
 

Abstract — A new generation of high-performance engines 

now combine graphics-oriented parallel processors with a cache 

architecture. In order to meet this new trend, new highly-

parallel workloads are being developed. However, it is often 

difficult to predict how a given application would perform on a 

given architecture.  

This paper provides a new model capturing the behavior of 

such parallel workloads on different multi-core architectures.  

Specifically, we provide a simple analytical model, which, for a 

given application, describes its performance and power as a 

function of the number of threads it runs in parallel, on a range 

of architectures. We use our model (backed by simulations) to 

study both synthetic workloads and real ones from the 

PARSEC suite. Our findings recognize distinctly different be-

havior patterns for different application families and architec-

tures. 

I. INTRODUCTION 

Nowadays, high-performance engines– GPUs and similar 

accelerators– are becoming increasingly popular. Such en-
gines serve the mounting computation needs of high-

throughput and graphics-processing applications. Meanwhile, 
the body of applications targeted for such throughput-oriented 
machines continues to enlarge: the term GPGPU   [1] reflects a 

broadening of the focus to include not only graphics, but also 
a wide range of highly-parallel applications.  

As memory access is a principal bottleneck in current-day 
computer architectures  [2], a key enabler for high perfor-
mance is masking the memory overhead. Today’s high-

performance engines employ two design principles to over-
come memory related issues: The first is based on a cache 
architecture that takes advantage of locality of references to 

memory. Intel's Larrabee  [3] is a prominent example of this 
approach. The second approach uses aggressive multithread-

ing so that whenever a thread is stalled, waiting for data, the 
system can efficiently switch to execute another thread. This 
approach is heavily used in current graphics processing en-

gines such as Nvidia's GT200  [4] and AMD/ATI's Radeon 
R700  [5], which  manage thousands of in-flight threads con-

currently. Moreover, we now see the emergence of systems, 
like Nvidia’s Fermi  [6], that employ both approaches by 
combining large caches with numerous in-flight threads.  

Since such a combination of two very different approaches 
is used to overcome the memory bottleneck, performance 

prediction becomes non-intuitive and challenging. The extent 
to which an application will benefit from either approach de-
pends on many architecture and workload parameters. More-

over, the relative impact of caching compared to multi-
threading changes as the number of threads scales up. This 

complex behavior, in turn, poses a challenge for architecture 

designers, who need to allocate the limited on-die resources 
to cores, thread contexts, and caches. Finally, given a diversi-
ty of already available high-performance architectures, there 

is the question of which is the best fit for a given workload.  
This paper addresses these challenges by developing a 

simple, high-level, closed-form model that captures both the 

architecture and the application characteristics (see Section 
 III). The modeled machine uses a parameterized combination 

of both mechanisms for memory latency masking, and can 
thus capture a range of machines, rendering the comparison 
between them meaningful. The workload model, in turn, cap-

tures the salient properties of the program, which allows one 
to predict which architecture is most beneficial for it. All the 

parameters— capturing both architecture and workload— can 
be used as ''knobs'' for studying a wide range of scenarios, in 
order to comprehend the interplay among multiple parameters 

in a clean, qualitative way. The model thus serves as a vehicle 
to derive intuitions.  

 In Section  IV, we study how different properties of an ap-
plication affect performance and power. We identify three 
families of workloads with distinct behavior patterns:  While 

some workloads have a clear affinity towards either caching 
or multi-threading, others can benefit from both. Moreover, 
some workloads exhibit an unintuitive "valley" between the 

cache efficiency zone and the thread efficiency zone, where 
performance takes a dip.  

In Section  V we back our analytical model by simulations. 
Our results indicate that the simple, closed-form model of 
Section  III can, in most cases, predict dynamic behavior, and 

can thus be used to select the most efficient hardware struc-
ture for executing a given program. Whereas Section  IV con-

centrates on synthetic workloads, Section  V studies work-
loads from the PARSEC benchmark suite  [7], and shows that 
the three distinct behaviors observed in Section  IV are indeed 

present in real workloads.  
To summarize, our contributions are as follows: 

• We present a simple closed-form model for systematical-

ly reasoning about complex phenomena; the model cap-
tures the behavior of parallel workloads on high perfor-

mance engines that employ any combination of caching 
and aggressive multi-threading. 

• We conduct a qualitative study of the inherent tradeoffs 

between the two approaches for memory access mask-
ing, and their sensitivity to a range of parameters. Our 
study yields non-intuitive observations regarding the 

impact of architectural choices and workloads characte-
ristics on performance and power. 
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• We validate our model via simulation of real workloads. 
Finally, we believe that our model can direct further re-

search on ways to address the memory wall problem in high-
performance engines.  

II. RELATED WORK 

Though there are many existing analytical models for pro-

cessors’ performance, they mostly concentrate on a single 
family of processors (either multi-core, multi-thread, GPU, 
etc.), and thus on one of the two paradigms – either caching 

or multithreading. For example, previous analytical models 
that analyzed caching in multi-threaded processors  [8] [9] [10] 

considered only a small thread count, and hence are not ap-
plicable for machines that manage thousands of in-flight 
threads. Previous models for GPU machines  [11] [12], have 

not considered large caches, and hence are not applicable for 
machines where caches are a key factor in determining per-
formance. To the best of our knowledge, our model is the first 

to specifically target the interplay of the two paradigms and is 
the first to model both via a single, unified model that enables 

a clean comparison across the design space of the new gener-
ation of high performance engines.  

In a preliminary work  [13] we presented the core of the 

analytical model and the existence of a valley-like behavior. 
In Section  III, we extend this model with power equations and 

account for performance-power tradeoffs. Unlike  [13], we 
study real benchmarks, and refine our initial observations by 
identifying three distinct types of workload behaviors with 

different performance curves. Additionally, unlike  [13], we 
use simulations to validate the theoretical model. 

Previous characterizations of the PARSEC benchmark 
suite  [7] [14] [15] concentrate on machines with significantly 
fewer cores than we do, and parallelization only up to 32 

threads. We push multi-threading as well as the number of 
computation units to the hundreds. 

III. THE ANALYTICAL MODEL  

In order to study the basic tradeoffs of caching and multith-

reading over the range of high performance engines and ap-
plications, we use a high-level, abstracted model that can cap-
ture both mechanisms. This abstraction enables us to derive 

specific instances for different machines from the same uni-
fied framework in a way that renders the comparison mea-

ningful. To enable elementary reasoning of the basic tra-
deoffs, we purposely use a simple, first-order model. Indeed, 
the model can be augmented to account for various additional 

effects, but this should come second to the basic tradeoff of 
caches vs. threads captured in this paper. 

While different architectures may differ in their program-
ming model, we do not consider programming issues here. 
Rather, we assume that the same applications can be mapped 

to different engines across the range; frameworks like 
OpenCL  [16] and Ocelot  [17] are expected to allow for such 
cross-platform mappings. The different models, however, are 

commonly described using different terminologies, which can 
be confusing. Our terminology follows the one used in multi-

threaded programming models like CUDA  [18], where a 

thread is a basic execution stream that processes a single data 
element. A processing element (PE) is a processing unit that 

processes a single such light-weight thread at a time; CUDA 
also uses the term Streaming Processor (SP) for a PE. In pro-

gramming models like Larrabee Native  [3], each core ex-
ecutes a SIMD instruction that processes several (e.g., 16) 
data elements at the same time. Thus, in our terminology, a 

Larrabbe core is composed of 16 PEs, which can execute 16 
threads at a time. (Note that our notion of threads is different 
from traditional operating systems threads; such light-weight 

threads are called strands in Larrabee Native.) 

A. Hardware and Workload Model  

Our abstracted machine includes an array of NPE processing 
elements and a large on-chip shared cache of size S$. For 
simplicity, we only model the shared cache (L2/L3), and con-

sider local L1 caches, if they exist, to be part of the 
processing element. In addition, the machine includes a regis-

ter file for storing the contexts of up to Nmax in-flight threads; 
we assume that this is the maximum number of threads run-
ning concurrently. We consider simple, in-order PEs, for 

which the average number of cycles required to execute an 
instruction is CPIexe (assuming a perfect, zero-latency memo-
ry system). We assume that the machine is symmetric; hence 

all PEs run at the same frequency f. The on-chip cache laten-
cy is t$, while the off-chip memory can be accessed at a laten-

cy of tm cycles, and a bandwidth of BWmax, where each ope-
rand's size is breg. The parameters are summarized in Table 1. 

Table 1. Hardware Parameters. 

Parameter Description 

NPE Number of PEs (in-order processing elements) 

S$ Cache size [Bytes] 

Nmax Maximal number of thread contexts in the regis-
ter file 

CPIexe Average number of cycles required to execute an 
instruction assuming a perfect (zero-latency) 
memory system [cycles] 

f Processor frequency [Hz] 

t$ Cache latency [cycles] 

tm Memory latency [cycles] 

BWmax Maximal off-chip bandwidth [GB/sec] 

breg Operands size [Bytes] 
 

Clearly, the characteristics of the workload have a great 
impact on the attainable performance. Recall that our focus is 

on data-parallel workloads which can be parallelized to nu-
merous independent threads. For benchmarks in this general 

family, there are three key parameters that impact perfor-
mance: (1) the scalability of the workload, captured by the 
number of threads that can execute (or be ready to execute) 

concurrently, n; (2) the compute intensity of the workload, 
captured by the ratio of memory instructions out of the total 
number of instructions, rm; and (3) the locality of the work-

load, captured by the thread cache hit rate function, Phit(s, n), 
where s is the cache size and n is the number of threads that 

share the cache. Note that the latter captures the hit rate in the 
shared (L2/L3) cache; a high hit-rate in the L1 cache, if such 
exists, is manifested as a higher compute-to-memory ratio. 

The workload characteristics are summarized in Table 2. 



 

Table 2. Workload Parameters. 

Parameter Description 

n Number of threads that execute or are in ready 
state (not blocked) concurrently 

rm Fraction of instructions accessing memory out of 

the total number of instructions [ 0 1mr≤ ≤ ] 

Phit(s, n) Cache hit rate for each thread, when n threads 
are using a cache of size s  

B. Performance and Power Equations 

We now use the parameters defined in Table 1 and Table 2 
to analyze expected performance. In this context, we make 

the simplifying assumption that the workload parameters are 
fairly static, and do not vary much over time or space (i.e., at 

different threads of the same application). We therefore use 
their average values in the equations below. When validating 
our analysis using simulations (Section  V.C), we shall see that 

this assumption holds for most of the benchmarks considered, 
with few exceptions.  

Given each thread’s cache hit rate function and the cache 

and memory latencies as defined in Section  III.A, we can 
compute the average number of cycles needed for data access, 

denoted tavg:  
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Any given thread needs to stall once every 1/rm instructions 

on average, and wait until the data it accesses is received 
from memory. During this stall time, the PE is left unutilized, 

unless other threads are available to switch-in. The number of 
additional threads needed to fill the PE’s stall time is 
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The minimum in (2) captures the fact that after all execu-

tion units are saturated, there is no gain in adding more 
threads to the pool. If we ignore bandwidth limitations, the 

expected performance is simply 
PE

exe

N
f

CPI
η⋅ ⋅   OPS (Op-

erations Per Second).  
However, since bandwidth to external memories is limited, 

this performance level cannot always be reached. In fact, off-
chip bandwidth is a principal bottleneck that often limits per-

formance.  For a given workload, a given number of threads, 
and given performance (in OPS), the off-chip bandwidth gen-
erated can be expressed as:  

( )$1 ( , )
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BW Performance r b P S n= ⋅ ⋅ ⋅ −  (3) 

Hence, given an off-chip bandwidth limit BWmax, the max-

imal performance achievable by the machine is 
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expressed using the following equation: 
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 (4) 

With power and energy consumption becoming key factors 

in practically all modern computer systems, performance un-

der a given power envelope and power efficiency become 

primary design targets. Power consumption can be modeled 

as Powerleakage+Performance·EPI, where Performance is giv-

en by (4), and EPI is the average consumption of Energy Per 

Instruction. Using the notations in Table 3, power consumed 

can be expressed using the following equation: 
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Notice that as the number of concurrent threads grows, the 

hit rate for each of them degrades, and thus more accesses are 

served from memory. Since memory access is significantly 

more energy-costly than access to the on-die cache, the EPI 

increases with the number of threads. This effect is more sig-

nificant for architectures which achieve their performance via 

a very high thread count. 

Table 3. Hardware Power Parameters. 

Parameter Description 

eex Energy per operation [j] 

e$ Energy per cache access [j] 

emem  Energy per memory access [j] 

Powerleakage Leakage power [W] 

IV. PERFORMANCE AND POWER CURVE STUDY 

In this section we study how various workload characteris-

tics affect the performance (Section  A) and power (Section  B) 

curves. For this study, we use an example machine consisting 

of 1024 PEs and a 16MB cache. The machine supports up to 

Nmax = 65536 in-flight threads and runs at a frequency of 

1GHz with a CPIexe of 1 cycle. The machine requires 1 cycle 

to access its on-chip cache and 200 cycles to access off-chip 

memory, whose bandwidth is 200GB/sec. We assume single 

precision calculation (i.e., an operand size of 4 bytes).  

We begin with synthetic workloads to enable a clean study 

of trends and the effect of different parameters on the perfor-

mance plot. These will be replaced with real workloads in 

Section  V. We use the next simple cache hit rate function, 

first suggested by Jacob et al.  [19]:  
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This function is based upon the well known empirical pow-

er law from the 70’s (also known as the 30% rule or the √2 

rule)  [20]. In (6), workload locality increases when increasing 

α or decreasing β. The parameter β also accounts for the de-

gree of sharing among the threads: in case much of the cache 

is shared, each thread can utilize a larger portion of the cache, 

which is represented by a small value of β. 



 

A. Performance Curve Study  

1) Parameters Sensitivity: Fig. 1 shows the performance 

vs. the number of threads, n, available in the workload, for 
synthetic benchmarks with different cache hit ra

(i.e., data locality).  
In Fig. 1, three performance regions are clearly evident: In 

the leftmost region, as long as the cache capacity can effe

tively serve the growing number of threads, increasing the 
number of threads improves performance,

utilized. This is the cache-efficiency zone

cache becomes too small for the growing stream of access 
requests, so memory latency is no longer masked by the cache 

and performance improves more moderately, or even takes 
dip into a valley. As the number of available threads 

increases, the multithread efficiency zone

reached, where adding more threads improves performance 
up to the maximal performance of the machine, or up to the 

bandwidth wall. In Section  B we show that 
tions also limit the achievable peak. Only scala
with a high enough number of independent

fit from this region. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Performance vs. number of threads for benchmarks with different 

cache hit rate functions (Phit(s,n)), increasing from 0 (no cache) to 1 (a 

perfect cache), rm=0.1. Performance increases with increased locality, esp

cially in the cache efficiency zone. 
 

Fig. 1 shows that workloads with higher locality better e
ploit the cache and hence expand the cache efficiency zone 

the right and up. Workloads with poor locality cannot utili
the cache and hence gain performance only from increase in 
their thread level parallelism. Moreover, the shape of the pe

formance curve depends on how fast the cache hit rate d
grades as a function of the number of threads: The valley o

curs whenever the degradation in cache hit rate is of the form 
(1 )

n
ε+

 for some positive ε, representing a super

dency of the hit rate degradation in the number of thread

(This degradation rate can be computed by deriving the pe
formance formula (4) as a function of n

this condition is not met (e.g., in the dark
α=3.5, β=13), there is no valley between the 

Another point to notice in Fig. 1 is that, once the ban

width requirements exceed the capacity, 
starts to degrade. This happens because 

number of threads— the more in-flight threads there are, the 
less cache is available to each of them. Therefore, when the 
off-chip bandwidth wall is met, adding more threads only 

degrades performance due to increasing off

shows the performance 

, available in the workload, for 
fferent cache hit rate functions 

, three performance regions are clearly evident: In 
, as long as the cache capacity can effec-

tively serve the growing number of threads, increasing the 
number of threads improves performance, as more PEs are 

efficiency zone. At some point, the 
cache becomes too small for the growing stream of access 
requests, so memory latency is no longer masked by the cache 

improves more moderately, or even takes a 
s the number of available threads again 

multithread efficiency zone (on the right) is 
improves performance 

up to the maximal performance of the machine, or up to the 

we show that power considera-
Only scalable workloads 

with a high enough number of independent threads can bene-

for benchmarks with different 

)), increasing from 0 (no cache) to 1 (a 

increases with increased locality, espe-

that workloads with higher locality better ex-
cache efficiency zone to 

the right and up. Workloads with poor locality cannot utilize 
gain performance only from increase in 

Moreover, the shape of the per-

formance curve depends on how fast the cache hit rate de-
grades as a function of the number of threads: The valley oc-

e degradation in cache hit rate is of the form 

, representing a super-linear depen-

dency of the hit rate degradation in the number of threads. 

(This degradation rate can be computed by deriving the per-
n). We see that when 

dark-gray solid curve; 
), there is no valley between the two regions.  

is that, once the band-

, performance actually 
because Phit is affected by the 

flight threads there are, the 
less cache is available to each of them. Therefore, when the 

chip bandwidth wall is met, adding more threads only 

degrades performance due to increasing off-chip pressure.  

Fig. 2 shows how the compute intensity of the
fects the shape of the performance plot. When there are more 

computation instructions per memory access, (a smaller 
performance climbs more steeply with additional threads. 
This is because as more instructions are available for each 

memory access, fewer threads are needed to fill the stall time 
resulting from waiting for memory. Thus, compute
applications can reach peak performance with less parallelism

and smaller bandwidth requirements. 
pute/memory ratio decreases the need both for caches and 

scaling the application to many
 

 

 

 

 

 

 

 

 

 
Fig. 2. Performance in a limited BW environment for benchmarks with 

different percentages of memory instructions (

increases with the compute intensity, i.e., as 
 

2) Workloads Families: Looking at the curves of Section 

IV.A.1, we observe that, by
three different behavior patterns depending on their pa
ters. Fig. 3 schematically plot

before the bandwidth saturation point)
(Section  V) will later validate that
vior can be found in “real” workloads

 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Performance curve for the 3 types of workloads: (A) Workloads with 
a constant hit-rate in the cache exhibit linearly increasing performance (the 
slope depends on the hit rate), (B) workloads exhibiting a nonlinear but 
monotonically increasing performance (their hit
more and more threads share the cache), (C) workloads exhibiting a pe
formance valley (their hit rate is shar
more and more threads). 
 

The Performance of workloads of class A (dashed line) 

grows linearly with the number of threads. 
have a constant cache hit rate which is indepen

number of threads. This may happen for example due to poor 
locality (light-gray dashed curve
one extreme case, or due to full sharing of data among all 

threads (assuming all data is 
the other extreme case. Workloads of this 

use either classic multithreading
architectures, depending on their (constant) cache hit

shows how the compute intensity of the workload af-
fects the shape of the performance plot. When there are more 

computation instructions per memory access, (a smaller rm), 
performance climbs more steeply with additional threads. 
This is because as more instructions are available for each 

access, fewer threads are needed to fill the stall time 
resulting from waiting for memory. Thus, compute-intense 
applications can reach peak performance with less parallelism 

and smaller bandwidth requirements. All in all, a high com-
eases the need both for caches and for 

many threads. 

. Performance in a limited BW environment for benchmarks with 

different percentages of memory instructions (rm), α=7, β=50. Performance 

increases with the compute intensity, i.e., as rm decreases. 

Looking at the curves of Section 

.1, we observe that, by-and-large, workloads exhibit 
three different behavior patterns depending on their parame-

schematically plots these three examples (stopping 

before the bandwidth saturation point). Simulation results 
date that all three classes of beha-

be found in “real” workloads. 

 

Performance curve for the 3 types of workloads: (A) Workloads with 
rate in the cache exhibit linearly increasing performance (the 

slope depends on the hit rate), (B) workloads exhibiting a nonlinear but 
monotonically increasing performance (their hit-rate is mildly reduced as 
more and more threads share the cache), (C) workloads exhibiting a per-
formance valley (their hit rate is sharply reduced as the cache is shared by 

he Performance of workloads of class A (dashed line) 

grows linearly with the number of threads. These workloads 
have a constant cache hit rate which is independent of the 

is may happen for example due to poor 
curve in Fig. 1, hit rate = 0%) in 

one extreme case, or due to full sharing of data among all 

threads (assuming all data is cached, black curve in Fig. 1) in 
Workloads of this class can efficiently 

use either classic multithreading-based or classic cache-based 
architectures, depending on their (constant) cache hit-rate. 



 

The other two workload classes present non-linear be-
havior. Both have an operation zone where the cache is more 
effective and an operation zone where multithreading is more 

effective, but they differ in the area between these two zones. 
Workloads of class B (solid line) exhibit a monotonically 

increasing performance. They are characterized by a sub-
linear degradation of their cache hit rate function in the num-
ber of threads. The transition from the cache effective zone to 

the multi-threading effective zone does not incur a perfor-
mance lose but rather a reduced rate of performance im-

provement. Workload of this class will perform better with 
aggressive multi-threading - at least in an unrestricted envi-
ronment where no memory or bandwidth constraints exist. 

Workloads of class C (dotted line) present a valley-like be-
havior, and are characterized by a super-linear degradation of 
the hit rate in the number of threads. Optimizing the architec-

ture for such workloads is especially challenging, because by 
trying to leverage a combination of the two approaches, these 

workloads might end up in a performance zone inferior to 
their achievable peaks either in cache-only or multithreaded-
only architectures.  

Lastly, note that the x axis, n, represents the number of 
threads that can actually run at a time, and does not include 

ones that are blocked, either on I/O or on synchronization. In 
workloads with extensive synchronization or I/O activity, n 
will be limited, so the plotted performance curve will be 

pruned somewhere along the x axis. Likewise, recall that the 
achievable peak in the multithread zone is limited by the max-

imal bandwidth (as seen in Fig. 1) and, as we show next (in 
Section  B), by the engine's power envelope.  

B. Power Efficiency and Power Envelope  

In the following study of power costs, we take as an exam-
ple an energy per operation (eex) of 0.1nJ, and factors of 5 and 

50 for accesses to cache (e$) and memory (emem), respectively. 
We note that this is only one such example; using the analyti-
cal model, other ratios can be plugged in to derive results. 

 The performance versus power tradeoff is typically studied 
using one of the following two efficiency metrics: the norma-

lized power consumption per instruction, which is captured 
by Performance/Power, or energy·delay which is captured by 
Performace2/Power.  Fig. 4 presents these two metrics for the 

benchmarks of Fig. 2. We see that in terms of Perfor-

mance/Power metric (Fig. 4(a)), using caches is always pre-

ferable as they enable serving most of the data accesses from 
the cache rather than memory. For the more performance-
oriented metric (Fig. 4(b)), some of the workloads favor cach-

ing, whereas others favor multithreading. For example, for the 
dark-gray dashed curve (rm=0.2), the performance boost via 

multithreading comes at too high a power toll, and hence 
caching is the preferable approach in this case. For the light-
gray solid curve (rm=0.05), the performance boost from mul-

tithreading exceeds the increase in power consumption, and 
hence multithreading is the favorable approach.  

The results above were obtained assuming that power con-
sumption is not constrained. In practice, however, machines 
have a limited power envelope under which they need to func-

tion. Fig. 5 assumes a power envelope of 300 Watts, and revi-
sits the performance curve of Fig. 2 under this constraint.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Performance under a power envelope of 300 Watts, α=7, β=50. 
Power constraints limit performance achievable via the use of multithread-
ing since it increases the frequency of accesses to main memory, which are 
more expensive in terms of power. 
 

Recall that increasing the number of threads increases the 
energy spent on each instruction. Thus, the number of threads 
that can be run within a given power envelope is bounded, 

and the achievable performance in a limited power environ-
ment is smaller than the theoretical (unconstrained) peak per-

formance of the machine.  
In Section  III.B we saw that for highly parallel workloads, 

the best performance can be achieved by a high thread count, 

which provided the motivation for aggressively multi-
threaded machines with simple cores and no caches. Never-

theless, we now see that this approach is limited by power 
constraints, and that caches can help reduce the energy costs 
per instruction, especially for workloads with good locality 

properties. This is part of the reason why new GPU engines 
incorporate more on-chip memory than in the past. 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Efficiency metrics: (a) Performance/Power (1/EPI) and (b) Performance2/Power (1/(energy·delay)) of the unified machine, α=7, β=50 . The former 
is always better in the cache efficiency (left hand) zone, whereas for the latter, the favorable archetype varies according to the workload characteristics. 



 

V. PERFORMANCE SIMULATION 

A. Simulator 

We use an in-house simulator, MTM$im  [21], specifically 

designed for simulating graphics-oriented architectures with 
numerous cores. MTM$im uses the Pin binary instrumenta-
tion tool  [22]. It models a highly multi-threaded machine with 

a parameterized number of cores and a large shared cache (of 
parameterized size). Each core is a simple processing ele-

ment, such that every instruction takes a predefined number 
of cycles to execute unless it accesses the memory hierarchy. 
MTM$im implements a shared last level cache and parame-

ters define the latencies for memory access in cases of hit or 
miss. The simulated machine saves a large number of thread 
contexts, (typically significantly larger than the number of 

cores), such that when one thread is blocked on memory 
access (i.e., cache miss), another thread is swapped in and 

utilizes the machine. We use a simple round-robin scheduling 
policy among all available threads.  

MTM$im decouples timing/scheduling of each instruction 

from its functional implementation. The simulated machine 
engine determines when every instruction of every thread is 

executed via its timing model, and uses Pin only to determi-
nate what each instruction does. Since the timing simulator 
determines when each thread advances, this approach cap-

tures dynamic and transient time-dependent effects such as 
fine-grained data sharing, thread synchronization, and in gen-
eral, inter-thread communication and inter-thread interactions. 

It further exposes dynamic variability within the benchmark, 
which is not captured by our analytical model. CMPSched$im 

 [23] and GEMS  [24] both take the same approach of decupl-
ing simulation functionality and timing. 

B. Workload and System Parameters 

We study workloads from the PARSEC benchmark kit  [7], 
concentrating on those with relatively high scalability: black-

scholes, raytrace, swaptions, canneal, dedup, and bodytrack. 
(Since we are interested in pushing the number of threads to 
hundreds, we leave out benchmarks from the kit that either 

have very limited scalability, or that cannot be spawned with 
hundreds of threads  [7] [14].) We chose the PARSEC kit be-

cause it represents emerging workloads, specifically modeling 
future CMP applications  [15]. The PARSEC kit is more di-
verse than traditional parallel workload suites, which focused 

more narrowly on high-performance computing. We run all 
workloads using the simmedium inputs, and vary the number 
of instantiated threads from 1 up to around 2000 or to the 

point where adding threads is no longer effective. (We have 
limited the number of threads to 2000 due to the excessive 

memory requirements of the Pin tool when simulating such a 
large number of threads.) Note that the actual number of 
available threads, n, is often lower than the number of instan-

tiated threads, because threads are sometimes blocked due to 
synchronization or system calls. For all workloads and all 

runs, we fast forward through the initialization phase of the 
benchmark, and sample only the parallel phase where all 
threads have been spawned.  

Note that even scalability to hundreds of threads falls short 

of the futuristic values used in the synthetic model above. To 
capture the performance trends within the much smaller simu-

lated range, we scale down the machine parameters, to 128 
PEs and a 4MB shared cache. Cache hit time is 1 cycle and 

memory latency is 200 cycles. The number of in-flight thread 
contexts is set to 10000 so that it is not a limiting factor. 

C. Results  

Table 4. Memory instruction ratios (rm) for PARSEC's workloads. 

Benchmark Percent Of Memory Instructions (100·rm) 

blackscholes 32.72 

swaptions 43.26 

raytrace  64.19 

dedup 36.55 

canneal 34.23 

bodytrack 29.33 
 

In order to validate our analytical study, we extract the ac-
tual average workload parameters (effective number of 

threads n, hit rate Phit, and compute/memory ratio rm). We 
then substitute these values in the equations of the analytical 

model (Section  III.B), and compare the performance values 
predicted by the model to the performance values measured 
by the simulator. Fig. 6 shows the simulated performance 

results and the performance predicted by the analytical model 
for the different workloads. For each simulation run, we plot 

a data point whose x coordinate reflects the average number 
of available threads (running or ready) over all times in the 
run, and the y coordinate reflects performance in the same 

run. Fig. 6 also shows the average cache hit rate extracted 
from simulations for each applications, as a function of the 

number of threads. The ratio of memory instructions, rm, for 
each of the benchmarks is given in Table 4. We found that for 
all considered workloads, rm is practically the same for any 

number of threads the workload is parallelized to.  
We observe that the analytical model predicts performance 

accurately for our target applications, namely, symmetric, 

parallel workloads. This essentially shows that we can 
represent a workload very accurately using three numbers – n, 

Phit, and rm, and that our analytical model, despite being sim-
ple, effectively captures the interplay of these three parame-
ters with the architecture. Moreover, the close correspon-

dence between the model and the simulations also shows that 
using average values of hit rate and compute-to-memory ratio 

is a reasonable approximation in most cases. For asymmetric 
workloads like bodytrack, where the workload parameters 
vary in space (i.e., at different threads) and in time, our analy-

sis is less accurate. We note that a more detailed simulator 
might well amplify the deviation of the model prediction from 
the simulation results. Nevertheless, such deviations would 

not undermine our qualitative study, which does not seek to 
obtain quantitative expected performance numbers on any 

given hardware. 
We further see that the PARSEC workloads span the range 

of behaviors depicted in Fig 3. Some workloads (black-

scholes, swaptions - financial workloads) exhibit a valley-like 
shape. Indeed, as can also be seen in Fig 6, both incur super-

linear degradations in their hit rates as the number of threads 
increases. The two workloads, however, differ in the gradient 



 

of their performance growth in the multithreading effective 
zone: being more compute-intensive, blackscholes climbs 

faster than swaptions, gaining more performance out of every 
additional thread. The higher compute intensity and better 
locality allow blackscholes to also reach a higher peak in the 

cache zone compared to swaptions. In fact, blackscholes fully 
utilizes all execution units of the simulated machine in the 

cache effective zone (hence the plateau in its peak). 
On the other hand, raytrace (a graphics workload) does not 

exhibit a valley. Indeed, its performance continues to increase 

with every additional thread. This is because, as Fig. 6 also 
shows, its cache hit rate degrades sub-linearly, thanks to ex-

tensive data sharing among threads.  

Other workloads, like canneal (simulated annealing) and 
dedup (compression workload) can only operate in the cache 

efficiency zone due to their limited scalability. Despite 
spawning numerous threads when running these benchmarks, 
we could not get more than 250-300 of their threads to run (or 

be ready to run) concurrently. Notice that this limited scala-
bility is not due to the overhead of the synchronization primi-

tives themselves, but rather due to true dependencies among 
threads, which block waiting for each other. 

D. Performance as a function of hardware parameters 

While in Section  IV we study how workloads parameters 
affect the shape of the performance curve, we now study how 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Performance vs. number of available threads as extracted from simulation and as predicted by the analytical model with actual workload parameter 
values. The figures also show the average hit rate for each workload. We see that when instantiated with benchmark-specific parameter values, the analytical 
model provides a very accurate prediction of performance for most benchmarks; this implies that benchmark parameters vary very little both in space and in 
time during their parallel phase. One exception is bodytrack, where the number of active threads varies greatly in time, and hence our analysis, although still 
predicting the general trend, does not closely match the simulation results. We further observe that in embarrassingly parallel workloads like blackscholes

and swaptions, (financial workloads) the valley shape is clearly exhibited, with a steep climb in the former and a mild climb in the latter. Other workloads, 
like canneal (simulated annealing) and dedup (compression), are not sufficiently scalable to climb out of the valley and benefit from the MT zone. Lastly, 
workloads like raytrace do not descend into a valley, and present better performance as more threads are spawned. 



 

a given workload behaves across different machines. We take 

blackscholes as a real example and use its real characteristics 
(i.e., rm, and P(S$,n)) as extracted from simulations. 

Fig. 7(a) presents the behavior of blackscholes for ma-
chines with different cache sizes. Naturally, larger caches are 
able to extend the cache efficiency zone up and to the right. 

Less intuitive is the fact that caches are also crucial in the 
multithreading zone. Notice that for larger caches, the peak 

achievable in that region is higher. This is because the 
achievable performance via the use of multithreading is li-
mited by the machine bandwidth. Larger caches are able to 

better reduce the pressure on the external memory, therefore 
hindering the point of bandwidth saturation longer.  

Fig. 7(b) presents the behavior of blackscholes over ma-
chines with different memory latencies. We see that longer 
latencies reduce the rate of the climb in the multithreading 

zone, since more threads are needed to mask the longer laten-
cies to memory.  Since the memory latency wall is only get-

ting worse  [2], caches will become even more critical in the 
future, as gaining performance out of multithreading will be-
come increasingly hard. 

VI. CONCLUSIONS  

This paper sought to shed some new light on the two fun-
damental approaches to achieving high-performance in the 
multi-core era, namely caching and aggressive multi-

threading.  To this end, we presented a simple closed-form 
model, validated by simulations. To the best of our know-

ledge, ours is the first analytical model to account for both 
memory-masking techniques. As such, our model captures 
current architectures that employ either one of the approach-

es, as well as novel high performance engines, like Nvidia's 
Fermi, which leverage both. 

Our model facilitates reasoning about complex phenomena 

that arise when both approaches are in play. We used it in a 
qualitative study of representative workloads on characteristic 

high-performance architectures. We observed that as the 
number of threads scales up, different benchmarks exhibit 
very different performance curves. In some cases, perhaps 

counter-intuitively, performance is not monotonic with the 
number of threads. 

Finally, we believe that our model can direct further re-
search on ways to address the memory wall problem in high-
performance engines. 
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Fig. 7. Performance of the blackscholes workload across machines with (a) different cache sizes, and (b) different memory latencies. 

 


