an application will benefit from either approach de-
pends on many architecture and workload parameters. More-

over, the relative impact of caching compared to multi-
threading changes as the number of threads scales up. This

complex behavior, in turn, poses a challenge for architecture

designers, who need to allocate the limited on-die resources
to cores, thread contexts, and caches. Finally, given a diversi-
ty of already available high-performance architectures, there

is the question of which is the best fit for a given workload.
This paper addresses these challenges by developing a

simple, high-level, closed-form model that captures both the

architecture and the application characteristics (see Section
 III). The modeled machine uses a parameterized combination

of both mechanisms for memory latency masking, and can
thus capture a range of machines, rendering the comparison
between them meaningful. The workload model, in turn, cap-

tures the salient properties of the program, which allows one
to predict which architecture is most beneficial for it. All the

parameters— capturing both architecture and workload— can
be used as ''knobs'' for studying a wide range of scenarios, in
order to comprehend the interplay among multiple parameters

in a clean, qualitative way. The model thus serves as a vehicle
to derive intuitions.

 In Section IV, we study how different properties of an ap-
plication affect performance and power. We identify three
families of workloads with distinct behavior patterns: While

some workloads have a clear affinity towards either caching
or multi-threading, others can benefit from both. Moreover,
some workloads exhibit an unintuitive "valley" between the

cache efficiency zone and the thread efficiency zone, where
performance takes a dip.

In Section V we back our analytical model by simulations.
Our results indicate that the simple, closed-form model of
Section III can, in most cases, predict dynamic behavior, and

can thus be used to select the most efficient hardware struc-
ture for executing a given program. Whereas Section IV con-

centrates on synthetic workloads, Section V studies work-
loads from the PARSEC benchmark suite [7], and shows that
the three distinct behaviors observed in Section IV are indeed

present in real workloads.
To summarize, our contributions are as follows:

• We present a simple closed-form model for systematical-

ly reasoning about complex phenomena; the model cap-
tures the behavior of parallel workloads on high perfor-

mance engines that employ any combination of caching
and aggressive multi-threading.

• We conduct a qualitative study of the inherent tradeoffs

between the two approaches for memory access mask-
ing, and their sensitivity to a range of parameters. Our
study yields non-intuitive observations regarding the

impact of architectural choices and workloads characte-
ristics on performance and power.

Threads vs. Caches: Modeling the Behavior of Parallel Workloads

Zvika Guz1, Oved Itzhak1, Idit Keidar1, Avinoam Kolodny1, Avi Mendelson2, and Uri C. Weiser1
1EE department, Technion, Israel 2Microsoft Corporation

1{zguz|ovedi@tx, idish|kolodny|uri.weiser@ee}.technion.ac.il 2avim@microsoft.com

• We validate our model via simulation of real workloads.
Finally, we believe that our model can direct further re-

search on ways to address the memory wall problem in high-
performance engines.

II. RELATED WORK

Though there are many existing analytical models for pro-

cessors’ performance, they mostly concentrate on a single
family of processors (either multi-core, multi-thread, GPU,
etc.), and thus on one of the two paradigms – either caching

or multithreading. For example, previous analytical models
that analyzed caching in multi-threaded processors [8] [9] [10]

considered only a small thread count, and hence are not ap-
plicable for machines that manage thousands of in-flight
threads. Previous models for GPU machines [11] [12], have

not considered large caches, and hence are not applicable for
machines where caches are a key factor in determining per-
formance. To the best of our knowledge, our model is the first

to specifically target the interplay of the two paradigms and is
the first to model both via a single, unified model that enables

a clean comparison across the design space of the new gener-
ation of high performance engines.

In a preliminary work [13] we presented the core of the

analytical model and the existence of a valley-like behavior.
In Section III, we extend this model with power equations and

account for performance-power tradeoffs. Unlike [13], we
study real benchmarks, and refine our initial observations by
identifying three distinct types of workload behaviors with

different performance curves. Additionally, unlike [13], we
use simulations to validate the theoretical model.

Previous characterizations of the PARSEC benchmark
suite [7] [14] [15] concentrate on machines with significantly
fewer cores than we do, and parallelization only up to 32

threads. We push multi-threading as well as the number of
computation units to the hundreds.

III. THE ANALYTICAL MODEL

In order to study the basic tradeoffs of caching and multith-

reading over the range of high performance engines and ap-
plications, we use a high-level, abstracted model that can cap-
ture both mechanisms. This abstraction enables us to derive

specific instances for different machines from the same uni-
fied framework in a way that renders the comparison mea-

ningful. To enable elementary reasoning of the basic tra-
deoffs, we purposely use a simple, first-order model. Indeed,
the model can be augmented to account for various additional

effects, but this should come second to the basic tradeoff of
caches vs. threads captured in this paper.

While different architectures may differ in their program-
ming model, we do not consider programming issues here.
Rather, we assume that the same applications can be mapped

to different engines across the range; frameworks like
OpenCL [16] and Ocelot [17] are expected to allow for such
cross-platform mappings. The different models, however, are

commonly described using different terminologies, which can
be confusing. Our terminology follows the one used in multi-

threaded programming models like CUDA [18], where a

thread is a basic execution stream that processes a single data
element. A processing element (PE) is a processing unit that

processes a single such light-weight thread at a time; CUDA
also uses the term Streaming Processor (SP) for a PE. In pro-

gramming models like Larrabee Native [3], each core ex-
ecutes a SIMD instruction that processes several (e.g., 16)
data elements at the same time. Thus, in our terminology, a

Larrabbe core is composed of 16 PEs, which can execute 16
threads at a time. (Note that our notion of threads is different
from traditional operating systems threads; such light-weight

threads are called strands in Larrabee Native.)

A. Hardware and Workload Model

Our abstracted machine includes an array of NPE processing
elements and a large on-chip shared cache of size S$. For
simplicity, we only model the shared cache (L2/L3), and con-

sider local L1 caches, if they exist, to be part of the
processing element. In addition, the machine includes a regis-

ter file for storing the contexts of up to Nmax in-flight threads;
we assume that this is the maximum number of threads run-
ning concurrently. We consider simple, in-order PEs, for

which the average number of cycles required to execute an
instruction is CPIexe (assuming a perfect, zero-latency memo-
ry system). We assume that the machine is symmetric; hence

all PEs run at the same frequency f. The on-chip cache laten-
cy is t$, while the off-chip memory can be accessed at a laten-

cy of tm cycles, and a bandwidth of BWmax, where each ope-
rand's size is breg. The parameters are summarized in Table 1.

Table 1. Hardware Parameters.

Parameter Description

NPE Number of PEs (in-order processing elements)

S$ Cache size [Bytes]

Nmax Maximal number of thread contexts in the regis-
ter file

CPIexe Average number of cycles required to execute an
instruction assuming a perfect (zero-latency)
memory system [cycles]

f Processor frequency [Hz]

t$ Cache latency [cycles]

tm Memory latency [cycles]

BWmax Maximal off-chip bandwidth [GB/sec]

breg Operands size [Bytes]

Clearly, the characteristics of the workload have a great
impact on the attainable performance. Recall that our focus is

on data-parallel workloads which can be parallelized to nu-
merous independent threads. For benchmarks in this general

family, there are three key parameters that impact perfor-
mance: (1) the scalability of the workload, captured by the
number of threads that can execute (or be ready to execute)

concurrently, n; (2) the compute intensity of the workload,
captured by the ratio of memory instructions out of the total
number of instructions, rm; and (3) the locality of the work-

load, captured by the thread cache hit rate function, Phit(s, n),
where s is the cache size and n is the number of threads that

share the cache. Note that the latter captures the hit rate in the
shared (L2/L3) cache; a high hit-rate in the L1 cache, if such
exists, is manifested as a higher compute-to-memory ratio.

The workload characteristics are summarized in Table 2.

Table 2. Workload Parameters.

Parameter Description

n Number of threads that execute or are in ready
state (not blocked) concurrently

rm Fraction of instructions accessing memory out of

the total number of instructions [0 1mr≤ ≤]

Phit(s, n) Cache hit rate for each thread, when n threads
are using a cache of size s

B. Performance and Power Equations

We now use the parameters defined in Table 1 and Table 2
to analyze expected performance. In this context, we make

the simplifying assumption that the workload parameters are
fairly static, and do not vary much over time or space (i.e., at

different threads of the same application). We therefore use
their average values in the equations below. When validating
our analysis using simulations (Section V.C), we shall see that

this assumption holds for most of the benchmarks considered,
with few exceptions.

Given each thread’s cache hit rate function and the cache

and memory latencies as defined in Section III.A, we can
compute the average number of cycles needed for data access,

denoted tavg:

()$ $$(,) 1 (,)
avg hit hit m

t P n t P S tS n= ⋅ + − ⋅ (1)

Any given thread needs to stall once every 1/rm instructions

on average, and wait until the data it accesses is received
from memory. During this stall time, the PE is left unutilized,

unless other threads are available to switch-in. The number of
additional threads needed to fill the PE’s stall time is

avg

mexe
CPI r

t
, and hence 1 m

PE avg

exe

r
N

CPI
t⋅ +

 ⋅ 
 

 threads are

needed in order to fully utilize the machine.

Given a workload with n ≤ Nmax threads, the processor uti-

lization, 0 ≤ η ≤ 1, (the average utilization of all PEs), is:

1 ,
min

1
PE avg

exe

m

CPI

r

n

N t
η =

⋅ + ⋅

 
     

  

 (2)

The minimum in (2) captures the fact that after all execu-

tion units are saturated, there is no gain in adding more
threads to the pool. If we ignore bandwidth limitations, the

expected performance is simply
PE

exe

N
f

CPI
η⋅ ⋅ OPS (Op-

erations Per Second).
However, since bandwidth to external memories is limited,

this performance level cannot always be reached. In fact, off-
chip bandwidth is a principal bottleneck that often limits per-

formance. For a given workload, a given number of threads,
and given performance (in OPS), the off-chip bandwidth gen-
erated can be expressed as:

()$1 (,)
m reg hit

BW Performance r b P S n= ⋅ ⋅ ⋅ − (3)

Hence, given an off-chip bandwidth limit BWmax, the max-

imal performance achievable by the machine is

()()max $/ 1 (),
hitm reg

BW r b P S n⋅ ⋅ − . Thus, performance can be

expressed using the following equation:

max

$

[]

min ,
(1 ,()

PE

m reg hitexe

BW

Performance OPS

N
CPI

f

r b P S n
η

=

⋅ ⋅
⋅ ⋅ −

   
   

     

 (4)

With power and energy consumption becoming key factors

in practically all modern computer systems, performance un-

der a given power envelope and power efficiency become

primary design targets. Power consumption can be modeled

as Powerleakage+Performance·EPI, where Performance is giv-

en by (4), and EPI is the average consumption of Energy Per

Instruction. Using the notations in Table 3, power consumed

can be expressed using the following equation:

()
$$

$

()

1 ()

,

,

leakage

hit

ex m

hit mem

Power Power

Performance
P S e

e r
P S e

n

n

= +
⋅ +

⋅ + ⋅
− ⋅

  
  
  

 (5)

Notice that as the number of concurrent threads grows, the

hit rate for each of them degrades, and thus more accesses are

served from memory. Since memory access is significantly

more energy-costly than access to the on-die cache, the EPI

increases with the number of threads. This effect is more sig-

nificant for architectures which achieve their performance via

a very high thread count.

Table 3. Hardware Power Parameters.

Parameter Description

eex Energy per operation [j]

e$ Energy per cache access [j]

emem Energy per memory access [j]

Powerleakage Leakage power [W]

IV. PERFORMANCE AND POWER CURVE STUDY

In this section we study how various workload characteris-

tics affect the performance (Section A) and power (Section B)

curves. For this study, we use an example machine consisting

of 1024 PEs and a 16MB cache. The machine supports up to

Nmax = 65536 in-flight threads and runs at a frequency of

1GHz with a CPIexe of 1 cycle. The machine requires 1 cycle

to access its on-chip cache and 200 cycles to access off-chip

memory, whose bandwidth is 200GB/sec. We assume single

precision calculation (i.e., an operand size of 4 bytes).

We begin with synthetic workloads to enable a clean study

of trends and the effect of different parameters on the perfor-

mance plot. These will be replaced with real workloads in

Section V. We use the next simple cache hit rate function,

first suggested by Jacob et al. [19]:

$

(1)

$
() 1 1,

hit

S
P S

n
n

α

β

− −

= − +
⋅

 
 
 

 (6)

This function is based upon the well known empirical pow-

er law from the 70’s (also known as the 30% rule or the √2

rule) [20]. In (6), workload locality increases when increasing

α or decreasing β. The parameter β also accounts for the de-

gree of sharing among the threads: in case much of the cache

is shared, each thread can utilize a larger portion of the cache,

which is represented by a small value of β.

A. Performance Curve Study

1) Parameters Sensitivity: Fig. 1 shows the performance

vs. the number of threads, n, available in the workload, for
synthetic benchmarks with different cache hit ra

(i.e., data locality).
In Fig. 1, three performance regions are clearly evident: In

the leftmost region, as long as the cache capacity can effe

tively serve the growing number of threads, increasing the
number of threads improves performance,

utilized. This is the cache-efficiency zone

cache becomes too small for the growing stream of access
requests, so memory latency is no longer masked by the cache

and performance improves more moderately, or even takes
dip into a valley. As the number of available threads

increases, the multithread efficiency zone

reached, where adding more threads improves performance
up to the maximal performance of the machine, or up to the

bandwidth wall. In Section B we show that
tions also limit the achievable peak. Only scala
with a high enough number of independent

fit from this region.

Fig. 1. Performance vs. number of threads for benchmarks with different

cache hit rate functions (Phit(s,n)), increasing from 0 (no cache) to 1 (a

perfect cache), rm=0.1. Performance increases with increased locality, esp

cially in the cache efficiency zone.

Fig. 1 shows that workloads with higher locality better e
ploit the cache and hence expand the cache efficiency zone

the right and up. Workloads with poor locality cannot utili
the cache and hence gain performance only from increase in
their thread level parallelism. Moreover, the shape of the pe

formance curve depends on how fast the cache hit rate d
grades as a function of the number of threads: The valley o

curs whenever the degradation in cache hit rate is of the form
(1)

n
ε+

 for some positive ε, representing a super

dency of the hit rate degradation in the number of thread

(This degradation rate can be computed by deriving the pe
formance formula (4) as a function of n

this condition is not met (e.g., in the dark
α=3.5, β=13), there is no valley between the

Another point to notice in Fig. 1 is that, once the ban

width requirements exceed the capacity,
starts to degrade. This happens because

number of threads— the more in-flight threads there are, the
less cache is available to each of them. Therefore, when the
off-chip bandwidth wall is met, adding more threads only

degrades performance due to increasing off

shows the performance

, available in the workload, for
fferent cache hit rate functions

, three performance regions are clearly evident: In
, as long as the cache capacity can effec-

tively serve the growing number of threads, increasing the
number of threads improves performance, as more PEs are

efficiency zone. At some point, the
cache becomes too small for the growing stream of access
requests, so memory latency is no longer masked by the cache

improves more moderately, or even takes a
s the number of available threads again

multithread efficiency zone (on the right) is
improves performance

up to the maximal performance of the machine, or up to the

we show that power considera-
Only scalable workloads

with a high enough number of independent threads can bene-

for benchmarks with different

)), increasing from 0 (no cache) to 1 (a

increases with increased locality, espe-

that workloads with higher locality better ex-
cache efficiency zone to

the right and up. Workloads with poor locality cannot utilize
gain performance only from increase in

Moreover, the shape of the per-

formance curve depends on how fast the cache hit rate de-
grades as a function of the number of threads: The valley oc-

e degradation in cache hit rate is of the form

, representing a super-linear depen-

dency of the hit rate degradation in the number of threads.

(This degradation rate can be computed by deriving the per-
n). We see that when

dark-gray solid curve;
), there is no valley between the two regions.

is that, once the band-

, performance actually
because Phit is affected by the

flight threads there are, the
less cache is available to each of them. Therefore, when the

chip bandwidth wall is met, adding more threads only

degrades performance due to increasing off-chip pressure.

Fig. 2 shows how the compute intensity of the
fects the shape of the performance plot. When there are more

computation instructions per memory access, (a smaller
performance climbs more steeply with additional threads.
This is because as more instructions are available for each

memory access, fewer threads are needed to fill the stall time
resulting from waiting for memory. Thus, compute
applications can reach peak performance with less parallelism

and smaller bandwidth requirements.
pute/memory ratio decreases the need both for caches and

scaling the application to many

Fig. 2. Performance in a limited BW environment for benchmarks with

different percentages of memory instructions (

increases with the compute intensity, i.e., as

2) Workloads Families: Looking at the curves of Section

IV.A.1, we observe that, by
three different behavior patterns depending on their pa
ters. Fig. 3 schematically plot

before the bandwidth saturation point)
(Section V) will later validate that
vior can be found in “real” workloads

Fig. 3. Performance curve for the 3 types of workloads: (A) Workloads with
a constant hit-rate in the cache exhibit linearly increasing performance (the
slope depends on the hit rate), (B) workloads exhibiting a nonlinear but
monotonically increasing performance (their hit
more and more threads share the cache), (C) workloads exhibiting a pe
formance valley (their hit rate is shar
more and more threads).

The Performance of workloads of class A (dashed line)

grows linearly with the number of threads.
have a constant cache hit rate which is indepen

number of threads. This may happen for example due to poor
locality (light-gray dashed curve
one extreme case, or due to full sharing of data among all

threads (assuming all data is
the other extreme case. Workloads of this

use either classic multithreading
architectures, depending on their (constant) cache hit

shows how the compute intensity of the workload af-
fects the shape of the performance plot. When there are more

computation instructions per memory access, (a smaller rm),
performance climbs more steeply with additional threads.
This is because as more instructions are available for each

access, fewer threads are needed to fill the stall time
resulting from waiting for memory. Thus, compute-intense
applications can reach peak performance with less parallelism

and smaller bandwidth requirements. All in all, a high com-
eases the need both for caches and for

many threads.

. Performance in a limited BW environment for benchmarks with

different percentages of memory instructions (rm), α=7, β=50. Performance

increases with the compute intensity, i.e., as rm decreases.

Looking at the curves of Section

.1, we observe that, by-and-large, workloads exhibit
three different behavior patterns depending on their parame-

schematically plots these three examples (stopping

before the bandwidth saturation point). Simulation results
date that all three classes of beha-

be found in “real” workloads.

Performance curve for the 3 types of workloads: (A) Workloads with
rate in the cache exhibit linearly increasing performance (the

slope depends on the hit rate), (B) workloads exhibiting a nonlinear but
monotonically increasing performance (their hit-rate is mildly reduced as
more and more threads share the cache), (C) workloads exhibiting a per-
formance valley (their hit rate is sharply reduced as the cache is shared by

he Performance of workloads of class A (dashed line)

grows linearly with the number of threads. These workloads
have a constant cache hit rate which is independent of the

is may happen for example due to poor
curve in Fig. 1, hit rate = 0%) in

one extreme case, or due to full sharing of data among all

threads (assuming all data is cached, black curve in Fig. 1) in
Workloads of this class can efficiently

use either classic multithreading-based or classic cache-based
architectures, depending on their (constant) cache hit-rate.

The other two workload classes present non-linear be-
havior. Both have an operation zone where the cache is more
effective and an operation zone where multithreading is more

effective, but they differ in the area between these two zones.
Workloads of class B (solid line) exhibit a monotonically

increasing performance. They are characterized by a sub-
linear degradation of their cache hit rate function in the num-
ber of threads. The transition from the cache effective zone to

the multi-threading effective zone does not incur a perfor-
mance lose but rather a reduced rate of performance im-

provement. Workload of this class will perform better with
aggressive multi-threading - at least in an unrestricted envi-
ronment where no memory or bandwidth constraints exist.

Workloads of class C (dotted line) present a valley-like be-
havior, and are characterized by a super-linear degradation of
the hit rate in the number of threads. Optimizing the architec-

ture for such workloads is especially challenging, because by
trying to leverage a combination of the two approaches, these

workloads might end up in a performance zone inferior to
their achievable peaks either in cache-only or multithreaded-
only architectures.

Lastly, note that the x axis, n, represents the number of
threads that can actually run at a time, and does not include

ones that are blocked, either on I/O or on synchronization. In
workloads with extensive synchronization or I/O activity, n
will be limited, so the plotted performance curve will be

pruned somewhere along the x axis. Likewise, recall that the
achievable peak in the multithread zone is limited by the max-

imal bandwidth (as seen in Fig. 1) and, as we show next (in
Section B), by the engine's power envelope.

B. Power Efficiency and Power Envelope

In the following study of power costs, we take as an exam-
ple an energy per operation (eex) of 0.1nJ, and factors of 5 and

50 for accesses to cache (e$) and memory (emem), respectively.
We note that this is only one such example; using the analyti-
cal model, other ratios can be plugged in to derive results.

 The performance versus power tradeoff is typically studied
using one of the following two efficiency metrics: the norma-

lized power consumption per instruction, which is captured
by Performance/Power, or energy·delay which is captured by
Performace2/Power. Fig. 4 presents these two metrics for the

benchmarks of Fig. 2. We see that in terms of Perfor-

mance/Power metric (Fig. 4(a)), using caches is always pre-

ferable as they enable serving most of the data accesses from
the cache rather than memory. For the more performance-
oriented metric (Fig. 4(b)), some of the workloads favor cach-

ing, whereas others favor multithreading. For example, for the
dark-gray dashed curve (rm=0.2), the performance boost via

multithreading comes at too high a power toll, and hence
caching is the preferable approach in this case. For the light-
gray solid curve (rm=0.05), the performance boost from mul-

tithreading exceeds the increase in power consumption, and
hence multithreading is the favorable approach.

The results above were obtained assuming that power con-
sumption is not constrained. In practice, however, machines
have a limited power envelope under which they need to func-

tion. Fig. 5 assumes a power envelope of 300 Watts, and revi-
sits the performance curve of Fig. 2 under this constraint.

Fig. 5. Performance under a power envelope of 300 Watts, α=7, β=50.
Power constraints limit performance achievable via the use of multithread-
ing since it increases the frequency of accesses to main memory, which are
more expensive in terms of power.

Recall that increasing the number of threads increases the
energy spent on each instruction. Thus, the number of threads
that can be run within a given power envelope is bounded,

and the achievable performance in a limited power environ-
ment is smaller than the theoretical (unconstrained) peak per-

formance of the machine.
In Section III.B we saw that for highly parallel workloads,

the best performance can be achieved by a high thread count,

which provided the motivation for aggressively multi-
threaded machines with simple cores and no caches. Never-

theless, we now see that this approach is limited by power
constraints, and that caches can help reduce the energy costs
per instruction, especially for workloads with good locality

properties. This is part of the reason why new GPU engines
incorporate more on-chip memory than in the past.

Fig. 4. Efficiency metrics: (a) Performance/Power (1/EPI) and (b) Performance2/Power (1/(energy·delay)) of the unified machine, α=7, β=50 . The former
is always better in the cache efficiency (left hand) zone, whereas for the latter, the favorable archetype varies according to the workload characteristics.

V. PERFORMANCE SIMULATION

A. Simulator

We use an in-house simulator, MTM$im [21], specifically

designed for simulating graphics-oriented architectures with
numerous cores. MTM$im uses the Pin binary instrumenta-
tion tool [22]. It models a highly multi-threaded machine with

a parameterized number of cores and a large shared cache (of
parameterized size). Each core is a simple processing ele-

ment, such that every instruction takes a predefined number
of cycles to execute unless it accesses the memory hierarchy.
MTM$im implements a shared last level cache and parame-

ters define the latencies for memory access in cases of hit or
miss. The simulated machine saves a large number of thread
contexts, (typically significantly larger than the number of

cores), such that when one thread is blocked on memory
access (i.e., cache miss), another thread is swapped in and

utilizes the machine. We use a simple round-robin scheduling
policy among all available threads.

MTM$im decouples timing/scheduling of each instruction

from its functional implementation. The simulated machine
engine determines when every instruction of every thread is

executed via its timing model, and uses Pin only to determi-
nate what each instruction does. Since the timing simulator
determines when each thread advances, this approach cap-

tures dynamic and transient time-dependent effects such as
fine-grained data sharing, thread synchronization, and in gen-
eral, inter-thread communication and inter-thread interactions.

It further exposes dynamic variability within the benchmark,
which is not captured by our analytical model. CMPSched$im

 [23] and GEMS [24] both take the same approach of decupl-
ing simulation functionality and timing.

B. Workload and System Parameters

We study workloads from the PARSEC benchmark kit [7],
concentrating on those with relatively high scalability: black-

scholes, raytrace, swaptions, canneal, dedup, and bodytrack.
(Since we are interested in pushing the number of threads to
hundreds, we leave out benchmarks from the kit that either

have very limited scalability, or that cannot be spawned with
hundreds of threads [7] [14].) We chose the PARSEC kit be-

cause it represents emerging workloads, specifically modeling
future CMP applications [15]. The PARSEC kit is more di-
verse than traditional parallel workload suites, which focused

more narrowly on high-performance computing. We run all
workloads using the simmedium inputs, and vary the number
of instantiated threads from 1 up to around 2000 or to the

point where adding threads is no longer effective. (We have
limited the number of threads to 2000 due to the excessive

memory requirements of the Pin tool when simulating such a
large number of threads.) Note that the actual number of
available threads, n, is often lower than the number of instan-

tiated threads, because threads are sometimes blocked due to
synchronization or system calls. For all workloads and all

runs, we fast forward through the initialization phase of the
benchmark, and sample only the parallel phase where all
threads have been spawned.

Note that even scalability to hundreds of threads falls short

of the futuristic values used in the synthetic model above. To
capture the performance trends within the much smaller simu-

lated range, we scale down the machine parameters, to 128
PEs and a 4MB shared cache. Cache hit time is 1 cycle and

memory latency is 200 cycles. The number of in-flight thread
contexts is set to 10000 so that it is not a limiting factor.

C. Results

Table 4. Memory instruction ratios (rm) for PARSEC's workloads.

Benchmark Percent Of Memory Instructions (100·rm)

blackscholes 32.72

swaptions 43.26

raytrace 64.19

dedup 36.55

canneal 34.23

bodytrack 29.33

In order to validate our analytical study, we extract the ac-
tual average workload parameters (effective number of

threads n, hit rate Phit, and compute/memory ratio rm). We
then substitute these values in the equations of the analytical

model (Section III.B), and compare the performance values
predicted by the model to the performance values measured
by the simulator. Fig. 6 shows the simulated performance

results and the performance predicted by the analytical model
for the different workloads. For each simulation run, we plot

a data point whose x coordinate reflects the average number
of available threads (running or ready) over all times in the
run, and the y coordinate reflects performance in the same

run. Fig. 6 also shows the average cache hit rate extracted
from simulations for each applications, as a function of the

number of threads. The ratio of memory instructions, rm, for
each of the benchmarks is given in Table 4. We found that for
all considered workloads, rm is practically the same for any

number of threads the workload is parallelized to.
We observe that the analytical model predicts performance

accurately for our target applications, namely, symmetric,

parallel workloads. This essentially shows that we can
represent a workload very accurately using three numbers – n,

Phit, and rm, and that our analytical model, despite being sim-
ple, effectively captures the interplay of these three parame-
ters with the architecture. Moreover, the close correspon-

dence between the model and the simulations also shows that
using average values of hit rate and compute-to-memory ratio

is a reasonable approximation in most cases. For asymmetric
workloads like bodytrack, where the workload parameters
vary in space (i.e., at different threads) and in time, our analy-

sis is less accurate. We note that a more detailed simulator
might well amplify the deviation of the model prediction from
the simulation results. Nevertheless, such deviations would

not undermine our qualitative study, which does not seek to
obtain quantitative expected performance numbers on any

given hardware.
We further see that the PARSEC workloads span the range

of behaviors depicted in Fig 3. Some workloads (black-

scholes, swaptions - financial workloads) exhibit a valley-like
shape. Indeed, as can also be seen in Fig 6, both incur super-

linear degradations in their hit rates as the number of threads
increases. The two workloads, however, differ in the gradient

of their performance growth in the multithreading effective
zone: being more compute-intensive, blackscholes climbs

faster than swaptions, gaining more performance out of every
additional thread. The higher compute intensity and better
locality allow blackscholes to also reach a higher peak in the

cache zone compared to swaptions. In fact, blackscholes fully
utilizes all execution units of the simulated machine in the

cache effective zone (hence the plateau in its peak).
On the other hand, raytrace (a graphics workload) does not

exhibit a valley. Indeed, its performance continues to increase

with every additional thread. This is because, as Fig. 6 also
shows, its cache hit rate degrades sub-linearly, thanks to ex-

tensive data sharing among threads.

Other workloads, like canneal (simulated annealing) and
dedup (compression workload) can only operate in the cache

efficiency zone due to their limited scalability. Despite
spawning numerous threads when running these benchmarks,
we could not get more than 250-300 of their threads to run (or

be ready to run) concurrently. Notice that this limited scala-
bility is not due to the overhead of the synchronization primi-

tives themselves, but rather due to true dependencies among
threads, which block waiting for each other.

D. Performance as a function of hardware parameters

While in Section IV we study how workloads parameters
affect the shape of the performance curve, we now study how

Fig. 6. Performance vs. number of available threads as extracted from simulation and as predicted by the analytical model with actual workload parameter
values. The figures also show the average hit rate for each workload. We see that when instantiated with benchmark-specific parameter values, the analytical
model provides a very accurate prediction of performance for most benchmarks; this implies that benchmark parameters vary very little both in space and in
time during their parallel phase. One exception is bodytrack, where the number of active threads varies greatly in time, and hence our analysis, although still
predicting the general trend, does not closely match the simulation results. We further observe that in embarrassingly parallel workloads like blackscholes

and swaptions, (financial workloads) the valley shape is clearly exhibited, with a steep climb in the former and a mild climb in the latter. Other workloads,
like canneal (simulated annealing) and dedup (compression), are not sufficiently scalable to climb out of the valley and benefit from the MT zone. Lastly,
workloads like raytrace do not descend into a valley, and present better performance as more threads are spawned.

a given workload behaves across different machines. We take

blackscholes as a real example and use its real characteristics
(i.e., rm, and P(S$,n)) as extracted from simulations.

Fig. 7(a) presents the behavior of blackscholes for ma-
chines with different cache sizes. Naturally, larger caches are
able to extend the cache efficiency zone up and to the right.

Less intuitive is the fact that caches are also crucial in the
multithreading zone. Notice that for larger caches, the peak

achievable in that region is higher. This is because the
achievable performance via the use of multithreading is li-
mited by the machine bandwidth. Larger caches are able to

better reduce the pressure on the external memory, therefore
hindering the point of bandwidth saturation longer.

Fig. 7(b) presents the behavior of blackscholes over ma-
chines with different memory latencies. We see that longer
latencies reduce the rate of the climb in the multithreading

zone, since more threads are needed to mask the longer laten-
cies to memory. Since the memory latency wall is only get-

ting worse [2], caches will become even more critical in the
future, as gaining performance out of multithreading will be-
come increasingly hard.

VI. CONCLUSIONS

This paper sought to shed some new light on the two fun-
damental approaches to achieving high-performance in the
multi-core era, namely caching and aggressive multi-

threading. To this end, we presented a simple closed-form
model, validated by simulations. To the best of our know-

ledge, ours is the first analytical model to account for both
memory-masking techniques. As such, our model captures
current architectures that employ either one of the approach-

es, as well as novel high performance engines, like Nvidia's
Fermi, which leverage both.

Our model facilitates reasoning about complex phenomena

that arise when both approaches are in play. We used it in a
qualitative study of representative workloads on characteristic

high-performance architectures. We observed that as the
number of threads scales up, different benchmarks exhibit
very different performance curves. In some cases, perhaps

counter-intuitively, performance is not monotonic with the
number of threads.

Finally, we believe that our model can direct further re-
search on ways to address the memory wall problem in high-
performance engines.

VII. REFERENCES

[1] General-Purpose Computation Using Graphics Hardware,
http://www.gpgpu.org/

[2] M. V. Wilkes, “The memory gap,” Keynote address, Workshop on

Solving the Memory Wall Problem, ISCA 2000.
[3] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, et al., “Larrabee: a

many-core x86 architecture for visual computing,” SIGGRAPH 2008.
[4] NVIDIA GeForce series GTX280, 8800GTX, 8800GT,

http://www.nvidia.com/geforce
[5] ATI Mobility RadeonTM HD4850/4870 Graphics-Overview,

http://ati.amd.com/products/radeonhd4800
[6] "NVIDIA’s next generation CUDA compute architecture: Fermi,"

Nvidia Corporation, 2009.
[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark

suite: characterization and architectural implications,” PACT 2008.
[8] A. Agrawal, “Performance tradeoffs in multithreaded processors,”

IEEE Trans. on Parallel and Distributed Systems, 1992.
[9] R. H. Saavedra-Barrera, and D. E. Culler, “An analytical solution for a

markov chain modeling multithreaded,” technical report CSD-91-623,
UC Berkeley, 1991.

[10] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A. Wood,
“Analytic evaluation of shared-memory systems with ILP processors,”
ISCA 1998.

[11] S. Hong and H. Kim, "An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness," ISCA 2009.

[12] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W. –M.
Hwu, "An adaptive performance modeling tool for GPU architectures,"
PPoPP 2010.

[13] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C.
Weiser, "Many-Core vs. Many-Thread machines: stay away from the
valley," Computer Architecture Letters, vol. 8, April 2009.

[14] M. Bhadauria, V. M. Weaver, and S. A. McKee, "Understanding
PARSEC performance on contemporary CMPs," IISWC-2009.

[15] C. Bienia, S. Kumar, and K. Li, “PARSEC vs. SPLASH-2: a quantita-
tive comparison of two multithreaded benchmark suites on chip-
multiprocessors,” IISWC-2008.

[16] "Opencl - the open standard for parallel programming of heterogeneous
systems," http://www.khronos.org/opencl, 2009.

[17] G. Diamos, A. Kerr, and M. Kesavan, "Translating GPU binaries to
tiered SIMD architectures with Ocelot," technical report GIT-CERCS-
09-01, Georgia Institute of Technology, 2009.

[18] “CUDA Programming Guide 2.0,” Nvidia Corporation, 2008.
[19] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N. Mudge, “An ana-

lytical model for designing memory hierarchies,” IEEE Transactions

on Computers, vol. 45, no 10, October 1996.
[20] C. K. Chow, “Determination of cache's capacity and its matching

storage hierarchy,” IEEE Transactions on Computers, vol. c-25, 1976
[21] "The MTM$im Simulator," unpublished.
[22] C.K. Luk, R. Cohn, R. Muth, et al., “Pin: building customized program

analysis tools with dynamic instrumentation,” PLDI 2005.
[23] J. Moses, K. Aisopos, A. Jaleel, et al., "CMPSched$im: evaluating

OS/CMP interaction on shared cache management," ISPASS 2009.
[24] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, et al.,

"Multifacet's general execution-driven multiprocessor simulator
(GEMS) toolset," SIGARCH Computer Architecture News, Vol. 33,
No. 4, November 2005.

Fig. 7. Performance of the blackscholes workload across machines with (a) different cache sizes, and (b) different memory latencies.

