
WatchIT: Who Watches Your IT Guy?
Noam Shalev*

Technion, Israel Institute of
Technology
Haifa, Israel

noams@technion.ac.il

Idit Keidar
Technion, Israel Institute of

Technology
Haifa, Israel

idish@ee.technion.ac.il

Yaron Weinsberg
Microsoft

Herzliya, Israel
yaronwe@microsoft.com

Yosef Moatti
IBM Research
Haifa, Israel

moatti@il.ibm.com

Elad Ben-Yehuda
IBM Research
Haifa, Israel

eladby@il.ibm.com

ABSTRACT
System administrators have unlimited access to system re-
sources. As the Snowden case highlighted, these permissions
can be exploited to steal valuable personal, classified, or com-
mercial data. This problem is exacerbated when a third party
administers the system. For example, a bank outsourcing
its IT would not want to allow administrators access to the
actual data. We propose WatchIT: a strategy that constrains
IT personnel’s view of the system and monitors their actions.
To this end, we introduce the abstraction of perforated con-
tainers – while regular Linux containers are too restrictive
to be used by system administrators, by “punching holes” in
them, we strike a balance between information security and
required administrative needs. Following the principle of
least privilege, our system predicts which system resources
should be accessible for handling each IT issue, creates a
perforated container with the corresponding isolation, and
deploys it as needed for fixing the problem.

Under this approach, the system administrator retains su-
peruser privileges, however only within the perforated con-
tainer limits. We further provide means for the administrator
to bypass the isolation, but such operations are monitored
and logged for later analysis and anomaly detection.
We provide a proof-of-concept implementation of our

strategy, which includes software for deploying perforated
containers, monitoring mechanisms, and changes to the

*Part of this work was done during an internship at IBM Research Haifa.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00
https://doi.org/10.1145/3132747.3132752

Linux kernel. Finally, we present a case study conducted
on the IT database of IBM Research in Israel, showing that
our approach is feasible.

CCS CONCEPTS
• Security and privacy→ Security services; Systems se-
curity;

KEYWORDS
Perforated Container, Privileged Insider Threat
ACM Reference Format:
Noam Shalev*, Idit Keidar, Yaron Weinsberg, Yosef Moatti, and Elad
Ben-Yehuda. 2017. WatchIT: Who Watches Your IT Guy?. In Pro-
ceedings of SOSP ’17, Shanghai, China, October 28, 2017, 16 pages.
https://doi.org/10.1145/3132747.3132752

1 INTRODUCTION
According to IBM’s annual cyber-security report [21], 44% of
cyber attacks detected last year were carried out bymalicious
insiders; this positions malicious insiders as one of today’s
biggest security threats. Among a company’s employees, IT
workers pose the greatest risk to the organizational infor-
mation security, since a system administrator typically has
unlimited permissions and access to system resources. The
famous Edward Snowden [47] case, among others [17, 26],
has again brought to public attention the danger arising from
giving bulk permissions to system administrators, which can
be abused by greedy or disgruntled employees to steal valu-
able, classified, or commercial data.
The problem is aggravated in cases where a third party

handles the organizational IT. For instance, a health clinic
may acquire cloud storage services with a maintenance con-
tract. In such cases, the service provider’s IT personnel has
access to the clinic’s information, which is to be kept confi-
dential by law.
Ideally, IT workers should have access only to resources

they actually need, while any mechanism for isolating them

https://doi.org/10.1145/3132747.3132752
https://doi.org/10.1145/3132747.3132752

SOSP ’17, October 28, 2017, Shanghai, China N. Shalev et al.

from other resources should not interfere with their work.
The challenge in creating appropriate isolation for system
administrators lies in the coarse-grained permission model
employed in commodity operating systems like Linux. Better
defense against privileged insider attacks therefore requires
finer-grained control over privileges.

We introduceWatchIT which implements such fine-grained
control in the context of containers, a virtualization method
already widely deployed in cloud systems and development
environments today. A container envelops a set of processes
and gives them an isolated view of the operating environ-
ment. On the face of it, the isolation that containers provide
goes against the very nature of system administration – in-
deed, IT personnel get permissions for a reason.
Perhaps counter-intuitively, we propose in this work to

exploit containers for system administration. Our idea is to
put holes in the isolation of traditional containers in order to
create a middle-ground that is useful for administrators and
yet controlled. We introduce the abstraction of a perforated
container – a container that may share system resources
with the host, under logging and monitoring. This perfo-
rated container is essentially a sandbox that constrains IT
personnel’s view of the system. It provides a way to monitor
their actions, yet preserves their superuser privileges within
specified boundaries.
The solution we devise is based on three principles: (1)

isolating the system administrator from resources that are
expected to be irrelevant (using a perforated container ab-
straction), (2) enabling her to perform actions beyond the
isolation boundaries under monitoring and logging, and (3)
optionally monitoring the allowed operations executed in-
side the perforated container. To support the second, we
introduce a permission broker – a software service that can
change the boundaries of the perforated container and per-
form operations on the administrator’s behalf.
Current container software such as Docker [30] and oth-

ers [3, 4, 33] does not provide the required flexibility for
configuring and deploying containers for administration.
For example, a container cannot share the host’s view of
the filesystem or provide access to certain file types while
excluding others.
We implement ContainIT, dedicated container software

for building perforated containers. ContainIT can share the
host’s filesystem view as well as other namespaces (e.g., pro-
cesses or network). It can further log andmonitor network ac-
tivity and filesystem operations. Moreover, it allows for login
of privileged users but can block access to specific files even
if the contained administrator can see that they exist. Via
the permission broker, a ContainIT perforated container can
obtain additional filesystem and network views on-demand,
without restarting. Furthermore, ContainIT is able to utilize
a new namespace we introduce, exclusion namespace, which

excludes access to parts of the filesystem for the processes
it contains, even if its associated container shares the host’s
filesystem table.

We complement our container software with a framework
that orchestrates our approach, and is deployed within the
trusted computing base of each organizational machine. The
framework includes a permission broker and a software sys-
tem that can receive a free-text IT problem description, clas-
sify it, and deploy a corresponding perforated container at
the target machines.

To illustrate the feasibility of our approach, we present a
case study conducted in the IT department of IBM Research,
Israel. We used the department’s database, which includes
tens of thousands of user reported tickets and dozens of main-
tenance scripts; we further collected hundreds of IT tickets
in real time during a three-month evaluation period. The
case study shows that IT tasks can indeed be divided into
categories and classified using common classification algo-
rithms. By adjusting a perforated container for each ticket
class, we were able to accurately capture the needs of 92%
of the 398 cases observed during the evaluation period. We
used the permission broker to complete the remaining 8% of
the cases. Our results showed that our solution denied full
filesystem view in 62% of the cases, and isolated the network
view in 98% of the cases, while all filesystem operations and
network traffic were monitored. Overall, we compartmental-
ized IT personnel from resources that were indeed proved to
be irrelevant to the ticket solving in all of the observed cases,
thus reducing the IT attack surface. Following the success of
the case study, IBM is working to integrate a WatchIT-based
solution in its products whose consumers are required by
law to preserve their clients’ information confidentiality.

Our contributions in this paper are as follows:

(1) We devise a novel container-based approach to protect
organizations from their system administrators.

(2) We provide a proof-of-concept implementation of our
approach, which includes new container software, a
framework for deploying perforated containers, and
required changes to the Linux kernel.

(3) We present a real-world case study, based on the IT
department database and workflow of IBM Research,
Israel.

The rest of this paper is organized as follows: We state our
threat model and detail the current state-of-the-practice in
Sections 2 and 3, respectively. We describe the main concepts
of our approach in Section 4, and give a detailed overview
of WatchIT and its implementation in Section 5. Next, in
Section 6 we discuss ways to circumvent WatchIT and the
measures we take to mitigate them. In Section 7 we present
a case study, performed using a real IT department, through

WatchIT: Who Watches Your IT Guy? SOSP ’17, October 28, 2017, Shanghai, China

which we evaluate our approach. Finally, in Sections 8 and 9
we discuss related work and conclude.

2 TCB AND THREAT MODEL
We utilize standard techniques and build upon a Trusted
Computing Base (TCB) to boot the WatchIT framework into
a trusted initial state. We consider a TCB that provides a se-
cure environment, which includes the system hardware, the
operating system with all its built-in security controls, sys-
tem drivers, system services, and WatchIT components. An
example commodity product that provides such TCB func-
tionality is BitLocker [25], which validates the integrity of
boot and system files before decrypting a protected volume.
Given such a TCB, our threat model is a single rogue IT

employee who wishes to access confidential data, directly
or indirectly by installing malicious software, that is consid-
ered irrelevant for the specific ticket context. We assume a
workflow in which clients report trouble tickets which are
later assigned to specific IT personnel, based on expertise or
required permissions. The assignment creates a certificate
that allows the designated system administrator to login into
a perforated container deployed on the target machine for a
limited time. System administrators do not otherwise have
access to the machines in question, and they cannot create
trouble tickets on their own initiative.
Once an administrator is logged into a perforated con-

tainer, she can modify all system resources to which she is
exposed, as long as she does not change the TCB. Our sys-
tem blocks all actions that may change the TCB signature;
thus, an IT person cannot change the OS kernel, install unau-
thorized drivers or kernel modules, or install non-certified
services. These special actions require escalation, provided
by the permission broker, and thus allow WatchIT to audit
the change and make sure it is signed by the organizational
policy system. Note that these assumptions are supported
by the case study presented in Section 7, as less than 1% of
the tickets we encountered involved driver updates.

3 STATE-OF-THE-PRACTICE
In Section 3.1 we provide the motivation for our work by
discussing the state-of-the-practice in IT workflow and pin-
pointing the danger that IT personnel poses to organizational
information security via three use-cases. Next, in Section 3.2,
we give essential background on container technology.

3.1 IT Vulnerability
IT personnel usually have superuser privileges on the ma-
chines in their responsibility domain. Indeed, superuser per-
missions are essential for system administration. However,
due to the coarse-grained permission granularity in tradi-
tional Linux systems, an IT person practically has access

to any file or configuration stored in these machines. We
identify three main scenarios in which IT employees can
take advantage of their permissions to steal classified data.

Daily IT Support. IT workflow usually consists of three
main steps: (1) The end user fills out a ticket that describes the
request, usually in free text. (2) The IT department receives
the ticket and dispatches it to an appropriate IT specialist. (3)
The IT specialist gains access to the computer in question,
usually remotely, and attends to the request under superuser
privileges on the target machine.
The last step constitutes a major security breach. While

attending to the ticket, the IT specialist has unsupervised
access to all the resources of the target machine, even though
most of these are irrelevant to the ticket at hand. This can be
exploited to steal classified commercial data, copy personal
information, or install malware on the end-user’s computer.

Third-Party Support. Such threats come not only from the
organizational IT department, but also from external service
providers, e.g., a company that provides storage solutions for
various customers such as banking systems, health compa-
nies, etc. Beyond providing the product or service itself, the
company also remotely provides support, which requires su-
peruser privileges on the customer’s machines. Furthermore,
the service provider is logged into the customer’s organiza-
tional network, and is exposed to data on the target machine
as well as data on other machines in the network. Thus, the
service provider might be exposed to data that must remain
confidential by law. For example, this may include credit
card information that must comply to the PCI data security
standard and medical records subject to HIPPA compliance.
Moreover, if the service provider is not an employee of the
storage company, but a third-party IT contractor, the leakage
can be very difficult to trace.

Automatic Management Tools. IT departments usually em-
ploy automatic management tools, such as Chef [14] and Pup-
pet [35], in order to perform various administration andmain-
tenance tasks. These tools operate using dedicated scripts,
which are written by the IT personnel and designed to verify
system configurations and properties. These scripts may run
periodically or be executed manually as part of handling
specific IT requests.
Automatic management tools run with superuser privi-

leges, without any sandbox tomonitor the script’s operations.
An IT insider can tamper with these scripts, causing them to
install malware or leak classified data, thus compromising
many machines at once.

3.2 Containers
Containers offer an operating system level virtualization
technique for running multiple isolated systems (containers)

SOSP ’17, October 28, 2017, Shanghai, China N. Shalev et al.

/

etc/
home/
usr/
var/
conFS/
progs/

init

gcc
java

77.139.180.15

Traditional Container

etc/
home/
usr/
var/
proc/

Host

bash

77.139.180.14

(lnx-host) (lnx-cont)

(a) Traditional container example.

/

etc/
home/
usr/
var/
conFS/
progs/

init

gcc
java

Perforated Container

etc/
home/
usr/
var/
proc/

Host

bash

(lnx-host) (lnx-pcont)

77.139.180.14

(b) Perforated container example.

Figure 1: Traditional vs. perforated container example.
A traditional container is associated with a different
namespace of each available type, while a perforated
container may share a namespace with the host (the
network namespace in this example).

on a host running a single Linux kernel. Virtually, a container
is a group of processes, isolated in various resources from
the host system on which they run. The resource isolation
in modern Linux-based containers is provided by the names-
paces mechanism [28]; when a process is associated with a
different namespace from the host, it has a different view
of the corresponding resource. There are six namespaces in
Linux; these provide per-container views of the following
resources (see Figure 1):

(1) UNIX Time Sharing (UTS) – affects the view of the
host-name. For example, in Figure 1a, processes inside
the container read the host-name of the machine that
they run as lnx-cont.

(2) Mount namespace (MNT) – provides different views
of the mounted filesystem table to different processes
running on the same Linux host. For example, in Figure
1a, we see a container that is able to see only the files
mounted under /conFS/ directory.

(3) Network namespace (NET) – controls the network
view of the contained processes. Processes that belong
to the same NET share routing tables, firewall rules,
and network devices (represented by IP arrow boxes
in Figure 1a).

(4) Process ID namespace (PID) – provides different views
of the processes in the system. Processes that are asso-
ciated with a given PID namespace can only see each
other and processes in child PID namespaces.

(5) Inter-process communication (IPC) – affects IPC ob-
jects that are identified by mechanisms other than
filesystem pathnames, such as shared memory.

(6) User ID namespace (UID) – provides different views
of the IDs of the users in the system. This enables
mapping of contained users to host users, thus giv-
ing corresponding permissions to contained users on
resources in their view.

As demonstrated in Figure 1a, a traditional Linux con-
tainer associates the processes that it contains with a new
namespace of each available type.

Overall, a container offers an environment with the salient
benefits one gets from a VM, but without the overhead that
comes with running a separate kernel and simulating the
hardware. As a result, the deployment time of containers
is a matter of seconds (if all the required files are available
locally), and significantly shorter than virtual machines.

4 PERFORATED CONTAINERS
Perforated Containers. Protecting a system from IT insider

threats goes through fine-grained control over privileges
along with monitoring. To satisfy these demands, we ex-
ploit the isolation properties of traditional Linux containers,
and contrary to their nature, puncture this isolation – thus
introducing perforated containers.

Perforated containers allow us to associate a process with
only a subset of the available namespaces, thus allow it to
share the remaining resources with the host. For example,
Figure 1b illustrates a container that associates the processes
it contains with all the available namespaces except for the
network namespace, which is sharedwith the host. Thus, pro-
cesses running inside the perforated container can only see
the files under /conFS/, read the host-name as lnx-pcont,
and so forth; this is similar to the traditional case. However,
containerized processes have the same network view as non-
containerized ones; namely, the perforated container and the
host share routing tables, firewall rules, and network devices.
Such a perforated container might be useful for repairing
connectivity problems.

In some cases, the perforation might be too permissive. To
this end we would like to inspect the operations done from
within the perforated container, and the information that
flows through these holes. Therefore, alongside the resource
sharing, the perforated container’s boundaries should be
monitored; thus turning it into a sandbox environment. Such
monitoring allows us to perform network packet inspection
for a container’s network traffic, filter filesystem accesses by
content or file type, log various operations, and more.

WatchIT: Who Watches Your IT Guy? SOSP ’17, October 28, 2017, Shanghai, China

Ticket DeployConfigure
Perforated
Container

License
Server

Software
Repository

Organizational
Shared Storage

User Machine

>/matlab/

Figure 2: Example of deploying a perforated container
designed to handle Matlab licensing problems.

Custom Tailoring. Our proposed approach is to deploy per-
forated containers as a sandbox mechanism for IT operations.
We adopt the Multics [40] principle of least privilege, and
thus for each IT request, we sew a custom-made perforated
container that allows access only to resources that are rel-
evant to that request. We follow another Multics security
principle and base the protection on permission rather than
exclusion. For example, as illustrated in Figure 2, if the re-
quest requires fixing an expired Matlab license, the deployed
custom-made perforated container should have filesystem
access only to the Matlab directory, and its network view
should include only the organizational license server. The
view of other filesystem parts, as well as other network nodes,
and even other system processes, should be unavailable. We
configure the perforated container boundaries, as explained
next, by processing the user request and predicting the max-
imal isolation under which the IT requests can be handled.

Bypassing and Monitoring. By perforating the isolation
provided by traditional containers, we create a supervised,
controlled, and flexible sandbox environment for each IT
request. Nevertheless, our prediction cannot be perfect, and
there are bound to be cases in which the configured isola-
tion is too restrictive, and not sufficient for completing the
designated IT request. To this end, we propose a permission
broker. The permission broker is a software service that runs
on the host and provides two complementary mechanisms.
First, it allows administrators to bypass the container bound-
aries by executing commands on behalf of the perforated
container. Second, it can grant the perforated container addi-
tional permissions (system views), thus effectively expanding
its boundaries. Requests sent to the permission broker can be
denied or approved, according to a predefined policy. More-
over, all such requests are logged for future analysis, thus
enabling monitoring, better adjustment of container limits
for future tickets, and improved investigation capabilities in
case of security breach.

…

Img = classify(Ticket, History)
Deploy(Img)

Ticket

Image
Repository

Node 1

End-User

System
Administrator

IT Framework

Perforated
Container

Cluster Manager

PB

Node 2 Perforated
Container

PB

Node n Perforated
Container

PB

Figure 3:WatchIT architecture overview. PB is the per-
mission broker.

Benefits. Exploiting containers for administration has the
following benefits: First, our approach supports the creation
of various perforated containers, each with a different iso-
lation set. This allows for fitting a container for each IT
mission, in a fine-grained granularity. Second, a superuser
inside the container may indeed have the privileged capa-
bilities it needs. Nevertheless, these privileges are effective
only on the resources that are visible to the container. Third,
containers can be deployed within seconds, given that all
needed files exist on the target machine; this is valuable
for administration tasks, which usually should be done in
a timely manner. Fourth, namespaces are supported in all
the latest Linux distributions. In addition, as explained later,
our approach enables efficient monitoring and auditing of
IT, including filesystem operations and network traffic.

5 WATCHIT
In this section we presentWatchIT, and dive into its imple-
mentation. In Section 5.1 we give an overview of the system
structure. Next, in Section 5.2 we present our perforated
container software, ContainIT, and discuss its architecture.
We then present two mechanisms that ContainIT uses: ITFS
(Section 5.3) for inspecting IT file operations and the permis-
sion broker (Section 5.4). Next, we discuss in Section 5.5 our
technique for changing a running container filesystem view.
Finally, in Section 5.6 we propose a new namespace for the
Linux kernel, motivated by this work.

5.1 Architecture Overview
The architecture of our proposed system is depicted in Figure
3. The workflow begins with the submission of a request to
the IT department by an end-user; we refer to this request as
a ticket. Tickets are written in free text, and describe software
problems, networking issues, expired licenses, and so on.
The system is pre-configured with a number of ticket

classes, each associated with a dedicated perforated container

SOSP ’17, October 28, 2017, Shanghai, China N. Shalev et al.

Policy
Manager

Permission
Broker

Network
Monitor

Filesystem
Monitor

NET NS MNT NS

P
ID

N
S

U
ID

N
S

IPC NSUTS NSH
ost

n
am

esp
aces

Perforated Container

it@host>

Terminal

Network Filesystem

Processes HostnameUsers

Host Resources

Figure 4: ContainIT software architecture. NS stands
for namespace.

encapsulating the privileges required in order to attend to
tickets of this class (via namespace settings, installed soft-
ware, and monitoring configuration). Like the Docker archi-
tecture [30], the various container images and configurations
are held in a dedicated image repository for quick deploy-
ment. New tickets are submitted to an organizational IT
framework. The framework analyzes the tickets and classifies
each ticket to one of the predefined ticket classes, based on
history and ticket parameters. The classification is performed
automatically, and reviewed by the user or a supervisor.

Upon classifying the ticket, the framework asks the cluster
manager to deploy the corresponding perforated container
image on the target machines. Following the deployment,
IT personnel can log into the deployed containers in the
target machines and attend to the ticket. As proposed in
previous works [45], connecting to the deployed perforated
containers is enabled via a temporary certificate, which is
revoked once the ticket time expires. Thanks to the isolation
provided by the namespace subsystem of the OS kernel, the
administrator is confined to the limitations dictated by the
perforated container, and cannot operate on system parts to
which the container is not exposed.

5.2 ContainIT
We now describe ContainIT, our software for deploying per-
forated containers. Commodity container software (such as
Docker or LXC) does not support many of the features we
require, including custom made perforated containers, mon-
itoring container filesystem operations and network traffic,
flexible on-line file-sharing, and more. Therefore, we build

ContainIT, our own container software, which supports these
features. ContainIT is written in C.
Figure 4 presents the software architecture of ContainIT.

First, the boundaries of a perforated container are determined
by its attributed namespaces (abbreviated NS). As explained
in Section 4, not all available namespaces must be used, and
access to resources governed by missing namespaces is un-
constrained. For example, if the perforated container shares
the host’s PID namespace (because this namespace is ex-
cluded), then the IT person may freely communicate with
processes on the host.

Second, accesses to network and filesystem resources through
the corresponding namespace are monitored (green boxes).
For example, network traffic going through network devices
associated with the perforated container’s NET namespace
is tapped, analyzed, and can be blocked if necessary. To
implement this feature, we make use of existing sniffing
mechanisms [32, 38]. To monitor filesystem operations, we
build ITFS – a FUSE-based filesystem that traps file system
calls, allowing the inspection, blocking, and logging of file
operations, as detailed in Section 5.3. Conceptually, this mon-
itoring approach may be applied to additional namespaces,
but we did not find a need for it.

Finally, for cases in which a contained user needs to access
the host’s resources, she can contact the permission broker
(pink box) – a software service running on the host with
unlimited access to the host’s namespaces. Requests sent
to the permission broker are logged, inspected, and can be
denied or accepted. The policies of the permission broker and
the namespace monitors are dictated by the policy manager
(yellow box).

This software architecture makes our container software
highly configurable. Examples include a perforated container
that shares the host’s root filesystem but cannot access docu-
ment files; a perforated container that cannot see the host’s
filesystem, yet is able to see and kill the running processes
on the host; a perforated container that can be accessed via
SSH, but has no access to the world-wide web.

5.3 ITFS – Filesystem Monitor
We now describe the mechanisms we provide for monitor-
ing file accesses by IT personnel as well as for sharing the
host’s root filesystem with a perforated container. For these
purposes we build IT File-System (ITFS), a FUSE-based [37]
monitoring filesystem that can deny or log accesses to the
underlying filesystem according to configurable rules. Note
that current container software (Docker, LXC) does not pro-
vide the ability to deploy a container that has the same view
of the filesystem as the host’s. Since this is an imperative
feature in administration, we provide it here, alongside the
monitoring mechanism.

WatchIT: Who Watches Your IT Guy? SOSP ’17, October 28, 2017, Shanghai, China

<itfs, ‘/’, fuse.itfs>

<proc, ‘/proc’, proc>

<run, ‘/run’, tmpfs>

Perforated Container’s
Mounted FS-Table

3

4

4

(a) Perforated container’s
mounted filesystem table.

Perforated
Container

open(‘/any/file’)

Host

ITFS ‘/’ ‘/ConFS’

libfuse

Userspace

Kernelspace

FUSE Ext4

Virtual Filesystem Switch

C-Standard Library (libc)

C-Standard Library (libc)

Policy Manager

1

1

2

2

3

2

1

(b) FUSE software architecture. Arrows represent the flow of file
system calls.

<itfs,‘/ConFS’,fuse.itfs>

</dev/sda, ‘/’ ,ext4>

<proc, ‘/proc’ ,proc>

<run, ‘/ConFS/run’,tmpfs>

<proc,‘/ConFS/proc’,proc>

Host’s Mounted FS-Table

<run, ‘/run’ ,tmpfs>

1

1

1

2

4

4

(c) Host’s mounted filesystem table.

Figure 5: Using ITFS in order tomonitor a perforated container’s filesystemoperations. The perforated container’s
mount point is /ConFS/. The run-time flow is depicted in Figure 5b.

We build our ITFS solution in two steps. First, we mount
the host’s root filesystem at a dedicated mountpoint, while
trapping all the file system calls targeted at that mountpoint.
Second, we chroot() the perforated container to the dedi-
cated mountpoint. Namely, we change the filesystem view
of the container by making it see the dedicated mountpoint
as the root of the system. Assuming that the perforated con-
tainer has a different MNT namespace than the host, this
mechanism ensures that all filesystem operations performed
within the perforated container are monitored.

Figure 5 depicts how our mechanism inspects filesystem
accesses initiated from within a perforated container. (1) In
the initial state, the host only has the Ext4 filesystem regis-
tered in its VFS, while its mounted filesystem table (Figure
5c) only contains the yellow entries. (2) Next, we prepare the
ground for deploying the filesystem-monitored perforated
container by invoking ITFS on the host and mounting the
root of the host’s filesystem on a dedicated mount point (the
directory /ConFS/ in this example). This invocation adds an
entry to the mounted filesystem table of the host (first green
entry the in Figure 5c), and forwards all future file system
calls targeted at this mountpoint to the FUSE kernel module,
which registers a new filesystem in VFS.

(3)When deploying the perforated container, we configure
its filesystem to be rooted at /ConFS/. Since the perforated
container has a separate MNT namespace, it is only aware of
the ITFS filesystem mounted on its root address. This is the
first entry of the perforated container’s mounted filesystem
table shown in Figure 5a. (4) Additional future filesystems
mounted in the perforated container’s namespace scope (run

and proc green entries in Figures 5a and 5c) are rooted at
/ConFS/. As shown in the figure, all the entries of the perfo-
rated container’s filesystem table have counterparts in the
host’s filesystem table.

Once deployed, every file system call issued from the per-
forated container is forwarded through VFS, by the FUSE
kernel module, to the libfuse library running on the host.
Hence, as illustrated by the arrows in Figure 5b, when a
containerized application calls open() (pink box), the call is
forwarded to ITFS, which invokes the corresponding callback
defined in its policy (blue boxes) for the open() operation.
The callback may take any action, and return the desired
data in a supplied buffer. For instance, it can read the file
from the underlying filesystem (such as Ext4), detect its type
according to its signature, and deny access if the file is a pic-
ture or a document. Alternatively, it can allow access to the
file, but log this access for later analysis. Finally, the return
value is propagated back by libfuse, through the kernel, to
the application that issued the open() inside the container.

We further provide an API for configuring the monitoring
rules and actions. The API supports forbidding and/or log-
ging access to a file according to its signature or extension.
This allows, for example, control over access to documents –
files that are usually irrelevant to IT work. In addition, ITFS
exposes an API for integrating user-supplied detection rules,
as scripts or programs, so that each organization can create
customized file filtering.
Under the approach described in this section, the user

logged in to the container inherits the privileges of the user

SOSP ’17, October 28, 2017, Shanghai, China N. Shalev et al.

that invokes the ITFS on the host; this happens in all FUSE-
based filesystems by design. Thus, if ITFS is mounted with
superuser privileges, the user inside the container also has
superuser privileges for all the files that are exposed to the
container through ITFS. Indeed, this is the desired behavior
for administration tasks.
Note that the presented approach is possible only if the

perforated container has a different MNT namespace from
the host, which is usually the case. As shown in the case
study in Section 7, none of the examined tickets required
sharing the MNT namespace of the host. Under this con-
dition, ITFS can inspect the file accesses of the contained
IT person, without allowing her to bypass this mechanism,
even if the perforated container is admitted to the host’s root
filesystem itself. For cases in which the administrator does
need access to the host’s entire MNT namespace, we provide
the XCL namespace, as discussed in Section 5.6.

5.4 Permission Broker
On some occasions, the permissions assigned to a container
may be insufficient for handling the ticket. To address such
cases, we augment the system with a permission broker. The
permission broker is a software service that runs on the host
and can grant a running container additional permissions,
change its filesystem and network view, and provide it with
information regarding the host system, while logging all
accesses.

For example, if the IT specialist attends to a network prob-
lem and during the work wishes to see the list of running
processes in the system (from which she is compartmental-
ized), she can submit a request to the permission broker, as
shown in Figure 6. In the example, executing “ps -a" from
the container shows only processes that belong to the con-
tainer’s PID namespace. By requesting the command from
the permission broker (using the PB prefix), the contained
user may see the host’s processes.
The permission broker grants a request if it follows the

security policy corresponding to the specific ticket class and
IT specialist, and can refuse otherwise. Either way, these
requests are logged in real-time to a secure append-only
storage device, and can be monitored and analyzed later for
anomaly detection. As a consequence, our permission bro-
ker logs only IT activities that diverge from the predefined
isolation, which captures the expected behavior for handling
a specific ticket. Hence, the permission broker’s log is suffi-
ciently succinct to be inspected and analyzed for anomaly
detection [13, 15, 39, 48], where one of the major challenges
is handling enormous amounts of data. Moreover, if certain
permissions are repeatedly requested, they can be added to
the ticket class’s perforated container, thus further reducing

root@ITContainer:/home/itsupport# ps -a
PID TTY TIME CMD
1 pts/4 00:00:00 containIT
32 pts/4 00:00:00 bash
71 pts/4 00:00:00 testscript
73 pts/4 00:00:00 ps

root@ITContainer:/home/itsupport# PB ps -a
PID TTY TIME CMD
1023 pts/14 00:00:00 PermissionBroker
1075 pts/4 00:00:00 sudo
1077 pts/4 00:00:00 ContainIT
1080 pts/4 00:00:00 itfs
1081 pts/17 00:00:00 snort
1139 pts/4 00:00:00 bash
1272 pts/18 00:00:00 testscript
1276 pts/19 00:00:00 ps

root@ITContainer:/home/itsupport#

Figure 6: Example of using the permission broker.

the amount of gathered data, and in turn facilitating future
data analysis.
We implement the permission broker in Python, using a

client-server architecture, where the server side is installed
on the host and the client side is invoked from the container.
The communication goes through the tcp/ip stack, and we
use Google’s Protocol Buffers and gRPC [19] for serializing
and streaming the data. In order to prevent regular users
from contacting the permission broker, we configure the per-
mission broker client to accept only requests from privileged
users. If one wishes to further secure the communication
between the perforated container and the permission broker,
one can employ SSL.

In order to change the system view of the deployed perfo-
rated container, the permission broker performs operations
on the routing tables and firewall rules of the container’s
namespaces and uses the nsenter tool as detailed next in
Section 5.5.

5.5 Online File Sharing
Commodity container software such as Docker provides
means for mapping directories from the host filesystem into
a non-root directory in the container filesystem. However,
such mapping must be requested at launch-time; once the
container has been deployed, there is no support for exposing
additional host directories to the container.
In WatchIT, on the other hand, we would like to allow

the permission broker to map additional directories on-the-
fly; namely, expose additional directories to the perforated
container while it is running, without requiring it to restart.
Hence, we equip ContainIT with the ability to perform

on-the-fly file sharing, while ensuring that subsequent con-
tained accesses to newly shared files are monitored by our
ITFS mechanism. Mounting additional directories into the
container filesystem is not trivial. Due to the namespace
hierarchy, mount operations on the host are not visible in

WatchIT: Who Watches Your IT Guy? SOSP ’17, October 28, 2017, Shanghai, China

the container; hence, the mounting should be executed from
within the perforated container. On the other hand, the per-
forated container is not aware of the files from which it is
isolated; hence the operation cannot be purely executed from
within the container. Our solution employs nsenter [8], a
Linux tool for entering the namespaces of a given process
and executing programs within them.
The full process of adding a new volume to a running

container begins by issuing a request from the container to
the permission broker. Next, the permission broker logs the
request and turns to execute it under superuser privileges.
The implementation of the feature itself is comprised of three
main stages: (1) extracting the full real path to the host direc-
tory and device ID on whose filesystem the directory resides.
(2) using nsenter in order to infiltrate the namespaces of the
running perforated container; and (3) creating an ITFS bind
mount to the host directory in the target path from within
the container’s namespace.

Since we create an independent ITFS bind mount, accesses
to the newly mounted filesystem are supervised by ITFS,
but can have different rules. Moreover, even if one chooses
not to employ ITFS monitoring on the originally deployed
perforated container, one can still employ it only on the
newly mounted files.
Finally, we note that our online file sharing technique

does not constitute a security breach in the Linux namespace
mechanism. It is possible only because it requires superuser
privileges on the host. In our case, these privileges are pro-
vided by the permission broker.

5.6 Exclusion Namespace
Themechanism described in Section 5.3 for sharing the host’s
underlying filesystem with the perforated container under
supervision and monitoring is only possible when the con-
tainer has a different MNT namespace from the host. How-
ever, it may be the case that the administrator needs to access
the host’s entire MNT namespace, for example, if the system
administrator needs to handle problems with the filesystem
itself or mount more filesystems on the machine. In these
cases, the perforated container and the host have the same
view of the mounted filesystem table, and there is no guar-
antee that each filesystem operation of the containerized
superuser is monitored.
To solve this problem, we introduce a new namespace

to the Linux kernel – exclusion (XCL) namespace. The XCL
namespace has a table of excluded directories – filesystem
sub-trees that cannot be accessed by processes that belong to
that namespace, disregarding the user privileges. Thus, even
if a containerized superuser has access to the underlying
filesystem, she will not be able to access the parts of the
filesystem that are specified in the exclusion table.

We implementat the XCL namespace in version 4.6.3 of
the Linux kernel. Following Linux conventions, one can as-
sociate a newly created process with a new XCL namespace
instance by executing the clone() system-call with the flag
CLONE_XCL. Entries can be added to and removed from
the excluded directory table using dedicated system-calls.
A newly created namespace instance inherits its parent’s
exclusion table.

6 THREAT ANALYSIS
We now discuss the threats facing WatchIT, which we sum-
marize in Table 1, and the measures we take in order to neu-
tralize them. In Section 6.1 we analyze methods for breaching
WatchIT protection fromwithin a perforated container using
technical skills. Section 6.2 discusses ways to circumvent the
WatchIT system.

6.1 WatchIT Software Security
Keeping Perforated Container Boundaries Safe. Our perfo-

rated container is created by punching holes in the isolation
provided by traditional containers. Moreover, a perforated
container may map a contained user to a privileged one on
the host, since it may be required to perform operations like
service restarts or system reboots. The holes in perforated
containers alongside privileged permissions might be abused
to escape the perforated container boundaries.

There are four known techniques to escape a chroot()-ed
environment (including containers) [44]. The most common
one requires root privileges, and issues a new chroot() com-
mand in order to escape the current one. The second tech-
nique is based on communicating with a process outside the
container, changing its code using ptrace(), and turning it
into a bind shell. The third builds on creating raw disk de-
vices and mounting existing filesystems on them. The fourth
creates /dev/mem or /dev/kmem devices, thus tapping and
modifying system and kernel memory.
Using the Linux capabilities feature [2], we deprive con-

tained users of three capabilities that are essential for em-
ploying the first three aforementioned bypassing techniques
(Attacks 1-3 in Table 1), and are also rarely needed in IT
work. These are: chroot(), ptrace(), and mknod(). We fur-
ther implement a new capability and employ it to block a
contained user from opening /dev/mem and /dev/kmem
(Attack 4).

Previous work [11] presented nineways to escape chroot()-
ed environments by exploiting privileged permissions, which
use similar capabilities as the attacks described in [44]. We
tested each of them in containers deprived of the capabilities
mentioned above, and verified that they cannot escape the
perforated container.

SOSP ’17, October 28, 2017, Shanghai, China N. Shalev et al.

ID Attack Defense Weaknesses
1 Escape perforated container boundaries Block chroot() capability
2 Bind shell Block ptrace() capability IT cannot perform debugging
3 Raw disk mounting Block mknod() capability IT cannot create special files
4 Memory tapping Block access to /dev/mem & /dev/kmem
5 Tampering with WatchIT software (1) Include WatchIT in TCB (2) Block access to WatchIT files
6 Tampering with log files (1) Replication (2) Block access by ITFS
7 Kill WatchIT component Other components exit and terminate session

8 Encrypt and exfiltrate (1) Blocks filesystem access (ITFS) to unencrypted files
(2) Sniff or block suspicious network traffic

Requires ITFS
and network sniffer rules

9 Fake tickets IT personnel cannot create trouble tickets Collusion with non-admin insider

10 Ticket stringing (1) Permission-based ticket assignment
(2) Imposing hard constraints on all perforated containers

11 Malware installation (1) Website whitelisting (2) Monitor incoming network traffic Watering hole attacks, phishing, etc.

Table 1: Possible attacks on WatchIT, the measures we take to neutralize them alongside their main weaknesses.

Protecting WatchIT Software. We prevent the contained
administrator from tampering with our sandbox mechanism
in two ways (Attack 5). First, we include WatchIT software
(including the permission broker, policy manager, and ITFS
software) in our TCB, so the system will not boot if any
of its components have been tampered with. Second, we
use ITFS to block accesses to all WatchIT files; this way,
we deny access to these files even if the contained user can
view them. Furthermore, in order to prevent the log files
from being compromised, they can be replicated on a remote
append-only storage (Attack 6). Finally, we design ContainIT
to terminate the session if any of its peer processes (e.g.,
permission broker service) are killed (Attack 7).

Protecting Files within a View. Network sniffer software [32,
38] mostly relies on detecting the signatures of files sent over
the network. Hence, a common attack would be to tamper
with the victim files or conceal their content by encryption
and send them over the network (Attack 8). In order to pro-
tect from such an attack, the ITFS blocks the actual access
to files that are defined as classified by the policy manager.
Since one cannot tamper with a file without reading it, this
prevents exfiltration.

6.2 Circumventing WatchIT
Collusion. WatchIT is designed to protect against a sin-

gle adversarial system administrator and is vulnerable to
collusion between a user and an IT person (Attack 9). That
said, we note that the state-of-the-practice is that administra-
tors can act solo, so making collusion necessary significantly
raises the bar for attack; in particular, when IT is managed by
a third party (possibly in a different country). Furthermore,
filesystem operations performed from within a perforated
container are monitored by ITFS and since all tickets are
recorded, collusion leaves a trail.

Ticket Stringing. If an administrator is assigned to handle
multiple ticket types, a possible attack would be to sequen-
tially string tickets, thus concatenating system views and
expanding her effective permissions (Attack 10). An effective
solution against such threats is to impose hard constraints
on all perforated containers. For example, as presented in the
case study in the next section, imposing an ITFS policy (e.g.,
forbidding access to documents) and network sniffer rules
(e.g., disallowing transfer of encrypted files) on all perforated
container classes, prevents data leakage even in the face of
stringing. Moreover, in large organizations, WatchIT can be
protected from such threats by assigning to each IT person
only tickets of the same class.

Group-Targeted Attacks. Organizations are usually exposed
to group-targeted attacks, like phishing and watering hole
(Attack 11). WatchIT is not designed to provide protection
from such threats. Thus, for example, watering hole attacks
on whitelisted sites that are used for software downloading
(e.g., Eclipse) remain dangerous. Nevertheless, they affect
regular users as well as administrators. Moreover, if WatchIT
is not in use, administrators accessing these sites allow the
downloaded malware broader system view and permissions
than when WatchIT is used.

Finally, we note that WatchIT supervisors who create the
perforated containers and define their system view remain
omnipotent. However, we narrow the trust group from many
administrators, possibly including third-party contractors,
to very few.

7 CASE STUDY
This section presents a case study of applying WatchIT on
the IT database of IBM Research in Israel. The studied IT de-
partment consists of about 30 system administrators, among
them 7 Linux specialists, supporting around 600 technical
users. We begin in Section 7.1 with a thorough ticket analy-
sis, clustering, perforated container tailoring, and testing on

WatchIT: Who Watches Your IT Guy? SOSP ’17, October 28, 2017, Shanghai, China

Topic T-1 Topic T-2 Topic T-3 Topic T-4 Topic T-5 Topic T-6 Topic T-7 Topic T-8 Topic T-9 Topic T-10
license password file connect work install VM access connect space
matlab user < Shared Storage > < IP > time < Server > < VM > user < Server > project
error connect access port machine version GB add SSH < Shared Storage >
DB2 account SVN server slow < OS > IP group respond GB

toolbox login directory network stuck upgrade disk team VNC increase
message locked git IP reboot < Application > kvm permission LSF quota

Table 2: Results of running 10-topic LDA on our data set. For each topic we present six of its top 20 words.

T-1: License related (5%)

T-2: User-password (11%)

T-3: Shared storage accessibility

T-4: Network related (7%)

T-5: Slow/non-responsive server

T-6: Software related (15%)

T-7: Internal VM cloud (8%)

T-8: Permissions (9%)

T-9: SSH/VNC/LSF (23%)

T-10: Shared storage quota (11%)

5%

11%

7%

7%

4% 15%

8%
9%

23%

11%

1Figure 7: Category assignment and distribution.

real-world workload. Next, in Section 7.2, we audit scripts
used by the same IT department (e.g. Chef, Puppet) and
show that perforated containers can be suited to protect
from tampered scripts. Finally, in Section 7.3 we evaluate
ITFS performance and show that it can indeed be used as a
filesystem for administration tasks.

7.1 IT Tickets
We apply the WatchIT approach to tickets of a real-world
IT department. We employ statistical tools to cluster the
tickets into classes and validate the resulting division with
IT personnel. Next, we custom-tailor perforated containers
and test their compatibility on new tickets collected during
a trial period.

7.1.1 Ticket Clustering. For our case study, we analyze an
IT database containing about 66,000 tickets, collected during
the years 2009 through 2016. Tickets are written in free text
by end-users and are manually sent by the IT department to
the corresponding IT specialist. The actions taken by IT per-
sonnel to handle each of these tickets are not included in the
database. From this corpus, we gather the tickets pertaining
to Linux machines. The filtering is done by choosing only
the tickets that were assigned to IT personnel who specialize
in Linux issues. This leaves us with a corpus size of around
17,000 tickets.

To group the tickets into categories, we use topic model-
ing [9]; such algorithms take a corpus and group the words
across it into topics. Before performing topic modeling, we
pre-process the corpus by applying word stemming, stop
word removal, deletion of common words that do not add
information (like ‘hello’ and ‘please’), and obfuscation of

confidential information such as server names, addresses,
project names, etc. We then use Latent Dirichlet Allocation
(LDA) [10] to process the data and group it into a specified
number of topics. We run LDAwith 7 to 14 topics and choose
the most appropriate result, which in our case consisted of
ten topics.
Partial results of the ten-topic LDA analysis appear in

Table 2. LDA represents a topic as a distribution over words;
thus, the full results of LDA for each topic include a list of all
the words that appear in the corpus. Each word in each list
is associated with a number that represents the likelihood of
finding that word in a text on the corresponding topic. For
illustration purposes, Table 2 shows only six representative
words for each topic, taken from the top-twenty words of
each list. Surrounding angle-brackets represent names or
addresses; e.g., <IP> stands for any IP address.

One can infer from the results the main categories that the
studied IT department deals with. The category distribution
appears in Figure 7. For example, topic T-1 constitutes 5%
of our tickets and refers to license problems, which are usu-
ally associated with Matlab, Matlab toolboxes, and database
software; topic T-5 refers to slow or non-responsive servers;
and topic T-6 is associated with software related requests,
as among its top words we can find application names like
eclipse, gcc, and hadoop, and words like "install", "upgrade",
"version", "package", and "plugin".

To verify our topic choices, we interview the IT personnel
without exposing them to the LDA results. Our interviews
with the IT personnel yielded 13 main categories, which are
all included in the LDA results, although with some modifica-
tions: (1) IT personnel treated SSH, VNC, and Load Sharing
Facility (LSF, a batch job execution environment) issues as
different categories, while LDA groups them into one (Topic
T-9). This happens since the descriptions of such problems
often use the same words. (2) IT personnel distinguish be-
tween shared storage accessibility problems to SVN and git
issues, while LDA mixes them into one. Again, this happens
for the same reason – organizational SVN and git reposi-
tories reside on the organizational shared storage, and all
related IT issues are associated with creating and managing
accessibility to these repositories; hence the same words are
used to describe these issues.

SOSP ’17, October 28, 2017, Shanghai, China N. Shalev et al.

Process
Management
Permission Set

Filesystem Access Network Access
Home

Directory /etc/ Root
Directory

License
Server

Batch
Server

Shared
Storage

Target
Machine

Software
Repository

Whitelisted
Websites

Network
Namespace

T-1: License related X X
T-2: User / password X
T-3: Storage accessibility X X X
T-4: Network related X X - - - - - - X
T-5: Slow server X - - X
T-6: Software related X - - X X X
T-7: Internal VM cloud X
T-8: Permissions - - X
T-9: SSH/VNC/LSF X X X X X
T-10: Storage quota X X
T-11: Other

Table 3: Permission and isolation per each container type.We denote by "X" explicitly included resources, and by "-" resources
that are implicitly included due to the inclusion of another resource.

However, as presented in the next section, in both of these
cases, the mixed categories also share the required permis-
sions for handling their associated tickets. Indeed, SSH, VNC
and LSF issues always necessitate a connection to a remote
server, and involve changing local configuration files. Simi-
larly, SVN and git repositories always reside in the shared
organizational storage and are associated with accessibility
issues. We conclude that the LDA output is accurate and
sufficient for mapping tickets to the needed permissions.

7.1.2 Permission Assignment. Given the above classifica-
tion, we consult with the IT personnel and build ten per-
forated containers, which differ in their permissions and
resource isolation. The isolation and permissions for each
ticket class appear in Table 3; alongside the isolation, filesys-
tem accesses are monitored by ITFS and network traffic is
sniffed by IDS software.

For example, the T-1 perforated container for attending to
licensing problems canmodify the home directory of the user
and connect to the organizational license server (a server
responsible for company license management, maintained
by the IT). Nevertheless, it is compartmentalized from the
rest of the filesystem and other nodes in the network.

The process management permission set includes the abil-
ity to (1) see and kill the host’s running processes, (2) restart
host’s system services, and (3) reboot the machine. Whereas
T-1 (the licensing container) is isolated from these permis-
sions, we do grant this set of permissions to T-5 containers,
which target non-responsive/slow server issues, since these
usually involve killing resource-consuming processes.
For T-6, covering software issues, we match a perforated

container with ITFS-monitored access to the root filesystem
of the target machine. The network view of such a container
includes only the organizational software repository and
monitored access to a whitelist of websites.

The perforated container for T-9, which handles SSH, VNC,
and batch computing problems, shares the corresponding
configuration files (located under /etc/ and in the home
directory) with the host, and has a limited network view,
which includes the target machine (for SSH and VNC) and
the organizational batch computing server (for batch com-
puting). To enable service restarts after configuration fixes, it
is granted the process management permission set. Note that
this container is deployed both on the user and the target
machines, since configurations might need to be fixed in
both of them.
T-7 is the container for VM cloud issues. The organiza-

tional VM cloud is managed using an EC2-style GUI that can
create, reboot, terminate, and change resource allocations
of the hypervisors. These operations cover most of the VM
cloud-related tickets, without the IT personnel having to
log into any VMs. However, when creating a new VM from
a ready and signed image, the IT person must access it in
order to configure its ownership properties. With WatchIT
included in the signed initial filesystem image of each VM,
the T-7 perforated container is only exposed to the relevant
ownership configuration files in /etc/. Thus, if a user re-
quires a new VM with some software installed, she should
create two tickets – one for a new VM on her name, and one
for software installation in that VM.

For issues that do not match any of the classes, we build a
fully isolated container, T-11, thus tracking and logging all
operations that are done while attending to the unclassified
ticket.

7.1.3 Testing and Results. After extracting the ticket classes
from historical data, during three months from December
2016 to February 2017, we collected and audited all 398 Linux-
related tickets created in the system, excluding hardware
failures and Windows/iOS related tickets. For each ticket, we
recorded the operations that were performed while treating

WatchIT: Who Watches Your IT Guy? SOSP ’17, October 28, 2017, Shanghai, China

ID
% of
Total
Tickets

Classif-
ication

Precision

% of Tickets
Satisfied by
P.Container

% of Tickets Used Permission Broker
Process

Management
Filesystem Network

T-1 9% 94% 94% 3% - 3%
T-2 7% 95% 86% - - 14%
T-3 8% 94% 93% - - 7%
T-4 2% 100% 100% - - -
T-5 5% 95% 89% - - 11%
T-6 30% 94% 91% - - 9%
T-7 10% 100% 97% 3% - -
T-8 3% 92% 75% 17% - 17%
T-9 21% 98% 100% - - -
T-10 3% 92% 100% - - -
T-11 2% 80% -
Total 100% 95% 92% 1% - 7%

Table 4: Results of attempting to use our custom-made
perforated containers for handling tickets collected
during a test period.

it, and asked the IT team to classify it to one of the ten pre-
defined categories. Thus, we created a database that includes
for each ticket its free-text description, a classification, and
the permissions required for handling it. Next, we check
whether we can apply the operations performed for each
ticket inside its corresponding perforated container. We also
predict the class of each ticket using our LDA model, after
applying spelling correction.

We present the results in Table 4. The first column shows
the category distribution of the collected ticket set, as labelled
by the IT department, and the second presents the prediction
accuracy for tickets of each class. The third column shows, for
each category, the percentage of tickets in this category that
were completely satisfied by their corresponding custom-
made perforated container. As the table shows, 92% of tickets
could be handled from within the corresponding container.
Considering the isolation of each container, we prevented full
filesystem view in 62% of the cases, compartmentalized the
process view in 36% of the tickets, and isolated the network
view in 98% of the cases. Moreover, access to the world-wide
web was made possible only in 32% of the tickets (T-6), and
only to whitelisted websites. Furthermore, all filesystem and
network accesses were monitored.
Tickets that did not match any of the predefined cate-

gories were classified as "Other" (T-11). These include rare IT
requests such as partition resizing and driver updates. The
latter constitutes only 0.5% of the tickets; they change our
TCB and are indeed rare.

The next three columns in Table 4 details the causes for
which the permission broker was employed. One example
of such a ticket was classified as license problem since a
user requested a license for a specific Matlab toolbox, but
the toolbox was not installed on his machine. Since license-
type perforated containers are isolated from the software

Container Capabilities

ID Dist. Process Management
Permission Set

Home
Directory /etc/ Network

Namespace
S-1 60% X
S-2 20% X X
S-3 10% X
S-4 10% X X X

(a) Custom-made perforated containers for
Chef and Puppet scripts.

Container Capabilities

ID Dist. Process Management
Permission Set

Statistic
Tools

Filesystem
Access

Network
Namespace

S-5 80% X
S-6 20% X

(b) Custom-made perforated containers for
cluster management scripts.

Figure 8: Perforated container tailoring for IT scripts.

repository, the IT needed the permission broker in order to
install the toolbox.

7.2 IT Scripts
Chef and Puppet. We review twenty bash scripts used by

the IT department. These scripts are intended for various pur-
poses: time synchronization, permission and configuration
verification, service restarts, etc. They are executed period-
ically and before ticket handling, using Chef and Puppet.
They execute with root privileges and occasionally resolve
the ticket without human intervention.

We examine the required isolation for each script and con-
clude that most of them access only specific configuration
files, few of them engage with system processes, and a few
require sharing the network namespace (for IP table oper-
ations). Overall, we group the scripts into four categories.
Hence, as listed in Figure 8a, we build four different contain-
ers and map each of the scripts to a container that can run it
under maximal isolation.

Cluster Management. We audit thirteen scripts used for
automation andmanagement of Apache Spark and IBM Swift
clusters. These scripts mainly collect statistics, search for
failures by reading system logs, and automate cluster opera-
tions like service restarts and system reboots. As presented
in Figure 8b, we learn that a single, very limited perforated
container can answer the needs of 80% of the scripts. This
container should have access only to system logs and statis-
tic tools (e.g., mpstat). The rest of the scripts handle system
services and reboots, and are thus granted only the process
management permission set. Note that these perforated con-
tainers are isolated from the network; as a result, tampered
scripts can never leak information outside of the cluster.

SOSP ’17, October 28, 2017, Shanghai, China N. Shalev et al.

grep-100KB grep-1MB Postmark SysBench
0

0.5

1
1 1 1 1

0.75

0.98

0.4

0.97

0.31

0.97

0.2

0.96

P
er
fo
rm

a
n
ce

ext4 ITFS+extension ITFS+signature

Figure 9: ITFS performance evaluation.

7.3 ITFS Evaluation
Our container software utilizes the Linux namespace mech-
anism and therefore enjoys the low overhead attributed to
containers. That being said, as [36] shows, the use of ITFS,
just like any other FUSE-based filesystem, may incur perfor-
mance degradation.
We measure the ITFS overhead by performing a typical

administration task, grep, on 25GB directories with average
file sizes of (1) 1MB and (2) 100KB. We further use two other
benchmarks, characterized by different workloads: (1) Post-
mark [22], configured to access many 5KB-256KB files; and
(2) SysBench [6], which accesses a small number of large
files. Our system runs Ubuntu 16.04 on Intel Core i7-4790
with 16GB RAM and SSD hard drive.

Figure 9 presents the results of executing these bench-
marks on our system with three filesystem configurations:
ext4 (baseline), ITFS with file-extension monitoring, and
ITFS with file-signature monitoring. We see that the ITFS
overhead depends on the sizes of the accessed files and on
the monitoring rules. Overall, when engaging large files the
performance is close to the baseline and under small file
workload the ITFS overhead becomes more substantial. Note
that ITFS mainly provides permission checking and does not
intervene in the actual read or write operations. Therefore,
if one wishes to improve its performance, one can employ a
pass-through read/write approach as proposed in previous
work [31].

8 RELATEDWORK
The leading solutions for providing protection from insider
threats are based on mandatory access control [1, 7], tainting
processes that access classified information [23], and defining
SDNs within the organization [5]. However, they all trust
the system administrators; a rogue IT person can change
their configuration and compromise the system.
SELinux [29] and others [12, 27] implement role-based

access control models. Contrary to these, WatchIT adopts an
ACL-like approach, which proved to be more practical. Fur-
thermore, unlike WatchIT, they do not provide monitoring
and network virtualization, and escalation is not possible in
cases of insufficient permissions.

Security information management software such as [16,
18, 20, 42, 43, 46] helps organizations collect and analyze
log and intelligence data in order to identify malicious ac-
tivities. However, rather than proactively preventing attacks,
they only perform after-the-fact analysis to reactively detect
anomalies.
The Jail [24] and Zone [34] mechanisms are designed to

enable multiple root users, each with a different view of the
system. However, these are intended for isolating customers
in server consolidation scenarios. Contrary to our approach,
no actions can be performed on the host from within a Jail
or a Zone, and they are not suited for administration.
Santos et al. [41] proposed an OS that suppresses supe-

ruser privileges and exposes a narrowmanagement interface,
thus protecting systems from untrusted administrators. The
WatchIT approach, on the other hand, allows system admin-
istrators to retain their superuser privileges, thus causing
minimal changes to IT workflow. Moreover, WatchIT does
not require changes to the OS, and provides monitoring on
all actions performed by IT personnel.

9 CONCLUSIONS
We proposed an approach for mitigating insider threats from
the organizational IT department. Our strategy exploits con-
tainers’ properties, but goes against their nature by perforat-
ing their isolation, and thus turns them into sandboxes for
administration. We further implemented a proof-of-concept
of our approach and provided a case study on a real IT de-
partment in which we custom-tailored perforated containers
to the needs of the studied IT department. The isolation
and permissions, as well as the ticket class granularity can
be tuned for the needs of any organization that adopts our
approach.

Finally, we note that WatchIT is not a panacea. Collusions
can bypass WatchIT protection and group-targeted attacks
remain efficient in the presence of WatchIT. That said, the
mere fact that bypassing WatchIT requires collaboration
with another insider or a sophisticated infection of a known
website implies that WatchIT significantly raises the bar for
attacks by an adversarial administrator.

10 ACKNOWLEDGMENTS
This research was funded in part by the Hasso-Plattner Insti-
tute (HPI), the Technion Funds for Security Research and the
Technion Hiroshi Fujiwara Cyber Security Research Center.
We heartily thank the IBM Research IT department for shar-
ing their knowledge and database. We further thank our stu-
dents Ron Blechner, Merav Natanson, Guy Barshatski, Bas-
sam Yassin, and Hezi Banda for helping implement WatchIT
components. Finally, we thank our shepherd, Ding Yuan, and
the referees for their insightful reviews.

WatchIT: Who Watches Your IT Guy? SOSP ’17, October 28, 2017, Shanghai, China

REFERENCES
[1] 2015. TOMOYO:A SecurityModule for SystemAnalysis and Protection.

(2015). http://tomoyo.osdn.jp/ Available at http://tomoyo.osdn.jp/.
[2] 2016. Linux Programmer’s Manual (4.10 ed.).
[3] 2017. Linux Containers. Available at https://linuxcontainers.org/.
[4] 2017. OpenVZ. Available at openvz.org.
[5] Stefan Achleitner, Thomas La Porta, PatrickMcDaniel, Shridatt Sugrim,

Srikanth V. Krishnamurthy, and Ritu Chadha. 2016. Cyber Deception:
Virtual Networks to Defend Insider Reconnaissance. In Proceedings of
the 8th ACM CCS International Workshop on Managing Insider Security
Threats (MIST ’16). ACM, New York, NY, USA, 57–68. https://doi.org/
10.1145/2995959.2995962

[6] Alexey Kopytov. 2016. SysBench - A Modular, Cross-Platform and
Multi-Threaded Benchmark Tool. (2016). http://manpages.ubuntu.
com/manpages/trusty/man1/sysbench.1.html

[7] Mick Bauer. 2006. Paranoid Penguin: An Introduction to Novell Ap-
pArmor. Linux J. 2006, 148 (Aug. 2006), 13–. http://dl.acm.org/citation.
cfm?id=1149826.1149839

[8] Eric Biederman and Karel Zak. 2017. nsenter - Run Program With
Namespaces of Other Processes. Linux Man Pages.

[9] David M. Blei. 2012. Probabilistic Topic Models. Commun. ACM 55, 4
(April 2012), 77–84. https://doi.org/10.1145/2133806.2133826

[10] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent
Dirichlet Allocation. J. Mach. Learn. Res. 3 (March 2003), 993–1022.
http://dl.acm.org/citation.cfm?id=944919.944937

[11] Balázs Bucsay. 2015. Chw00t: Breaking Unices’ chroot() Solutions.
(2015). Available at https://github.com/earthquake/chw00t.

[12] M. Bugliesi, S. Calzavara, R. Focardi, and M. Squarcina. 2012. Gran:
Model Checking Grsecurity RBAC Policies. In 2012 IEEE 25th Computer
Security Foundations Symposium. 126–138. https://doi.org/10.1109/CSF.
2012.29

[13] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly
Detection: A Survey. ACM Comput. Surv. 41, 3, Article 15 (July 2009),
58 pages. https://doi.org/10.1145/1541880.1541882

[14] Chef 2017. Chef – Automate Your Infrastructure. Chef. Available at
www.chef.io.

[15] You Chen and Bradley Malin. 2011. Detection of Anomalous Insiders
in Collaborative Environments via Relational Analysis of Access Logs.
In Proceedings of the First ACM Conference on Data and Application
Security and Privacy (CODASPY ’11). ACM, New York, NY, USA, 63–74.
https://doi.org/10.1145/1943513.1943524

[16] Cisco. 2017. Cisco™Security MARS. (2017).
[17] Sharon Gaudin. 2006. Ex-UBS Systems Admin Sentenced To 97

Months In Jail. (December 2006). www.informationweek.com/
ex-ubs-systems-admin-sentenced-to-97-months-in-jail/d/d-id/
1049873?

[18] Gaurang Gavai, Kumar Sricharan, Dave Gunning, Rob Rolleston, John
Hanley, and Mudita Singhal. 2015. Detecting Insider Threat from
Enterprise Social and Online Activity Data. In Proceedings of the 7th
ACM CCS International Workshop on Managing Insider Security Threats
(MIST ’15). ACM, New York, NY, USA, 13–20. https://doi.org/10.1145/
2808783.2808784

[19] Google. 2017. gRPC: A High Performance, Open-Source Universal
RPC Framework. (2017). Available at https://grpc.io/.

[20] Hewlett Packard. 2017. ArcSight ESM. (2017).
[21] IBM® X-Force Research 2016. 2016 Cyber Security Intelligence Index.

IBM® X-Force Research.
[22] Jeffrey Katcher. 1997. Postmark: a New File System Benchmark. Techni-

cal Report. TR3022, Network Appliance.
[23] Ryan V. Johnson, Jessie Lass, and W. Michael Petullo. 2016. Studying

Naive Users and the Insider Threat with SimpleFlow. In Proceedings of

the 8th ACM CCS International Workshop on Managing Insider Security
Threats (MIST ’16). ACM, New York, NY, USA, 35–46. https://doi.org/
10.1145/2995959.2995960

[24] Poul-Henning Kamp and Robert N. M. Watson. 2000. Jails: Confining
the Omnipotent Root. In In Proc. 2nd Intl. SANE Conference.

[25] Jesse D. Kornblum. 2009. Implementing BitLocker Drive Encryption
for Forensic Analysis. Digit. Investig. 5, 3-4 (March 2009), 75–84. https:
//doi.org/10.1016/j.diin.2009.01.001

[26] David Kravets. 2008. San Francisco Admin Charged With Hijacking
City’s Network. (July 2008). www.wired.com/2008/07/sf-city-charged/

[27] Ninghui Li, John C. Mitchell, and William H. Winsborough. 2002.
Design of a Role-Based Trust-Management Framework. In Proceedings
of the 2002 IEEE Symposium on Security and Privacy (SP ’02). IEEE
Computer Society, Washington, DC, USA, 114–130. http://dl.acm.org/
citation.cfm?id=829514.830539

[28] Wolfgang Mauerer. 2008. Professional Linux Kernel Architecture. Wrox
Press Ltd., Birmingham, UK, UK.

[29] Bill McCarty. 2004. SELinux: NSA’s Open Source Security Enhanced
Linux. O’Reilly Media, Inc.

[30] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Con-
sistent Development and Deployment. Linux J. 2014, 239, Article 2
(March 2014). http://dl.acm.org/citation.cfm?id=2600239.2600241

[31] Reddy Nikhilesh. 2016. FUSE: Add Support for Passthrough Read-
/Write. (February 2016). http://fuse.sourceforge.net/ Available at
https://lwn.net/Articles/674286/.

[32] Angela Orebaugh, Gilbert Ramirez, Jay Beale, and Joshua Wright. 2007.
Wireshark & Ethereal Network Protocol Analyzer Toolkit. Syngress
Publishing.

[33] Lennart Poettering, Kay Sievers, Harald Hoyer, Daniel Mack, Tom
Gundersen, and David Herrmann. 2016. systemd-nspawn. (November
2016). Available at wiki.archlinux.org/index.php/Systemd-nspawn.

[34] Daniel Price and Andrew Tucker. 2004. Solaris Zones: Operating
System Support for Consolidating Commercial Workloads. In Pro-
ceedings of the 18th USENIX Conference on System Administration
(LISA ’04). USENIX Association, Berkeley, CA, USA, 241–254. http:
//dl.acm.org/citation.cfm?id=1052676.1052707

[35] Puppet 2017. Puppet - The shortest path to better software. Puppet.
Available at https://puppet.com/.

[36] Aditya Rajgarhia and Ashish Gehani. 2010. Performance and Extension
of User Space File Systems. In Proceedings of the 2010 ACM Symposium
on Applied Computing (SAC ’10). ACM, New York, NY, USA, 206–213.
https://doi.org/10.1145/1774088.1774130

[37] Nikolaus Rath. 2017. FUSE: Filesystem in Userspace. (2017). http:
//fuse.sourceforge.net/ Available at http://fuse.sourceforge.net/.

[38] Martin Roesch. 1999. Snort - Lightweight Intrusion Detection for
Networks. In Proceedings of the 13th USENIX Conference on System
Administration (LISA ’99). USENIX Association, Berkeley, CA, USA,
229–238. http://dl.acm.org/citation.cfm?id=1039834.1039864

[39] Malek Ben Salem, Shlomo Hershkop, and Salvatore J. Stolfo. 2008. A
Survey of Insider Attack Detection Research. Springer US, Boston, MA,
69–90. https://doi.org/10.1007/978-0-387-77322-3_5

[40] Jerome H. Saltzer. 1974. Protection and the Control of Information
Sharing in Multics. Commun. ACM 17, 7 (July 1974), 388–402. https:
//doi.org/10.1145/361011.361067

[41] Nuno Santos, Rodrigo Rodrigues, and Bryan Ford. 2012. Enhancing
the OS Against Security Threats in System Administration. In Pro-
ceedings of the 13th International Middleware Conference (Middleware
’12). Springer-Verlag New York, Inc., New York, NY, USA, 415–435.
http://dl.acm.org/citation.cfm?id=2442626.2442653

[42] Splunk. 2017. Splunk™User Behavior Analytics. (2017).
[43] Symantec. 2013. Symantec™Security Information Manager. (2013).

http://tomoyo.osdn.jp/
http://tomoyo.osdn.jp/
https://linuxcontainers.org/
openvz.org
https://doi.org/10.1145/2995959.2995962
https://doi.org/10.1145/2995959.2995962
http://manpages.ubuntu.com/manpages/trusty/man1/sysbench.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/sysbench.1.html
http://dl.acm.org/citation.cfm?id=1149826.1149839
http://dl.acm.org/citation.cfm?id=1149826.1149839
https://doi.org/10.1145/2133806.2133826
http://dl.acm.org/citation.cfm?id=944919.944937
https://github.com/earthquake/chw00t
https://doi.org/10.1109/CSF.2012.29
https://doi.org/10.1109/CSF.2012.29
https://doi.org/10.1145/1541880.1541882
www.chef.io
https://doi.org/10.1145/1943513.1943524
www.informationweek.com/ex-ubs-systems-admin-sentenced-to-97-months-in-jail/d/d-id/1049873?
www.informationweek.com/ex-ubs-systems-admin-sentenced-to-97-months-in-jail/d/d-id/1049873?
www.informationweek.com/ex-ubs-systems-admin-sentenced-to-97-months-in-jail/d/d-id/1049873?
https://doi.org/10.1145/2808783.2808784
https://doi.org/10.1145/2808783.2808784
https://grpc.io/
https://doi.org/10.1145/2995959.2995960
https://doi.org/10.1145/2995959.2995960
https://doi.org/10.1016/j.diin.2009.01.001
https://doi.org/10.1016/j.diin.2009.01.001
www.wired.com/2008/07/sf-city-charged/
http://dl.acm.org/citation.cfm?id=829514.830539
http://dl.acm.org/citation.cfm?id=829514.830539
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://fuse.sourceforge.net/
https://lwn.net/Articles/674286/
wiki.archlinux.org/index.php/Systemd-nspawn
http://dl.acm.org/citation.cfm?id=1052676.1052707
http://dl.acm.org/citation.cfm?id=1052676.1052707
https://puppet.com/
https://doi.org/10.1145/1774088.1774130
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://dl.acm.org/citation.cfm?id=1039834.1039864
https://doi.org/10.1007/978-0-387-77322-3_5
https://doi.org/10.1145/361011.361067
https://doi.org/10.1145/361011.361067
http://dl.acm.org/citation.cfm?id=2442626.2442653

SOSP ’17, October 28, 2017, Shanghai, China N. Shalev et al.

[44] Bob Toxen. 2002. Real World Linux Security (2nd ed.). Prentice Hall
Professional Technical Reference.

[45] Bob Van Zant. 2017. SSH Certificate Authority. (2017). Available at
github.com/cloudtools/ssh-ca.

[46] Varonis. 2017. "Varonis™Enterprise Security". (2017).
[47] Joseph Verble. 2014. The NSA and Edward Snowden: Surveillance

in the 21st Century. SIGCAS Comput. Soc. 44, 3 (Oct. 2014), 14–20.
https://doi.org/10.1145/2684097.2684101

[48] W. T. Young, A. Memory, H. G. Goldberg, and T. E. Senator. 2014.
Detecting Unknown Insider Threat Scenarios. In Security and Privacy
Workshops (SPW), 2014 IEEE. 277–288. https://doi.org/10.1109/SPW.
2014.42

github.com/cloudtools/ssh-ca
https://doi.org/10.1145/2684097.2684101
https://doi.org/10.1109/SPW.2014.42
https://doi.org/10.1109/SPW.2014.42

	Abstract
	1 Introduction
	2 TCB and Threat Model
	3 State-of-the-Practice
	3.1 IT Vulnerability
	3.2 Containers

	4 Perforated Containers
	5 WatchIT
	5.1 Architecture Overview
	5.2 ContainIT
	5.3 ITFS – Filesystem Monitor
	5.4 Permission Broker
	5.5 Online File Sharing
	5.6 Exclusion Namespace

	6 Threat Analysis
	6.1 WatchIT Software Security
	6.2 Circumventing WatchIT

	7 Case Study
	7.1 IT Tickets
	7.2 IT Scripts
	7.3 ITFS Evaluation

	8 Related Work
	9 Conclusions
	10 Acknowledgments
	References

