Do Not Crawl in the DUST: Different URLS with
Similar Text

Ziv Bar-Yossef Idit Keidart Uri Schonfeld

Abstract

We consider the problem afusT: Different URLs with Similar Text. Such duplicate
URLs are prevalent in web sites, as web server software often usessafiad redirec-
tions, and dynamically generates the same page from various differdntédf@ests. We
present a novel algorithnQustBustey for uncoveringpusT; that is, for discovering rules
that transform a given URL to others that are likely to have similar contenstBuster
minesDusT effectively from previous crawl logs or web server logsthout examining
page contents. Verifying these rules via sampling requires fetching fewalageb pages.
Search engines can benefit from information almwsT to increase the effectiveness of
crawling, reduce indexing overhead, and improve the quality of populstatystics such
as PageRank.

1 Introduction

The DUST problem. The web is abundant withusT: Different URLs with Similar Text,

2, 3, 4]. For example, the URLH%tp://google.com/news andhttp://news.google.com

return similar content. Adding a trailing slash frdex.html to either returns the same
result. Many web sites define links, redirections, or abasech as allowing the tilde symbol ~
to replace a string liképeople . A single web server often has multiple DNS names, and any
can be typed in the URL. As the above examples illustm@tesT is typically not random, but
rather stems from some general rules, which weRBIST rules such as “— “/people ", or
“/index.ntml " at the end of the URL can be omitted.

DUST rules are typically not universal. Many are artifacts of atipalar web server im-
plementation. For example, URLs of dynamically generategepaften include parameters;
which parameters impact the page’s content is up to the adétihat generates the pages.
Some sites use their own conventions; for example, a fortenve studied allows access-
ing story number “num” both via the URAhitp://domain/story?id=num and viabhttp:
/[domain/story_num . Our study of the CNN web site has discovered that URLs of the for

“An extended abstract of this paper appeared at the 16tméaitenal World-Wide Web Conference, 2007.

TDepartment of Electrical Engineering, Technion, Haifa @20lsrael. Google Haifa Engineering Center,
Israel. Email:zivby@ee.technion.ac.il

*Department of Electrical Engineering, Technion, Haifa®20srael. Emailidish@ee.technion.ac.il

SDepartment of Computer Science, University of CaliforniasLAngeles, CA 90095, USA. Email:
shuri@shuri.org

http://cnn.com/money/whatever get redirected tbttp://money.cnn.com/whatever .In
this paper, we focus on miningUsT rules within a given web site. We are not aware of any
previous work tackling this problem.

Standard techniques for avoidipg/sT employ universal rules, such as addntiy:// or
removing a trailing slash, in order to obtain some level afa@zation. AdditionabusT is
found by comparing document sketches. However, this iswcted on a page by page basis,
and all the pages must be fetched in order to employ this teabn By knowingbusT rules,
one can reduce the overhead of this process. In particafarmation about many redundant
URLSs can be represented succinctly in the form of a short fistles. Once the rules are
obtained, they can be used to avoid fetching duplicate palgegether, including pages that
were never crawled before. The rules can be obtained afteriog a small subset of a web
site, or may be retained from a previous crawl of the same Elte latter is particularly useful
in dynamic web sites, like blogs and news sites, where newgare constantly added. Finally,
the use of rules is robust to web site structure changese $imecrules can be validated anew
before each crawl by fetching a small number of pages. Fampig in a crawl of a small
news site we examined, the number of URLSs fetched would hase texluced by 26%.

Knowledge aboubusT rules can be valuable for search engines for additionabreas
DUsST rules allow for acanonicalURL representation, thereby reducing overhead in indexing,
and caching [1, 2], and increasing the accuracy of page csetike PageRank.

We focus on URLs wittsimilar contents rather than identical ones, since different vassi
of the same document are not always identical; they tendffeer din insignificant ways, e.g.,
counters, dates, and advertisements. Likewise, some URdmmders impact only the way
pages are displayed (fonts, image sizes, etc.) withouiradtéheir contents.

Detecting DUST from a URL list. Contrary to initial intuition, we show that it is possible
to discover likelypusT rules without fetching a single web page. We present an ighgoy
DustBustey which discovers such likely rules from a list of URLs. SuchJBL list can be
obtained from many sources including a previous craw! or sexlier logs- The rules are then
verified (or refuted) by sampling a small number of actual \wages. The fact DustBuster’s
input is a list of URLs rather than a collection of web pagesisicantly reduces its running
time and storage requirements.

At first glance, it is not clear that a URL list can provide rblainformation regarding
DUST, as it does not include actual page contents. We show, howewe to use a URL list
to discover two types abusT rules: substring substitutionsvhich are similar to the “replace”
function in editors, angharameter substitutionsA substring substitution rule — (3 replaces
an occurrence of the strirgin a URL by the strind3. A parameter substitution rule replaces
the value of a parameter in a URL by some default value. Thamkbd standard syntax
of parameter usage in URLS, detecting parameter substituties is fairly straightforward.
Most of our work therefore focuses on substring substitutides.

DustBuster uses three heuristics, which together are viagtef at detecting likelypusT
rules and distinguishing them from invalid ones. The firairigtic leverages the observation
that if a rulea — 3 is common in a web site, then we can expect to find in the URL list
multiple examples of pages accessed both ways. For examplee site wherestory?id=
can be replaced bstory , we are likely to see many different URL pairs that differ omly

Lincreasingly many web server logs are available nowadayse#wch engines via protocols like Google
Sitemaps [5].

this substring; we say that such a pair of URLs isiastanceof the rule ‘Story?id= —
“story_ ". The set of all instances of a rule is called the rulelgpport Our first attempt to
uncoverbusT is therefore to seek rules that have large support.

Nevertheless, some rules that have large support arealidtbusT rules, meaning their
support includes many instances, URL pairs, whose assddatiments are not similar. For
example, in one site we found an invabd)sT rule, “movie-forum " — “politics-forum !
whose instances included pairs of URLs of the forhtip://movie-forum.com/story
<num> and http://politics-forum.com/story_<num> . In this case the URLs were asso-
ciated with two unrelated stories that happen to share time Satory id” number. Another
example is the rule “1* “2”, which emanates from instances ligee-1.jpg andpic-2.jpg
story 1 andstory 2 ,andlectl andlect2 , none of which ar®usT since the pairs of URLs
are not associated with similar documents. Our second ardittauristics address the chal-
lenge of eliminating such invalid rules. The second heigristbased on the observation that
invalid rules tend to flock together. For example in mostanses of “1"— “2”, one could also
replace the “1” by other digits. We therefore ignore rulest tome in large groups.

Further eliminating invalid rules requires calculating fraction ofbusT in the support of
each rule. How could this be done without inspecting pagéerd® Our third heuristic uses
cues from the URL list to guess which instances are likely tobseT and which are not. In
case the URL list is produced from a previous crawl, we typydahve document sketches [6]
available for each URL in the list. These sketches can be asestimate the similarity between
documents and thus to eliminate rules whose support doeontin sufficiently manpusTt
pairs.

In case the URL list is produced from web server logs, documsietches are not available.
The only cue about the contents of URLs in these logs is the sizthese contents. We thus
use the size field from the log to filter out instances (URL pdirat have “mismatching” sizes.
The difficulty with size-based filtering is that the size ofymdmic page can vary dramatically,
e.g., when many users comment on an interesting story or kb page is personalized. To
account for such variability, we compare the ranges of ssees in all accesses to each page.
When the size ranges of two URLs do not overlap, they are uglikebeDUST.

Having discovered likelypusT rules, another challenge that needs to be addressed is elim-
inating redundant ones. For example, the ruiigp®/site-name/story?id= " — “http:
Isite-name/story _ " will be discovered, along with many consisting of subsgsrthereof,
e.g., 7id=" — “_”. However, without considering the content itself, it istriovious which
rule should be kept in such situations— the latter could beeewvalid in all cases, or invalid
outside thecontextof the former. We are able to use support information fromUR list to
remove many redundant likelyusT rules. We remove additional redundancies after perform-
ing some validations, and thus compile a succinct list adsul

Canonization. Once the correcbusT rules are discovered, we exploit them for URL can-
onization. The problem of finding a canonical set of URLs foraeg URL list is NP-hard
due to reducability to the minimum dominating set problenespite this, we have devised an
efficientcanonization algorithnthattypically succeeds in transforming URLS to a site-specific
canonical form.

Experimental results. We experiment with DustBuster on four web sites with veryediht
characteristics. Two of our experiments use web server, lgs two use crawl outputs. We
find that DustBuster can discover rules very effectively fromwderate sized URL lists, with as
little as 2Q000 entries. Limited sampling is then used in order to vadica refute each rule.

3

Our experiments show that up to 90% of the top ten rules desealvby DustBusteprior
to the validation phasare found to be valid, and in most sites 70% of the top 100 raites
valid. FurthermorepusT rules discovered by DustBuster may account for 47% obihsT in
a web site and that using DustBuster can reduce a crawl by upto 2

Roadmap. The rest of this paper is organized as follows. Section Zwevirelated work. We
formally define theousT detection and canonization problems in Section 3. Sectjmedents
the basic heuristics our algorithm uses. DustBuster andahergzation algorithm appear in
Section 5. Section 6 presents experimental results. We &hdgsame concluding remarks in
Section 7.

2 Related work

2.1 Canonization rules

Global canonization rules. The most obvious and naive waysT is being dealt with today
is through standard canonization. URLs have a very standiarctsre [7]. The hostname may
have many different aliases. Different hostnames maymehe exact same site. For example
adding a Wwww to the base hostname often returns the same content. Clgomstrhostname to
identify each site is a standard way to canonize a URL. Otlagdstrd canonization techniques
include replacing a/f ” with a single 7 ” and removing the index.html suffix. However, site
specificbusT rules cannot be detected using these simple rules.

Site-specific canonization rules. Another method for discoveringusT rules is to examine
the web server configuration file and file system. In the cordigon, file alias rules are defined.
Each such rule allows a directory in the web server to be aedessing a different name, an
alias. By parsing the web server configuration file [8] one d@alsily learn these rules. Further
inspection of the file system may uncover symbolic links. Sen®o have the exact same effect.

There are three main problems with using this technique. ritai@ problem is that sym-
bolic links and aliases are by no means the sole sourcaefr rules. Other sources include
parameters that do not affect the content, different dyoditess that produce the same content
and many others. Our technique, therefore, can discovederwange obusT rules, regard-
less of cause. The second problem is that each configuralois fiifferent according to the
type and version of the web server. The third and final probsetiat once the files are parsed
and processed the rules discovered would have to be treedterthe search engine. Transfer-
ring these rules from the web server to the search engine mapssible in the future if new
protocols are defined and adopted. The Google Sitemapgeuithie [5] defines a protocol
for web site managers to supply information about theirssitesearch engines. This type of
protocol can be extended to enable the web server to sendization rules to any party that
wants such information. However, such an extension hasewt hdopted yet.

2.2 Detecting similarity between documents

The standard way of dealing withusT is using document sketches [9, 10, 6, 11, 12, 13, 14,
15, 16, 17], which are short summaries used to determindagitires among documents. To
compute such a sketch, however, one needs to fetch and irthgewhole document. Our
approach cannot replace document sketches, since it dbéachousT across sites abusT

4

that does not stem from rules. However, it is desirable toawseapproach to complement
document sketches in order to reduce the overhead of dallertdundant data. Moreover,
since document sketches do not give rules, they cannot liefas€RL canonization, which
is important, e.g., to improve the accuracy of page popylamnetrics.

2.3 Detecting mirror sites

One common source of near-duplicate content is mirroringufber of previous works have
dealt with automatic detection of mirror sites on the webefEhare two basic approaches to
mirror detection. The first method is based on the conteelfif$8, 1]. The documents are
downloaded and processed. Mirrors are detected by progese documents to detect the
similarity between hosts. We will call these technigliesttom-up”.

The second method uses meta information that may alreadydialae such as a URL
list, the IP number associated with the host names and atkbnigues. We will call these
techniquestop-down” [19, 20, 21]. These techniques are closer to what we are doitigs
paper.

In contrast to mirror detection, we deal with the compleragnproblem of detectingusT
within one site. Mirror detection may exploit syntactic Bs#s of URLs and limited sampling
as we do. However, a major challenge that site-spepifisT detection must address is ef-
ficiently discoveringprospective rules out of a daunting number of possibili(@kspossible
substring substitutions). In contrast, mirror detectionuses on comparing a given pair of
sites, and only needs to determinbetherthey are mirrors.

2.4 Analysis of web server logs

Various commercial tools as well as papers are availablenalyaing web server logs. We are
not aware of any previous algorithm for automatically detecbusT rules nor of any algo-
rithm for harvesting information for search engines frombveerver logs. Some companies
(e.q., [22, 23, 24]) have tools for analyzing web server |dmgs their goals are very different
from ours. This type of software usually provides such stias as: popular keyword terms, en-
try pages (first page users hit), exit pages (pages users usa/e to another site), information
about visitor paths and many more.

2.5 Mining association rules

Our problem may seem similar to mining association rule$, [2&t the two problems differ
substantially. Whereas the input of such mining algorithorsscsts of complete lists of items
that belong together, our input includes individual itemf different lists. The absence of
complete lists renders techniques used therein inappdi¢alour problem.

2.6 Abstract Rewrite System

One way to view our work is as producing an Abstract RewritetSygARS) [26] for URL
canonization viebusT rules. For ease of readability, we have chosen not to adepARS
terminology in this paper.

3 Problem Definition

URLsS. We view URLSs as strings over an alphabaif tokens. Tokens are either alphanumeric
strings or non-alphanumeric characters. In addition,\eUdRL is prepended with the special
token™ and is appended with the special tole(i and$ are not included irz).

A URL uis valid, if its domain name resolves to a valid IP address and itsacwsican be
fetched by accessing the corresponding web server (thegtttpn code is not in the 4xx or 5xx
series). Ifuis valid, we denote by d@ao) the returned document.

DUST. Two valid URLsu;,up are calledbusrT if their corresponding documents, dog)

and doc¢uy), are “similar”. To this end, any method of measuring the kirity between two
documents can be used. For our implementation and expegsmege use the populalac-
card similarity coefficientmeasure [27], which can be estimated using shingles, orndect
sketches due to Brodet al. [6].

DUST rules. We seek generallesfor detecting when two URLs ameusT. A DUST rule @
is a relation over the space of URLg.may be many-to-many. Every pair of URLs belonging
to @ is called annstanceof @. Thesupportof ¢, denoted suppaof®), is the collection of all its
instances.

We discuss two types afusT rules: substring substitutions and parameter substitsitio
Parameter substitution rulesither replace the value of a certain parameter appearitigein
URL with a default value, or omit this parameter from the URLog#ther. Thanks to the
standard syntax of parameter usage in URLS, detecting p&asugstitution rules is fairly
straightforward. Most of our work therefore focuses on $ulig substitution rules.

Our algorithm focuses primarily on detecting substringssistion rules. Asubstring sub-
stitution rulea — B is specified by an ordered pair of strings, [3) over the token alphabé&t
(In addition, we allow these strings to simultaneouslytstath the token™ and/or to simulta-
neously end with the toke$) In Section 5.4 we will see thaipplyinga substring substitution
rule is simply done by replacing the first occurrence of thestiing. However, at this point,
instances of substring substitution rules are simply ddfagefollows:

Definition 3.1 (Instance of a rule) A pair ui, up of URLSs is aninstanceof a substring substi-
tution rulea — 3, if there exist strings % s.t. 4 = pas and @ = ps.

For example, the pair of URLKttp://www.site.com/index.html and http://www.
site.com is an instance of theusTrule “/index.html$ ” — “$”. This rule demonstrates that
substring substition rules can be used to remove “irrelwwagments of the URL, segments
that if removed from a valid URL result in another valid URL wgimilar associated content.
The two types of rules we discuss in this paper are in no waypbtete Indeed, it is easy
to think of additional types abusT rules that are not covered by the types of rules we present
here. However, our experiments over real-world data shattie rules we explore are highly
effective at uncoveringusT. It would be interesting to explore more typesfsT rules and
compare their effectiveness in future work.

The DUST problem. Our goal is to deteabusT and eliminate redundancies in a collection
of URLs belonging to a given web sif@ This is solved by a combination of two algorithms,
one that discoversusT rules from a URL list, and another that uses them in order tesfoam
URLSs to their canonical form.

The input of the first algorithm is a list of URLS, (typicallyoim the same web site), and
its output is a list of dust rules corresponding to these URIe URL listis a list of records

6

consisting of: (1) a URL; (2) the http return code; (3) the sizthe returned document; and (4)
the document’s sketch. The last two fields are optional. e of list can be obtained from
web server logs or from a previous crawl. he URL list is a samople URLSs that belong to
the web site but is not required to beseandomsample. For example, web server logs might be
biased towards popular URLSs.

For a given web sit&, we denote byJs the set of URLs that belong t& A DusT rule @
is said to bevalid w.r.t. S, if for eachu; € Us and for eachu; s.t. (uz,up) is an instance o,
uz € Usand(ug,up) iSDUST.

A DUST rule detection algorithns given a list£ of URLs from a web sit&and outputs an
ordered list obusT rules. The algorithm may also fetch pages (which may or magppear
in the URL list). The ordering of rules represents the configéesf the algorithm in the validity
of the rules.

Canonization. Let R be an ordered list abusT rules that have been found to be valid w.r.t.
some web sit&. We would like to define what is @anonizatiorof the URLs inUs, using the
rules in®. This definition is made somewhat more difficult by the faettthpusT rule may
map a URL to multiple URLs. For example, the URttp://a.b.a.com/ Is mapped by the
rule “a.” — “” to both http://a.b.com/ andhttp://b.a.com/ . To this end, we define a
standard way of applying each rule. For example, in the caselistring substitions, we only
replace the first occurrence of the string.

The rules inR_ naturally induce a labeled gragy onUs: there is an edge fromy to u;
labeled by if and only if ¢(u1) = up. Note that adjacent URLs i@ correspond to similar
documents. Further note that due to our rule validation ggsgsee Section 5.4), R cannot
contain both a rule and its inverse. Nevertheless, the g&gpamnay still contain cycles.

For the purpose of canonization, we assume that documesitnilisrity empirically re-
spects at least a weak form of the triangle inequality, sbuiRLs that are connected by short
paths inGg are similar too. Thus, i64 has a bounded diameter (as it does in the data sets we
encountered), then every two URLSs connected by a path artasiAicanonization that maps
every URLuto some URL thatis reachable framthus makes sense, because the original URL
and its canonical form are guaranteed t@lesT.

A set of canonical URLSs a subseCUs C Ug that is reachable from every URL lds.
Equivalently,CUs is a dominating set in the transitive closure of tegerse graphof Gg,
the graph obtained by reversing the direction of all edgescaAonization is any mapping
C: Us — CUs that maps every URL € Us to some canonical URC(u), which is reachable
fromu by a directed path. Our goal is to find a small set of canoni&l&Jand a corresponding
canonization, which is efficiently computable.

Finding the minimum size set of canonical URLSs is intractaldiee to the NP-hardness
of the minimum dominating set problem (cf. [28]). Forturgteur empirical study indicates
that for typical collections obusT rules found in web sites, efficient canonization is possible
Thus, although we cannot design an algorithm that alwayaimbian optimal canonization,
we will seek one that maps URLs tocsanall set of canonical URLs, analwaysterminates in
polynomial time.

Metrics. We use three measures to evaluatssT detection and canonization. The first mea-
sure isprecision—the fraction of valid rules among the rules reported byoheT detection al-
gorithm. The second, and most important, measure idigwvered redundaneythe amount
of redundancy eliminated in a crawl. It is defined as the thifiee between the number of
unique URLSs in the crawl before and after canonization, @ity the former.

7

The third measure isoverage given a large collection of URLSs that includeg/sT, what
percentage of the duplicate URLs is detected. The numberpicdite URLS in a given URL
list is defined as the difference between the number of urlitiRles and the number of unique
document sketches. Since we do not have access to the eebrgte, we measure the achieved
coverage within the URL list. We count the number of duplidd®Ls in the list before and
after canonization, and the difference between them divimlethe former is the coverage.

One of the standard measures of information retrievatéall. In our case, recall would
measure what percent of all correatsT rules is discovered. However, it is clearly impossible
to construct a complete list of all valid rules to compareiasfa Therefore, recall is not directly
measurable in our case, and is replaced by coverage.

The coverage measure is equivalent to recall over the setpdicdte URLS.

4 Basic Heuristics

Our algorithm for extracting likely string substitutionles from the URL list uses three heuris-
tics: thelarge support heuristichesmall buckets heuristi@and thesimilarity likeliness heuris-
tic. Our empirical results provide evidence that these hecsisire effective on web-sites of
varying scopes and characteristics.

Large support heuristic.

Large Support Heuristic
The support of a valid DUST rule is large.

For example, if a rule ihdex.html$ " — “$” is valid, we should expect many instances
witnessing to this effect, e.gyww.site.com/d1/index.html andwww.site.com/dl/ , and
www.site.com/d3/index.html and www.site.com/d3/ . We would thus like to discover

rules of large support. Note that valid rules of small suppoe not very interesting anyway,
because the savings gained by applying them are negligible.

Finding the support of a rule on the web site requires knowihthe URLs associated with
the site. Since the only data at our disposal is the URL lisickvis unlikely to be complete,
the best we can do is compute the support of rilgkis URL list That is, for each rule, we
can find the number of instanc@s, u,) of @, for which bothu; andu, appear in the URL list.
We call these instances tkapport ofgin the URL listand denote them by suppgftp). If the
URL list is long enough, we expect this support to be repredimet of the overall support of
the rule on the site.

Note that sincésuppor} (o — B)| = | suppor} (B —)|, for everya andf3, our algorithm
cannot know whether both rules are valid or just one of thenitiherefore outputs the pair
a, B instead. Finding which of the two directions is valid is lefthe final phase of DustBuster.

Given a URL list£, how do we compute the size of the support of every possildé ru
To this end, we introduce a new characterization of the sugre. Consider a substrirng
of a URLu = pas. We call the pair(p,s) the envelopeof a in u. For example, ifu =http:
Ilwww.site.com/index.html anda ="index ", then the envelope oft in u is the pair of
strings “http://www.site.com/ "and “.htmi$ ”. By Definition 3.1, a pair of URLSuy, Uy)
is an instance of a substitution ride— {3 if and only if there exists at least one shared envelope
(p,s) so thatu; = pasandu, = pps.

For a stringa, denote byE, (a) the set of envelopes of in URLS, where the URLSs satisfy
the following conditions: (1) these URLs appear in the URL listand (2) the URLs hava
as a substring. It occurs in a URLU several times, then contributes as many envelopes to
E,(a) as the number of occurrencescoin u. The following theorem shows that under certain
conditions,|E. (o) NE,(B)| equals|suppor (a — B)|. As we shall see later, this gives rise
to an efficient procedure for computing support size, sineecan compute the envelope sets
of each substring separately, and then by join and sort operations find the pasubstrings
whose envelope sets have large intersections.

Theorem 4.1 Leta # 3 be two non-empty and non-semiperiodic strings. Then,

| support (o — B)| = [EL(a) NEL(B)]-

A string a is semiperiodicif it can be written ast = y¥y for some string/, where|a| > |y,
k > 1, y¥ is the string obtained by concatenatikgopies of the string, andy is a (possibly
empty) prefix ofy [29]. If a is not semiperiodic, it is10n-semiperiodic For example, the
strings 1/l " and“a.a.a " are semiperiodic, while the stringa.a.b ”and “%//// " are not.

Unfortunately, the theorem does not hold for rules whereddtiee strings is either semiperi-
odic or empty. Rules where one of the strings is empty are Btexy rare since another rule
with additional context would be detected instead. For edapinstead of detecting the rule
“I" — “" we would detect the rule/$ " — “$” that would only remove the last slash. For
the semiperiodic case, let us consider the following examipéta be the semiperiodic string
“a.a”andp ="“a”". Let u; = http://a.a.a/ and letu, = http://a.a/ . There arédwo ways
in which we can substitute with 3 in u; and obtairu,. Similarly, lety be “a. ” and d be the
empty string. There are two ways in which we can substijywtéth & in u; to obtainus. This
means that the instanc¢es, uz) will be associated with two envelopestiy (a) NE.(B) and
with two envelopes irE,(y) NE,(d) and not just one. Thus, whenor 3 are semiperiodic
or empty,|E,(a) NE,(B)| can overestimate the support size. On the other hand, sach-ex
ples are quite rare, and in practice we expect a minimal gapdes|E. (o) NE,(B)| and the
support size.

Proof of Theorem 4.1 To prove the identity, we will show a 1-1 mapping from suppoot —
B) onto E.(a) NEL(B). Let (ug,uz) be any instance of the rule — (3 that occurs inL.
By Definition 3.1, there exists an envelope,s) so thatu; = pas andup = ps. Note that
(p,s) € EL(a) NEL(B), hence we define our mapping a&; g(u1,Uz) = (p,s). The main
challenge is to prove thafy g is a well defined function; that isf, 3 maps every instance
(u1,up) to a single paifp,s). This is captured by the following lemma whose proof is pdex
below:

Lemma 4.2 Leta # 3 be two distinct, non-empty, and non-semiperiodic strindgenl there
cannot be two distinct pair§p1,s1) # (p2,S2) S-t. pos; = p2as; and p s = p2pse.

We are left to show thaf is 1-1 and onto. Take any two instances,uy),(v1,Vv2) of
(a,B), and suppose thdy, g(u, Uz) = fy g(V1,V2) = (p,S). This means thal; = pas=v; and
up = pBs= V2. Hence, necessarily, up) = (v1,V2), implying f is 1-1. Take now any envelope
(p,s) € EL(a)NEL(B). By definition, there exist URL81,up € £, so thatu; = pasandu, =
pBs. By Definition 3.1,(uy, Uz) is an instance of the rule — B, and thusf, g(u1,uz) = (p,s).

|
In order to prove Lemma 4.2, we show the following basic proypef semiperiodic strings:

Lemma 4.3 Leta # 3 be two distinct and non-empty strings f3lfs both a suffix and a prefix
of a, thena must be semiperiodic.

Proof Sincef is both a prefix and a suffix ai and sincex # 3, there exist two non-empty
stringsfo andf; s.t.

a = PBoP = BPB2.

Letk= L%J. Note thatk > 1, as|a| > |Bo|. We will show by induction ork thata = [3('5[3’,
wheref is a possibly empty prefix @o.

The induction base ik = 1. In this case|Bo| > 19 and asa = BoB, |B| < |Bo|- Since
BoP = BPo, it follows thatf is a prefix offg. Thus, defingd; = B and we have:

o = BoB = BoBo.

Assume now that the statement holds [(#B%"j =k—1>1 and let us show correctness for

L%J =k. Asa = Bof3, thenL%J =k—1> 1. Hence|B| > |Bo| and thug3p must be a prefix

of B (recall that3p3 = BB2). Let us writef as:

B = Bopa.

We thus have the following two representationsxof

o = BoP = BoPoB1 and a = PPz = PoP1Po.

We conclude that:

B =B
We thus found a stringBq), which is both a prefix and a suffix @ We therefore conclude
from the induction hypothesis that

B=B5 'Bo
for some prefix3; of Bo. Hence,

o = BoP = BB

|
We can now prove Lemma 4.2:

Proof of Lemma 4.2 Suppose, by contradiction, that there exist two differesitg(p1,s1)
and(pz,s) so that:
Up = p1as; = p2asy 1)

Uz = p1Bs1 = p2Bs. (2

These equations together with the fact thait, s1) # (p2,s2) imply that bothp; # p2 and
S1 # S. Thus, by Equations (1) and (2), one pf and p, is a proper prefix of the other.
Suppose, for example, that is a proper prefix of, (the other case is identical). It follows
thats, is a proper suffix of;.

Let us assume, without loss of generality, tftdt> |B|. There are two cases to consider:

10

Case (i): Both p1a and p13 are prefixes op,. This implies that alsais,, s, are suffixes of
S1.

Case (ii): At least one ofp;a and p1f3 is not a prefix ofp,.
Case (i): In this casep, can be expressed as:
P2 = pr0P; = PaPps,
for some string’, andp;. Thus, sincéa| > |BJ, B is a prefix ofa. Similarly:
S1 = 5,08 = §/Bsp.

Thus, (3 is also a suffix ofn. According to Lemma 4.3y is therefore semiperiodic. A contra-
diction.

Case (ii): If pia is not a prefix ofpz, a can be written ast = aga; = a102, for some
non-empty string®p, a1,a2, as shown in Figure 1. By Lemma 4.8,is semiperiodic. A
contradiction. The case thpif is not a prefix ofp, is handled in a similar manner.

O

Figure 1: Breakdown ot in Lemma 4.2.

Small buckets heuristic. While most validbusT rules have large support, the converse is not
necessarily true: there can be rules with large supportitieatot valid. One class of such rules
is substitutions among numbered items, e.lgctips lect2.ps), (lectl.ps ,lect3.ps),
and so on.

We would like to somehow filter out the rules with “misleadirgypport. The support
for a rulea — (3 can be thought of as a collection of recommendations, whech envelope
(p,s) € EL(a)NEL(B) represents a single recommendation. Consider an envgopethat
is willing to give a recommendation to any rule, for exampletp:// * — “"”. Naturally its
recommendations lose their value. This type of support teags to many invalid rules being
considered. This is the intuitive motivation for the follmg heuristic to separate the valid
DUST rules from invalid ones.

If an envelope(p,s) belongs to many envelope sdfs (ai), E.(02),...,E-(ak), then
it contributes to the intersectiorts, (aj) NE.(aj), for all 1 <i # j < k. The substrings
a1,0p,...,0 constitute what we call bucket That is, for a given envelop@, s), bucketp, s)
is the set of all substrings s.t. pas € L. An envelope pertaining to a large bucket supports
many rules.

Small Buckets Heuristic
Much of the support of valid DUST substring substitutioresuis likely to belong to small
buckets.

11

Similarity likeliness heuristic. The above two heuristics use the URL strings alone to detect
DUST. In order to raise the precision of the algorithm, we use edthieuristic that better
captures the “similarity dimension”, by providing hintstaswhich instances are likely to be
similar.

Similarity Likeliness Heuristic
The likely similar support of a valid DUST rule is large.

We show below that using cues from the URL list we can determinieh URL pairs in the
support of a rule are likely to have similar content, i.ee ldeely similar, and which are not.
The likely similar support, rather than the complete supperused to determine whether a
rule is valid or not. For example, in a forum web site we exadirthe URL list included two

sets of URLshttp://politics.domain/story_num andhttp://movies.domain/story_
num with different numbers. The support of the invalid ruketf://politics.domain i
“http://movies.domain " was large, yet since the corresponding stories were véfgrdit,

the likely similar support of the rule was found to be small.

How do we use the URL list to estimate similarity between doents? The simplest case
is that the URL list includes a document sketch, such as theglds of Brodelet al. [6], for
each URL. Such sketches are typically available when the URlislithe output of a previous
crawl of the web site. When available, documents sketchess®e to indicate which URL
pairs are likely similar.

When the URL list is taken from web server logs, documents kkstare not available. In
this case we use document sizes (document sizes are usivaltylyy web server software).
We determine two documents to be similar if their sizes “inatcSize matching, however,
turns out to be quite intricate, because the same documegnhava very different sizes when
inspected at different points of time or by different usériis is especially true when dealing
with highly dynamic sites like forum or blogging web siteshéFefore, if two URLS have
different “size” values in the URL list, we cannot immedigt@ifer that these URLSs are not
DUST. Instead, for each unique URL, we track all its occurrencehénURL list, and keep
the minimum and the maximum size values encountered. Wetel#minterval between these
two numbers by,. A pair of URLS,u; anduy, in the support are considered likely to be similar
if the intervalsl,, andl,, overlap. Note however, that in the case of size matchingritase
accurate to say that the URLs are unlikely to be similar ifith@ervals do not overlap. For this
reason the size matching heuristic is effective in filtesagport but not as a measure of how
similar two URLs are. Our experiments show that this heuristvery effective in improving
the precision of our algorithm, often increasing precidigra factor of two.

5 DustBuster

In this section we describe DustBuster—our algorithm foco®ring site-specifiousT rules.
DustBuster has four phases. The first phase uses the URL Iist tdagenerate a short list of
likely busT rules. The second phase removes redundancies from thisTlis next phase
generates likely parameter substitution rules. The lagsgtvalidates or refutes each of the
rules in the list, by fetching a small sample of pages.

12

5.1 Detecting likely DUST rules

Our strategy for discovering likelpusT rules is the following: we compute the size of the
support of each rule that has at least one instance in the WRlahd output the rules whose
support exceeds some threshl&. Based on Theorem 4.1, we compute the size of the support
of arulea — 3 as the size of the s&, (a) NE,(P). That is roughly what our algorithm does,
but with three reservations:

(1) Based on the small buckets heuristic, we avoid consigez@rtain rules by ignoring
large buckets in the computation of envelope set intersesti Buckets bigger than some
thresholdT are calledoverflowing and all envelopes pertaining to them are denoted collec-
tively by O and are not included in the envelope sets.

(2) Based on the similarity likeliness heuristic, we filteppart by estimating the likelihood
of two documents being similar. We eliminate rules by filigrout instances whose associated
documents are unlikely to be similar in content. That is,dagiven instancel; = pos and
uz = pPs, the envelopd p,s) is disqualified ifu; andu, are found unlikely to be similar us-
ing the tests introduced in Section 4. These techniquesraraded as a boolean function
LikelySimilar which returns false only if the documents béttwo input URLSs are unlikely to
be similar. The set of all disqualified envelopes is then tehiD .

(3) In practice, substitutions of long substrings are rdflence, our algorithm considers
substrings of length at moSttokens, for some given parameter

To conclude, our algorithm computes for every two substring that appear in the URL
list and whose length is at maStthe size of the s6E . (a) NEL(B)) \ (OUDq g).

1:Function DetectLikelyRules(URLList)
create table ST (substring, prefix, suffix, siamge/docsketch)
create table IT (substringl, substring2)
create table RT (substringl, substring2, suppat)
for each record € £ do
for £ =0to Sdo
for each substring of r.url of length? do
p := prefix of r.url preceding
9: s := suffix of r.url succeeding
10: add ¢, p, s, r.sizerange/r.docsketch) to ST
11: group tuples in ST intbucketsby (prefix,suffix)
12: for each buckeB do
13: if (|B|=10R|B| > T) continue
14: for each pair of distinct tuplets,t, € B do
15: if (LikelySimilar(ts, t2))
16: add t;.substringf.substring) to IT
17: group tuples in IT intoule_supportsby (substringl,substring2)
18: for each rulesupport Rdo
19: t:=firsttupleinR
20: add tuple (t.substringl, t.substringR2|) to RT
21: sort RT by supporsize
22: return all rules in RT whose support sizesisS

Figure 2: Discovering likely DUST rules.

13

Our algorithm for discovering likelypusT rules is described in Figure 2. The algorithm
gets as input the URL list. We assume the URL list has been pre-processed so that: ¢1) onl
unique URLs have been kept; (2) all the URLs have been tokemizddnclude the preceding
" and succeeding; (3) all records corresponding to errors (http return cadebe 4xx and
5xx series) have been filtered out; (4) for each URL, the cpmeding document sketch or size
range has been recorded.

The algorithm uses three tables: a substring table ST, #anios table 1T, and a rule table
RT. Their attributes are listed in Figure 2. In principleg tlables can be stored in any database
structure; our implementation uses text files.

In lines 5-10, the algorithm scans the URL list, and recortiswbstrings of lengths 0O
to S of the URLs in the list. For each such substringa tuple is added to the substring
table ST. This tuple consists of the substringas well as its envelopgp, s), and either the
URL's document sketch or its size range. The substrings areghouped into buckets by their
envelopes (line 11). Our implementation does this by sotrtive file holding the ST table by
the second and third attributes. Note that two substringgsappear in the bucket dfp,s) if
and only if(p,s) € E.(a) NEL(B).

In lines 12-16, the algorithm enumerates the envelopesdfon envelope(p,s) con-
tributes 1 to the intersection of the envelope $&téa) NE,(B), for everya, 3 that appear in
its bucket. Thus, if the bucket has only a single entry, wexk(p, s) does not contribute any
instance to any rule, and thus can be tossed away. If the bisateerflowing (its size exceeds
T), then(p,s) is also ignored (line 13).

In lines 14-16, the algorithm enumerates all the p@ir$) of substrings that belong to the
bucket of(p,s). If it seems likely that the documents associated with the &Jps and pPs
are similar (through size or document sketch matchingg (ib),(a, B) is added to the instance
table IT (line 16).

The number of times a pa(o, 3) has been added to the instance table is exactly the size of
the set(E.(a) NEL(B)) \ (OUDq g), Which is our estimated support for the rutes- § and
B — a. Hence, all that is left to do is compute these counts andtkerpairs by their count
(lines 17-22). The algorithm’s output is an ordered list airp. Each pair representing two
likely busT rules (one in each direction). Only rules whose supportrigel&nough (bigger
thanMS) are kept in the list.

Complexity analysis. Let n be the number of records in the URL list andiebe the average
length (in tokens) of URLs in the URL list. We assume tokens &mdostant length. The size
of the URL list is therD(mn) bits. We usé)() to suppress factors that are logarithmiojm,S,
andT, which are typically negligible.

The computation has two major bottlenecks. The first is §llin the instance table IT
(lines 12—16). The elements of the ST talil¢mng are split into buckets of siz®(T) which
results inO(mT”S) buckets in ST. The algorithm then enumerates all the buckets for each
of them enumerates each pair of substrings in the buckets ddmputation could possibly
face a quadratic blowup. Yet, since overflowing buckets gmeried, then this step takes only
O(%STZ) = O(mnST) time. The second bottleneck is sorting the URL list and therme-
diate tables. Since all the intermediate tables are of simeoatO(mnST), the sorting can be
carried inO(mnST) time andO(mnST) external storage space. By using an efficient external
storage sort utility, we can keep the main memory comple&it§) rather than linear. The
algorithm does not fetch any pages.

14

5.2 Eliminating redundant rules

By design, the output of the above algorithm includes manylapping pairs. For example,
when running on a forum site, our algorithm finds the pairo(fl/story?id= ", co.ll

story_ "), as well as numerous pairs of substrings of these, suctstsyid= ", “story_ ”).
Note that every instance of the former pair is also an ingtai¢he latter. We thus say that the
formerrefinesthe latter. It is desirable to eliminate redundancies goattempting to validate
the rules, in order to reduce the cost of validation. Howeween one likelypusT rule refines
another, it is not obvious which should be kept. In some ¢cdkesbroader rule is always true,
and all the rules that refine it are redundant. In other cdbeshroader rule is only valid in
specificcontextadentified by the refining ones.

In some cases, we can use information from the URL list in ordleleduce that a pair is
redundant. When two pairs have exactly the same support idRielist, this gives a strong
indication that the latter, seemingly more general ruleaigl only in the context specified by
the former rule. We can thus eliminate the latter rule fromlist.

We next discuss in more detail the notionrefinementind show how to use it to eliminate
redundant rules.

Definition 5.1 (Refinement) A rule @refinesa rule Y, if support@) C supporty).

That is,@refinesy, if every instancdus, u) of @is also an instance afi. Testing refinement
for substitution rules turns out to be easy, as captureddariatowing lemma:

Lemma 5.2 A substitution rulen’ — B’ refines a substitution rula — B if and only if there
exists an envelopgy, d) s.t.a’ = yad and ' = yf3d.

Proof We prove derivation in both directions. Assume, initiatlyat there exists an envelope
(y,0) s.t.a’ =yad andp’ = yBd. We need to show that in this case— [’ refinesa — . Take,
then, any instancéus, up) of o’ — B'. By Definition 3.1, there exists an envelof#,s) s.t.
u; = p'a’s andu; = p'R's. Hence, if we defingg = p'yands= 8¢, then we have that; = pas
anduy = pPs. Using again Definition 3.1, we conclude tliat, uy) is also an instance of — 3.
This proves the first direction.

For the second direction, assume that- B’ refinesa — . Assume that none af, 3,a’, '
starts with = or ends with $. (The extensiondoB,a’,’ that can start with ~ or end with
$ is easy, but requires some technicalities, that would itheclarity of this proof.) Define
u; ="a’$ andu, ="B'$. By Definition 3.1,(up, up) is an instance ai’ — (3. Due to refinement,
it is also an instance ak — (. Hence, there exigh,s s.t. u; = pas andu, = pps. Hence,
pas="a’$ andpPBs = "p'$. Sinceqa, do not start with ~ and do not end with $, thermust
start with ~ ands must end with $. Define thento be the stringp excluding the leading *, and
defined to be the strings excluding the trailing $. We thus have! = yad andp’ = yB9, as
needed.

O

The characterization given by the above lemma immediatelgly an efficient algorithm
for deciding whether a substitution ruié — P’ refines a substitution rule — B: we simply
check that is a substring oft’, replacea by B, and check whether the outcomefdis If a
has multiple occurrences i, we check all of them. Note that our algorithm’s input is a lis

15

of pairs rather than rules, where each pair represents tl@s.rWhen considering two pairs
(a,B) and(a’,B), we check refinement in both directions.

Now, suppose a rule’ — 3’ was found to refine a rulee — B. Then, suppott’ —
B') C supporta — B), implying that also suppof{a’ — ') C suppor} (a — B). Hence,
if |suppor} (o’ — pB')| = | support (a — B)|, then support(a’ — B') = supporf (o — B). If
the URL list is sufficiently representative of the web sités tjives an indication that every in-
stance of the refined rute — (3 that occurs on the web site is also an instance of the refinemen
o’ — B'. We choose to keep only the refinement— [3’, because it gives the full context of
the substitution.

One small obstacle to using the above approach is the faipwin the first phase of our
algorithm, we do not compute the exact size of the supjsurpporf (a — B)|, but rather
calculate the quantitfE, (o) N"E.(B)) \ (OUDgg)|. Itis possible that’ — B’ refinesa — 8
and support(a’ — B) = support (a — B), yet|(E.(a) NEL(B')) \ (OUDqy g)| < [(E-(a)N
E£(B))\ (OUDgp)l.

How could this happen? Consider some envelgps) € E.(a) NE(B), and let(us,uz) =
(pas, pPs) be the corresponding instancecof- PB. Since support(a’ — ') = support (o —

B), then(uy, u2) is also an instance af’ — B'. Therefore, there exists some envelgpes) €
E (a0")NE.(B) s.t.ug = pa’s andup, = p'R'S.

a is a substring oft’ andp is a substring of’, thusp’ must be a prefix op ands' must be
a suffix ofs. This implies that any URL that contributes a substmg the bucket of p, s) will
also contribute a substringto the bucket of p',s'), unlessy exceeds the maximum substring
lengthS. In principle, then, we should expect the bucketpfs') to be larger than the bucket
of (p,s). If the maximum bucket siz& happens to be exactly between the sizes of the two
buckets, therip’,s') overflows while(p, s) does not. In this case, the first phase of DustBuster
will account for(uz,uy) in the computation of the support af— 3 but not in the computation
of the support ot — ', incurring a difference between the two.

In practice, if the supports are identical, the differenegn®en the calculated support sizes
should be small. We thus eliminate the refined rule, even daiculated support size is slightly
above the calculated support size of the refining rule. Hewew increase the effectiveness of
this phase, we run the first phase of the algorithm twice, evittea lower overflow threshold
Tiow and once with a higher overflow threshdiglyh. While the support calculated using the
lower threshold is more effective in filtering out invalides, the support calculated using the
higher threshold is more effective in eliminating redundaites.

The algorithm for eliminating refined rules from the list &gps in Figure 3. The algorithm
gets as input a list of pairs, representing likely rulestesbiby their calculated support size.
It uses three tunable parameters: (1)tteximum relative deficiency, MR[2) themaximum
absolute deficiency, MARnNd (3) themaximum window size, MWIRD and MAD determine
the maximum difference allowed between the calculated auizes of the refining rule and
the refined rule, when we eliminate the refined rule. MW deteesihow far down the list we
look for refinements.

The algorithm scans the list from top to bottom. For each ®i[g, which has not been
eliminated yet, the algorithm scans a “window” of rules el i|. Supposeis the calculated
size of the support oR [i]. The window size is chosen so that (1) it never excedds (line
4); and (2) the difference betwesrand the calculated support size of the lowest rule in the
window is at most the maximum betwe®RD-s andMAD (line 5). Now, if R [i] refines a
rule R [j] in the window, the refined rulg [j] is eliminated (line 7), while if some rul [j] in

16

1:Function EliminateRedundancies(pailist R)

2: fori=1to|R|do

3: if (already eliminatecR [i]) continue

4: for j=1tomin(MW,|R|—i)do

5: if (R [i].size— R [i + j].size>
maxMRD - R [i].sizeMAD)) break

6 if (R [i] refinesR[i + j])

7: eliminateR [i + ||

8: else if R [i + j] refines® Ji]) then

9 eliminateR [i]

10: break

14: return®k.

Figure 3: Eliminating redundant rules.

the window refine< Ji], R [i] is eliminated (line 9).
It is easy to verify that the running time of the algorithm isnaost|%® |- MW. In our
experiments, this algorithm reduces the set of rules by 80s.

5.3 Parameter substitutions

Inline parameters in URLSs typically comply with a standardriat. In many sites, an inline
parameter name is preceded by the “?” or “&” characters atidwed by the “=" character
and the parameter’s value, which is followed by either theé ehthe URL or another “&”
character. We can therefore employ a simple regular expressarch on URLs in the URL
list in order to detect popular parameters, along with mldtiexamples of values for each
parameter. Having detected the parameters, we check forozecwhether replacing its value
with an arbitrary one is a validusT rule. To this end, we exploit the ST table computed by
DustBuster (see Figure 2), after it has been sorted and divide buckets. We seek buckets
whose prefix attribute ends with the desired parameter nantethen compare the document
sketches or size ranges of the relevant URLs pertaining to lsuckets.

For each parametep, we choose some value of the parametegy, and add two rules to
the list of likely rules: the first, replaces the value of tleggmetep with vp, the second rule,
omits the parameter altogether. Due to the simplicity of #igorithm, its detailed presentation
is omitted. The next section describes the validation pkaseh will drop thebusT rules
which do not generate valid URLs or URLs with similar content.

5.4 Validating DUST rules

So far, the algorithm has generated likely rules from the URfLdlone, without fetching even
a single page from the web site. Fetching a small number cééy validating or refuting
these rules is necessary for two reasons. First, it canfiignily improve the final precision
of the algorithm. Second, the first two phases of DustBustkighvdiscover likely substring
substitution rules, cannot distinguish between the twedtiions of a rule. The discovery of
the pair(a,) can represent both — 3 and3 — a. This does not mean that in reality both
rules are valid or invalid simultaneously. It is often thesedhat only one of the directions is

17

valid; for example, in many sites removing the substiimigx.html is always valid, whereas
adding one is not. Only by attempting to fetch actual pageesta we can tell which direction
is valid, if any.

The validation phase of DustBuster therefore fetches a ssaafiple of web pages from
the web site in order to check the validity of the rules getsetan the previous phases. The
validation of a single rule is presented in Figure 4. The algm is given as input a likely
rule R and a list of URLs from the web site and decides whetherute is valid. It uses two
parameters: thealidation count, N(how many samples to use in order to validate each rule),
and therefutation thresholdg (the minimum fraction of counterexamples to a rule requtced
declare the rule invalid).

1:Function ValidateRule(R,L)

2: positive :=0

3: negative ;=0

4: while (positive< (1—¢€)N AND negative< eN) do

5: u:=arandom URL fromC on which applying R results
in a different URL

6: v :=outcome of application of R to u

7: fetchuandv

8: if (fetch u failed) continue

9: if (fetch v failedor DocSketch(u}: DocSketch(v))

10 negative := negative + 1
11: else

12: positive := positive + 1
13: if (negative> €N)

14: returnFALSE

15: returnTRUE

Figure 4: Validating a single likely rule.

REMARK. The application of R to u (line 6) may result in several difiet URLs. For exam-
ple, there are several ways of replacing the string “peopidi the string “users” in the URL
http://people.domain.com/people , resulting in the URLdttp://users.domain.com/
people , http://people.domain.com/users , andhttp://users.domain.com/users . Our
policy is to select one standard way of applying a rule. F@anaxle, in the case of substring
substitutions, we simply replace the first occurrence osthitestring.

In order to determine whether a rule is valid, the algoritrepeatedly chooses random
URLs from the given test URL list until hitting a URL on which applg the rule results in
a different URL (line 5). The algorithm then applies the rehe random URLu, resulting
in a new URLv. The algorithm then fetchasandv. Using document sketches, such as the
shingling technique of Brodest al. [6], the algorithm tests whetherandv are similar. If
they are, the algorithm accounts foras a positive example attesting to the validity of the
rule. If v cannot be fetched, or they are not similar, then it is acamlas a negative example
(lines 9—12). The testing is stopped when either the numbeegative examples surpasses the
refutation threshold or when the number of positive exas@darge enough to guarantee the
number of negative examples will not surpass the threshold.

One could ask why we declare a rule valid even if we find (a smathber of) counterex-

18

amples to it. There are several reasons: (1) the documetahs&kemparison test sometimes
makes mistakes, since it has an inherent false negativaitiyp; (2) dynamic pages some-
times change significantly between successive probes (évka probes are made at short
intervals); and (3) the fetching of a URL may sometimes fag@ne point in the middle, after
part of the page has been fetched. By choosing a refutatiestibtd smaller than one, we can
account for such situations.

Each parameter substitution rule is validated using the @odrigure 4. The validation of
substring substitutions is more complex, as it needs toemddiirections and refinements.

Figure 5 shows the algorithm for validating a list of likebywsT rules. Its input consists
of a list of pairs representing likely substring transfotimias, (R [i].a, K [i].), and a test URL
list L.

For a pair of substringsa, 3), we use the notation > 3 to denote that eithejia| > |B|
or |a| = |B| anda succeed$ in the lexicographical order. In this case, we say that the ru
o — B shrinksthe URL. We give precedence to shrinking substitutions. &loee, given a pair
(a,B), if a > B, we first try to validate the rula — . If this rule is valid, we ignore the rule
in the other direction since, even if this rule turns out tovakd as well, using this rule during
canonization is only likely to create cycles, i.e., ruleattban be applied an infinite number of
times because they cancel out each others’ changes. If tinkisig rule is invalid, though, we
do attempt to validate the opposite direction, so as notde évalid rule. Whenever one of the
directions of(a,) is found to be valid, we remove from the list all pairs refinjlog3)— once a
broader rule is deemed valid, there is no longer a need foren@nts thereof. By eliminating
these rules prior to validating them, we reduce the numbgagés we fetch. We assume that
each pair ing _is ordered so thag [i].a > R [i].p.

1:Function Validate(ruleslist & , testURLList L)
2 create an empty list of rules LR
3:fori=1to|R|do

4: forj=1toi-1do

5: if (R [j] was not eliminatedND R [i] refines® [j])
6: eliminateR [i] from the list

7 break

8: if (R]i] was eliminated)

9: continue

10: if (ValidateRuleR[i].a — R [i].B, £))

11: add®[i].a — R[i].Bto LR

12: elseif (ValidateRuleR [i].B — R [i].a, L))
13: add®]i].p — RJi].a to LR

14: else

15: eliminateR [i] from the list

16: return LR

Figure 5: Validating likely rules.

The running time of the algorithm is at moS{|® |?> + N|®|). Since the list is assumed
to be rather short, this running time is manageable. The eumibpages fetched O(N|R |)
in the worst-case, but much smaller in practice, since waieéite many redundant rules after
validating rules they refine.

19

Application for URL canonization. Finally, we explain how the discoveredsT rules may
be used for canonization of a URL list. Our canonization athor is described in Figure
6. The algorithm receives a URILand a list of validbusT rules, . The idea behind this
algorithm is very simple: in each iteration, each ruleXirin turn is repeatedly applied toup
to MA times, until the rule does not change the URL; this processpsated up tdA times,
until there is an iteration in whichis unchanged (lines 6-7).

1:Function Canonize(URLu, ruleslist R)
: for k=1toMAdo
prev :=u
fori=1to|R|do
for j=1toMA do
u := A URL obtained by applying [i] to u
if (prev =u)
break
output u

PN RA®WWN

Figure 6: Canonization algorithm.

If a rule can be applied more than once (e.g., because the s#vs&ing appears multiple
times in the URL), then each iteration in lines 4-5 applien ihie first place in the URL where
it is applicable. As long as the number of occurrences of épdaced substring in the URL
does not exceed MA, the algorithm replaces all of them.

We limit the number of iterations of the algorithm and apglions of a rule to the param-
eterMA, because otherwise the algorithm could have entered aiténifip (if the graptGg
contains cycles). SincBIA is a constant, chosen independently of the number of rubes, t
algorithm’s running time isinear in the number of rules. Recall that the general canonization
problem is hard, so we cannot expect this algorithm to alvpagduce a minimum size canon-
ization. Nevertheless, our empirical study shows that &vengs obtained using this algorithm
are high.

We believe that the algorithm’s common case success stemmstivo features. First, our
policy of choosing shrinking rules whenever possible tgfliceliminates cycles. Second, our
elimination of refinements of valid rules leaves a small $etiles, most of which do not affect
each other.

6 Experimental Results

Experiment setup. We experiment with DustBuster on four web sites: a dynamiarfosite?,

an academic site (www.ee.technion.ac.il), a large newegsitn.com) and a smaller news site
(nydailynews.com). In the forum site, page contents arklfidynamic, as users continuously
add comments. The site supports multiple domain names arstl oidhe site’s pages are

generated by the same software. The news sites are simitheinstructure to many other

news sites on the web. The large news site has a more complexuse, and it makes use of

several sub-domains as well as URL redirections. Finaleyaitedemic site is the most diverse:

2The webmaster who gave us access to the logs asked us notify $pe name of the site.

20

It includes both static pages and dynamic software-gee@redntent. Moreover, individual
pages and directories on the site are constructed and nim&idthy a large number of users
(faculty members, lab managers, etc.)

In the academic and forum sites, we detect likelys T rules from web server logs, whereas
in the news sites, we detect likehusT rules from a crawl log. Table 1 depicts the sizes of
the logs used. In the crawl logs each URL appears once, whileiweb server logs the same
URL may appear multiple times. In the validation phase, weasdom entries from additional
logs, different from those used to detect the rules. Themaaton algorithm is tested on yet
another set of logs, different from the ones used to detetvalidate the rules.

Web Site Log Size| Unique URLs
Forum Site 38,816 | 15,608
Academic Site | 344,266 | 17,742

Large News Site 11,883 | 11,883

Small News Site 9,456 9,456

Table 1: Log sizes.

Parameter settings. The following DustBuster parameters were carefully chosealli our
experiments. Our empirical results suggest that thesagetre robust across data sets, as they
work in the 4 very different representative sites we expentad with. The maximum substring
length,S, was set to 35 tokens. The maximum bucket size used for dedea ST rules, Tiow,
was set to 6, and the maximum bucket size used for eliminagdgndant rulesJhigh, was
setto 11. In the elimination of redundant rules, we allowedlative deficiency, MRD, of up
to 5%, and an absolute deficiency, MAD, of 1. The maximum wnde, MW, was set to
1100 rules. The value of MS, the minimum support size, wasos8t The algorithm uses a
validation count, N, of 100 and a refutation thresheldf 5%-10%. Finally, the canonization
uses a maximum of 10 iterations. Shingling [6] is used in takdation phase to determine
similarity between documents.

Detecting likely DUST rules and eliminating redundant ones DustBuster’s first phase
scans the log and detects a very long list of likelysT rules. Subsequently, the redundancy
elimination phase dramatically shortens this list. Tab#@ws the sizes of the lists before and
after redundancy elimination. It can be seen that in all of @xperiments, over 90% of the
rules in the original list have been eliminated.

For example, in the largest log in the academic site82® likely rules were detected in
the first phase, and only 2041 (8%) remained after the sedoralsmaller log 1848 rules
were detected, of which only 354 (3%) were not eliminatedh&large news site 1244 were
detected, 1243 remained after the second phase. In the Brejmmuch fewer likely rules were
detected, e.g., in one log 402 rules were found, of which 3%) (@&mained. We believe that
the smaller number of rules is a result of the forum site bemoge uniformly structured than
the academic one, as most of its pages are generated by tbenxsdnserver software.

In Figure 7, we examine the precision level in the short lidtkely rules produced at the
end of these two phases in three of the sites. Recall that regagents are fetched in these
phases. As this list is ordered by likeliness, we examineptieeision@k that is, for each
top k rules in this list, the curves show which percentage of theenater deemed valid (by

21

300

I I I With Slize Matchir;g—»—
No Size Matching---x---
0.8 -
c 0.6
i)
Q
(8]
o
o
0.4 |
Y
3 x X XXXXXX
i XXXX%XXX}%QXXXX%WXXXWXx%@{XXx%XXXXW@éXXxXX
0.2 !
0 J‘ 1 1 1 1 1
0 50 100 150 200 250
top k rules
(a) Academic site, impact of size matching.
1 T _ . T T
Without shingles-filtered support——
With shingles-filtered support--<---
c
i)
Q
(8]
o
a

0
0

200

400 600

top k rules

800 1000

1200

(b) Large news site, impact of shingle matching, 4 shingteiu

Figure 7: Precision@Kk of likelpusT rules detected in DustBuster’s first two phaseathout

fetching actual content.

Web Site Rules Rules Remaining

Detected| after 2nd Phase
Forum Site 402 37 (9.2%)
Academic Site | 26,899 | 2,041 (7.6%)
Large News Site 12,144 | 1,243 (9.76%)
Small News Site 4,220 96 (2.3%)

Table 2: Rule

elimination in second phase.

DustBuster’s validation phase) in at least one direction.o&erve that when similarity-based
filtering is used, DustBuster’s detection phase achievesyahigh precision rate even though
it does not fetch even a single page. Figure 8 shows the sdsultour web server logs of the

22

forum site. Out of the 40-50 detected rules, over 80% aresthd@lid. In the academic site,
over 60% of the 300—350 detected rules are valid, and of {in@é® detected rules, over 80%
are valid. In the large news sites, 74% of the top 200 rulesaire.

l T T T T
= o *
X mme ¥
0.8 - —
= 0.6 - _
o
@
(8]
o
o
04 r -
02 loghd ——— ||
log#3 ---x---
log#2 ---%---
log#l -8
0 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
top k rules

Figure 8: Forum site showing 4 different logs, precision@kkely DUST rules detected in
DustBuster’s first two phasegithoutfetching actual content.

This high precision is achieved, to a large extent, thankhéosimilarity-based filtering
(size matching or shingle matching), as shown in Figurepaf(d 7(b). The log includes invalid
rules. For example, the forum site includes multiple dormaand the stories in each domain
are different. Thus, although we find many pairs of the fditp://domainl/story_num
andhttp://domain2/story_num with the same story number, these URLSs represent differ-
ent stories. Similarly, the academic site has URL pairs offdinen http:/site/coursel/
lect-num.ppt andhttp://site/course2/lect-num.ppt , although the lectures are differ-
ent. These URL pairs are instances of invalid rules, rulesaifgaare not detected thanks to size
matching. Figure 7(a) illustrates the impact of size matghn the academic site. We see that
when size matching is not employed, the precision drops byrat 50%. Thus, size match-
ing reduces the number of accesses needed for validatiorerteless, size matching has its
limitations— valid rules (such aps” — “pdf) are missed at the price of increasing precision.
Figure 7(b) shows similar results for the large news site. Wilae do not use shingles-filtered
support, the precision at the top 200 drops to 40%. Shinggesed filtering reduces the list of
likely rules by roughly 70%. Most of the filtered rules turnadt to be indeed invalid.

Validation. We now study how many validations are needed in order to cedhat a rule is
valid; that is, we study what the parameter N in Figure 5 sthéwel set to. To this end, we run
DustBuster with values of N ranging from 0 to 100, and checkcWigercentage of the rules
found to be valid with each value of N are also found valid whsrL100. The results from
conducting this experiment on the likebysT rules found in 4 logs from the forum site and 4
from the academic site are shown in Figure 9 (similar resutise obtained for the other sites).
In all these experiments, 100% precision is reached afterafilations. Moreover, results
obtained in different logs are consistent with each other.

In these graphs, we only consider rules that DustBuster ptteta validate. Since many
valid rules are removed (in line 6 of Figure 5) after ruled thay refine are deemed valid, the

23

0.6 H .

precision

0.2 logtd —+— 7]
log#3 ---x---
log#2 ---*---
Iog#l =)

0 1 1 1
0 20 40 60 80 100

number of validations

(a) Forum site, 4 different logs.

= 777%,,,— B¢ B B B B B =3

precision

logtd —+— 7]

0 1 1 1
0 20 40 60 80 100

number of validations

(b) Academic site, 4 different logs.

Figure 9: Precision among rules that DustBuster attemptealiate vs. number of validations
used (N).

percentage of valid rules among those that DustBuster atseimpalidate is much smaller than
the percentage of valid rules in the original list.

Our aggressive elimination of redundant rules reducesuhgber of rules we need to vali-
date. For example, on one of the logs in the forum site, thelatbn phase was initiated with
28 pairs representing 56 likely rules (in both directior@J.these, only 19 were checked, and
the rest were removed because they or their counterpafis wpposite direction were deemed
valid either directly or since they refined valid rules. Wenclode that the number of actual
pages that need to be fetched in order to validate the rulesyssmall.

At the end of the validation phase, DustBuster outputs afigalid substring substitution
rules without redundancies. Table 3 shows the number odl vales detected on each of the
sites. The list of 7 rules found using one of the logs in theiforsite is depicted in Figure
10 below. These 7 rules or refinements thereof appear in ttpaitsuproduced using each of

24

the studied logs. Some studied logs include 1-3 additiarl@sr which are insignificant (have
very small support). Similar consistency is observed ireiteedemic site outputs. We conclude
that the most significarmusT rules can be adequately detected using a fairly small log wit
roughly 15000 unique URLSs.

Web Site Valid Rules Detected
Forum Site 7
Academic Site | 52
Large News Site 62
Small News Site 5

Table 3: The number of rules found to be valid.

1 “.co.lstory_ " — “.co.illstory?id=

2 “\&lastView=\&Close= 7 — "

3 “php3? 7 — 2"

4 “listory " — “il/story.php3?id= ”

5 “\&NewOnly=1\&tvqz=2 " — “\&NewOnly=1 "

6 “.co.illthread_ " — “.co.illthread?rep= ”

7 “http://www.../story " — “http://www.../story?id=

Figure 10: The valid rules detected in the forum site.

Coverage. We now turn our attention to coverage, or the percentage pliichie URLS dis-
covered by DustBuster, in the academic site. When multiple UfRlv& the same document
sketch, all but one of them are considetgblicates In order to study the coverage achieved
by DustBuster, we use two different logs from the same siteaiaing log and atest log We
run DustBuster on the training log in order to leawnsT rules and we then apply these rules on
the test log. We count what fraction of the duplicates in #s kog are covered by the detected
DUST rules. We detect duplicates in the test log by fetching theerats of all of its URLs and
computing their document sketches. Figure 11 classifieettaplicates. As the figure shows,
47.1% of the duplicates in the test log are eliminated by Buster's canonization algorithm
using rules discovered on another log. The rest ofttheT can be divided among several
categories: (1) duplicate images and icons; (2) replicdtamiments (e.g., papers co-authored
by multiple faculty members and whose copies appear on efttieio web pages); (3) “soft
errors”, i.e., pages with no meaningful content, such asremessage pages, empty search
results pages, etc.

Savings in crawl size. The next measure we use to evaluate the effectiveness ofdtiet
is the discovered redundancy, i.e., the percent of the URLsameavoid fetching in a crawl
by using thebusT rules to canonize the URLs. To this end, we performed a fulvccd the
academic site, and recorded in a list all the URLSs fetched. #v®pmed canonization on this
list usingDUST rules learned from the crawl, and counted the number of endiRLs before
(Up) and afterJ,) canonization. The discovered redundancy is then givew@gé. We found
this redundancy to be 18% (see Table 4), meaning that thel cawd have been reduced
by that amount. In the two news sites, thesT rules were learned from the crawl logs and

25

DUST Distribution
47.1% Discovered DUST

1.8% Misc

25.7% Images 17.9% Copy

7.5% Soft Errors

Figure 11:DUsST classification, academic site.

we measured the reduction that can be achieved in the next d8y setting a slightly more
relaxed refutation threshold@ & 10%), we obtained a reduction of 26% in the small news site
and 6% in the large one. In the case of the forum site, we useddgs to detecbusT rules,
and used these rules to reduce a fifth log. The reduction\agthie this case was 4.7%. In all
these experiments, the training and testing was done orofcgmilar size.

Web Site Reduction Achieved
Academic Site 18%

Small News Site 26%

Large News Site 6%

Forum Site(using logs) 4.7%

Table 4: Reductions in crawl size.

7 Conclusions

We have introduced the problem of mining site-spe@fisT rules. Knowing about such rules
can be very useful for search engines: It can reduce cravaueghead by up to 26% and
thus increase crawl efficiency. It can also reduce indexireggleead. Moreover, knowledge of
pusTrules is essential for canonizing URL names, and canonicaksare very important for
statistical analysis of URL popularity based on PageRankaffidr We presented DustBuster,
an algorithm for miningpusT very effectively from a URL list. The URL list can either be
obtained from a web server log or a crawl of the site.

Acknowledgments. We thank Tal Cohen and the forum site team, and Greg Pendler and
thehttp://ee.technion.ac.il admins for providing us with access to web server logs and
for technical assistance. We thank Israel Cidon, Yoram Moaed Avigdor Gal for their
insightful input. We thank all our reviewers, both from the WW2Q07 conference and the
TWERB journal, for their detailed and constructive suggestio

References

[1] T. Kelly and J. C. Mogul, “Aliasing on the world wide web: guralence and performance
implications,” inthe Proceedings of the 11th International World Wide Web &wemnice

26

(WWW) pp. 281-292, 2002.

[2] F. Douglis, A. Feldman, B. Krishnamurthy, and J. Mogul, t®af change and other
metrics: a live study of the world wide web,” ithe Proceedings of the 1st USENIX
Symposium on Internet Technologies and Systems (USI9%).

[3] F. McCown and M. L. Nelson, “Evaluation of crawling poks for a web-repository
crawler,” inthe Proceedings of the 17th ACM Conference on Hypertext anérrhgxia
(HYPERTEXT,)pp. 157-168, 2006.

[4] S. J. Kim, H. S. Jeong, and S. H. Lee, “Reliable evaluatiohtRL normalization,” in
the Proceedings of the 4th International Conference on Coatjual Science and Its
Applications (ICCSA)pp. 609-617, 2006.

[5] Google Inc., “Google sitemapdittp://sitemaps.google.com

[6] A. Z. Broder, S. C. Glassman, and M. S. Manasse, “Syntatuistering of the web,” in
the Proceedings of the 6th International World Wide Web Qenfee (WWW)pp. 1157—
1166, 1997.

[7] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform oesce identifiers (URI):
Generic syntax.http://www.ietf.org/rfc/rfc2396.txt

[8] “Apache http server version 2.2 configuration filegt):/httpd.apache.org/docs/
2.2/[configuring.html

[9] S. Brin, J. Davis, and H. Garcia-Molina, “Copy Detection éh@nisms for Digital Doc-
uments,” inthe Proceedings of the 14th Special Interest Group on Mamage of Data
(SIGMOD) pp. 398-409, 1995.

[10] H. Garcia-Molina, L. Gravano, and N. Shivakumar, “dscaFinding document copies
across multiple databases,” ihe Proceedings of the 4th International Conference on
Parallel and Distributed Information Systems (PDISp. 68—79, 1996.

[11] N. Shivakumar and H. Garcia-Molina, “Finding Near-Rea$ of Documents and Servers
on the Web,” inthe Proceedings of the 1st International Workshop on the Web
Databases (WebDBpp. 204-212, 1998.

[12] E. Dilorio, M. Diligenti, M. Gori, M. Maggini, and A. Pug, “Detecting Near-replicas on
the Web by Content and Hyperlink Analysis,"time Proceedings of the 11th International
World Wide Web Conference (WW)\2003.

[13] N. Jain, M. Dahlin, and R. Tewari, “Using bloom filters tefine web search results,” in
the Proceedings of the 7th International Workshop on the &vebDatabases (WebDB)
pp. 25-30, 2005.

[14] T. C. Hoad and J. Zobel, “Methods for identifying verseolhand plagiarized documents,”
Journal of the American Society for Information Science @a@chnologyvol. 54, no. 3,
pp. 203-215, 2003.

27

[15] K. Monostori, R. A. Finkel, A. B. Zaslavsky, G. Hadz, and M. Pataki, “Comparison of
overlap detection techniques,”tine Proceedings of the 10th International Conference on
Complex Systems (ICCGPp. 51-60, 2002.

[16] R. A. Finkel, A. B. Zaslavsky, K. Monostori, and H. W. Schdhi“Signature extraction for
overlap detection in documents,” the Proceedings of the 25th Australasian Computer
Science Conference (ACS@p. 59-64, 2002.

[17] J. Zobel and A. Moffat, “Exploring the similarity spateSIGIR Forum vol. 32, no. 1,
pp. 18-34, 1998.

[18] J. Cho, N. Shivakumar, and H. Garcia-Molina, “Findinglreated web collections,” in
the Proceedings of the 19th Special Interest Group on Mamage of Data (SIGMOD)
pp. 355-366, 2000.

[19] K. Bharat and A. Z. Broder, “Mirror, Mirror on the Web: A Sty of Host Pairs with
Replicated ContentComputer Networkssol. 31, no. 11-16, pp. 1579-1590, 1999.

[20] H. Liang, “A URL-String-Based Algorithm for Finding WWW Mior Host,” Master’s
thesis, Auburn University, 2001.

[21] K. Bharat, A. Z. Broder, J. Dean, and M. R. Henzinger, “A camgon of techniques
to find mirrored hosts on the WWWJournal of the American Society for Information
Sciencevol. 51, no. 12, pp. 1114-1122, 2000.

[22] WebLog Experthttp://www.weblogexpert.com/
[23] StatCounterhttp://www.statcounter.com/
[24] Analog.http://www.analog.cx/

[25] R. Agrawal and R. Srikant, “Fast algorithms for mining@sation rules,” inthe Proceed-
ings of the 20th International Conference on Very Large Datsd® (VLDB)pp. 487—
499, 1994.

[26] M. Bognar, “A survey on abstract rewriting.” Availableniine at: www.di.ubi.pt/
~ desousa/1998-1999/logica/mb.ps , 1995.

[27] P. Jaccard, “Jaccard, P. 1908. Nouvelles recherchek slistribution florale,” vol. 44,
pp. 223-270, 1908.

[28] M. R. Garey and D. S. Johnso@pmputers and Intractability: A Guide to the Theory of
NP-CompletenessV. H. Freeman, 1979.

[29] D. Gusfield,Algorithms on Strings, Trees and Sequences: Computer $cartCom-
putational Biology Cambridge University Press, 1997.

28

