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Abstract—Streaming applications are the subject of growing
interest, as the need for fast access to data continues to
grow. In this work, we present the design requirements and
implementation of coarse-grain value speculation in streaming
applications. We explain how this technique can be useful in
cases where serial parts of applications constitute bottlenecks,
and when slower I/O favors using available prefixes of the
data. Contrary to previous work, we show how allowing some
tolerance can justify early predictions on a scale of a large
window of values. We suggest a methodology for runtime
support of speculation, along with the mechanisms required for
rollback. We present resource management issues consequent
to our technique. We study how validation and speculation
frequencies impact the performance of the program. Finally,
we present our implementation in the context of the Huffman
encoder benchmark, running it in different configurations and
on different architectures.

I. INTRODUCTION

The current computing landscape has changed a good deal
of late. On one hand, many-core CPUs are now common-
place, allowing faster computation of data, particularly on
server installations. On the other hand, the set of applications
produced by developers is growing in scale and complexity,
including an ever-increasing amount of audio and video
content, and in ever-greater definition. As a consequence
of these developments, the streaming model is an increas-
ingly popular programming paradigm. Several languages,
compilers and platforms were developed for this paradigm,
such as StreaMIT [1] and Harmony [2] among others. More
generic platforms such as CUDA [3] and OpenCL[4] also
offer support for the model.

In this paper, we introduce the concept of value specula-
tion in the streaming model. In a streaming framework, tasks
are often defined in advance (e.g., using a data flow represen-
tation), before the data they process is known or available.
Speculation allows us to reduce latency by eliminating the
need to wait for it all, allowing tasks to optimistically start
processing as early as possible based on estimated values of
some of their inputs. Such speculative computations offer an
opportunity to circumvent Amdahl’s Law by optimistically
executing tasks that ought to follow sequential bottlenecks.

For example, consider a program that operates in two
passes over its input; in the first sequential pass, it computes

some statistics over the data, and uses them to define certain
parameters for processing the data in the second parallel
pass. The parameter computation is a serial bottleneck
that cannot be executed before the entire input stream is
available. A speculative version of the program might guess
the parameters based on partial statistics obtained from a
subset of the input, and begin executing the second pass
optimistically with these parameters on available data.

Nevertheless, it might be difficult or even impossible to
accurately predict the parameter values based on a subset
of the input. Fortunately, most computations of this nature
are not overly sensitive to their parameter values, and
can work well with values that are “accurate enough” for
the application. To this end, we introduce the notion of
tolerance, which allows for a margin of error in the predicted
value. Of course, if the prediction is off by more than this
tolerance margin, the speculative execution must be aborted.

Once we introduce speculative value prediction into a
streaming framework, we open up many opportunities for
value guessing and speculative processing. In designing a
given application using this framework, the programmer
can choose how early and how often to speculate as well
as how often to verify the validity of the speculation.
Another consideration is the relative priority to attribute to
speculative tasks as opposed to non-speculative ones during
runtime scheduling.

We further discuss speculative value prediction, the de-
grees of freedom it allows and their implications in Section
II.

In Section III, we present a sample implementation of
speculative value prediction in the context of the Streaming
Runtime Environment (SRE) [5]. Introducing speculation on
a software-only platform requires some modifications. First,
a mechanism must be introduced to generate speculative
tasks. Second, a check condition must be implemented to
compare one output to the next. Finally, a rollback mecha-
nism must be added using proper garbage collection.

In Section IV we elaborate on the cases where our
technique is useful. We then illustrate in detail how spec-
ulative value prediction may be exploited in the context of
a practical, real-world benchmark. Specifically, we present
a speculative Huffman encoder that predicts the encoding



tree based on a subset of the input stream, and uses it to
optimistically begin encoding. This application implements a
common data compression mechanism when streaming long
files; it is also sufficiently complex so as to demonstrate
many interesting aspects of speculation.

In Section V we experiment with our Huffman encoder
implemented in the SRE framework on two different archi-
tectures – x86 and Cell. We show how different parameters
impact the latency and execution time. We experiment with
two different I/O scenarios: reading from the hard disk
that simulates very low I/O latency, and over a tunneled
socket connection between two servers. Our results show
that speculation can improve average latency by a whopping
51%.

In summary, we present the following contributions:
• we introduce the idea of task-level speculation in a

streaming environment;
• we introduce the use in this context of programmer-

directed tolerance that trades accuracy for performance;
• we suggest a new interface for programmers to realize

speculation on streams semi-automatically;
• we present a proof-of-concept implementation of our

speculation framework on SRE;
• we design and implement a speculative Huffman en-

coder in our framework; and
• we experiment with the Huffman encoder implemented

in our framework on two different architectures, and
obtain up to 28% speedup in execution time and a 51%
reduction in average latency in certain scenarios.

II. INTRODUCING SPECULATION

Let us provide a quick overview of the streaming model,
then elaborate on how speculation is introduced as well as
when and how to use it.

A. Speculation in Stream Programs

Streaming applications define a set of computation ele-
ments, called tasks that process a flow of data. Many tasks
are free of side-effects and produce data that is then fed into
other tasks farther down the execution path. As a whole,
a streaming program defines a Data Flow Graph (DFG)
that represents how data provided I/O input or produced by
tasks propagates from one task to another, according to the
dependencies between tasks. We view the DFG as a snapshot
of the application’s dynamic execution, rather than a static
description of the application’s code.

Iterative algorithms such as k-means and random-based
optimization heurisitcs such as simulated annealing are
commonly used in large computations, notably in image
processing. Figure 1a shows the DFG of an iterative solver
that is used to compute the coefficients of a filter, which
is then used to operate on a stream of data. The program
uses basic information to compute initial values for filter
coefficients. These coefficients are then refined iteratively, as

they are sent from one stage to the next, making their values
more precise in the process. Concurrently, raw data becomes
available for filtering. After a given number of iterations,
the coefficients are sent to the filter, where they are used
to process the data received. The arrows in the figure show
the movement of data, and the boxes represent side-effect
free tasks. New tasks are scheduled as the required values
for their execution arrives. They thus feed one another with
respect to their dependencies.

Value Speculation: We introduce a mechanism that
allows the scheduling of a task before all the data it requires
is available. Value speculation can shorten computation time
in streaming applications by predicting and providing input
values to a task ahead of time. Downstream dependent tasks
can then start executing earlier than they would have other-
wise. This technique can increase the amount of parallelism
available in the application, and mitigate the impact of slow
I/O. All predictions are verified; if they fail verification,
the speculative execution associated will be rolled back to
the original state and recomputed therefrom. To ensure that
the original state is recoverable, only tasks that are free
of side-effects may execute speculatively. When speculative
data arrives at a state-modifying task such as writing to
disk or network I/O, it is buffered until the validity of the
speculation is confirmed. Keeping speculative tasks free of
side effects simplifies rollback; no interim steps need to be
saved — the speculative tasks are simply stopped and their
data reclaimed. Note that our framework can be extended to
support user-defined rollback routines, to enable more tasks
to execute speculatively.

Value prediction can generate new parallelism opportu-
nities, especially in cases where parallel portions of an
algorithm depend upon narrow serial portions, thereby ad-
dressing the slowdown formulated by Amdahl’s law. In the
previous example, the computation of the filter coefficients
depends on a number of tasks feeding one another serially
and cyclically. Predicting an early value of the coefficients
can allow the program to reach the parallel filtering phase
earlier.

Figure 1b depicts the example of Figure 1a augmented
with speculation. An early stage of the filter calculation
phase triggers early speculative execution of the filtering
phase. The dotted shapes and arrows in the graph mark
speculative work. Following filtering and several side-effect
free tasks, computed data is buffered (hexagon). Meanwhile,
the natural execution path of the application follows its
course until the final iteration stage produces its outputs.
The predicted data and its true value are now compared
(diamond): a positive comparison commits the buffered data;
a negative comparison generates a new filtering task that
uses the new coefficients to (re)process the data, instead of
the speculative processing which is aborted along with any
speculative data created.

Our technique is useful in particular in cases where data is
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(b) Filtering with speculation (speculative tasks shown in dashed lines). Upon
completion, the speculative task’s output is held at the Wait task (hexagon), waiting
for validation. The Check task (diamond) verifies whether the speculative value
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iteration step. If it is, the speculative computation is committed and there is no
need to execute the non-speculative Filtering task. Otherwise, the speculative value
is discarded, and Filtering is re-executed in the normal path.

Figure 1. Speculating on an iterative filter coefficient computation.

accessed through slow I/O. If a critical computation requires
all data to arrive, it could be beneficial to approximate the
result of the computation using available subsets (typically
prefixes) of the data, and operate speculatively based on such
approximations. This can effectively allow an application to
hide some of the latency delaying critical computations.

Tolerance: Typically, value prediction requires antic-
ipating precise values. We argue that it is often sufficient
to give a “good enough” approximation of the value. For
example, when the mean value of a set is needed, estimates
can be obtained faster using only part of the data; these
estimates may come sufficiently close to the mean, with re-
spect to the requirements of the application. This introduces
the concept of tolerance. In our approach, the programmer
defines comparison criteria to validate speculated values. For
the case of the above-mentioned example, the true value
of the filters will be known eventually, and a user-defined
criteria can be set to justify the early predictions made.

Interface: In order to introduce value speculation to a
streaming application, the programmer provides the follow-

ing four details to our programming environment:

1) what to speculate: which data elements (typically
flowing along an edge of the DFG) to speculate;

2) how to speculate: the source providing approximate
data, substituting the data in (1) above (typically a
node of the DFG);

3) where (not) to speculate: the point where speculative
data need to wait due to side-effects,

4) how to validate speculations: a comparison method,
generally a task, applied to both original and specu-
lated values (from (1) and (2) above), controlling the
commits of speculative computations (according to (3)
above) and rollback operations.

This interface can be supported by a compiler through the
introduction of keywords in high-level languages, or simply
through the addition of API functions. A compiler can also
assist in analyzing tasks to detect potential side-effects,
recommending they should not run speculatively (thereby
assisting and potentially automating (3) above).



Using the details listed above, the DFG can be modified to
support value speculationas follows. Tasks marked to operate
on speculative data following (1) (referred heretofore as
speculative tasks) are connected to receive data from the
speculation sources (2). New checking tasks are introduced,
to check if speculated values are satisfactory ((4) above).
These checking tasks also receive data from the speculation
sources, and from the original computations as well. Fol-
lowing speculative tasks, results scheduled to flow into other
speculative tasks do so freely. However, results scheduled to
flow into non-speculative tasks (3) are redirected instead to
reach the checking task, where they are potentially buffered.
The checking task determines whether to commit pending
speculative results, or whether to discard them and initiate
re-processing based on the original data.

Granularity: Our approach of employing semantic
checks and custom evaluations of approximation tolerance
is especially applicable to coarse grain task-level parallelism
prevalent in streaming applications. In order to avoid and
hide overheads, tasks are generally coarse-grained and rep-
resent code with execution time in the millisecond range
[6]. As a consequence, each task processes a window of
data as opposed to individual values. This granularity of
tasks makes the semantic nature of tasks more accessible
to programmers, thus facilitating aggressive optimization
decisions, including value speculation. These modifications
certainly add more work to system design, but can poten-
tially exploit extra, idle resources in order to shorten the
critical path of our solution.

B. Managing Speculation

Speculation and verification frequency: In order to
manage speculative execution effectively, two distinct pa-
rameters need to be handled: speculation frequency — the
rate at which we calculate new speculative values, and
verification frequency — the rate at which we check if our
speculations are not stale. Speculation frequency can affect
the quality of the speculation, as updating possibly prema-
ture speculations based on additional data can improve their
accuracy. On the other hand the frequency of verification
can impact the efficiency of speculation. Verifying only the
final value when available may result in potentially large
amounts of wasted work and time. Verifying very often
may incur overheads. These two options are extreme, and
an appropriate compromise must be struck between them.

Resource allocation: The way resources are allocated
can also have a profound impact on speculation success and
overall performance. Assigning higher preference to specu-
lative tasks may slow down the execution along the natural
path, while assigning them with lower preference may limit
the benefit of speculation. Setting preferences to speculative
or natural paths can be done in several ways, such as a
priority scheme, limiting the amount of speculative tasks
allowed to run concurrently, favoring a given speculative to

non-speculative ratio, or simply allowing speculation only
when idle resources are available.

III. IMPLEMENTATION

We implemented our method for speculation on our own
streaming framework, and ran it on two different architecture
sets.

A. Streaming Runtime Environment

We quickly describe our implementation of a streaming
runtime environment (SRE) [5] for task scheduling on a
many-core machine. The SRE consists of an API interacting
with a task scheduler. The SRE makes the key requirement,
common in streaming models, that computation be divided
into tasks that are free of side-effects. The SRE is designed
to run on different multicore platforms such as x86 systems
and the Cell Broadband Engine.

The SRE runs two auxilliary threads in addition to any
number of worker threads. The first receives data from a
parent application, feeding it into the system. The second is
in charge of managing scheduling and directing data. The
rest are responsible for executing computational code.

An API defines two high-level C++ classes, the Task
and SuperTask. Contrary to classic streaming environment
models, our SRE defines a hierarchy of node SuperTasks
whose sole purpose is to direct the flow of data between
its child Tasks and SuperTasks, and eventually to its parent
as it completes. Tasks, on the other hand, represent coarse-
grain elements of computation with clearly defined inputs
and outputs. As soon as all the data required for a task is
propagated from a parent SuperTask, the task is sent to a
queue.

The way in which the dispatcher chooses ready tasks
for execution is very consequential on the behaviour of
the program. If it is to use a first-come first-serve (FCFS)
approach, it would tend to focus resources to the beginning
of the pipeline at the expense of the end. This breadth-first
approach certainly extends latency and tends to be toxic to
memory locality. In the opposite case, accessing the end
of the pipeline is preferred, but in cases initial conditions
are important, the first ready task may be computed last,
delaying the whole system.

Our platform uses a priority-based scheduling policy
where depth is favored, but uses FCFS for tasks of equal
priority. We change somewhat this policy when adding
speculation. Value predicting and verification tasks are given
highest priority, no matter where they are located in the
pipeline; we try to optimize for latency, and these tasks
should have a high impact thereupon.

On the x86 version of our platform, a single thread
runs on each computation CPU. A simple polling mech-
anism waits for tasks to be assigned to the thread, and
processes them as soon as notified. The CBE is slightly
more complex, due to the machine’s use of local stores



rather than cache. The 256KB local stores are very fast
access memory attached to processing units that impose
software-controlled memory management. A well-known
technique called multiple buffering [7] promotes the overlay
computation with communication. It assigns a number of
memory transfers to a local store while the CPU works on
unrelated data. Our platform uses that technique at the level
of tasks, and attempts to overlay four tasks’ worth per local
store. This limits the size of task memory to 32KB.

B. Speculating and Rolling Back

Supertasks are responsible for associating freshly arrived
data with its corresponding task. We append a flag to tasks
that produce data that can be a basis for speculation. When
this flag is asserted, the SRE understands that it must notify
the parent SuperTask of two things: the expected data has
arrived and should advance normal program execution, and
to trigger a speculative task. Speculative tasks are marked
as dashed boxes in Figure 1b.

The speculative task is a task that runs like all others,
and is treated in much the same way. Its reception triggers
new tasks dependent upon it. However, if the same task was
launched previously, it indicates that a confirmation is in
place, and a special checking mechanism should be used.
In the Figure 1 example, the comparison is not trivial, so
a checking task is generated. This task will compare the
speculative values and will render a verdict, valid or invalid.
If the old value is valid, the new value will not trigger
anything new and will simply be destroyed.

When speculation fails, several things must occur. First,
all the data produced from the speculation point onwards
must be discarded. Second, ready tasks must be deleted
along with the memory allocated for results. Launched tasks
cannot be deleted; the system marks them with an abort flag,
and deletes them with their content when they complete.

To abort the chain of tasks dependent on the discredited
value, the system leverages the description of the relation-
ships between tasks to propagate a destroy signal down the
chain of dependences. The absence of task side-effects is
clearly beneficial; the dependences to a given point remain
the same no matter what happens in the future. We are
thus certain that only the correct tasks and their values are
destroyed.

IV. THE HUFFMAN ENCODER BENCHMARK

Our technique is particulaly relevant to two classes of
problems. The first is explained in the previous example,
where an early result is extracted from an iterative compu-
tation. The second relates to cases where data tricles into
the system slowly, and a prefix (subset) of the data can
be speculated upon. We focus our experimentation on this
second case, as described next.
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Figure 2. Data flow diagram of the parallel speculative Huffman encoding
algorithm (speculative tasks shown in dashed lines). The algorithm makes
two passes over its input data. In the first pass, a Count task per input
data block creates a frequency histogram of the characters in that block,
and the Reduce tasks merge these histograms into one. The outcome of the
final Reduce is used to create an encoding tree; speculative encoding trees
are created from partial Reduce outcomes. In the second pass, an offset is
computed for each data block, and the block is encoded using the encoding
tree. Speculative encoding may begin before the first pass completes on the
entire data stream. In the figure, trees are created with every new histogram
that in turn generate checing tasks. In this example, the first check passes,
causing no change in program behaviour. The second check makes the final
decision.

A. The Huffman Algorithm
We illustrate the potential benefits of our value speculation

approach in the context of data compression. Specifically,
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Figure 3. Latency and runtime for different files encoded using balanced, aggressive and conservative dispatching policies on the x86 platform. The
balanced policy is resilient in the presence of rollbacks (PDF) and performs well in the other cases.

we implement a parallel, speculative, Huffman encoder [8].
A Huffman encoder makes two passes over its input data,
(which can be provided as a stream or a file). In the first pass,
it calculates a histogram of character frequencies and uses
it to construct an encoding tree. The second pass encodes
the data using the tree. The tree computation step is a serial
bottleneck; once it completes, any number of data blocks
may be encoded in parallel.

We chose this benchmark for a number of reasons. First,
it is an application frequently used in practice– it is a
common data compression mechanism when streaming long
files. Second, it has a serial bottleneck, which can be
potentially circumvented via speculation. Specifically, we
can use a speculative histogram (based on part of the input)
to create a speculative encoding tree. Third, Huffman encod-
ing is amenable to value speculation with some degree of
tolerance– even if the tree is based on a biased histogram, the
encoding is still valid, albeit less optimal. The tolerance level
thus introduces an interesting tradeoff between compression
efficiency and speed. Finally, this benchmark is sufficiently
complex to demonstrate the various optimization variables
of interest.

We now explain our implementation in more detail. The

Huffman compression algorithm requires a few tasks, as
illustrated in Figure 2. First, the input data set is parsed
in order to count the frequency of each of 256 possible
characters encountered. This step is performed by the data-
parallel count task, and generates a 256-entry histogram.
The frequency of each character encountered is used to
determine the binary code representing it. All the histograms
are summed up into a single one that represents the entire
data set. Multiple iterations of a reduce task creates this
histogram, based on the commutative and associative prop-
erties of addition. On the basis of this global histogram, a
single tree building task creates a binary tree that dictates
the encoding pattern. Frequent characters are to be allocated
fewer bits. For instance, text files use only around 70 charac-
ters (uppercase and lowercase letters, as well as punctuation
and digits), allowing at minimum a nearly 3.5x compression
ratio.

The global histogram offers a basis upon which to build
a binary tree where leaves are individual characters. The
more nodes are traversed to reach the character, the more
bits alloted. Finally, the data set is encoded by encode tasks
according to the tree, byte by byte. The encoding is variable-
length. Hence, the position of an encoded block can only be
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Figure 4. Latency and runtime for different files encoded using balanced, aggressive and conservative dispatching policies on the Cell platform. Conservative
speculation yields poor results, whereas the balanced policy remains efficient.

known once the previous one’s encoding is decided. This
makes the use of parallelism in the encoding phase more
difficult.

The encoding phase is parallelized by adding an extra
phase to the algorithm. Its sole purpose is to compute the
offset of each data blocks. It computes the offsets based on
the block-specific histogram computed first, the Huffman
tree, and the final offset of the previous block. Offset
computations feed many encoding tasks.

In order to build a global frequency histogram, the whole
data set must be traversed. This certainly causes a problem
with respect to data locality, and forces an I/O limited
operation to complete before the global tree may be built.
Obtaining the global histogram in order to build the Huffman
tree is a reduce operation ripe for speculation. The more data
comes in, the more solid the foundations of the histogram
and thus the tree, and the less likely it is to change. This
situation is well suited to the tolerance-based speculation
technique we propose.

B. Speculation with the Huffman Encoder

The Huffman encoder is not well suited for exact value
speculation; as time progresses, the common characters will
find a more important position on the histogram, but less

common ones (z and w in text files, for example), will tend
to shift with respect to one another. This has little effect on
the quality of the approximation, but can have a large effect
on its suitability to speculation.

Our check task checks if the difference in compression
size is within a certain percentage of the compressed file.
It does so by using the current global histogram to sum the
product of the frequency of each character with the number
of bits associated to it by each tree. When the difference
in compression size is larger than a certain percentage of
the new compression rate, the verification yields a negative
result, and rollback ensues. Check tasks are simple and run
very quickly.

V. RESULTS

A. Experimental Setup

We ran our experiments using the SRE on two different
architectures. The first is a 8xQuad-Core AMD Opteron(tm)
Processor 8356 shared-memory CMP multiprocessor system
running at 2.3GHz with 132GB RAM. The second is a
Cell Broadband Engine blade running at 3.2GHz with 1GB
XRAM. In both cases, we use 16 worker threads. We tested
two modes of input processing:

1) reading from a hard disk cache, and



2) where data is streamed via a tunneled SSH socket
connection over a long distance.

We encoded three types of files: an e-book text, a Windows
bitmap (BMP) file and a PDF file. In order to simplify the
comparison between benchmarks, the encoder parses 4MB
of both the text and PDF files, while parsing only 2MB of
the BMP file.

The text file demonstrates the advantages of speculation in
no-rollback scenarios. BMPs and PDFs generally have a high
entropy resulting in frequent rollbacks. Our main evaluation
criterion is per block latency. We measure it by subtracting
the time a data block arrives from the time we complete its
processing. In this manner, we discount data transfer time.
When testing the socket connection however, we observe
data arrival time in addition to latency. We include this extra
criterion in order to show the dramatic impact of rollbacks
in slow I/O situations.

Parametrization: Our implementation of the Huffman
algorithm uses different configurations in the disk and socket
cases. When reading from disk, the low input latency favors
large reduce operations, in opposition to the socket reading
case.

The source data is first broken into 4KB blocks, each
processed by a seperate count task. When reading from disk
on the x86 platform, each reduce task merges the histograms
produced by 16 count tasks, and each offset task feeds 64
encode tasks which conclude the process. Due to the limited
amount of local store on the Cell platform, 16:1 ratios are
used there in both cases. When reading from a socket,
both reduce and offset ratios go down to 8:1 in order to
reduce average latency. The baseline configuration verifies
speculation upon reception of every eighth result of a reduce
task histogram, a choice explained later. A tolerance margin
of 1% of the compression ratio is used.

B. Reading from Disk

Scheduling Policies: We integrated three resource allo-
cation policies in our framework. In the first conservative
policy, we give priority to the natural execution of the
algorithm. Speculative tasks are dispatched only when no
non-speculative ones are available. The second aggressive
algorithm actively prefers any speculative task over non-
speculative tasks. Finally, the third favors dispatching an
equal number of speculative and non-speculative tasks. We
denote this policy as balanced. Being aggressive is likely
to help scenarios where no rollbacks occur, but is likely
to be more costly when rollbacks do occur. Conversely, a
conservative policy will only exploit free resources and miss
opportunities to execute later pipeline stages early.

Figure 3 presents sample execution of these three policies
and compares them with a typical non-speculative run. It can
be seen that the conservative and balanced policies generally
perform better in the PDF case, as frequent rollbacks have
a smaller impact on the use of machine resources. However,
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Figure 5. Choosing the speculation interval determines when speculative
execution starts. The earliest it does, the more benefit (TXT) with some
price in overhead. A larger interval can jump ahead of transient states and
avoid rollbacks altogether. In these plots, a step size of 8 for BMP and 16
for PDF represent this threshold.

being aggressive can be a good choice when no rollbacks
occur, as in the case of the text file. In any case, it can be
observed that the policy of balanced dispatching is generally
the best in all cases, as it combines the benefits of being
aggressive when no rollbacks occur with the resiliency of
the conservative policy when rollbacks do occur.

Figure 6d shows the dramatic impact on total runtime
speculating properly can bring by bypassing the serial bot-



tleneck of the application. When processing the text file,
speculating early and correctly brings as much as 19.5%
speedup in runtime. This is not the case where rollbacks
do occur, but conservative and balanced policies manage to
offer a runtime similar to the non-speculative case.

Figure 4 shows the same examples but on the Cell
platform. We observe the same phenomena as for the x86
platform, with the exception of a rather poor performance by
the conservative policy. This is probably due to the longer
dispatch queue required by the multiple buffering technique
we use. It seems this deep pipeline always offers some non-
speculative task, and little speculation is done overall.

Speculation Frequency: We then study the impact of
changing the speculation frequency in different scenarios.
Figure 5 shows the impact of different step sizes for each
dispatching policy and benchmark. For the text file, small
step sizes perform similarly, but there is a drop in efficiency
as they get larger. This is due to the fact that successful
speculation starts later in time, delaying data processing. The
BMP and PDF files show an interesting pheonomenon. For
small step sizes rollbacks occur and performance is poor,
insomuch as it is similar to the non-speculative case. How-
ever, when the step size grows beyond a certain threshold,
rollbacks do not occur any more and the average latency
drops significantly.

Figure 5 also demonstrates the impact of choosing well
the speculation interval and method. For the PDF and BMP
cases, average latency can be reduced by as much as 22%,
and by 28% for the text file.

Given the observation that launching speculative tasks
early is an important factor for reducing latency, we compare
two additional extreme cases in verification frequency. First,
an overly optimistic approach which speculates based on the
first tree available (from the first reduce task) and applies
but a single comparison, verifying the speculation only when
the final tree is available. In the other extreme case, we
verify at every opportunity and re-start speculative execution
immediately when failure is detected. We term this policy
full speculation.

Figure 6 shows sample runs for these two cases, along
with our baseline and non-speculative policies. When no
rollbacks occur, such as for the text and BMP files, being
optimistic allows speculation to start the earliest, with virtu-
ally no overhead caused by checking tasks. Full speculation
allows speculation to start at the same time as the optimistic
case, but includes the maximal amount of overhead. The
small difference between the curves shown in Figure 6
indicates that checking has a relatively low impact on
performance.

The PDF example is interesting as it shows that when
rollbacks do occur, the impact on performance is significant
in both the optimistic and full cases. In the optimistic case,
a large amount of computation has to be re-started. In the
fully speculative case, rollbacks occur frequently along with
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Figure 8. Even with large communication delays, latencies are still reduced
significantly with an increased number of CPUs.

the penalty they incur. Nevertheless, in situations with no
rollback, optimistic runs can reduce average latency by as
much as 51% for the text file on the Cell platform.

C. Reading From a Socket

Figure 7 shows the latency and arrival time in the extreme
case where long I/O delays clearly show the benefit of
speculation. In Figure 7a, where no rollback occurs, latency
is essentially negligible with respect to the transfer time.
Where a rollback does occur as in Figure 7b, its impact is
very clear. It is shown by the flat portion of the curve, where
all the data blocks already available are almost instantly
encoded. A new and more correct version of the tree is then
found, and blocks are encoded as they arrive.

The traces shown in Figure 7 use disproportionately slow
I/O, leading one to believe there is little interest in using
multiple cores to solve our problem. However, Figure 8
shows that adding CPUs does indeed reduce latency.

Tolerance: Finally, Figure 9 shows how modifying the
tolerance margin in our benchmark affected results. Some-
what surprisingly, increasing it produced poorer results both
in aggressive and conservative cases. When the margin was
raised from 1% to 2%, performance decreased dramatically.
This further emphasizes the importance of detecting an error
early to get better results. When raised to 5%, no rollbacks
occur any more, and results are as optimal as can be hoped
forin this experiment.

VI. RELATED WORK

Our work relates to two well-established topics: value
prediction and thread-level speculation (TLS).

Data speculation: The desire not to wait for certain
data to be available, but instead predict its value and initiate
early speculative computations based on predicted values, is
the subject of extensive work on Value Prediction, initiated
by Lipasti [9] and implemented in various forms [10], [11],
[12]. Value prediction concentrates on fine grain parallelism,
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Figure 6. Varying verification and speculation frequency on the x86 platform. Optimism pays off in the absence of rollbacks but is very expensive in the
opposite case. The small difference between fully speculative and optimistic policies indicates that check tasks cause low overhead.
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Figure 7. Encoding over a socket I/O connection

attempting to automatically predict register values based on
past values. This is akin to branch prediction, and indeed
relies on hardware support to detect misspeculation and
perform rollback. Our approach predicts values based on
approximation computations at a coarser, semantic grain,
leveraging structural properties of streaming computations,
without requiring hardware support.

Thread-Level Speculation: TLS attempts to execute
multiple, potentially dependent computations speculatively
in parallel, hoping no data or control dependencies occur
in practice, rolling back their execution whenever they do.
The TLS concept has been an active area of research, from
being proposed to leverage chip multiprocessor capabili-
ties [13], to underlying the increasingly popular transactional
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Figure 9. The impact of different tolerance percentages on one PDF file
in different configurations

memory paradigm. It has been implemented in the context
of decoupled software pipelining [14], where large depen-
dence distances are broken speculatively to increase pipeline
parallelism, relying on transactional memory support to
abort mis-speculation. A similar notion of Kernel Level
Speculation was proposed in the context of accelerators and
GPUs [15], using speculation to overcome potential control
dependencies among kernels thereby increasing concurrency.
Our approach is complementary, complying with true data
dependencies by trying to guess their values, rather than
hoping they will not occur.

Several mechanisms for efficient roll-back in case of mis-
speculation have been devised, such as Copy or discard [16]
and that of Program demultiplexing [17]. We employ a
similar roll-back mechanism, and our framework could
alternatively use other solutions.

Recently, some work has demonstrated how the use of
extra cores can be used to speculatively run alternative
implementations of code segments. Two versions of program
code are created, one faster than the other. [18] creates
faster versions by using unsafe optimizations, whereas [19]
creates slower ones by integrating runtime checks. These

approaches are different than ours in several ways. They
improve the speed and reliability of sequential as opposed
to parallel workloads. This reduces the intensity of the
competition between natural and speculative work. Further,
we do not artificially modify the speed of any single serial
code segment. Finally, they do not include mechanisms that
account for tolerance.

The use of approximation to reduce latency has been
explored in database systems for some time [20], but to the
best of our knowledge it has not yet been used in general
compilation settings. Our approach also uses approximate
answers when computing exact values is time consuming,
and involves semantic checks to evaluate the approximation
quality. Applied with tolerance, this opens new opportunities
to accelerate applications by revealing coarser-level concur-
rency.

Rinard et. al [21], [22] has demonstrated how a compiler
framework can reduce on purpose the accuracy of the appli-
cations we target by skipping refining loop iterations. They
further demonstrate how using a margin of tolerance can sig-
nificantly reduce the power consumption of an application,
negating the main argument against speculation. However,
their measure of accuracy remains fixed at compile-time and
does not take into account poperties of the dataset.

Finally, Prabhu [23] defines the main requirements needed
for coarse-grain value speculation and integrates them into
a formal language. However, there is no implicit margin of
tolerance involved, and misspecualtions are binary.

VII. CONCLUSION

In conclusion, we presented a promising approach to re-
duce latency through value-based speculation in the context
of dynamic streaming frameworks. We further introduced
the notion of application-defined tolerance, allowing slack
in value prediction. Our technique can rely on the use of
prefixes as well as on early results of iterative computations.
A proof-of-concept prototype of our idea was implemented
using the SRE framework. We illustrate the significant
potential benefit of speculative value prediction by showing
how a Huffman encoder can take advantage of this idea
to circumvent a sequential bottleneck. We experimented
with the Huffman benchmark running with our prototype
implementation on two different architectures: x86 and Cell.
From our experiments, we learn the following conclusions:

• Speculative value prediction can help address Amdahl’s
Law by bypassing sequential bottlenecks. This may
reduce latency — our experiments show improvements
of up to 51% in some cases, and shorten execution
times by up to 28%.

• Speculation should not be applied too aggressively so
as to significantly delay the normal (non-speculative)
execution path.

• On the other hand, it is typically worthwhile to begin
speculating early; giving speculative tasks a head start



maximizes the opportunities for parallelism. This off-
sets the additional overhead induced by verification of
such early speculations.

• Perhaps counter-intuitively, higher tolerance does not
always lead to better performance.

We believe that coarse-grain tolerant value speculation
can reveal additional vital parallelism opportunities for more
applications and platforms to come, subject of ongoing and
future work.
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