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ABSTRACT
We improve the resistance of gossip-based multicast to (Distributed)
Denial of Service (DoS) attacks using dynamic local adaptations at
each node. Each node estimates the current state of the attack on
the system, and then adapts its behavior according to this local esti-
mation. The adaptation is achieved through modeling the problem
of propagating messages under a DoS attack as an optimization
problem, and solving it using linear programming, independently
at each node. Simulation results show that when the system is un-
der attack, the local decisions each node takes bring the system to a
stable point, which is the solution of the linear programming prob-
lem. The adaptation leads to propagation times that are 30% faster
than those of existing DoS-resistant gossip-based protocols.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Distributed applications

Keywords
Adaptive denial-of-service resistance, Adaptive gossip-based pro-
tocols, Application-level multicast

1. INTRODUCTION
Denial of service (DoS) attacks are attacks that usually aim to

exhaust resources by overloading an entity with large amounts of
bogus messages. The use of armies of infiltrated machines (“zom-
bies”) leads to distributed DoS (DDoS), in which the attacker uti-
lizes its set of compromised machines to launch a coordinated at-
tack with massive strength. In this paper, we consider application-
level DoS attacks, in which the application is overwhelmed with
messages to process even when the network is not congested. This
situation is common is applications that require extensive process-
ing for each incoming request, e.g., cryptographic authentication.
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As DoS attacks can cause severe damage and are fairly easy
to deploy, it is important to design communication protocols with
DoS-mitigation mechanisms in place. However, designing a pro-
tocol that performs well under a certain DoS attack does not mean
that it still performs well as the attack changes. We believe that a
protocol that adapts its parameters to the actual attack taking place
can perform better than a static protocol that behaves the same un-
der all DoS attacks. To illustrate this point, we focus on gossip-
based multicast protocols as a case study.

We present a novel approach that adapts a gossip-based proto-
col to the attack currently launched on the system. The adaptation
is modeled as an optimization problem, which is solved using lin-
ear programming. Every round, each node locally estimates the
current state of the attack on the system and feeds it to the linear
programming algorithm, which presents the node with the new re-
source distribution to use. We show, using simulations, that the
local resource distribution each node independently calculates im-
proves the global propagation time in the system, i.e., the number
of rounds it takes a message generated at the source to reach all
nodes with high probability. Our propagation times are better than
existing solutions by up to 34%.

2. BACKGROUND AND RELATED WORK
Gossip-based protocols [1, 2, 3, 5] are round-based randomized

multicast protocols that deliver data messages from their sources
to all other nodes with high probability. The expected number of
rounds it takes a message to reach all nodes in the system is log-
arithmic in the number of nodes. Each round, every node selects
a subset of the nodes in the system uniformly at random and com-
municates with them. The uniform random selection means that all
nodes have an identical part in the system.

Gossip-based communication happens in at least one of the fol-
lowing methods: (1) Push – node A sends a push message to node
B, which replies with its list of data messages, and then A sends B
any data messages B does not have; and (2) Pull – node A sends
a pull message to node B with its list of data messages, and node
B replies with any data messages A does not have. Sending lists
of messages instead of actual messages minimizes bandwidth and
processing times, as we assume that control messages (push/pull)
are much shorter than data messages.

The use of randomness makes gossip-based protocols very ro-
bust in the face of node failures [3, 5]. However, naı̈ve gossip-
based protocols are vulnerable to DoS attacks [**]. Drum [**] is
a gossip-based multicast protocol that deals with DoS attacks and
uses both push and pull. Drum provides significantly better propa-
gation times than gossip-based protocols that do not take actions to
protect themselves from DoS attacks. However, Drum uses a static



allocation of resources at each node – half of the resources are used
for pushing, and the other half is used for pulling. In this paper, we
propose to dynamically determine the proper resource allocation
according to the attack, as locally perceived by each node.

The resources Drum invests in each operation are bounded. The
number of nodes a node chooses to talk to each round using push
or pull is called the push fan-out (SO) or pull fan-out (LO), re-
spectively. Similarly, the maximum number of nodes a Drum node
answers to in a round using the push channels or pull channels is
called the push fan-in (SI) or pull fan-in (LI), respectively. If the
number of push messages that reach a node during a round exceeds
that node’s SI , the node chooses a random subset of SI of them
and answers that subset. The same thing happens for pull. When a
node is under attack, bogus messages force the node to make such
a subset selection, and thus valid messages are dropped.

An adversary can attack Drum on the 2 distinct ports used for in-
coming push or pull messages. As described above, the push oper-
ation is a 3-step process, and the pull operation is a 2-step process.
Only the messages from the first step of each operation are sent to
these known ports, and each of those messages carries a random
port number to reply on. Since the adversary cannot eavesdrop on
those messages to find the random port number and notify its army
of zombies to attack that port fast enough so the attack happens be-
fore communication ends, we assume that only the first step in the
push and pull operations can be harmed by the adversary.

Adaptation in gossip-based protocols has been explored before,
e.g., Rodrigues et. al [6] study adaptation in a gossip-protocol using
flow-control to avoid congestion. Kyasanur et al. [4] study adaptive
gossip in sensor networks, where the sensors wish to limit their
transmission to conserve power consumption. However, we are the
first the we know of that provide adaptation to DoS attacks.

3. ADVERSARY ASSUMPTIONS
We assume an external attacker that can cause messages to be

dropped by overloading the multicast nodes with bogus requests.
The attacker is not part of the multicast system, and does not par-
ticipate in the gossip protocol. All nodes in the system are correct,
follow the gossip protocol, and can differentiate between valid and
bogus requests, perhaps at the cost of additional work, i.e., authen-
tication.

The attacker has bounded capacity for sending messages in a
single round. When mounting an attack, the adversary chooses the
nodes and ports to attack, out of the ones it knows, and the number
of invalid messages it wishes to send to each attacked node each
round. We denote by α the percentage of nodes being attacked,
and for simplicity assume that all attacked nodes are attacked with
Cpush bogus push messages and Cpull bogus pull messages per
round, i.e., every round Cpush and Cpull bogus messages are sent
to each attacked node’s push and pull ports, respectively.

The attacker uses zombies to leverage its attack, and must com-
municate with them to update them on the attack strategy. Realiz-
ing that the system is adapting itself to the attack, devising a new
attack plan and updating all zombies take time. We can therefore
assume that by the time the attacker reacts to our adaptation, the
system has completely reached its optimized point.

4. ADAPTATION
Each node locally adapts its behavior according to its view of

the current state of the attack on the system. To perform a use-
ful adaptation, there are two challenges to consider: (1) How to
reliably estimate the current state of the attack; and (2) Given the
current state of the attack, what is the best strategy to employ. To

tackle these challenges, we start by assuming that all nodes know
the exact state of the attack, and find a strategy that accommodates
the attack and improves propagation time (Section 4.1). We then
provide means to estimate the state of the attack (Section 4.2).

4.1 Finding the Target Strategy
The only communication elements a node controls are its push

and pull channels, whether incoming or outgoing. The distribution
of the node’s limited resources among these channels constitutes
the node’s strategy. We want to find the best strategy each node
should use to optimize the global propagation time when the sys-
tem is under a DoS attack. Since gossip-based multicast protocols
choose communication partners uniformly at random each round,
and since all attacked nodes are attacked in the same manner, it is
clear that all attacked nodes should exhibit the same behavior, and
all unattacked nodes should use the same strategy. The strategies
of the attacked and unattacked nodes will likely not be the same.

Recall that α is the percentage of attacked nodes, and every
round the attacker sends each of these nodes Cpush and Cpull bo-
gus messages to their incoming push and pull channels, respec-
tively. For simplicity of analysis, we transform Cpush and Cpull to
the concrete damage that they make, and define:

• ps – the probability of a push message being dropped due to
the attack on the push channels (depends on Cpush).

• pl – the probability of a pull message being dropped due to
the attack on the push channels (depends on Cpull).

We use the following notations for node strategies:

• ASO is an attacked node’s push fan-out, i.e., the number of
nodes randomly-chosen each round as targets for outgoing
push messages. A successful reception of an outgoing push
message sent from node A to node B results in transferring
data messages from node A to node B.

• ASI is an attacked node’s push fan-in, i.e., the maximum
number of randomly selected incoming push messages (valid
or not) that will be processed in a single round.

• ALO and ALI are the same as ASO and ASI (respec-
tively), but for pull. A successful reception of an outgoing
pull message sent from node A to node B results in trans-
ferring data messages in the opposite direction – from node
B to node A. That is, ALO is responsible for outgoing pull
messages, but incoming data messages. ALI is responsible
for incoming pull messages, but outgoing data messages.

• USO, USI , ULO and ULI are the same as ASO, ASI ,
ALO and ALI (respectively), but for an unattacked node.

By definition, all fan-ins and fan-outs are non-negative integers.
For instance, in Drum, all fan-ins and fan-outs are equal to F ,
where F is some positive integer, e.g., 4. In a push protocol, all
push fan-ins and fan-outs are equal to 2F , and all pull fan-ins and
fan-outs are equal to 0. F is bounded from above due to the limited
resources the node can allocate for the communication.

We now solve an optimization problem to find the nodes’ best
strategy under attack. We start by describing a set of constraints
that each node must adhere to. All constraints are normalized by
F , our basic unit of reference:

CONSTRAINT 1. ALI + ASO = 2
ULI + USO = 2



Reasoning. Receiving pull messages and sending push messages
provide the same functionality – sending data messages from the
node to the nodes it communicates with. The resources are thus
bound by 2 units, as we are essentially bounding two communica-
tion channels (push and pull) together.

CONSTRAINT 2. ASI + ALO = 2
USI + ULO = 2

Reasoning. Both receiving push messages and sending pull mes-
sage allow the node to receive data messages from nodes it commu-
nicates with. Once again, the total amount of resources allocated
for this purpose is 2 units.
Additionally, we have some constraints on the system as a whole:

CONSTRAINT 3.
αASI + (1 − α)USI = αASO + (1 − α)USO
αALI + (1 − α)ULI = αALO + (1 − α)ULO

Reasoning. The total amount of resources allocated for outgo-
ing push messages should be equivalent to the total amount of re-
sources allocated for incoming push messages, otherwise resources
are wasted. This is true for pull as well.

CONSTRAINT 4. αASO + (1 − α)USO = 2 ·
(
1 − ps

ps+pl

)

αALO + (1 − α)ULO = 2 ·
(
1 − pl

ps+pl

)

Reasoning. It is important to have both the push and pull opera-
tions. The push operation allows an attacked source to propagate its
message quickly via its outgoing push channel. It has been proven
that it takes a time linear in Cpull to retrieve a message from an at-
tacked source, when exclusively using the pull protocol [**]. Pull
allows an attacked node to receive data messages easily from an
unattacked node, through the outgoing pull channel. Using push
alone to deliver messages to attacked nodes takes a time linear in
Cpush [**].

Obviously, the more a channel is attacked, the less we want to use
it – hence the ratio. Note that in case only one channel is attacked,
it is closed and the attack has no influence. Obviously, this is the
best strategy for such a case. Additionally, when both channels are
attacked at the same strength, it is clear that the amount of resources
allocated for push and pull should be equal (from symmetry).
Finally, we have the boundary conditions:

CONSTRAINT 5. 0 ≤ ASO, ASI, ALO, ALI ≤ 2
0 ≤ USO, USI, ULO, ULI ≤ 2

To complete the optimization-problem statement, we still need to
define the cost function to minimize. We want to minimize losses
in the system, so that more messages can be processed by nodes,
and thus data messages will be transferred faster. All messages
lost due to the attack are dropped at the incoming channels of the
attacked nodes. Assuming that attacked nodes are sent at least ASI
and ALI valid messages for their incoming push and pull ports,
respectively, the attack-induced losses in the system are defined by
the following function:

f(fan-outs and fan-ins) = αpsASI + αplALI

We have completed the definition of the optimization problem,
and can now turn to solving it. Since we assume that we know
α, ps and pl, we get a set of linear equations and inequalities in 8
variables (the fan-outs and fan-ins). The function to minimize, f ,
is also linear. Thus, we can solve this optimization problem using
linear programming.

Figures 1 and 2 show some solutions to the optimization problem
for different scenarios, as calculated using MATLAB.

Figure 1(a) shows the change in the resources allocated for the
incoming push channels, ASI and USI , as a function of the per-
centage of the attacked nodes, α. The system is attacked on both
push and pull channels, and the probability of a valid message be-
ing dropped due to the attack is greater than 0 and equal for both
channels, i.e., ps = pl > 0. Due to this symmetry, exactly the
same resources are allocated for the incoming pull channels, i.e.,
ALI and USI . The actual values of ps and pl do not matter, as
long as they are equal and positive. We can see that as soon as the
attack begins (α > 0), the attacked nodes deallocate all resources
used for the incoming push channels, which minimizes our cost
function f . From Constraint 2 we can tell that these resources are
diverted to the outgoing pull channels (not shown on figure). This
is a good adaptation, since the attacked nodes experience problems
receiving data messages via their incoming push channels due to
the attack, and it is best if they concentrate more resources on re-
ceiving data messages using their outgoing pull channels, which do
not directly suffer from the attack. Figure 1(b) shows the actual
fan-ins the nodes should use (whole numbers), for F = 4.

From Figure 1(a) and Constraints 1 and 2, we get that as more
nodes are attacked (up to 50% of the nodes), the total amount of
resources allocated by attacked nodes for outgoing channels in-
creases, since each attacked node directs all its resources to its out-
going channels. To accommodate this increase in the total amount
of resources allocated for outgoing channels, the unattacked nodes
increase the amount of resources allocated for their incoming chan-
nels. This conforms to Constraint 3. When more than 50% of the
nodes are attacked, the unattacked nodes can no longer compen-
sate for the increase in the incoming-channels’ resources, as they
have already exhausted all their available resources. Consequently,
the attacked nodes change their behavior and direct some resources
from the outgoing channels to the incoming channels. Finally, a
node’s strategy in a system where all nodes are attacked, and both
push and pull channels are attacked at the same strength, is equal
to the node’s strategy in a system in which no node is attacked at
all. This is a consequence of all nodes experiencing the same envi-
ronment, and the equal allocation of resources to the push and pull
channels, as per Constraint 4, since both of them exhibit the same
loss rate.

Figure 1(c) shows the nodes’ behavior when only the push chan-
nels are attacked. The figure shows that the attacked nodes invest
all their resources for outgoing data messages in the incoming pull
channels, and thus, by Constraint 1, do not use outgoing push at all.
We can see that the unattacked nodes do the same thing, as the re-
sources they allocate for outgoing push messages immediately drop
to 0 when the attack commences. It is easy to see that Constraint 3
means that no resources are allocated for incoming push messages
as well, and all resources are diverted to outgoing pull messages
(by Constraint 2). The resulting strategy is the exclusive use of pull
in the system. The dual case of an attack solely on the pull channels
exhibits the opposite results, where only push is used in the system,
and is omitted here for brevity.

Figures 2(a) and 2(b) show the nodes’ behavior when the attack
on push is stronger than the attack on pull, such that the loss prob-
ability for push, ps, is 1, and the loss probability for pull, pl, is
0.5. From Constraint 4 we get that the system will try to divide
the total amount of resources allocated in the system for outgoing
channels to 2

3
for push, and 4

3
for pull (out of a combined total of

2 normalized resources). Figure 2(a) shows that the attacked nodes
immediately cease to use the incoming push channels as the attack
begins (to minimize the cost function f ), and shift the deallocated



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

αN
o

rm
al

iz
ed

 in
co

m
in

g
 p

u
sh

 a
n

d
 p

u
ll 

re
so

u
rc

es

 

 

Unattacked nodes
Attacked nodes

(a) Linear programming fan-ins, ps = pl > 0.
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(b) Concrete fan-ins for F = 4, ps = pl > 0.
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(a) Linear programming fan-ins, ps = 1, pl = 0.

Figure 1: Target strategies as a function of α.
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(a) Push resources.
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(b) Pull resources.

Figure 2: Target strategies for ps = 1, pl = 0.5, as a function of α.

resources to the outgoing pull channels (Constraint 2). Similarly,
Figure 2(b) shows that the attacked nodes also reduce to 0 the re-
sources they allocate for the incoming pull channels, which means
that their outgoing push channels are at full capacity (Constraint 1).

Back to Figure 2(a), the unattacked nodes continue to use push,
to support the outgoing push channels of the attacked nodes, but
reduce the resource allocation to 2

3
of the basic unit. Similarly, in

Figure 2(b) we can see the unattacked nodes using pull with an al-
location of 4

3
of the basic unit. As the percentage of attacked nodes

increases, the unattacked nodes need to compensate for the increase
in the total amount of resources allocated for the outgoing channels
in the system, so they start increasing the resource allocation for
their incoming channels, at the expense of their outgoing channels
(cf. Figure 2). Once the unattacked nodes cannot allocate more
resources for the incoming channels, the attacked nodes start allo-
cating resources for the incoming channels, to support Constraint 3.
This happens earlier for pull than for push.

4.2 Attack Estimation
Now that each node knows what strategy to employ based on

the system’s state, we need to devise a way for a node to estimate
that state through local observations. According to our adaptation
algorithm, a state is completely defined by α, ps and pl, so we need
to find a way to estimate those variables.

A node’s perception of the system comes from its interaction
with other nodes. Each round the node performs push and pull
communication with a different random subset of nodes, and can
use this communication to evaluate the system’s state.

An attacked node knows that it is being attacked, as it receives

many bogus messages each round. Each time an attacked node
communicates with other nodes, it informs them that it is being
attacked. The estimation of α is based on the information gained
from communicating with attacked nodes. Additionally, ps and pl

are estimated based on percentage of outgoing push and pull mes-
sages that were not replied to. This factor also contributes to the
calculation of α, as we assume that messages that were not replied
to were dropped due to an attack. This method of estimating ps

and pl works well as long as the outgoing channels of the node per-
forming the estimation and the incoming channels of the nodes be-
ing estimated have fan-outs and fan-ins (respectively) greater than
0. Otherwise, no meaningful data will be gathered.

To ensure that estimation is performed regardless of the fan-ins
and fan-outs, each node allocates static resources for incoming and
outgoing special probe messages. These messages are sent to the
push and pull channels of other nodes. A node that receives a probe
message, simply replies with an empty message to indicate that it is
able to receive messages. This mechanism is light-weight, does not
impose any limitations on the nodes, and is used solely to evaluate
ps and pl, and not for answering push/pull messages.

We use the following notations when considering some node A’s
outgoing communication in a single round:

• SO, LO – the number of nodes A sent messages (including
probes) to via the push or pull channels, respectively.

• SOA, LOA – the number of nodes A sent messages (includ-
ing probes) to via the push or pull channels, respectively, and
the nodes replied and indicated that they were attacked.



• SOD, LOD – the number of nodes A sent messages (in-
cluding probes) to via the push or pull channels, respectively,
and got no reply back. These nodes are also presumed to be
under attack.

Each round r, every node performs its local estimations as follows:

α(r) =
SOA + SOD + LOA + LOD

SO + LO

ps(r) =
SOD

SOA + SOD

pl(r) =
LOD

LOA + LOD

Estimations are subject to fluctuations, since the choice of nodes
to communicate with is random. In order to prevent the nodes from
constantly changing their strategies even when the system’s state
remains intact, the nodes do not use single-round estimations in
the calculation of their strategies, but rather use the average of the
last k estimations, e.g., AV ERAGE(α(r − k + 1), α(r − k +
2), . . . , α(r− 1), α(r)). The last k estimations are set to 0 when
a node first joins the system. When an estimation cannot be per-
formed, because of the denominator being 0 in some round, that
round’s estimation is chosen to be the average of the last k esti-
mations. Choosing a small k means that nodes are able to respond
more rapidly to a change in the system state (a change in the attack
strength/distribution). Choosing a large k means that there are no
fluctuations in the fan-ins and fan-outs as long as the system’s state
does not change.

5. SIMULATION RESULTS
We test our adaptation mechanism through MATLAB simula-

tions. Our system consists of a 1,000 nodes, communicating us-
ing a gossip-based push/pull multicast protocol. The simulation
progresses in synchronous rounds. In each round, all nodes send
push/pull messages to randomly-selected nodes. Push/pull mes-
sages that do not get dropped due to limited incoming resources or
due to an attack get answered, and then data messages are trans-
ferred. Finally, the nodes perform any calculations they may have
for that round. All rounds begin and end at the same time in all
nodes. A round is finished when all operations for that round end
at all the nodes. In all experiments, F = 4.

Section 5.1 tests the effectiveness of the strategies computed in
Section 4.1. α, ps and pl are assumed to be known, and the propa-
gation time of our adaptive protocol is compared with 3 other pro-
tocols. Section 5.2 evaluates the estimation procedure described in
Section 4.2. The nodes constantly estimate the state of the attack
and change their strategies according to the solution to the mini-
mization problem with the perceived α, ps and pl.

5.1 Strategy Evaluation
We start by evaluating our solution to the adaptation problem, as

described in Section 4.1. We assume that α, ps and pl are known
in advance to all nodes that use adaptation, and compare 4 gossip-
based multicast protocols: (1) Push – only uses the push channels.
(2) Pull – only uses the pull channels. (3) Drum – divides its re-
sources equally between push and pull. (4) Adaptive Drum – di-
vides its resources according to the adaptation strategy described
in Section 4.1.

To determine the exact strategy Adaptive Drum uses, we need to
determine the exact values of ps and pl before running the simu-
lation. ps depends on Cpush and on ASI . Similarly, pl depends

on Cpull and ALI . We first assume that all fan-ins and fan-outs
equal to F (as in Drum), and calculate ps and pl. Then, we solve
the optimization problem and get the adapted ASI and ALI . This
might change the values of ps and pl, so we recalculate them, and
so on. When we are finished, we have the values of ps and pl after
stabilization, and the proper strategies for all nodes. These are the
strategies we use for Adaptive Drum.

We assume that new data messages are constantly generated in
the system, and examine the propagation of one of those mes-
sages, i.e., the number of nodes that have the message as the rounds
progress. The message originates at an attacked node in round 0.
For simplicity, we assume that whenever nodes send data messages
to one another, they send all the data messages they know of. This
is consistent with the assumptions used in [1, 2]. Due to the random
nature of gossip-based multicast protocols, each data point repre-
sents an average of 100 independent experiments.

Figure 3(a) shows the message propagation times for all 4 pro-
tocols, where 40% of the nodes are attacked on both their push
and pull incoming channels, with 1,000 bogus messages per chan-
nel per round (ps = pl ≈ 1). The optimized strategy for this
scenario was shown in Figure 1. In both cases, we can see that
Adaptive Drum propagates the message to all nodes faster than the
rest of the protocols. Push quickly propagates the message to the
unattacked nodes, but then takes time to deliver it to the attacked
nodes. Pull experiences problems getting the message out of its
source, since the source is attacked. Drum starts propagating the
message slower than Push, since it also uses the pull channels, but
then continues to propagate the message faster than Push, as Drum
has little trouble to propagate the message to the attacked nodes.
The decision of the attacked nodes to allocate all their resources
to the outgoing channels means that Adaptive Drum’s propagation
times are similar to Push’s propagation times, at the beginning of
the dissemination. However, Adaptive Drum’s robustness is soon
realized, as it continues to propagate the message at the same good
pace, while Push’s propagation speed is significantly slowed when
it is time to deliver the message to the attacked processes. The case
of α = 20% was also tested and provided similar results.

Figures 3(a) and 3(b) show propagation times when the attack
is uneven on the push channels and the pull channels. Although
the attack is uneven, we still get that both ps and pl are very close
to 1, due to the adaptation of the attacked nodes. Figure 3(b) de-
picts a scenario where push is attacked in a 10-times stronger at-
tack than pull. We can see that indeed Pull performs better than
Push, but still, Adaptive Drum provides the fastest propagation
time. Figure 3(c) shows the opposite case, where the pull channels
are attacked more severely than the push channels. In this case,
we can see that the propagation time of Push improves. Neverthe-
less, Adaptive Drum still achieves the best propagation time. These
results stem from the fact that when both channels are attacked, re-
lying on just one of them is not enough when it comes to delivering
messages to attacked nodes (push) or receiving messages from at-
tacked nodes (pull).

Figure 4 compares the propagation times for Drum and Adaptive
Drum. The figure shows the number of rounds it takes a message to
reach all the nodes in the system for the worst experiment. That is,
each data point is the minimal round number for which in all 100
experiments all nodes had the message. We can see that Adaptive
Drum is constantly better than Drum, when there is an attack (re-
call that when there is no attack present, Adaptive Drum and Drum
are exactly the same). Adaptive Drum improves the propagation
time by 13% to 34% compared to Drum. Also, the improvement
becomes more significant as the percentage of attacked nodes in-
creases.
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(a) Cpush = 1,000, Cpull = 1,000.
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(b) Cpush = 1,000, Cpull = 100.
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(c) Cpush = 100, Cpull = 1,000.

Figure 3: Message propagation under attack, α = 40%.
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Figure 4: Propagation times of Drum vs. Adaptive Drum,
Cpush = Cpull = 1,000.

5.2 Estimation Evaluation
We proceed to evaluate the estimation mechanisms. In this set

of experiments, nodes estimate α, ps and pl each round, and ad-
just their fan-ins and fan-outs for the next round according to the
average of the last 50 estimations. The adversary attacks 40% of
the nodes, with Cpush = Cpull = 1,000. The attack begins in
round 0. It is reasonable to assume that only a portion of the nodes
is attacked, as the adversary may not even know about most of the
nodes. All results presented are of a single experiment, for two
nodes chosen at random. 100 experiments and several nodes were
tested, and all provided similar results.

Figures 5(a) and 5(b) show the estimation of α as performed by
a randomly-selected attacked node (Figure 5(a)), and a randomly-
selected unattacked node (Figure 5(b)). We can see that in both
cases the nodes get a very close average estimation of α. Once 50
rounds pass and there are 50 estimations of the attack, the average
estimation virtually stays the same.

Figure 5(c) shows the estimation of ps as performed by a randomly-
selected attacked node (the results for an unattacked node are sim-
ilar). The node estimates that ps ≈ 1, which fits the calculation of
ps performed in Section 5.1 for Figure 3(a). The results for pl are
similar, and thus we do not show them here.

The application of the average estimations shown in Figure 5
is presented in Figure 6(a), which shows the push fan-ins result-
ing from solving the optimization problem using the average es-
timations (the results for the pull fan-ins are similar). The fan-
ins presented are used by a randomly-selected attacked node, and

a randomly-selected unattacked node. Since the average estima-
tions were fairly accurate, the resulting fan-ins are the same ones
used when the attack is known (cf. data point for α = 0.4 in Fig-
ure 1(b)). Thus, we get that using local decisions and incomplete
knowledge at each node, the whole system adapts itself to using
the fan-ins (and thus also the fan-outs) that solve the optimization
problem when the attack parameters are fully known.

Since the adversary takes time to realize that the system has
adapted its behavior and inform all the zombies to change the at-
tack strategy, our protocol should resist even attackers that change
their attack strategy. We chose to measure the average for the last
50 rounds, and indeed, after 50 rounds the system stabilizes. Es-
sentially, parts of the system may stabilize before others do, e.g.,
the attacked nodes reach their final fan-ins immediately, since as
soon as they sense an attack they drop the allocated resources for
their incoming channels to 0 (see in Figure 1). Thus, the propaga-
tion time can be improved even before 50 rounds pass. Averaging
can also be made on less than 50 rounds, to reach the final strategy
faster. Either way, rounds are short in nature (may be less than a
second), and 50 rounds only take several seconds.

Figures 6(b) and 6(c) examine the use of various averages for
the estimation of α. The figure shows the average estimated value
of α for different numbers of data points per average. Figure 6(b)
shows the averages as calculated for a randomly-selected attacked
node, and Figure 6(c) shows the calculated averages for an unat-
tacked node. These figures correspond to Figures 5(a) and 5(b),
respectively. We can see that the smaller the length of the average,
the more it fluctuates, although it reaches the area of α = 0.4 more
rapidly. The fluctuations are less evident for the attacked node,
since the attacked node has its outgoing channels at full capacity,
and thus gets more samples for the estimation. In contrast, the un-
attacked node is mainly focusing on the incoming channels, so the
little resources it uses for the outgoing channels provide him with
little information for the estimation.

6. CONCLUSIONS
We presented a novel approach to dealing with DoS attacks –

adapting the protocol’s behavior according to the perceived attack.
Adaptation is done locally at each node, but a global improve-
ment is achieved. The adaptation is based on a set of constraints
that compose an optimization problem, which is solved using lin-
ear programming. Our simulations showed that in our case study
adaptation increases performance by up to 34%. We believe that
our work is the first step in designing adaptive protocols that deal
with DoS attack better than static protocols.
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(a) Attacked node’s estimation of α.
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(b) Unattacked node’s estimation of α.
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(c) Attacked node’s estimation of ps.

Figure 5: Estimations of α and ps, Cpush = Cpull = 1,000, α = 0.4.
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(a) Push fan-ins.
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(b) Attacked node’s estimation of α.
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(c) Unattacked node’s estimation of α.

Figure 6: Estimation/Adaptation results, Cpush = Cpull = 1,000, α = 0.4.
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