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Abstract
We introduce transactions into libraries of concurrent data
structures; such transactions can be used to ensure atomic-
ity of sequences of data structure operations. By focusing
on transactional access to a well-defined set of data struc-
ture operations, we strike a balance between the ease-of-
programming of transactions and the efficiency of custom-
tailored data structures. We exemplify this concept by de-
signing and implementing a library supporting transactions
on any number of maps, sets (implemented as skiplists), and
queues. Our library offers efficient and scalable transactions,
which are an order of magnitude faster than state-of-the-
art transactional memory toolkits. Moreover, our approach
treats stand-alone data structure operations (like put and en-
queue) as first class citizens, and allows them to execute with
virtually no overhead, at the speed of the original data struc-
ture library.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming

General Terms Algorithms, Performance

Keywords Concurrency, data structures, semantics, trans-
actions.

1. Introduction
1.1 Motivation
Data structures are the bricks and mortar of computer pro-
grams. They are generally provided via highly optimized li-
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braries. Since the advent of the multi-core revolution, many
efforts have been dedicated to building concurrent data
structure libraries (CDSLs) [1, 2, 5, 9, 11, 13, 21, 25, 27,
28, 36, 37, 44, 48, 49], which are so-called “thread-safe”.
Thread-safety is usually interpreted to mean that each indi-
vidual data structure operation (e.g., insert, contains, push,
pop, and so on) executes atomically, in isolation from other
operations on the same data structure.

Unfortunately, simply using atomic operations is not al-
ways “safe”. Many concurrent programs require a number
of data structure operations to jointly execute atomically, as
shown in [47]. As an example, consider a server that pro-
cesses requests to transfer money to bank accounts man-
aged in a CDSL. If several threads process requests in par-
allel, then clearly, atomicity of individual CDSL get and in-
sert operations does not suffice for safety: two concurrent
threads processing transfers to the same account may obtain
the same balance at the start of their respective operations,
causing one of the transfers to be lost.

This predicament has motivated the concept of mem-
ory transactions [24] spanning multiple operations, which
appear to execute atomically (all-or-nothing) and in isola-
tion (so no partial effects of on-going transactions are ob-
served). A transaction can either commit, in which case all
of its updates are reflected to the rest of the system, or
abort, whereby none of its updates take effect. Transactions
have been used in DBMSs for decades, and are broadly
considered to be a programmer-friendly paradigm for writ-
ing concurrent code [22, 46]. Numerous academic works
have developed software transactional memory (STM) toolk-
its [10, 26, 43]. Moreover, some (limited) hardware support
for transactions is already available [33].

Nevertheless, as of today, general-purpose transactions
are not practical. STM incurs too high a overhead [6] and
hardware transactions are only “best effort” [33]. And in
both cases, abort rates can be an issue. Thus, with the ex-
ception of eliding locks [45] in short critical sections, trans-
actions are hardly used in industry today. CDSLs, despite
their more limited semantics, are far more popular. Efficient
CDSL implementations are available for many programming
languages [1, 2, 36, 37] and are widely adopted [47].
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1.2 Contributions
Our goal in this paper is to provide transaction semantics
for CDSLs without sacrificing performance. We introduce
in Section 2 the concept of a transactional data structure
library (TDSL), which supports bundling sequences of data
structure operations into atomic transactions. Individual op-
erations are seen as singleton transactions (singletons for
short). TDSLs provide composability; for example, a trans-
action may invoke operations on two different maps and a
queue. But unlike STM approaches, atomicity only encom-
passes the TDSL’s operations, whereas other memory ac-
cesses are not protected.

Restricting the transactional alphabet to a well-defined
set of operations (e.g., enqueue, dequeue, insert, remove,
and contains) is the key to avoiding the notorious overhead
associated with STM. We show that we can benefit from this
restriction in three ways:

1. First, while a TDSL implementation may use standard
STM techniques, it can also apply CDSL-like custom-
tailored optimizations that rely on the specific data struc-
ture’s semantics and organization in order to improve ef-
ficiency and reduce the abort rate. For example, it can
employ STM-like read-set tracking and validation [10],
but reduce the read-set size to include only memory loca-
tions that induce real semantic conflicts. Another exam-
ple is to use transactional access to a core data structure
that ensures correctness but does not support fast lookup,
and complement it with a non-transactional index for fast
lookup.

2. Second, a TDSL can employ different STM strategies
for managing different data structures within the same
library. For example, transactional access to maps is
amenable to optimistic concurrency control, since oper-
ations in concurrent transactions are unlikely to conflict.
But when queues are used inside transactions, contention
is frequent, and so a pessimistic solution is often more
efficient. A TDSL can combine the two, by using opti-
mistic concurrency control for its maps and a pessimistic
approach for its queues.

3. Third, a TDSL can treat singletons as first class citizens
– it can spare them the transaction management overhead
altogether, and save programmers the need to deal with
their aborts.

We exemplify these three ideas in Section 3, where we
present example TDSL algorithms for popular data struc-
tures – maps and sets (implemented as skiplists), and queues
– as well as compositions thereof. In Section 4 we generalize
this concept, and discuss a generic approach for composing
TDSLs with each other as well as with STM toolkits such as
TL2 [10]. Such a composition can provide, on the one hand,
high performance transactions comprised of data structure
operations, and on the other hand, fully general transactions,
including ones that access scalars.

We implement our new algorithms in C++. Our evalu-
ation in Section 5 shows that we can get ten-fold faster
transactions than STMs in update-dominated workloads ac-
cessing sets, and at the same time cater stand-alone oper-
ations, (i.e., singletons), on par with state-of-the-art CD-
SLs. We further use our library to support Intruder [19] –
a multi-threaded algorithm for signature-based network in-
trusion detection – and it runs up to 17x faster than using a
state-of-the-art STM.

Finally, we note that our example TDSL is by no means
exhaustive. Our goal here is to put forth TDSL as a new con-
cept for concurrent programming, which can offer program-
mers the ease-of-use of transactions at the speed of CDSLs.
Section 6 compares this paradigm with earlier ideas in the
literature. We conclude in Section 7 by expressing hope that
the community will adopt this new concept and build addi-
tional TDSLs.

2. Bringing Transactions into CDSLs
In this section we consider a single TDSL and explain how
it can be used by programmers. Composition of multiple
TDSLs is discussed in Section 4 below.

API and semantics. A TDSL is simply a CDSL with
added support for transactions. Its API provides, in addi-
tion to CDSL operations (like insert and enqueue), TX-begin
and TX-commit operations. The added operations are de-
lineations – library operations invoked between a TX-begin
and the ensuing TX-commit pertain to the same transaction1.
However, other memory accesses made in this span to loca-
tions outside the library do not constitute part of the transac-
tion. We assume that the shared data structure’s state is only
manipulated via the TDSL’s API. The TX-begin and TX-
commit calls are global to the library, i.e., span all objects
managed by the library, since a thread may have at most one
ongoing transaction at a time.

The library may abort a transaction during any of the op-
erations, resulting in an exception. In case of abort, none of
the transaction’s operations is reflected in the data structure.
Applications using the library need to catch abort excep-
tions, at which point they typically restart the aborted trans-
action.

We consider transactions that further provide opacity [17],
meaning that even transactions that are deemed to abort are
not allowed to see inconsistent states of the data structure
partially reflecting concurrent transactions’ updates.

Finally, a TDSL is, in particular, a CDSL, and legacy code
may continue to use its operations outside of transactions, in
which case they are treated as singletons. Singletons cannot
abort, and so legacy code can continue to use the original
thread-safe library operations. The semantics of singletons
relative to other transactions is preserved. In other words,

1 In principle, a transaction may end in a programmer-initiated abort, but we
omit this option for simplicity of the exposition.
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each run has a linearization [30] encompassing all of its
transactions and singletons.

Use case. We illustrate the usage of a TDSL via a sim-
plified example from the Intruder benchmark [19]. One of
the tasks performed by the benchmark is reassembly, where
many threads process messages from the network concur-
rently. Each network flow consists of multiple messages,
each carrying the flow’s key and some value associated with
it. The values for each key are tracked in a map until all of
them arrive, at which point the flow is removed from the map
and inserted to a queue for further processing. Example 1
shows a simplified pseudo-code for one thread executing this
task, using a shared queue Q and a shared map M .

Example 1 Intruder reassembly task
1: procedure handle message(m)
2: TX-begin()
3: cur ←M.get(m.key)
4: if cur = ⊥
5: cur ← new flow
6: M.insert(m.key, cur)
7: append m.val to cur
8: compute something on cur
9: if cur is complete

10: Q.enqueue(cur)
11: M.remove(m.key)
12: TX-commit()

13: upon abort exception
14: restart handle message(m)

It is easy to see that a standard “thread-safe” DSL does
not suffice here: If tasks execute concurrently, a race can
cause two threads to create and insert new flows for the same
key, resulting in loss of some of the values. Similarly, two
threads may enqueue (line 10) the same flow if both detect
that it is complete.

3. Transactional Data Structure Algorithms
In this section we present algorithms for a TDSL providing
skiplists, (which we use for maps and sets), and queues. In
Section 3.1 we describe a skiplist supporting efficient trans-
actions. The implementation of maps using the skiplist is
immediate, and so we do not elaborate on it. In Section 3.2
we explain how we compose multiple objects within a single
transaction. Section 3.3 presents our queue implementation.
All three sections discuss full-fledged transactions. In Sec-
tion 3.4 we describe our support for fast singletons.

3.1 Transactional Skiplist
Our skiplist supports the standard insert(key), contains(key),
and remove(key) operations. Our library also supports itera-
tors via getFirst(), getNext(), and getValue() operations. We
start with an STM-like technique and optimize it by taking
advantage of the skiplist’s specific semantics and structure.

Our goals are to reduce the overhead and to avoid unneces-
sary aborts.

For didactic reasons we describe the algorithm in three
steps. First, in Section 3.1.1, we take a simple linked list and
add to it standard STM-like conflict detection using the TL2
algorithm [10]. Next, in Section 3.1.2, we explain how to
limit both overhead and aborts by reducing the validation set
to a minimum. Finally, in Section 3.1.3, we explain how we
make operations faster and reduce aborts even further using
a skiplist.

The complete pseudo-code of the transactional skiplist
appears in Algorithms 2 and 3. For clarity, the pseudo-code
is presented for a sequentially consistent memory model,
i.e., without explicit memory fences. In order for it to run
correctly on relaxed memory models, which do not guaran-
tee sequential consistency, a number of explicit fences are re-
quired, as in implementations of the TL2 algorithm [18, 20].

3.1.1 STM-Like Validation
We begin with a simple sequential linked list and extend it
according to the TL2 STM algorithm [10] in order to sup-
port transactions of multiple operations. At this point, we
consider only a linked list, which does not allow fast access
to searched keys. In Section 3.1.3 below, we will extend the
linked list with an external index that will shorten the ac-
cess time. In addition, we only consider for now operations
invoked inside transactions, and defer the discussion of sin-
gletons to Section 3.4.

The algorithm uses a global version clock (GVC) that
exposes two operations: a read, which returns the current
version, and an add-and-fetch that atomically increases the
GVC’s version and returns its new value. The versions are
used to detect conflicts among concurrent transactions: Each
node in the linked list is tagged with a version, which is up-
dated by transactions that create or update the node. A trans-
action validates its reads by checking that their versions have
not been increased (by other transactions) since the trans-
action had begun. Transactions re-validate all their reads at
commit time. In case of conflicts (manifested as newer ver-
sions), the transaction aborts. In addition to versions, nodes
are associated with locks in order to allow a transaction to
change all the nodes it affects atomically.

We now explain the operations in more detail. When a
transaction is initiated via TX-Begin, it reads and stores the
GVC’s current value in a local variable readVersion. Each
thread in the midst of an active a transaction also maintains
two local sets – read-set and write-set.

To start an operation on some key k within a transaction,
the executing thread traverses the linked list until it reaches
a node with key ≥ k. We refer to this node as successor(k)
and to its predecessor predecessor(k). Note that, in particu-
lar, successor(k) may be the node holding key k. For each
node n encountered during this traverse, the thread checks
whether n is locked or its version is bigger than readVer-
sion, in which case, it aborts the transaction. More specifi-
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cally, the thread invokes getValidatedValue(n, readVersion),
which first searches the node in write-set and returns its new
value if it is there; otherwise, it checks the node’s lock, then
reads its value (e.g., the next pointer required to continue the
traversal), and then checks its version and checks the lock
again. If all checks succeed, n is added to read-set, and oth-
erwise the transaction is aborted.

The list is not updated before TX-commit is invoked.
Rather, every write into a list node during an operation is
saved in write-set. In case of insert(k), predecessor(k) and
the new node are added to write-set, whereas remove(k) adds
both predecessor(k) and successor(k) to write-set; the latter
is the node being removed. If the enclosing transaction suc-
cessfully commits, TX-commit updates the list and the af-
fected node versions accordingly. The thread-local memory
at the end of the traversal is illustrated in Figure 1.

An iterator is also implemented by traversing the list. All
calls to getFirst, getNext, and getValue validate the current
node using getValidatedValue, and add it to read-set.

Figure 1: Example of insert(10) operation. The executing
thread traverses the list from the beginning (node with k =
2) until the successor of 10 (key = 17). During the traverse
it adds nodes with keys 2, 5, and 9 to read-set. At the end, it
adds the node with key 9 to write-set with an indication that
its next pointer should be set to the node with key 10, and
also adds the new node (key = 10).

During TX-commit, a thread first tries to lock the nodes in
the write-set, and then to validate the read-set (using getVali-
datedValue). If either fails, the transaction aborts. Otherwise,
the thread calls the GVC’s add-and-fetch method, stores the
result in a local variable writeVersion, and updates the linked
list according to the write-set. In addition, it updates the ver-
sions of all nodes in the write-set to be writeVersion. Finally
it releases the locks and returns successfully.

For example, consider a transaction that consists solely of
the insert(10) operation illustrated in Figure 1. In this case,
TX-commit will try to lock the node with key 9, and then
validate that the versions of nodes with keys 2, 5, and 9 are
still no larger than readVersion. If successful, it will add-
and-fetch the GVC into writeVersion, set the version of the
node with key 9 to be writeVersion and its next pointer to be
the new node with key 10. It will also set the version of the
new node to writeVersion.

Algorithm 2 Transactional skiplist: operations

1: Type Node = 〈key, next, version, lock, deleted〉
2: local variables:
3: readVersion,writeVersion ∈ N
4: read-set: set of nodes
5: write-set: set of 〈node, field, value〉
6: index-todo: set of 〈node, insert/remove〉

7: TX-begin()
8: readVersion← GVC.read()
9: read-set, write-set, index-todo← {}

10: contains(k)
11: 〈pred, succ〉 ← traverseTo(k)
12: if succ 6= ⊥ ∧ succ.key = k return true
13: else return false

14: insert(k)
15: 〈pred, succ〉 ← traverseTo(k)
16: if succ 6= ⊥ ∧ succ.key = k return false
17: allocate newNode
18: newNode.key = k; newNode.next = succ
19: add 〈pred, next, newNode〉 to write-set
20: add 〈newNode,⊥,⊥〉 to write-set
21: add 〈newNode, insert〉 to index-todo

22: remove(k)
23: 〈pred, succ〉 ← traverseTo(k)
24: if succ = ⊥ ∨ succ.key 6= k

return false
25: add succ to read-set
26: add 〈pred, next, succ.next〉 to write-set
27: add 〈succ, deleted, true〉 to write-set
28: add 〈succ, remove〉 to index-todo

29: TX-commit()
30: if ¬try-lock(write-set) . lock
31: release all acquired locks and abort
32: if ¬validate(read-set) . validate
33: release all acquired locks and abort
34: writeVersion← GVC.add-and-fetch()
35: do-update(write-set) . update the list
36: release all acquired locks . successful commit
37: update-index(index-todo) . lazy update

3.1.2 Read-Set Reduction
The goal of our next step is to avoid unnecessary aborts
and to reduce the overhead for maintaining and validating
the read-set. To this end, we take advantage of the list’s
semantics and structure, as custom-tailored CDSLs do.

We observe that operations of concurrent transactions that
change the list in different places need not cause an abort,
since their operations commute. Figure 2 shows an example
where an operation of transaction T1 that inserts 100 is
unaffected by an operation of a concurrent transaction T2
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that removes 10, provided that there are nodes between 10
and 100.

However, in our initial solution, T1 stores in its read-
set every node it encounters during the traversal, including
the one holding 10. Thus, if T2 should commit before T1

performs its validation, then T1 would detect a conflict and
abort.

Figure 2: Example of commutative operations.

In order to avoid such unnecessary aborts, we keep the
read-set as small as possible by adding to it only critical
nodes whose update may lead to semantic violations. For
example, consider a contains(100) operation that traverses
the list and sees node n2 with key 103 immediately after
node n1 with key 93 and returns false. Then TX-commit has
to validate that no node with key 100 was inserted between
the time when the contains(100) operation returned and the
time when all the nodes in write-set were locked for valida-
tion during the commit. By the list’s structure, it is enough
to check that n1 has not been removed and its next pointer
has not changed. Thus, n1 is the only node that needs to be
added to the read-set during the contains.

More generally, every operation (remove, insert, or con-
tains) with key k adds to read-set the node predecessor(k),
and remove also adds the successor in case its key is k. The
iterator implementation does not change. In the example in
Figure 2, remove(10) adds nodes with keys 2 and 10 to the
read-set, while insert(100) adds only the node with key 81,
and no conflict is detected in the validation.

In this way, the overhead for maintaining the read-set is
small, and the number of aborts may drop dramatically.

3.1.3 Non-Transactional Index
So far we have reduced aborts in the validation phase to
a minimum, but each operation still traverses the list from
the beginning to the successor. This behavior has two draw-
backs: First, the traversal is very slow, and so we would like
to add “shortcuts” as in a skiplist. Second, the traverse can
cause unnecessary aborts since it validates (the lock and ver-
sion of) each node it passes through.

We observe, however, that the traversal is not an essential
part of the insert, remove, and contains operations. In other
words, a transaction is semantically unaffected by an inter-
leaved transaction that changes a node on its path (unless
traversed by an iterator). It only performs the check (in the
transactional traversal) in order to ensure that (1) it traverses
a segment of the list that is still connected to the head of the
list and (2) it does not miss its target during the traversal. But

Algorithm 3 Transactional skiplist: procedures
1: procedure traverseTo(k)
2: startNode← index.getPrev(k)
3: while startNode.locked ∨ startNode.deleted
4: startNode← index.getPrev(startNode.key)
5: for n in list from startNode to successor(k)
6: if getValidatedValue(n, readVersion) fails
7: abort
8: add predecessor(k) to read-set
9: return 〈predecessor(k), successor(k)〉

10: procedure try-lock(write-set)
11: for each node n ∈ write-set
12: if ¬try-lock(n)
13: return false
14: return true

15: procedure validate(read-set)
16: for each n ∈ read-set
17: if getValidatedValue(n, readVersion) fails
18: return false
19: return true

20: procedure do-update(write-set)
21: for each 〈node, field, newValue〉 ∈ write-set
22: if (field 6= ⊥)
23: node.field← newValue
24: node.version← writeVersion

25: procedure update-index(index-todo)
26: for each 〈node, op〉 ∈ index-todo
27: if op = remove
28: index.remove(node)
29: else . op = insert
30: index.insert(node)
31: if node.deleted
32: index.remove(node)

if an operation with key k could somehow guess predeces-
sor(k), then it could forgo the traversal and start the operation
from there. Or if it could guess any node n between the head
of the list and predecessor(k), it could start from n.

To facilitate such guessing, we employ an index with
the following API: add(node n), remove(node n), and get-
Prev(key k), where getPrev(k) returns the node with the
biggest key that is smaller than k among all nodes that were
previously added to the index and have not been removed.

Such an index can be provided by a standard (thread-safe)
skiplist CDSL (e.g., using a textbook algorithm [25]). We
update it, in a lazy way, outside transactions.

The index is used as follows: An operation with key k
first calls the index’s getPrev(k) method to obtain a node
with a smaller key than k, and then starts the traverse from
that node. Ideally, the index returns predecessor(k), but as we
later explain, this is not guaranteed. Following a successful
TX-commit, the thread updates the index by calling add(n)
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(resp. remove(n)) for every node n pertaining to a key k
such that insert(k) (resp. remove(k)) was executed in the
transaction.

It is important to notice that the index accesses are not
part of the transaction: the index is updated outside the trans-
action (after commit), and reads from the index are not val-
idated. Therefore, index accesses cannot cause any aborts.
On the flip side, the lazy update implies that another thread
that invokes getPrev(k) after the transaction has committed
may receive in return a node that precedes k’s predecessor,
or even a node that has already been removed from the list.
This scenario is illustrated in Figure 3. If the first case oc-
curs, then the executing thread simply traverses a segment
of the list until it reaches the appropriate successor, which
may slow the operation down, but does not violate correct-
ness. (Notice that getPrev(k) never returns a node that fol-
lows predecessor(k) in the list).

Figure 3: Example scenario where the non-transactional
index may return obsolete values. Black arrows represent
operations, and hanging arrows represent pending ones (or
ones that will be invoked in the future). Blue dashed arrows
point to nodes that were added to and not removed from
the index, and thus may be returned by getPrev operations.
In this example Thread1 invokes getPrev(34) after Thread2

commits a transaction that removes node 9 and Thread3

commits a transaction that inserts node 17, but before they
update the index accordingly.

The latter case is a bit more subtle. To deal with it we
store an additional deleted bit in every node, indicating
whether the node has been removed from the list. A commit
therefore does not free the removed node, but instead sets
the deleted bit (in addition to updating the node’s version to
be writeVersion). Now if the index returns a removed node,
it is guaranteed that its deleted bit is true. The operations
therefore check this bit, and if it is set, invoke getPrev(k)
again, but this time with k equal to the removed node’s key.
Deleted nodes are eventually freed using a standard epoch-
based memory reclamation approach [13].

We now describe how we update the index. During a
transaction, the executing thread maintains a set, index-todo,
of the add and remove operations it needs to perform. Once

a transaction commits successfully, it updates the index.
However, since the index is updated outside the scope of the
transaction, a race can lead to a scenario where a transaction
T adds to the index a node that has already been removed
after T had committed. In this case, we have T remove the
deleted node from the index lest it will be “stuck” in the
index forever. To this end, after adding a node to the index, a
transaction checks its deleted bit, and if it is set, removes
the node. Note that the opposite scenario is not possible:
since nodes are identified by pointers, and memory is not
reclaimed while some node still holds the pointer to it, nodes
are unique. Thus, an added node cannot be removed from
the index by an older remove. Races may, however, cause
the index to hold multiple nodes with the same key. If a new
node with key k is inserted, an old remove operation for an
earlier node with key k does not remove the new one.

3.2 Composing Multiple Objects in a Library
One of the strengths of our concept is that multiple objects
can be accessed in the same transaction. We now explain
how we implement this.

To ensure opacity, all objects from our library share a
common GVC, which is read at the beginning of each trans-
action. A shared GVC allows us to support arbitrary dynamic
transactions, meaning that we do not have to know the set of
accessed objects at the beginning of a transaction. However,
if one can give up this kind of dynamism, then each object
may have a private GVC, as discussed in Section 4.

During a transaction, a thread maintains an object-set
of the objects it accesses. Each object in object-set has its
own read-set, write-set, and index-todo. These sets may be
structured differently in different object types. For example,
the queue data structure we present below does not employ
an index, and hence its index-todo is empty. And, unlike the
skiplist’s write-set, the queue’s write-set includes an ordered
set, because the order in which items are enqueued ought to
be preserved.

At the end of a transaction, TX-commit uses two phase
locking, i.e., locks the appropriate items in all objects, then
validates all of them, then updates all objects, and finally re-
leases all locks. We note objects may define their own lock-
ing policies— our skiplist employs fine-grain locking while
our queue relies on a single global lock for the entire queue.
These per-object policies are tailored to the contention level
and attainable parallelism in each object. While a skiplist
can enjoy a high degree of parallelism using fine-grain locks,
queues induce inherent contention on the head and tail of the
queue and are thus better suited for coarse-grain locking.

The pseudo-code for the generic TX-commit appears in
Algorithm 4. First we lock the write-sets (line 4) and vali-
date the read-sets (line 7) of all objects using the appropri-
ate object-specified methods. If the locking and validation is
successful for all objects, we can safely commit the transac-
tion. (Otherwise, we abort).
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In the second phase, we add-and-fetch the GVC into
writeVersion (line 10), update the objects (line 12) accord-
ing to the write-set and writeVersion (again, each object ac-
cording to its specific implementation), and release the locks
(line 13). At this point the transaction is committed. Finally,
we apply lazy updates where applicable (line 14). For exam-
ple in a skiplist, we update its index.

Algorithm 4 Transactional library: generic commit
1: local variables:
2: object-set: set of objects

3: TX-commit()
4: for each obj ∈ object-set . lock
5: if ¬obj.try-lock(obj.write-set)
6: release all acquired locks and abort
7: for each obj ∈ object-set . validate
8: if ¬obj.validate(obj.read-set)
9: release all acquired locks and abort

10: writeVersion← GVC.add-and-fetch()
11: for each obj ∈ object-set . update objects
12: obj.do-update(obj.write-set)
13: release all acquired locks . transaction is over
14: for each obj ∈ object-set . lazy update
15: obj.update-index(obj.index-todo)

3.3 Queue
Notice that a queue has two points of contention (its head
and tail), so accessing it optimistically and deferring the val-
idation to commit time as we did with the skiplist is likely
to lead to many aborts. Instead, we use a pessimistic (lock-
based) approach with eager dequeues (taking place during
the transaction) and commit-time enqueues. In order to sat-
isfy opacity of transactions spanning queues and additional
objects, each queue has a version and we use the GVC to
ensure that all transactions see consistent states.

enqueue: During a transaction, the thread maintains a lo-
cal queue, (essentially an ordered list), in each queue ob-
ject’s write-set. In every enqueue(value) operation, it simply
enqueues value to the appropriate write-set. In contrast to
queues that run on top of optimistic STMs, we do not track
the current head of the queue in a read-set. At the end of the
transaction, if the first phase of TX-commit is successful, the
do-update function (Algorithm 4, line 12) simply enqueues
the entire local queue from the write-set at the end of the
(locked) queue.

dequeue: Since dequeue operations return values, we do
not defer their execution to the commit phase as we do for
enqueue. Note that if two interleaved transactions perform
dequeue operations on the same queue, then at least one of
these transactions will eventually abort. It is best to absorb
this conflict as soon as possible, and so we implement de-
queue in a pessimistic way.

We lock the queue the first time dequeue is invoked on a
given queue in a given transaction, and release the lock only
at the end of the transaction (commit or abort). In addition, to
ensure opacity, after acquiring a lock we check the queue’s
version in order to validate that nothing was enqueued to
or dequeued from the queue since the transaction began. If
the check fails or we fail to acquire the lock, the transaction
is immediately aborted. Otherwise, we return the node at
the head of the queue, but since the transaction may still
potentially abort, we do not remove the node from the queue
just yet. Instead, we advance a transaction-local pointer and
store in the write-set an indication that this node ought to be
dequeued. Ensuing dequeue operations on the same queue
in the same transaction also advance this pointer, update the
write-set, and return the next available node. If the queue is
empty, we check our local queue in the write-set to see if
a previous enqueue was performed during the transaction.
The dequeued nodes are removed from the queue by the do-
update function during the second phase of TX-commit.

TX-commit: Here we refer to the procedures of the generic
commit from the previous section (Algorithm 4). The pro-
cedure try-lock simply tries to lock the queue if the trans-
action hadn’t locked it yet. The queue has an empty read-
set, since it does not perform optimistic reads. It also has
an empty index-todo as it has no index. The validate and
update-index functions hence simply do nothing. The pro-
cedure do-update(write-set) removes the nodes returned by
dequeue operations during the transaction, enqueues all the
nodes in local queue included in the write-set, and updates
the queue’s version to be writeVersion.

3.4 Fast Abort-Free Singletons
An important aspect of our idea is to extend CDSLs with
transactional support without hampering legacy CDSL op-
erations. The algorithms described above are efficient for
transaction processing (as shown in Section 5), but may in-
cur a non-negligible overhead relative to stand-alone CDSL
operations. In particular, having all mutating operations in-
crement the GVC creates a contention point. This contention
point is essential for achieving opacity, where operations
pertaining to the same transaction see a consistent state of
the data structure, but is redundant for stand-alone CDSL
operations. Another problem introduced by transactions is
the possibility of abort; legacy code using the CDSL non-
transactionally will not have mechanisms for handling abort
exceptions.

In this section we explain how we support efficient CDSL
operations without the synchronization cost of transactions
and without aborts. At the same time, from a semantic per-
spective, these CDSL operations are seen as singleton trans-
actions preserving the system opacity, and whose atomicity
relative to other transactions is preserved.

Detecting singleton updates. To ensure opacity of trans-
actions in the presence of singletons, we augment each
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skiplist node and every queue with an additional bit, sin-
gleton, which indicates whether the last update to this node
(or queue) was by a singleton.

Skiplist singletons. Like their transactional counterparts,
the skiplist’s stand-alone operations use the index to find
the successor and predecessor of their argument. But un-
like operations called within a transaction, they do not defer
any work to commit time. In particular, they don’t maintain
read- and write-sets. Their traversals validate that accessed
nodes are neither deleted nor locked; otherwise, the oper-
ation restarts. The read-only operation contains simply re-
turns once it finds the successor.

An insert(k) operation first reads GVC and creates a new
node. Then it finds predecessor(k) and successor(k), and if
the successor’s key is not k, it tries to lock the predecessor.
In case it succeeds, it validates that the next pointer is still
successor(k) and the deleted bit is off (so the node was
not removed), and if so it (1) sets the predecessor’s next
pointer to the address of the new node, (2) updates its version
according to the read GVC and sets its singleton bit to true,
and (3) releases the lock. In case the locking or validation
fails, it searches for predecessor(k) again and retries.

A remove(k) operation first reads GVC, finds a successor
with key k, locks the successor and predecessor of k, and
validates that they are still the successor and predecessor
of k. Then, it (1) updates the predecessor’s next pointer to
bypass the successor, (2) sets the successor’s deleted bit to
true, (3) updates the predecessor’s and successor’s versions
according to the read GVC and sets their singleton bits to
true. Then, it releases the locks. If the locking or validation
fails, it releases the acquired locks and retries.

Upon completion, singletons update the index in the same
manner as tranasctional operations.

Queue singletons. For simplicity and compatibility with
the transactional version of the queue, we also use a pes-
simistic approach for stand-alone queue operations. We first
lock the queue and read GVC, then perform the operation,
update the queue’s version according to the read GVC and
set its singleton bit to true, and then release the lock.

Transaction adjustment. Since singletons do not incre-
ment the GVC, transactions cannot rely on versions alone to
detect conflicts with singletons. To this end, we use the sin-
gleton bits. For atomicity, we enhance our transaction’s con-
flict detection mechanism as follows: the validation phase
of TX-commit now not only validates that there is no node
in read-set with a bigger version than readVersion, but also
checks that there is no node with a version equal to read-
Version and a true singleton bit (indicating that there is a
conflicting singleton). For opacity, every skiplist node and
queue accessed during a transaction is checked in the same
way. In both cases, if a node or queue with a version equal
to readVersion and singleton bit set to true is checked, the

transaction increments GVC, (to avoid future false aborts),
and aborts.

Note that some of these aborts may be spurious, because
the conflicting singleton had occurred before the transaction
began. In order to minimize such aborts, it is possible to
have the transaction try to serialize itself after the conflict-
ing singleton instead of aborting. To this end, the transac-
tion must re-validate that all the values in its read-set still
reflect the current memory’s state. However, relying on ver-
sions is insufficient in this case, because if an object in the
read-set has a version equal to readVersion and a set single-
ton bit, it might have been over-written by an additional sin-
gleton since it was previously read. Instead, the transaction
must validate that the object’s value has not changed. Specif-
ically, it can do the following: (1) validate that the pointers
stored in the next fields of the nodes in read-set have not
changed (note that an ABA problem cannot occur thanks to
our epoch-based memory reclamation); and (2) verify that
their deleted bits are false.

Finally, when a transaction commits successfully, it sets
the singleton bit to false in every node (or queue) it updates.

4. Support for Library Composition
In this section we generalize our concept to allow for com-
posing libraries, that is, supporting transactions that access
multiple TDSLs as well as STM toolkits such as TL2 [10].
Our composition framework is based on the theory of Ziv et
al. [51]. Such composition can provide support for fully gen-
eral memory transactions, including ones that access scalars.

In Section 4.1 we describe an extended API and re-
spective semantics required from composable libraries. Sec-
tion 4.2 shows how we can use this API to compose a num-
ber of TDSLs. To make the discussion concrete, we then
explain in Section 4.3 how the extended API is supported by
our TDSL algorithm of the previous section, and how it can
be supported by a generic TL2 implementation

4.1 Composable Libraries API and Semantics
API. Generally speaking, a transaction that spans multi-
ple TDSLs begins by calling TX-begin in all of them, then
accesses objects in the TDSLs via their APIs, and finally at-
tempts to commit in all of them. However, to ensure atomic
commitment, we need to split the TX-commit operation into
three phases – TX-lock, TX-verify, and TX-finalize – and per-
form each phase for all involved TDSLs before moving to
the next phase. Any standard TDSL operation (like get or
enqueue) and any TX-lock or TX-verify phase of an individ-
ual TDSL may throw an abort exception, in which case TX-
abort is called in all TDSLs partaking in the transaction (for
uniformity, we call TX-abort also in the library that initiated
the abort via an exception). The API that needs to be sup-
ported by a composable TDSL is summarized in Table 1.

Intuitively, the first and last phases correspond to the
two phases of strict two-phase locking [12], where TX-lock
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ensures that the transaction will be able to commit in the
TX-finalize phase if deemed successful. In case commit-time
locking is used, it occurs in TX-lock, while with encounter-
time locking (as in the case of our queue implementation’s
dequeue), TX-lock simply does nothing. The TX-verify phase
is required when transactional reads are optimisitic (as in our
skiplist TDSL and in TL2).

B TX-begin() start a transaction
L TX-lock() make transaction’s updates committable
V TX-verify() verify earlier optimistic operations
F TX-finalize() commit and end the current transaction
A TX-abort() abort and end the current transaction

Table 1: API supported by a composable TDSL. In certain
implementations, some functions will do nothing.

Semantics. A developer building a TDSL has to ensure
that the implementation satisfies certain properties with re-
spect to this API. Defining these formally is beyond the
scope of the current paper; instead we give here a semi-
formal description of the required properties, and refer the
reader to a more formal treatment by Ziv et al. [51].

For succinctness, when defining the semantics we refer to
calls to TX-begin, TX-lock, TX-verify, TX-finalize, and TX-
abort in TDSL i as Bi, Li, V i, F i, and Ai, respectively.
We refer to operations invoked during the transaction via the
different TDSLs as op1, op2, . . . opk. Using this notation, the
history of a committed transaction T accessing two TDSLs
is the following sequence of steps:

B1, B2, op1, op2, . . . , opk, L
1, L2, V 1, V 2, F 1, F 2.

A transaction may abort at any point before V successfully
returns, for example, during some operation opj , resulting in
a history of the form:

B1, B2, op1, op2, . . . , opj , A
1, A2.

Note that the above histories involve a single thread; multiple
threads can run transactions concurrently, so their history
sequences are interleaved. In particular, between any two
steps (standard TDSL operations or begin/commit phases)
of a given transaction, other transactions (running in other
threads) can invoke arbitrary sequences of steps in the same
libraries.

We say that a transaction T is committed in TDSL i and
history h if h includes an F i step of T . Given a history
h, we define the clean history of transaction T in TDSL i,
denoted hi

c(T ), as the subseqeunce of h consisting of steps
involving TDSL i by (1) transactions that are committed in
h and i; and (2) T . Henceforth we refer to the requirements
a single TDSL needs to satisfy, and so omit the superscript i
and simply refer to steps executed in that TDSL only.

A composable TDSL implementation is required to guar-
antee the following properties with respect to its clean histo-
ries:

C1: Atomicity window: If F has been invoked for transac-
tion T in history h, then for every point p between the
completion of L and the invocation of V in hc(T ), T
can be seen as if it has been atomically executed in p
(i.e., p is a linearization point of T ). In the terminology
of Ziv et al. [51], this condition requires every commit-
ted transaction to have a serialization window between
the completion of L and the invocation of V .
Note that although the transaction itself does not in-
voke any operations on the same TDSL during this
window, other concurrent transactions may access the
TDSL during this time. Intuitively, the L phase “locks”
the relevant data objects to avoid interference by con-
current threads, and V verifies that this is indeed a lin-
earization point for the transaction.

C2: Opacity window: Consider an operation opm by a
transaction T that occurs before the transaction either
commits or aborts. Then for every point p in hc(T )
between the invocation of B and the invocation of op1
(the first TDSL operation invoked by T ), the sequence
op1, . . . , opm can be seen as if it has been atomically
executed in p. In other words, this condition requires
every active transaction to have a serialization window
between B and the invocation of op1.
This condition guarantees opacity, since op1, . . . , opm
can be seen as if it is executed immediately after the
linearization point of the previous committed transac-
tion; hence the values returned to the client code are
based on a consistent shared state (i.e., these values
may be returned in a non-concurrent execution of the
transaction).

C3: Aborts: A transaction can be aborted by invoking A at
any time after B is invoked and until F is invoked. It
cannot abort after F is invoked; in particular, F should
never throw an abort exception. An aborted transaction
T leaves the library’s state as if T had never been
executed.

C4: Non-blocking: Each operation is non-blocking. This
means, for example, that a TDSL operation should
never wait for a lock.

4.2 Composing TDSLs
Given a collection of n TDSLs satisfying conditions C1-
C4, we compose them to create a single TDSL with the API
defined in Section 2 as follows:

• TX-begin() calls Bi for all the composed TDSLs.
• TX-commit() calls L1, . . . , Ln, V 1, . . . , V n, F 1 . . . Fn

unless an abort exception occurs.
• The handler for abort exceptions of the individual li-

braries calls A1, . . . An, and throws an abort exception
in the composed library.
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For a committed transaction T that uses TDSLs 1, . . . , n,
any point p between Ln and V 1 is a linearization point with
respect to all n TDSLs; hence p is also a linearization point
for the composed library. Similarly, it can be shown that C2
is also satisfied by the composition.

An abort exception from any of the libraries causes all
of them to abort and throws an abort exception for the com-
posed one (this exception should be handled by the client of
the composed library). This way we ensure that an aborted
transaction leaves the library’s state unaffected (as required
by condition C3). Condition C4 is trivially satisfied since
the composition does not create new blocking operations.

If a transaction uses a subset of the libraries, it need
only call the transactional API in the ones it accesses. Note
that this requires a transaction to know all the libraries it
composes at the beginning of the transaction (in order to
call B in all of them). One way to avoid this restriction
in libraries implemented in a TL2-like manner is to share
a GVC among all libraries and use one common TX-begin
for all of them, as we did with our skiplist and queue in
Section 3.

4.3 Examples of Composable TDSL Implementations
We now explain how our TDSL algorithm of Section 3
can support the above B,L, V, F , and A operations. The B
operation is simply TX-begin.

The TX-commit operation of Algorithm 4 is divided into
the following three operations:

• L (lines 4–5): try to lock the write-sets of all participating
objects.
• V (lines 7–8): validate read-sets of all participating ob-

jects.
• F (lines 10–15): increment and fetch GVC, update all

objects, release all acquired locks, and update all indexes.

The TX-abort operation is implemented by clearing all
transaction-local data and unlocking all locks owned by the
transaction.

The TL2 STM [10] can also be modified to support the
above API and semantics. Similarly to our TDSL, it is re-
quired to divide the commit phase into three steps and ex-
pose an API to each of the steps; the first steps locks the
write-set, the second step validates the read-set, and the last
step increases the GVC, updates the data according to the
write-set, and releases the acquired locks.

Furthermore, using the above API and the serialization
windows guaranteed by properties C1 and C2, the approach
of Ziv et al. [51] provides ways to compose TDSLs with
other concurrency control schemes, e.g., with pessimistic
two-phase locking on standard read-write variables [12], as
well as more elaborate locking schemes like tree locking.

5. Evaluation
We implement our transactional library and evaluate its per-
formance. Section 5.1 describes the experiment setup and
methodology. In Section 5.2, we compare the singletons
of our transactional skiplist to custom-tailored concurrent
skiplist operations. Section 5.3 evaluates transactions of
skiplist operations using our TDSL relative to a state-of-the-
art STM and a transaction-friendly skiplist. In both cases,
we run synthetic workloads using the Synchrobench micro-
benchmark suite [16]. Finally, in Section 5.4, we evaluate
our library with Intruder [19, 41], a standard transactional
benchmark that performs signature-based network intrusion
detection. It uses transactions that span multiple queues,
maps, and skiplists, as well as singletons.

5.1 Experiment Setup
All implementations are in C/C++. For our library’s index,
we use a standard textbook concurrent skiplist [25], which
is based on [29] and [13], with epoch-based memory recla-
mation [13]. This is also our baseline solution, because our
transactional skiplist is a direct extension of this skiplist, and
can be similarly implemented atop other baseline skiplists.

For the experiments in Sections 5.2 and 5.3 we use the
Synchrobench framework [16] configured as follows: Each
experiment is a 10 second run in which each thread contin-
uously executes operations or transactions thereof. Keys are
selected uniformly at random from the range [1, 1,000,000].
Each experiment is preceded by a warm-up period where
100,000 randomly selected keys are inserted into the skiplist.

We consider three representative workload distributions:
(1) a read-only workload with only contains(key) operations,
(2) an update-only workload comprised of 50% insert(key)
and 50% remove(key) operations, and (3) a mixed workload
consisting of 50% contains(key), 25% insert(key), and 25%
remove(key) operations.

The experiments were run on a dedicated machine with
four Intel Xeon E5-4650 processors, each with 8 cores, for a
total of 32 threads (with hyper-threading disabled).

5.2 Singletons
An important goal for a TDSL is, in particular, to be a good
concurrent data structure, i.e., avoid penalizing stand-alone
operations for the library’s transaction support. We there-
fore compare our library’s singletons to our baseline non-
transactional skiplist implementation (our index) as well as
to the leading CDSL solutions provided with Synchrobench.
The solutions we compare to are listed in Table 2; we note
that Gramoli [16] has shown that these particular skiplists
outperform other published solutions.

The throughput results for the three workloads described
in Section 5.1 above appear in Figure 4. The experiments
show that our support for transactions induces virtually no
overhead on stand-alone operations, which execute as fast
as in the baseline library. Moreover, our library’s skiplist
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Figure 4: Throughput of our skiplist’s singletons versus best-in-class custom-tailored skiplists.

Algorithm Source
Baseline Herlihy and Shavit [25], based on [29],[13]
Optimistic Herlihy et al. [28]
Fraser Fraser [13]
No hot spot Crain et al. [9]
Rotating Dick et al. [11]

Table 2: Evaluated CDSL skiplists.

operations are comparable with the best-in-class custom-
tailored skiplists.

5.3 Transactions
We next experiment with transactions spanning multiple
skiplist operations. We compare our transactional skiplist
to a sequential skiplist running over TL2 [3], which is pro-
vided in Synchrobench [16] — we refer to this skiplist
as SeqTL2. In addition, we evaluate a transaction-friendly
skiplist [8] running over TL2, which we refer to as Friend-
lyTL2. Its main idea is to reduce conflicts by deferring
work to a dedicated background thread that maintains the
skiplist. In our measurements, we do not count transactions
(and aborts) executed by this dedicated thread. We imple-
mented FriendlyTL2 by manually translating the transaction-
friendly skiplist in the Java version of Synchrobench to C.

In this experiment, each transaction chooses a number of
operations between 1 and 7 uniformly at random, and then
selects the operations according to the designated workload,
as explained in Section 5.1 above.

Throughput. Figure 5 shows the throughput of success-
ful transactions with our TDSL, SeqTL2, and FriendlyTL2.
We see that our transactions are much faster than SeqTL2’s,
and in scenarios that involve reads, also much faster than
FriendlyTL2. In case of read-only transactions, our through-
put is twice that of SeqTL2 and four times that of Friend-

lyTL2. Our advantage over SeqTL2 grows as we introduce
updates to the mix, and is most pronounced when there are
only update transactions, in which case our TDSL is an or-
der of magnitude faster than SeqTL2. Here, the abort rate is
in play in addition to the overhead, as we explain shortly, and
FriendlyTL2 mitigates this gap by also reducing abort rates.

Another point to notice is that in all workloads, our per-
formance and FriendlyTL2’s performance continue to scale
with the number of threads, while SeqTL2 saturates at 16
threads in workloads that include updates, presumably due to
increasing abort rates. For example, when running a hybrid
workload, our library reaches 3.65 million transactions per
second with 32 threads whereas SeqTL2’s throughput peaks
at 0.76 million transactions per second with 16 threads.

FriendlyTL2 is mostly geared towards update-only work-
loads, where it can avoid most conflicts by deferring the data
structure’s maintenance to a single background thread, and
indeed its performance is close to our TDSL’s in this sce-
nario. However, in read-only scenarios, FriendlyTL2 is even
slower than the sequential implementation. This may be due
to the overhead induced by the unneeded background thread
as well as due to changes made in the data structure to facil-
itate batch updates. Interestingly, FriendlyTL2’s throughput
is better in the update-only workload than in the mixed one.
We believe that this is due to the non-trivial interaction be-
tween transactions and the maintenance thread.

Abort rates. Figure 6 shows the abort rates of all solutions
in the update-only workload. We can see that while the abort
rate of SeqTL2 grows linearly in the number of threads,
the abort rates of our TDSL and FriendlyTL2 remain small
for any number of threads. The fact that our read-set is
restricted to a small subset of SeqTL2’s, together with our
non-transactional index, dramatically reduces the abort rate,
while FriendlyTL2 reduces the abort rate by deferring most
updates to a single thread. In Figure 7 we zoom in and
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Figure 5: Throughput of our transactional skiplist versus a sequential skiplist on top of TL2 and a transaction-friendly skiplist
on top of TL2.

compare the abort rates of our TDSL and FriendlyTL2 in
the update-only workload. While both are small compared
to SeqTL2, we still see that our abort rate is lower and
scales better in the number of threads than the abort rate of
FriendlyTL2. The abort rates of all solutions in the mixed
workload are similar and so we omit them.
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Figure 6: Abort rate of our transactional skiplist versus a
sequential skiplist on top of TL2 and a transaction-friendly
skiplist.

5.4 The Intruder Benchmark
Having tested our singletons and transactions with synthetic
workloads, we turn to evaluate the entire library with a re-
alistic application. We use our library to implement the data
structures required by Intruder, a signature-based network
intrusion detection system. Intruder scans messages pertain-
ing to network flows and matches them against a known set
of intrusion signatures.

The benchmark [19, 41] is multi-threaded. Incoming
messages are first inserted into a shared queue. The mes-
sages are then dequeued and handed over to threads execut-
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Figure 7: Abort rate of our transactional skiplist versus the
transaction-friendly skiplist, zoomed in.

ing the reassembly task outlined in Section 2 above. This
phase uses a map that holds sets, and enqueues the reassem-
bled flows into another queue. Thus, the benchmark exer-
cises the different data structures in our library. It also uses
singletons and iterators.

We run the benchmark with 131,072 traffic flows consist-
ing of either 256 or 512 messages each (parameter settings
of -n131072 -l256 or -l512 in STAMP). We run the intruder
code from STAMP modified to use our library as well as
the TL2 implementation taken from [3]. Figures 8(a) and
8(b) show the speedup of both algorithms over a sequential
run (single-threaded, no synchronization mechanisms used)
for the two flow sizes. Figure 8(c) shows the percentage of
aborts in the experiment with larger flows; the results with
smaller flows were similar. We see that with the smaller flow,
our library is 9x faster than TL2, and with the larger flows,
it runs up to 17x times faster.
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Figure 8: Intruder with our library and TL2: speedup over sequential execution and abort rate.

Furthermore, our library achieves linear speedup up to 8
threads, whereas TL2 is actually slower than a sequential
implementation for any number of threads. This is in large
part due to TL2’s high abort rate (Figure 8(c)), which causes
much of the work it does to go to waste. While significant
abort rates were observed in TL2 also in skiplist-only trans-
actions (see Section 5.3 above), they increased moderately
to a bit over 40% with 32 threads. Here, on the other hand,
TL2’s abort rate exceeds 50% even with four threads. We
believe that this is in large part due to the use of optimistic
synchronization for queues, where contention is likely. With
our approach, which uses locks for queue operations, the
abort rates are negligible. This underscores the importance
of selecting individual concurrency-control policies accom-
modating the unique characteristics of each data structure.

With more than 8 threads, the speedup decreases. How-
ever, this is most likely due to the fact that in our platform,
each 8-core port has its own DRAM bank, and Intruder in-
duces a substantial amount of data sharing among threads.
For example, it uses a shared dispatch queue from which
all threads retrieve their work items, and a shared egress
queue where all reassembled flows are inserted for further
processing. Such data sharing stresses the machine’s cross-
chip bandwidth and downgrades the performance of the ap-
plication.

6. Related Work
Transactional memory. Many works have been dedicated
to realize atomic transactions via software transactional
memory approaches [10, 26, 43, 43]. Typically, STMs dy-
namically resolve inconsistencies and deadlocks by rolling
back transactions. However, in spite of a lot of effort, ex-
isting STM approaches have not been widely adopted for
real-world concurrent programming due to various concerns,

including high run-time overhead, poor performance and
limited applicability [6].

In a sense, our transactional skiplist algorithm can be seen
as a combination of the STM TL2 algorithm [10] with tech-
niques for specialized concurrent data structures [13, 25],
while our queues are managed by a different approach that
is better suited for them. Such optimizations are facilitated
by forgoing the generality of STM toolkits, and restricting
transactions to a well-defined set of data structure opera-
tions.

Automatic synchronization via static analysis. Several
approaches have been proposed to automatically realize
transactions by inferring synchronization via static analy-
sis algorithms (e.g., [7, 32, 40]); some of them deal with
high-level data structure operations [15]. In contrast, in this
paper we do not rely on static analysis.

Semantic synchronization. Some synchronization ap-
proaches are designed to utilize semantic properties of data
structure operations (e.g., [14, 15, 23, 34, 35, 42]). The main
idea is to improve parallelism by detecting conflicts on data
structure operations rather than on low level memory ac-
cesses. In these approaches two commutative data structure
operations can be seen as not conflicting even if their imple-
mentations access the same memory location. Our approach
also employs semantic synchronization. But in contrast to
these previous works, which only consider the data struc-
ture’s API, our work also utilizes the internal structure and
implementation details of the data structure. This allows
us to use custom-tailored optimizations such as the non-
transactional index of our skiplist. Moreover, in contrast to
our approach, it is not clear how semantic approaches can be
used to support efficient singleton operations.

One example of a semantic approach is boosting [23],
which presents a methodology for bundling linearizable ob-
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ject operations into transactions. Boosting is based on a
semantic variant of two phase locking, in which the data
structure operations are protected by a set of abstract locks.
Boosting has a number of limitations, including restricted
generality (for example, it is not clear how to efficiently im-
plement a thread-safe iterator), the need to support compen-
sating actions via bookkeeping, and sensitivity to parameters
(like the timeouts which are used to detect deadlocks).

Another example of semantic synchronization is open
nesting [42]. However, this approach is intended for experi-
enced programmers, as it requires programmers to explicitly
use abstract locks and also to provide an abstract compen-
sating action for each of its open nested transactions, to be
used in case of abort.

Our approach is inspired by the idea of foresight [14],
which also supports atomicity of a number of CDSL opera-
tions. But in contrast to our library, it requires external infor-
mation about the transactions’ code, which is computed via
static analysis. Furthermore, our solution utilizes optimistic
synchronization (transactions may be aborted), whereas syn-
chronization in foresight [14] is fully pessimistic (transac-
tions are never aborted).

Composing operations. Several works have suggested ap-
proaches for composing multiple CDSL operations into
larger atomic operations. One example is reagents [50],
which provides a set of building blocks for writing concur-
rent data structures and synchronizers that express concur-
rency algorithms at a higher level of abstraction. However,
with reagents, concurrency control is not transparent to the
programmer. In particular, reagents programmers need to
use non-trivial fine-grained data structure operations and put
them together in a way that implements the desired function-
ality.

Another recent example is RLU [39], which is a tool to
compose multiple data structure updates in a way that does
not hamper the efficiency of data structure read-only opera-
tions. Similarly to our work, their work is also inspired by
STM mechanisms for synchronizing between readers and
writers that wish to update multiple locations atomically. But
in contrast to us, they provide a tool for building efficient
complex CDSLs (e.g., doubly linked lists) rather than TD-
SLs.

Data structures for STMs. Some works describe data
structures that are compatible with STMs [4, 8, 31, 38].
Similarly to our skiplist, they use operation semantics to re-
duce the read-set size, leading to fewer aborts and smaller
validation overhead. The data structures in [31, 38] and [4]
translate their high-level operations into low level ones, and
the transaction-friendly skiplist [8] delays some non-critical
work that may lead to aborts to a dedicated thread that runs
in the background. These data structures are designed to cor-
rectly and efficiently work within STM transactions, and do
not include support for fast abort-free singletons as we pro-
vide. Furthermore, whereas in our approach the synchroniza-

tion algorithm is part of the library implementation, in these
works, the actual synchronization algorithm (or at least part
of it) is implemented outside the data structure library, i.e.,
handled by the external STM. Therefore, their data struc-
tures must expose some abstract conflict information for the
STM to use. This may limit data structure implementations,
for example, our non-transactional index, our fast singletons,
(which do not update the GVC), and the ordered write-set
we use in the queue are not readily amenable to such abstract
representations. Software transactional objects (STO) [31],
which were developed independently and concurrently with
our work, advocate co-design of the transactional data struc-
tures and the STM.

7. Conclusions
We introduced the concept of transactional data structure
libraries, which adds transaction support to CDSLs. Such
transactions offer composability and may span arbitrary se-
quences of operations on any number of data structures. We
illustrated this concept by presenting algorithms for transac-
tional sets, maps, and queues, and offering them as a C++
library. Previous studies have shown that many concurrent
programs employ such data structures and require atomic
transactions spanning multiple operations [47]. Moreover,
we have outlined a methodology for composing such trans-
actional data structure libraries with arbitrary synchroniza-
tion mechanisms like STM, allowing for fully general trans-
actions alongside high performance specialized ones com-
prised of only data structure operations.

Our TDSL caters stand-alone operations at the speed of
a custom-tailored CDSLs, and at the same time, provides
the programmability of transactional synchronization. Our
TDSL transactions are also much faster than those offered
by a state-of-the-art STM toolkit, (tenfold faster in synthetic
update-only benchmarks, up to 17x faster in a non-trivial
concurrent application). This is thanks to our ability to re-
duce overheads and abort rates via specialization to particu-
lar data structure organizations and semantics. In particular,
we can use the most appropriate concurrency-control policy
and for each data structure regardless of the approaches used
for other data structures.

While we illustrated the concept here for one particular
library supporting queues, maps, and sets, we believe that
the idea is broad reaching, and many existing CDSLs can be
extended in a similar manner to offer transactions on top of
the CDSL operations they provide.
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