
Do Not Crawl in the DUST: Different URLs with
Similar Text∗

Ziv Bar-Yossef† Idit Keidar‡ Uri Schonfeld§

Abstract

We consider the problem ofDUST: Different URLs with Similar Text. Such duplicate
URLs are prevalent in web sites, as web server software often uses aliases and redirec-
tions, and dynamically generates the same page from various different URL requests. We
present a novel algorithm,DustBuster, for uncoveringDUST; that is, for discovering rules
that transform a given URL to others that are likely to have similar content. DustBuster
minesDUST effectively from previous crawl logs or web server logs,without examining
page contents. Verifying these rules via sampling requires fetching few actual web pages.
Search engines can benefit from information aboutDUST to increase the effectiveness of
crawling, reduce indexing overhead, and improve the quality of popularitystatistics such
as PageRank.

1 Introduction

The DUST problem. The web is abundant withDUST: Different URLs with Similar Text[1,
2, 3, 4]. For example, the URLshttp://google.com/news andhttp://news.google.com
return similar content. Adding a trailing slash or/index.html to either returns the same
result. Many web sites define links, redirections, or aliases, such as allowing the tilde symbol ˜
to replace a string like/people . A single web server often has multiple DNS names, and any
can be typed in the URL. As the above examples illustrate,DUST is typically not random, but
rather stems from some general rules, which we callDUST rules, such as “˜”→ “ /people ”, or
“ /index.html ” at the end of the URL can be omitted.

DUST rules are typically not universal. Many are artifacts of a particular web server im-
plementation. For example, URLs of dynamically generated pages often include parameters;
which parameters impact the page’s content is up to the software that generates the pages.
Some sites use their own conventions; for example, a forum site we studied allows access-
ing story number “num” both via the URLhttp://domain/story?id=num and viahttp:
//domain/story_num . Our study of the CNN web site has discovered that URLs of the form

∗An extended abstract of this paper appeared at the 16th International World-Wide Web Conference, 2007.
†Department of Electrical Engineering, Technion, Haifa 32000, Israel. Google Haifa Engineering Center,

Israel. Email:zivby@ee.technion.ac.il .
‡Department of Electrical Engineering, Technion, Haifa 32000, Israel. Email:idish@ee.technion.ac.il .
§Department of Computer Science, University of California Los Angeles, CA 90095, USA. Email:

shuri@shuri.org .

1

http://cnn.com/money/whatever get redirected tohttp://money.cnn.com/whatever . In
this paper, we focus on miningDUST rules within a given web site. We are not aware of any
previous work tackling this problem.

Standard techniques for avoidingDUST employ universal rules, such as addinghttp:// or
removing a trailing slash, in order to obtain some level of canonization. AdditionalDUST is
found by comparing document sketches. However, this is conducted on a page by page basis,
and all the pages must be fetched in order to employ this technique. By knowingDUST rules,
one can reduce the overhead of this process. In particular, information about many redundant
URLs can be represented succinctly in the form of a short list of rules. Once the rules are
obtained, they can be used to avoid fetching duplicate pagesaltogether, including pages that
were never crawled before. The rules can be obtained after crawling a small subset of a web
site, or may be retained from a previous crawl of the same site. The latter is particularly useful
in dynamic web sites, like blogs and news sites, where new pages are constantly added. Finally,
the use of rules is robust to web site structure changes, since the rules can be validated anew
before each crawl by fetching a small number of pages. For example, in a crawl of a small
news site we examined, the number of URLs fetched would have been reduced by 26%.

Knowledge aboutDUST rules can be valuable for search engines for additional reasons:
DUST rules allow for acanonicalURL representation, thereby reducing overhead in indexing,
and caching [1, 2], and increasing the accuracy of page metrics, like PageRank.

We focus on URLs withsimilar contents rather than identical ones, since different versions
of the same document are not always identical; they tend to differ in insignificant ways, e.g.,
counters, dates, and advertisements. Likewise, some URL parameters impact only the way
pages are displayed (fonts, image sizes, etc.) without altering their contents.

Detecting DUST from a URL list. Contrary to initial intuition, we show that it is possible
to discover likelyDUST rules without fetching a single web page. We present an algorithm,
DustBuster, which discovers such likely rules from a list of URLs. Such aURL list can be
obtained from many sources including a previous crawl or webserver logs.1 The rules are then
verified (or refuted) by sampling a small number of actual webpages. The fact DustBuster’s
input is a list of URLs rather than a collection of web pages significantly reduces its running
time and storage requirements.

At first glance, it is not clear that a URL list can provide reliable information regarding
DUST, as it does not include actual page contents. We show, however, how to use a URL list
to discover two types ofDUST rules:substring substitutions, which are similar to the “replace”
function in editors, andparameter substitutions. A substring substitution ruleα → β replaces
an occurrence of the stringα in a URL by the stringβ. A parameter substitution rule replaces
the value of a parameter in a URL by some default value. Thanks to the standard syntax
of parameter usage in URLs, detecting parameter substitution rules is fairly straightforward.
Most of our work therefore focuses on substring substitution rules.

DustBuster uses three heuristics, which together are very effective at detecting likelyDUST

rules and distinguishing them from invalid ones. The first heuristic leverages the observation
that if a ruleα → β is common in a web site, then we can expect to find in the URL list
multiple examples of pages accessed both ways. For example,in the site wherestory?id=
can be replaced bystory_ , we are likely to see many different URL pairs that differ onlyin

1Increasingly many web server logs are available nowadays tosearch engines via protocols like Google
Sitemaps [5].

2

this substring; we say that such a pair of URLs is aninstanceof the rule “story?id= ” →
“story_ ”. The set of all instances of a rule is called the rule’ssupport. Our first attempt to
uncoverDUST is therefore to seek rules that have large support.

Nevertheless, some rules that have large support are notvalid DUST rules, meaning their
support includes many instances, URL pairs, whose associated documents are not similar. For
example, in one site we found an invalidDUST rule, “movie-forum ” → “politics-forum ”
whose instances included pairs of URLs of the form:http://movie-forum.com/story_
<num> andhttp://politics-forum.com/story_<num> . In this case the URLs were asso-
ciated with two unrelated stories that happen to share the same “story id” number. Another
example is the rule “1”→ “2”, which emanates from instances likepic-1.jpg andpic-2.jpg ,
story_1 andstory_2 , andlect1 andlect2 , none of which areDUST since the pairs of URLs
are not associated with similar documents. Our second and third heuristics address the chal-
lenge of eliminating such invalid rules. The second heuristic is based on the observation that
invalid rules tend to flock together. For example in most instances of “1”→ “2”, one could also
replace the “1” by other digits. We therefore ignore rules that come in large groups.

Further eliminating invalid rules requires calculating the fraction ofDUST in the support of
each rule. How could this be done without inspecting page content? Our third heuristic uses
cues from the URL list to guess which instances are likely to beDUST and which are not. In
case the URL list is produced from a previous crawl, we typically have document sketches [6]
available for each URL in the list. These sketches can be used to estimate the similarity between
documents and thus to eliminate rules whose support does notcontain sufficiently manyDUST

pairs.
In case the URL list is produced from web server logs, documentsketches are not available.

The only cue about the contents of URLs in these logs is the sizes of these contents. We thus
use the size field from the log to filter out instances (URL pairs) that have “mismatching” sizes.
The difficulty with size-based filtering is that the size of a dynamic page can vary dramatically,
e.g., when many users comment on an interesting story or whena web page is personalized. To
account for such variability, we compare the ranges of sizesseen in all accesses to each page.
When the size ranges of two URLs do not overlap, they are unlikely to beDUST.

Having discovered likelyDUST rules, another challenge that needs to be addressed is elim-
inating redundant ones. For example, the rule “http://site-name/story?id= ” → “http:
//site-name/story_ ” will be discovered, along with many consisting of substrings thereof,
e.g., “?id= ” → “_”. However, without considering the content itself, it is not obvious which
rule should be kept in such situations– the latter could be either valid in all cases, or invalid
outside thecontextof the former. We are able to use support information from theURL list to
remove many redundant likelyDUST rules. We remove additional redundancies after perform-
ing some validations, and thus compile a succinct list of rules.

Canonization. Once the correctDUST rules are discovered, we exploit them for URL can-
onization. The problem of finding a canonical set of URLs for a given URL list is NP-hard
due to reducability to the minimum dominating set problem. Despite this, we have devised an
efficientcanonization algorithmthattypicallysucceeds in transforming URLs to a site-specific
canonical form.

Experimental results. We experiment with DustBuster on four web sites with very different
characteristics. Two of our experiments use web server logs, and two use crawl outputs. We
find that DustBuster can discover rules very effectively frommoderate sized URL lists, with as
little as 20,000 entries. Limited sampling is then used in order to validate or refute each rule.

3

Our experiments show that up to 90% of the top ten rules discovered by DustBusterprior
to the validation phaseare found to be valid, and in most sites 70% of the top 100 rulesare
valid. Furthermore,DUST rules discovered by DustBuster may account for 47% of theDUST in
a web site and that using DustBuster can reduce a crawl by up to 26%.

Roadmap. The rest of this paper is organized as follows. Section 2 reviews related work. We
formally define theDUST detection and canonization problems in Section 3. Section 4presents
the basic heuristics our algorithm uses. DustBuster and the canonization algorithm appear in
Section 5. Section 6 presents experimental results. We end with some concluding remarks in
Section 7.

2 Related work

2.1 Canonization rules

Global canonization rules. The most obvious and naive wayDUST is being dealt with today
is through standard canonization. URLs have a very standard structure [7]. The hostname may
have many different aliases. Different hostnames may return the exact same site. For example
adding a “www” to the base hostname often returns the same content. Choosing one hostname to
identify each site is a standard way to canonize a URL. Other standard canonization techniques
include replacing a “// ” with a single “/ ” and removing the index.html suffix. However, site
specificDUST rules cannot be detected using these simple rules.

Site-specific canonization rules. Another method for discoveringDUST rules is to examine
the web server configuration file and file system. In the configuration, file alias rules are defined.
Each such rule allows a directory in the web server to be accessed using a different name, an
alias. By parsing the web server configuration file [8] one could easily learn these rules. Further
inspection of the file system may uncover symbolic links. These too have the exact same effect.

There are three main problems with using this technique. Themain problem is that sym-
bolic links and aliases are by no means the sole source ofDUST rules. Other sources include
parameters that do not affect the content, different dynamic files that produce the same content
and many others. Our technique, therefore, can discover a wider range ofDUST rules, regard-
less of cause. The second problem is that each configuration file is different according to the
type and version of the web server. The third and final problemis that once the files are parsed
and processed the rules discovered would have to be transferred to the search engine. Transfer-
ring these rules from the web server to the search engine may be possible in the future if new
protocols are defined and adopted. The Google Sitemaps architecture [5] defines a protocol
for web site managers to supply information about their sites to search engines. This type of
protocol can be extended to enable the web server to send canonization rules to any party that
wants such information. However, such an extension has not been adopted yet.

2.2 Detecting similarity between documents

The standard way of dealing withDUST is using document sketches [9, 10, 6, 11, 12, 13, 14,
15, 16, 17], which are short summaries used to determine similarities among documents. To
compute such a sketch, however, one needs to fetch and inspect the whole document. Our
approach cannot replace document sketches, since it does not find DUST across sites orDUST

4

that does not stem from rules. However, it is desirable to useour approach to complement
document sketches in order to reduce the overhead of collecting redundant data. Moreover,
since document sketches do not give rules, they cannot be used for URL canonization, which
is important, e.g., to improve the accuracy of page popularity metrics.

2.3 Detecting mirror sites

One common source of near-duplicate content is mirroring. Anumber of previous works have
dealt with automatic detection of mirror sites on the web. There are two basic approaches to
mirror detection. The first method is based on the content itself [18, 1]. The documents are
downloaded and processed. Mirrors are detected by processing the documents to detect the
similarity between hosts. We will call these techniques“bottom-up”.

The second method uses meta information that may already be available such as a URL
list, the IP number associated with the host names and other techniques. We will call these
techniques“top-down” [19, 20, 21]. These techniques are closer to what we are doingin this
paper.

In contrast to mirror detection, we deal with the complementary problem of detectingDUST

within one site. Mirror detection may exploit syntactic analysis of URLs and limited sampling
as we do. However, a major challenge that site-specificDUST detection must address is ef-
ficiently discoveringprospective rules out of a daunting number of possibilities(all possible
substring substitutions). In contrast, mirror detection focuses on comparing a given pair of
sites, and only needs to determinewhetherthey are mirrors.

2.4 Analysis of web server logs

Various commercial tools as well as papers are available on analyzing web server logs. We are
not aware of any previous algorithm for automatically detecting DUST rules nor of any algo-
rithm for harvesting information for search engines from web server logs. Some companies
(e.g., [22, 23, 24]) have tools for analyzing web server logs, but their goals are very different
from ours. This type of software usually provides such statistics as: popular keyword terms, en-
try pages (first page users hit), exit pages (pages users use to move to another site), information
about visitor paths and many more.

2.5 Mining association rules

Our problem may seem similar to mining association rules [25], yet the two problems differ
substantially. Whereas the input of such mining algorithms consists of complete lists of items
that belong together, our input includes individual items from different lists. The absence of
complete lists renders techniques used therein inapplicable to our problem.

2.6 Abstract Rewrite System

One way to view our work is as producing an Abstract Rewrite System (ARS) [26] for URL
canonization viaDUST rules. For ease of readability, we have chosen not to adopt the ARS
terminology in this paper.

5

3 Problem Definition

URLs. We view URLs as strings over an alphabetΣ of tokens. Tokens are either alphanumeric
strings or non-alphanumeric characters. In addition, every URL is prepended with the special
tokenˆ and is appended with the special token$ (ˆ and$ are not included inΣ).

A URL u is valid, if its domain name resolves to a valid IP address and its contents can be
fetched by accessing the corresponding web server (the httpreturn code is not in the 4xx or 5xx
series). Ifu is valid, we denote by doc(u) the returned document.

DUST. Two valid URLsu1,u2 are calledDUST if their corresponding documents, doc(u1)
and doc(u2), are “similar”. To this end, any method of measuring the similarity between two
documents can be used. For our implementation and experiments, we use the popularJac-
card similarity coefficientmeasure [27], which can be estimated using shingles, or document
sketches due to Broderet al. [6].

DUST rules. We seek generalrules for detecting when two URLs areDUST. A DUST rule φ
is a relation over the space of URLs.φ may be many-to-many. Every pair of URLs belonging
to φ is called aninstanceof φ. Thesupportof φ, denoted support(φ), is the collection of all its
instances.

We discuss two types ofDUST rules: substring substitutions and parameter substitutions.
Parameter substitution ruleseither replace the value of a certain parameter appearing inthe
URL with a default value, or omit this parameter from the URL altogether. Thanks to the
standard syntax of parameter usage in URLs, detecting parameter substitution rules is fairly
straightforward. Most of our work therefore focuses on substring substitution rules.

Our algorithm focuses primarily on detecting substring substitution rules. Asubstring sub-
stitution ruleα → β is specified by an ordered pair of strings(α,β) over the token alphabetΣ.
(In addition, we allow these strings to simultaneously start with the token̂ and/or to simulta-
neously end with the token$.) In Section 5.4 we will see thatapplyinga substring substitution
rule is simply done by replacing the first occurrence of the substring. However, at this point,
instances of substring substitution rules are simply defined as follows:

Definition 3.1 (Instance of a rule) A pair u1,u2 of URLs is aninstanceof a substring substi-
tution ruleα → β, if there exist strings p,s s.t. u1 = pαs and u2 = pβs.

For example, the pair of URLshttp://www.site.com/index.html and http://www.
site.com is an instance of theDUST rule “/index.html$ ” → “$”. This rule demonstrates that
substring substition rules can be used to remove “irrelevant” segments of the URL, segments
that if removed from a valid URL result in another valid URL withsimilar associated content.

The two types of rules we discuss in this paper are in no way complete. Indeed, it is easy
to think of additional types ofDUST rules that are not covered by the types of rules we present
here. However, our experiments over real-world data show that the rules we explore are highly
effective at uncoveringDUST. It would be interesting to explore more types ofDUST rules and
compare their effectiveness in future work.

The DUST problem. Our goal is to detectDUST and eliminate redundancies in a collection
of URLs belonging to a given web siteS. This is solved by a combination of two algorithms,
one that discoversDUST rules from a URL list, and another that uses them in order to transform
URLs to their canonical form.

The input of the first algorithm is a list of URLs, (typically from the same web site), and
its output is a list of dust rules corresponding to these URLs.TheURL list is a list of records

6

consisting of: (1) a URL; (2) the http return code; (3) the sizeof the returned document; and (4)
the document’s sketch. The last two fields are optional. Thistype of list can be obtained from
web server logs or from a previous crawl. he URL list is a sampleof the URLs that belong to
the web site but is not required to be arandomsample. For example, web server logs might be
biased towards popular URLs.

For a given web siteS, we denote byUS the set of URLs that belong toS. A DUST rule φ
is said to bevalid w.r.t. S, if for eachu1 ∈ US and for eachu2 s.t. (u1,u2) is an instance ofφ,
u2 ∈US and(u1,u2) is DUST.

A DUST rule detection algorithmis given a listL of URLs from a web siteSand outputs an
ordered list ofDUST rules. The algorithm may also fetch pages (which may or may not appear
in the URL list). The ordering of rules represents the confidence of the algorithm in the validity
of the rules.

Canonization. Let R be an ordered list ofDUST rules that have been found to be valid w.r.t.
some web siteS. We would like to define what is acanonizationof the URLs inUS, using the
rules inR . This definition is made somewhat more difficult by the fact that aDUST rule may
map a URL to multiple URLs. For example, the URLhttp://a.b.a.com/ is mapped by the
rule “a.” → “” to both http://a.b.com/ andhttp://b.a.com/ . To this end, we define a
standard way of applying each rule. For example, in the case of substring substitions, we only
replace the first occurrence of the string.

The rules inR naturally induce a labeled graphGR onUS: there is an edge fromu1 to u2

labeled byφ if and only if φ(u1) = u2. Note that adjacent URLs inGR correspond to similar
documents. Further note that due to our rule validation process (see Section 5.4), R cannot
contain both a rule and its inverse. Nevertheless, the graphGR may still contain cycles.

For the purpose of canonization, we assume that document dissimilarity empirically re-
spects at least a weak form of the triangle inequality, so that URLs that are connected by short
paths inGR are similar too. Thus, ifGR has a bounded diameter (as it does in the data sets we
encountered), then every two URLs connected by a path are similar. A canonization that maps
every URLu to some URL that is reachable fromu thus makes sense, because the original URL
and its canonical form are guaranteed to beDUST.

A set of canonical URLsis a subsetCUS ⊆ US that is reachable from every URL inUS.
Equivalently,CUS is a dominating set in the transitive closure of thereverse graphof GR ,
the graph obtained by reversing the direction of all edges. Acanonization is any mapping
C : US→CUS that maps every URLu∈US to some canonical URLC(u), which is reachable
from u by a directed path. Our goal is to find a small set of canonical URLs and a corresponding
canonization, which is efficiently computable.

Finding the minimum size set of canonical URLs is intractable, due to the NP-hardness
of the minimum dominating set problem (cf. [28]). Fortunately, our empirical study indicates
that for typical collections ofDUST rules found in web sites, efficient canonization is possible.
Thus, although we cannot design an algorithm that always obtains an optimal canonization,
we will seek one that maps URLs to asmallset of canonical URLs, andalwaysterminates in
polynomial time.

Metrics. We use three measures to evaluateDUST detection and canonization. The first mea-
sure isprecision—the fraction of valid rules among the rules reported by theDUST detection al-
gorithm. The second, and most important, measure is thediscovered redundancy—the amount
of redundancy eliminated in a crawl. It is defined as the difference between the number of
unique URLs in the crawl before and after canonization, divided by the former.

7

The third measure iscoverage: given a large collection of URLs that includesDUST, what
percentage of the duplicate URLs is detected. The number of duplicate URLs in a given URL
list is defined as the difference between the number of uniqueURLs and the number of unique
document sketches. Since we do not have access to the entire web site, we measure the achieved
coverage within the URL list. We count the number of duplicateURLs in the list before and
after canonization, and the difference between them divided by the former is the coverage.

One of the standard measures of information retrieval isrecall. In our case, recall would
measure what percent of all correctDUST rules is discovered. However, it is clearly impossible
to construct a complete list of all valid rules to compare against. Therefore, recall is not directly
measurable in our case, and is replaced by coverage.

The coverage measure is equivalent to recall over the set of duplicate URLs.

4 Basic Heuristics

Our algorithm for extracting likely string substitution rules from the URL list uses three heuris-
tics: thelarge support heuristic, thesmall buckets heuristic, and thesimilarity likeliness heuris-
tic. Our empirical results provide evidence that these heuristics are effective on web-sites of
varying scopes and characteristics.

Large support heuristic.

Large Support Heuristic
The support of a valid DUST rule is large.

For example, if a rule “index.html$ ” → “$” is valid, we should expect many instances
witnessing to this effect, e.g.,www.site.com/d1/index.html andwww.site.com/d1/ , and
www.site.com/d3/index.html and www.site.com/d3/ . We would thus like to discover
rules of large support. Note that valid rules of small support are not very interesting anyway,
because the savings gained by applying them are negligible.

Finding the support of a rule on the web site requires knowingall the URLs associated with
the site. Since the only data at our disposal is the URL list, which is unlikely to be complete,
the best we can do is compute the support of rulesin this URL list. That is, for each ruleφ, we
can find the number of instances(u1,u2) of φ, for which bothu1 andu2 appear in the URL list.
We call these instances thesupport ofφ in the URL listand denote them by supportL(φ). If the
URL list is long enough, we expect this support to be representative of the overall support of
the rule on the site.

Note that since|supportL(α → β)| = |supportL(β → α)|, for everyα andβ, our algorithm
cannot know whether both rules are valid or just one of them is. It therefore outputs the pair
α,β instead. Finding which of the two directions is valid is leftto the final phase of DustBuster.

Given a URL listL , how do we compute the size of the support of every possible rule?
To this end, we introduce a new characterization of the support size. Consider a substringα
of a URL u = pαs. We call the pair(p,s) theenvelopeof α in u. For example, ifu =http:
//www.site.com/index.html andα =“ index ”, then the envelope ofα in u is the pair of
strings “̂http://www.site.com/ ” and “.html$ ”. By Definition 3.1, a pair of URLs(u1,u2)
is an instance of a substitution ruleα → β if and only if there exists at least one shared envelope
(p,s) so thatu1 = pαsandu2 = pβs.

8

For a stringα, denote byEL(α) the set of envelopes ofα in URLs, where the URLs satisfy
the following conditions: (1) these URLs appear in the URL listL ; and (2) the URLs haveα
as a substring. Ifα occurs in a URLu several times, thenu contributes as many envelopes to
EL(α) as the number of occurrences ofα in u. The following theorem shows that under certain
conditions,|EL(α)∩EL(β)| equals|supportL(α → β)|. As we shall see later, this gives rise
to an efficient procedure for computing support size, since we can compute the envelope sets
of each substringα separately, and then by join and sort operations find the pairs of substrings
whose envelope sets have large intersections.

Theorem 4.1 Let α 6= β be two non-empty and non-semiperiodic strings. Then,

|supportL(α → β)| = |EL(α)∩EL(β)|.

A stringα is semiperiodic, if it can be written asα = γkγ′ for some stringγ, where|α|> |γ|,
k ≥ 1, γk is the string obtained by concatenatingk copies of the stringγ, andγ′ is a (possibly
empty) prefix ofγ [29]. If α is not semiperiodic, it isnon-semiperiodic. For example, the
strings “///// ” and “a.a.a ” are semiperiodic, while the strings “a.a.b ” and “%//// ” are not.

Unfortunately, the theorem does not hold for rules where oneof the strings is either semiperi-
odic or empty. Rules where one of the strings is empty are actually very rare since another rule
with additional context would be detected instead. For example, instead of detecting the rule
“ / ′′ → “ ′′ we would detect the rule “/$ ′′ → “$′′ that would only remove the last slash. For
the semiperiodic case, let us consider the following example. Letα be the semiperiodic string
“a.a ” and β = “a”. Let u1 = http://a.a.a/ and letu2 = http://a.a/ . There aretwoways
in which we can substituteα with β in u1 and obtainu2. Similarly, letγ be “a. ” and δ be the
empty string. There are two ways in which we can substituteγ with δ in u1 to obtainu2. This
means that the instance(u1,u2) will be associated with two envelopes inEL(α)∩EL(β) and
with two envelopes inEL(γ)∩EL(δ) and not just one. Thus, whenα or β are semiperiodic
or empty,|EL(α)∩EL(β)| can overestimate the support size. On the other hand, such exam-
ples are quite rare, and in practice we expect a minimal gap between|EL(α)∩EL(β)| and the
support size.

Proof of Theorem 4.1 To prove the identity, we will show a 1-1 mapping from supportL(α →
β) onto EL(α)∩EL(β). Let (u1,u2) be any instance of the ruleα → β that occurs inL .
By Definition 3.1, there exists an envelope(p,s) so thatu1 = pαs andu2 = pβs. Note that
(p,s) ∈ EL(α)∩EL(β), hence we define our mapping as:fα,β(u1,u2) = (p,s). The main
challenge is to prove thatfα,β is a well defined function; that is,fα,β maps every instance
(u1,u2) to a single pair(p,s). This is captured by the following lemma whose proof is provided
below:

Lemma 4.2 Let α 6= β be two distinct, non-empty, and non-semiperiodic strings. Then, there
cannot be two distinct pairs(p1,s1) 6= (p2,s2) s.t. p1αs1 = p2αs2 and p1βs1 = p2βs2.

We are left to show thatf is 1-1 and onto. Take any two instances(u1,u2),(v1,v2) of
(α,β), and suppose thatfα,β(u1,u2) = fα,β(v1,v2) = (p,s). This means thatu1 = pαs= v1 and
u2 = pβs= v2. Hence, necessarily(u1,u2) = (v1,v2), implying f is 1-1. Take now any envelope
(p,s) ∈ EL(α)∩EL(β). By definition, there exist URLsu1,u2 ∈ L , so thatu1 = pαs andu2 =
pβs. By Definition 3.1,(u1,u2) is an instance of the ruleα → β, and thusfα,β(u1,u2) = (p,s).

9

In order to prove Lemma 4.2, we show the following basic property of semiperiodic strings:

Lemma 4.3 Let α 6= β be two distinct and non-empty strings. Ifβ is both a suffix and a prefix
of α, thenα must be semiperiodic.

Proof Sinceβ is both a prefix and a suffix ofα and sinceα 6= β, there exist two non-empty
stringsβ0 andβ2 s.t.

α = β0β = ββ2.

Let k = ⌊ |α|
|β0|

⌋. Note thatk ≥ 1, as|α| ≥ |β0|. We will show by induction onk thatα = βk
0β′

0,

whereβ′
0 is a possibly empty prefix ofβ0.

The induction base isk = 1. In this case,|β0| ≥
|α|
2 , and asα = β0β, |β| ≤ |β0|. Since

β0β = ββ2, it follows thatβ is a prefix ofβ0. Thus, defineβ′
0 = β and we have:

α = β0β = β0β′
0.

Assume now that the statement holds for⌊ |α|
|β0|

⌋ = k− 1 ≥ 1 and let us show correctness for

⌊ |α|
|β0|

⌋ = k. As α = β0β, then⌊ |β|
|β0|

⌋ = k−1≥ 1. Hence,|β| ≥ |β0| and thusβ0 must be a prefix
of β (recall thatβ0β = ββ2). Let us writeβ as:

β = β0β1.

We thus have the following two representations ofα:

α = β0β = β0β0β1 and α = ββ2 = β0β1β2.

We conclude that:
β = β1β2.

We thus found a string (β1), which is both a prefix and a suffix ofβ. We therefore conclude
from the induction hypothesis that

β = βk−1
0 β′

0,

for some prefixβ′
0 of β0. Hence,

α = β0β = βk
0β′

0.

We can now prove Lemma 4.2:

Proof of Lemma 4.2 Suppose, by contradiction, that there exist two different pairs (p1,s1)
and(p2,s2) so that:

u1 = p1αs1 = p2αs2 (1)

u2 = p1βs1 = p2βs2. (2)

These equations together with the fact that(p1,s1) 6= (p2,s2) imply that bothp1 6= p2 and
s1 6= s2. Thus, by Equations (1) and (2), one ofp1 and p2 is a proper prefix of the other.
Suppose, for example, thatp1 is a proper prefix ofp2 (the other case is identical). It follows
thats2 is a proper suffix ofs1.

Let us assume, without loss of generality, that|α| ≥ |β|. There are two cases to consider:

10

Case (i): Both p1α and p1β are prefixes ofp2. This implies that alsoαs2,βs2 are suffixes of
s1.

Case (ii): At least one ofp1α andp1β is not a prefix ofp2.

Case (i): In this case,p2 can be expressed as:

p2 = p1αp′2 = p1βp′′2,

for some stringsp′2 andp′′2. Thus, since|α| ≥ |β|, β is a prefix ofα. Similarly:

s1 = s′1αs2 = s′′1βs2.

Thus,β is also a suffix ofα. According to Lemma 4.3,α is therefore semiperiodic. A contra-
diction.

Case (ii): If p1α is not a prefix ofp2, α can be written asα = α0α1 = α1α2, for some
non-empty stringsα0,α1,α2, as shown in Figure 1. By Lemma 4.3,α is semiperiodic. A
contradiction. The case thatp1β is not a prefix ofp2 is handled in a similar manner.

Figure 1: Breakdown ofα in Lemma 4.2.

Small buckets heuristic. While most validDUST rules have large support, the converse is not
necessarily true: there can be rules with large support thatare not valid. One class of such rules
is substitutions among numbered items, e.g., (lect1.ps ,lect2.ps), (lect1.ps ,lect3.ps),
and so on.

We would like to somehow filter out the rules with “misleading” support. The support
for a ruleα → β can be thought of as a collection of recommendations, where each envelope
(p,s) ∈ EL(α)∩EL(β) represents a single recommendation. Consider an envelope(p,s) that
is willing to give a recommendation to any rule, for example “ˆhttp:// ” → “ ˆ ”. Naturally its
recommendations lose their value. This type of support onlyleads to many invalid rules being
considered. This is the intuitive motivation for the following heuristic to separate the valid
DUST rules from invalid ones.

If an envelope(p,s) belongs to many envelope setsEL(α1), EL(α2),. . . ,EL(αk), then
it contributes to the intersectionsEL(αi)∩ EL(α j), for all 1 ≤ i 6= j ≤ k. The substrings
α1,α2, . . . ,αk constitute what we call abucket. That is, for a given envelope(p,s), bucket(p,s)
is the set of all substringsα s.t. pαs∈ L . An envelope pertaining to a large bucket supports
many rules.

Small Buckets Heuristic
Much of the support of valid DUST substring substitution rules is likely to belong to small

buckets.

11

Similarity likeliness heuristic. The above two heuristics use the URL strings alone to detect
DUST. In order to raise the precision of the algorithm, we use a third heuristic that better
captures the “similarity dimension”, by providing hints asto which instances are likely to be
similar.

Similarity Likeliness Heuristic
The likely similar support of a valid DUST rule is large.

We show below that using cues from the URL list we can determinewhich URL pairs in the
support of a rule are likely to have similar content, i.e., are likely similar, and which are not.
The likely similar support, rather than the complete support, is used to determine whether a
rule is valid or not. For example, in a forum web site we examined, the URL list included two
sets of URLshttp://politics.domain/story_num andhttp://movies.domain/story_
num with different numbers. The support of the invalid rule “http://politics.domain ” →
“http://movies.domain ” was large, yet since the corresponding stories were very different,
the likely similar support of the rule was found to be small.

How do we use the URL list to estimate similarity between documents? The simplest case
is that the URL list includes a document sketch, such as the shingles of Broderet al. [6], for
each URL. Such sketches are typically available when the URL list is the output of a previous
crawl of the web site. When available, documents sketches areused to indicate which URL
pairs are likely similar.

When the URL list is taken from web server logs, documents sketches are not available. In
this case we use document sizes (document sizes are usually given by web server software).
We determine two documents to be similar if their sizes “match”. Size matching, however,
turns out to be quite intricate, because the same document may have very different sizes when
inspected at different points of time or by different users.This is especially true when dealing
with highly dynamic sites like forum or blogging web sites. Therefore, if two URLs have
different “size” values in the URL list, we cannot immediately infer that these URLs are not
DUST. Instead, for each unique URL, we track all its occurrences inthe URL list, and keep
the minimum and the maximum size values encountered. We denote the interval between these
two numbers byIu. A pair of URLs,u1 andu2, in the support are considered likely to be similar
if the intervalsIu1 andIu2 overlap. Note however, that in the case of size matching it ismore
accurate to say that the URLs are unlikely to be similar if their intervals do not overlap. For this
reason the size matching heuristic is effective in filteringsupport but not as a measure of how
similar two URLs are. Our experiments show that this heuristic is very effective in improving
the precision of our algorithm, often increasing precisionby a factor of two.

5 DustBuster

In this section we describe DustBuster—our algorithm for discovering site-specificDUST rules.
DustBuster has four phases. The first phase uses the URL list alone to generate a short list of
likely DUST rules. The second phase removes redundancies from this list. The next phase
generates likely parameter substitution rules. The last phase validates or refutes each of the
rules in the list, by fetching a small sample of pages.

12

5.1 Detecting likely DUST rules

Our strategy for discovering likelyDUST rules is the following: we compute the size of the
support of each rule that has at least one instance in the URL list, and output the rules whose
support exceeds some thresholdMS. Based on Theorem 4.1, we compute the size of the support
of a ruleα → β as the size of the setEL(α)∩EL(β). That is roughly what our algorithm does,
but with three reservations:

(1) Based on the small buckets heuristic, we avoid considering certain rules by ignoring
large buckets in the computation of envelope set intersections. Buckets bigger than some
thresholdT are calledoverflowing, and all envelopes pertaining to them are denoted collec-
tively by O and are not included in the envelope sets.

(2) Based on the similarity likeliness heuristic, we filter support by estimating the likelihood
of two documents being similar. We eliminate rules by filtering out instances whose associated
documents are unlikely to be similar in content. That is, fora given instanceu1 = pαs and
u2 = pβs, the envelope(p,s) is disqualified ifu1 andu2 are found unlikely to be similar us-
ing the tests introduced in Section 4. These techniques are provided as a boolean function
LikelySimilar which returns false only if the documents of the two input URLs are unlikely to
be similar. The set of all disqualified envelopes is then denotedDα,β.

(3) In practice, substitutions of long substrings are rare.Hence, our algorithm considers
substrings of length at mostS tokens, for some given parameterS.

To conclude, our algorithm computes for every two substrings α,β that appear in the URL
list and whose length is at mostS, the size of the set(EL(α)∩EL(β))\ (O∪Dα,β).

1:Function DetectLikelyRules(URLListL)
2: create table ST (substring, prefix, suffix, sizerange/docsketch)
3: create table IT (substring1, substring2)
4: create table RT (substring1, substring2, supportsize)
5: for each recordr ∈ L do
6: for ℓ = 0 to Sdo
7: for each substringα of r.url of lengthℓ do
8: p := prefix of r.url precedingα
9: s := suffix of r.url succeedingα
10: add (α, p, s, r.sizerange/r.docsketch) to ST
11: group tuples in ST intobucketsby (prefix,suffix)
12: for each bucketB do
13: if (|B| = 1 OR |B| > T) continue
14: for each pair of distinct tuplest1, t2 ∈ B do
15: if (LikelySimilar(t1, t2))
16: add (t1.substring,t2.substring) to IT
17: group tuples in IT intorule supportsby (substring1,substring2)
18: for each rulesupport Rdo
19: t := first tuple in R
20: add tuple (t.substring1, t.substring2,|R|) to RT
21: sort RT by supportsize
22: return all rules in RT whose support size is≥ MS

Figure 2: Discovering likely DUST rules.

13

Our algorithm for discovering likelyDUST rules is described in Figure 2. The algorithm
gets as input the URL listL . We assume the URL list has been pre-processed so that: (1) only
unique URLs have been kept; (2) all the URLs have been tokenizedand include the preceding
ˆ and succeeding$; (3) all records corresponding to errors (http return codesin the 4xx and
5xx series) have been filtered out; (4) for each URL, the corresponding document sketch or size
range has been recorded.

The algorithm uses three tables: a substring table ST, an instance table IT, and a rule table
RT. Their attributes are listed in Figure 2. In principle, the tables can be stored in any database
structure; our implementation uses text files.

In lines 5–10, the algorithm scans the URL list, and records all substrings of lengths 0
to S of the URLs in the list. For each such substringα, a tuple is added to the substring
table ST. This tuple consists of the substringα, as well as its envelope(p,s), and either the
URL’s document sketch or its size range. The substrings are then grouped into buckets by their
envelopes (line 11). Our implementation does this by sorting the file holding the ST table by
the second and third attributes. Note that two substringsα,β appear in the bucket of(p,s) if
and only if(p,s) ∈ EL(α)∩EL(β).

In lines 12–16, the algorithm enumerates the envelopes found. An envelope(p,s) con-
tributes 1 to the intersection of the envelope setsEL(α)∩EL(β), for everyα,β that appear in
its bucket. Thus, if the bucket has only a single entry, we know (p,s) does not contribute any
instance to any rule, and thus can be tossed away. If the bucket is overflowing (its size exceeds
T), then(p,s) is also ignored (line 13).

In lines 14–16, the algorithm enumerates all the pairs(α,β) of substrings that belong to the
bucket of(p,s). If it seems likely that the documents associated with the URLs pαs and pβs
are similar (through size or document sketch matching) (line 15),(α,β) is added to the instance
table IT (line 16).

The number of times a pair(α,β) has been added to the instance table is exactly the size of
the set(EL(α)∩EL(β)) \ (O∪Dα,β), which is our estimated support for the rulesα → β and
β → α. Hence, all that is left to do is compute these counts and sortthe pairs by their count
(lines 17–22). The algorithm’s output is an ordered list of pairs. Each pair representing two
likely DUST rules (one in each direction). Only rules whose support is large enough (bigger
thanMS) are kept in the list.

Complexity analysis. Let n be the number of records in the URL list and letmbe the average
length (in tokens) of URLs in the URL list. We assume tokens are of constant length. The size
of the URL list is thenO(mn) bits. We useÕ() to suppress factors that are logarithmic inn,m,S,
andT, which are typically negligible.

The computation has two major bottlenecks. The first is filling in the instance table IT
(lines 12–16). The elements of the ST table,O(mnS) are split into buckets of sizeO(T) which
results inO(mnS

T) buckets in ST. The algorithm then enumerates all the buckets, and for each
of them enumerates each pair of substrings in the bucket. This computation could possibly
face a quadratic blowup. Yet, since overflowing buckets are ignored, then this step takes only
O(mnS

T T2) = O(mnST) time. The second bottleneck is sorting the URL list and the interme-
diate tables. Since all the intermediate tables are of size at mostO(mnST), the sorting can be
carried inÕ(mnST) time andO(mnST) external storage space. By using an efficient external
storage sort utility, we can keep the main memory complexityÕ(1) rather than linear. The
algorithm does not fetch any pages.

14

5.2 Eliminating redundant rules

By design, the output of the above algorithm includes many overlapping pairs. For example,
when running on a forum site, our algorithm finds the pair (“.co.il/story?id= ”, “ .co.il/
story_ ”), as well as numerous pairs of substrings of these, such as (“story?id= ”, “ story_ ”).
Note that every instance of the former pair is also an instance of the latter. We thus say that the
formerrefinesthe latter. It is desirable to eliminate redundancies priorto attempting to validate
the rules, in order to reduce the cost of validation. However, when one likelyDUST rule refines
another, it is not obvious which should be kept. In some cases, the broader rule is always true,
and all the rules that refine it are redundant. In other cases,the broader rule is only valid in
specificcontextsidentified by the refining ones.

In some cases, we can use information from the URL list in orderto deduce that a pair is
redundant. When two pairs have exactly the same support in theURL list, this gives a strong
indication that the latter, seemingly more general rule, isvalid only in the context specified by
the former rule. We can thus eliminate the latter rule from the list.

We next discuss in more detail the notion ofrefinementand show how to use it to eliminate
redundant rules.

Definition 5.1 (Refinement) A rule φ refinesa rule ψ, if support(φ) ⊆ support(ψ).

That is,φ refinesψ, if every instance(u1,u2) of φ is also an instance ofψ. Testing refinement
for substitution rules turns out to be easy, as captured in the following lemma:

Lemma 5.2 A substitution ruleα′ → β′ refines a substitution ruleα → β if and only if there
exists an envelope(γ,δ) s.t.α′ = γαδ andβ′ = γβδ.

Proof We prove derivation in both directions. Assume, initially,that there exists an envelope
(γ,δ) s.t.α′ = γαδ andβ′ = γβδ. We need to show that in this caseα′ → β′ refinesα → β. Take,
then, any instance(u1,u2) of α′ → β′. By Definition 3.1, there exists an envelope(p′,s′) s.t.
u1 = p′α′s′ andu2 = p′β′s′. Hence, if we definep= p′γ ands= δs′, then we have thatu1 = pαs
andu2 = pβs. Using again Definition 3.1, we conclude that(u1,u2) is also an instance ofα→ β.
This proves the first direction.

For the second direction, assume thatα′→ β′ refinesα→ β. Assume that none ofα,β,α′,β′

starts with ˆ or ends with $. (The extension toα,β,α′,β′ that can start with ˆ or end with
$ is easy, but requires some technicalities, that would harmthe clarity of this proof.) Define
u1 = ˆα′$ andu2 = ˆβ′$. By Definition 3.1,(u1,u2) is an instance ofα′→ β′. Due to refinement,
it is also an instance ofα → β. Hence, there existp,s s.t. u1 = pαs andu2 = pβs. Hence,
pαs= ˆα′$ andpβs= ˆβ′$. Sinceα,β do not start with ˆ and do not end with $, thenp must
start with ˆ ands must end with $. Define thenγ to be the stringp excluding the leading ˆ, and
defineδ to be the strings excluding the trailing $. We thus have:α′ = γαδ andβ′ = γβδ, as
needed.

The characterization given by the above lemma immediately yields an efficient algorithm
for deciding whether a substitution ruleα′ → β′ refines a substitution ruleα → β: we simply
check thatα is a substring ofα′, replaceα by β, and check whether the outcome isβ′. If α
has multiple occurrences inα′, we check all of them. Note that our algorithm’s input is a list

15

of pairs rather than rules, where each pair represents two rules. When considering two pairs
(α,β) and(α′,β′), we check refinement in both directions.

Now, suppose a ruleα′ → β′ was found to refine a ruleα → β. Then, support(α′ →
β′) ⊆ support(α → β), implying that also supportL(α′ → β′) ⊆ supportL(α → β). Hence,
if |supportL(α′ → β′)| = |supportL(α → β)|, then supportL(α′ → β′) = supportL(α → β). If
the URL list is sufficiently representative of the web site, this gives an indication that every in-
stance of the refined ruleα → β that occurs on the web site is also an instance of the refinement
α′ → β′. We choose to keep only the refinementα′ → β′, because it gives the full context of
the substitution.

One small obstacle to using the above approach is the following. In the first phase of our
algorithm, we do not compute the exact size of the support|supportL(α → β)|, but rather
calculate the quantity|(EL(α)∩EL(β))\ (O∪Dα,β)|. It is possible thatα′ → β′ refinesα → β
and supportL(α′ → β′) = supportL(α → β), yet |(EL(α′)∩EL(β′))\ (O∪Dα′,β′)|< |(EL(α)∩
EL(β))\ (O∪Dα,β)|.

How could this happen? Consider some envelope(p,s)∈EL(α)∩EL(β), and let(u1,u2) =
(pαs, pβs) be the corresponding instance ofα → β. Since supportL(α′ → β′) = supportL(α →
β), then(u1,u2) is also an instance ofα′ → β′. Therefore, there exists some envelope(p′,s′) ∈
EL(α′)∩EL(β′) s.t.u1 = p′α′s′ andu2 = p′β′s′.

α is a substring ofα′ andβ is a substring ofβ′, thusp′ must be a prefix ofp ands′ must be
a suffix ofs. This implies that any URL that contributes a substringγ to the bucket of(p,s) will
also contribute a substringγ′ to the bucket of(p′,s′), unlessγ′ exceeds the maximum substring
lengthS. In principle, then, we should expect the bucket of(p′,s′) to be larger than the bucket
of (p,s). If the maximum bucket sizeT happens to be exactly between the sizes of the two
buckets, then(p′,s′) overflows while(p,s) does not. In this case, the first phase of DustBuster
will account for(u1,u2) in the computation of the support ofα → β but not in the computation
of the support ofα′ → β′, incurring a difference between the two.

In practice, if the supports are identical, the difference between the calculated support sizes
should be small. We thus eliminate the refined rule, even if its calculated support size is slightly
above the calculated support size of the refining rule. However, to increase the effectiveness of
this phase, we run the first phase of the algorithm twice, oncewith a lower overflow threshold
Tlow and once with a higher overflow thresholdThigh. While the support calculated using the
lower threshold is more effective in filtering out invalid rules, the support calculated using the
higher threshold is more effective in eliminating redundant rules.

The algorithm for eliminating refined rules from the list appears in Figure 3. The algorithm
gets as input a list of pairs, representing likely rules, sorted by their calculated support size.
It uses three tunable parameters: (1) themaximum relative deficiency, MRD, (2) themaximum
absolute deficiency, MAD; and (3) themaximum window size, MW. MRD and MAD determine
the maximum difference allowed between the calculated support sizes of the refining rule and
the refined rule, when we eliminate the refined rule. MW determines how far down the list we
look for refinements.

The algorithm scans the list from top to bottom. For each ruleR [i], which has not been
eliminated yet, the algorithm scans a “window” of rules below R [i]. Supposes is the calculated
size of the support ofR [i]. The window size is chosen so that (1) it never exceedsMW (line
4); and (2) the difference betweens and the calculated support size of the lowest rule in the
window is at most the maximum betweenMRD· s andMAD (line 5). Now, if R [i] refines a
rule R [j] in the window, the refined ruleR [j] is eliminated (line 7), while if some ruleR [j] in

16

1:Function EliminateRedundancies(pairslist R)
2: for i = 1 to |R | do
3: if (already eliminatedR [i]) continue
4: for j = 1 to min(MW, |R |− i) do
5: if (R [i].size−R [i + j].size>

max(MRD ·R [i].size,MAD)) break
6: if (R [i] refinesR [i + j])
7: eliminateR [i + j]
8: else if (R [i + j] refinesR [i]) then
9: eliminateR [i]
10: break
14: returnR

Figure 3: Eliminating redundant rules.

the window refinesR [i], R [i] is eliminated (line 9).
It is easy to verify that the running time of the algorithm is at most |R | ·MW. In our

experiments, this algorithm reduces the set of rules by over90%.

5.3 Parameter substitutions

Inline parameters in URLs typically comply with a standard format. In many sites, an inline
parameter name is preceded by the “?” or “&” characters and followed by the “=” character
and the parameter’s value, which is followed by either the end of the URL or another “&”
character. We can therefore employ a simple regular expression search on URLs in the URL
list in order to detect popular parameters, along with multiple examples of values for each
parameter. Having detected the parameters, we check for each one whether replacing its value
with an arbitrary one is a validDUST rule. To this end, we exploit the ST table computed by
DustBuster (see Figure 2), after it has been sorted and divided into buckets. We seek buckets
whose prefix attribute ends with the desired parameter name,and then compare the document
sketches or size ranges of the relevant URLs pertaining to such buckets.

For each parameter,p, we choose some value of the parameter ,vp, and add two rules to
the list of likely rules: the first, replaces the value of the parameterp with vp, the second rule,
omits the parameter altogether. Due to the simplicity of this algorithm, its detailed presentation
is omitted. The next section describes the validation phasewhich will drop theDUST rules
which do not generate valid URLs or URLs with similar content.

5.4 Validating DUST rules

So far, the algorithm has generated likely rules from the URL list alone, without fetching even
a single page from the web site. Fetching a small number of pages for validating or refuting
these rules is necessary for two reasons. First, it can significantly improve the final precision
of the algorithm. Second, the first two phases of DustBuster, which discover likely substring
substitution rules, cannot distinguish between the two directions of a rule. The discovery of
the pair(α,β) can represent bothα → β andβ → α. This does not mean that in reality both
rules are valid or invalid simultaneously. It is often the case that only one of the directions is

17

valid; for example, in many sites removing the substringindex.html is always valid, whereas
adding one is not. Only by attempting to fetch actual page contents we can tell which direction
is valid, if any.

The validation phase of DustBuster therefore fetches a smallsample of web pages from
the web site in order to check the validity of the rules generated in the previous phases. The
validation of a single rule is presented in Figure 4. The algorithm is given as input a likely
rule R and a list of URLs from the web site and decides whether the rule is valid. It uses two
parameters: thevalidation count, N(how many samples to use in order to validate each rule),
and therefutation threshold,ε (the minimum fraction of counterexamples to a rule requiredto
declare the rule invalid).

1:Function ValidateRule(R,L)
2: positive := 0
3: negative := 0
4: while (positive< (1− ε)N AND negative< εN) do
5: u := a random URL fromL on which applying R results

in a different URL
6: v := outcome of application of R to u
7: fetch u and v
8: if (fetch u failed) continue
9: if (fetch v failedOR DocSketch(u)6= DocSketch(v))
10 negative := negative + 1
11: else
12: positive := positive + 1
13: if (negative≥ εN)
14: returnFALSE

15: returnTRUE

Figure 4: Validating a single likely rule.

REMARK. The application of R to u (line 6) may result in several different URLs. For exam-
ple, there are several ways of replacing the string “people”with the string “users” in the URL
http://people.domain.com/people , resulting in the URLshttp://users.domain.com/
people , http://people.domain.com/users , andhttp://users.domain.com/users . Our
policy is to select one standard way of applying a rule. For example, in the case of substring
substitutions, we simply replace the first occurrence of thesubstring.

In order to determine whether a rule is valid, the algorithm repeatedly chooses random
URLs from the given test URL list until hitting a URL on which applying the rule results in
a different URL (line 5). The algorithm then applies the rule to the random URLu, resulting
in a new URLv. The algorithm then fetchesu andv. Using document sketches, such as the
shingling technique of Broderet al. [6], the algorithm tests whetheru andv are similar. If
they are, the algorithm accounts foru as a positive example attesting to the validity of the
rule. If v cannot be fetched, or they are not similar, then it is accounted as a negative example
(lines 9–12). The testing is stopped when either the number of negative examples surpasses the
refutation threshold or when the number of positive examples is large enough to guarantee the
number of negative examples will not surpass the threshold.

One could ask why we declare a rule valid even if we find (a smallnumber of) counterex-

18

amples to it. There are several reasons: (1) the document sketch comparison test sometimes
makes mistakes, since it has an inherent false negative probability; (2) dynamic pages some-
times change significantly between successive probes (evenif the probes are made at short
intervals); and (3) the fetching of a URL may sometimes fail atsome point in the middle, after
part of the page has been fetched. By choosing a refutation threshold smaller than one, we can
account for such situations.

Each parameter substitution rule is validated using the code in Figure 4. The validation of
substring substitutions is more complex, as it needs to address directions and refinements.

Figure 5 shows the algorithm for validating a list of likelyDUST rules. Its input consists
of a list of pairs representing likely substring transformations,(R [i].α,R [i].β), and a test URL
list L .

For a pair of substrings(α,β), we use the notationα > β to denote that either|α| > |β|
or |α| = |β| andα succeedsβ in the lexicographical order. In this case, we say that the rule
α → β shrinksthe URL. We give precedence to shrinking substitutions. Therefore, given a pair
(α,β), if α > β, we first try to validate the ruleα → β. If this rule is valid, we ignore the rule
in the other direction since, even if this rule turns out to bevalid as well, using this rule during
canonization is only likely to create cycles, i.e., rules that can be applied an infinite number of
times because they cancel out each others’ changes. If the shrinking rule is invalid, though, we
do attempt to validate the opposite direction, so as not to lose a valid rule. Whenever one of the
directions of(α,β) is found to be valid, we remove from the list all pairs refining(α,β)– once a
broader rule is deemed valid, there is no longer a need for refinements thereof. By eliminating
these rules prior to validating them, we reduce the number ofpages we fetch. We assume that
each pair inR is ordered so thatR [i].α > R [i].β.

1:Function Validate(ruleslist R , testURLList L)
2 create an empty list of rules LR
3: for i = 1 to |R | do
4: for j = 1 to i - 1 do
5: if (R [j] was not eliminatedAND R [i] refinesR [j])
6: eliminateR [i] from the list
7: break
8: if (R [i] was eliminated)
9: continue
10: if (ValidateRule(R [i].α → R [i].β, L))
11: addR [i].α → R [i].β to LR
12: else if (ValidateRule(R [i].β → R [i].α, L))
13: addR [i].β → R [i].α to LR
14: else
15: eliminateR [i] from the list
16: return LR

Figure 5: Validating likely rules.

The running time of the algorithm is at mostO(|R |2 + N|R |). Since the list is assumed
to be rather short, this running time is manageable. The number of pages fetched isO(N|R |)
in the worst-case, but much smaller in practice, since we eliminate many redundant rules after
validating rules they refine.

19

Application for URL canonization. Finally, we explain how the discoveredDUST rules may
be used for canonization of a URL list. Our canonization algorithm is described in Figure
6. The algorithm receives a URLu and a list of validDUST rules,R . The idea behind this
algorithm is very simple: in each iteration, each rule inR in turn is repeatedly applied tou up
to MA times, until the rule does not change the URL; this process is repeated up toMA times,
until there is an iteration in whichu is unchanged (lines 6–7).

1:Function Canonize(URLu, rules list R)
2: for k = 1 toMA do
3: prev := u
3: for i = 1 to |R | do
4: for j = 1 to MA do
5: u := A URL obtained by applyingR [i] to u
6: if (prev = u)
7: break
8: output u

Figure 6: Canonization algorithm.

If a rule can be applied more than once (e.g., because the samesubstring appears multiple
times in the URL), then each iteration in lines 4-5 applies it in the first place in the URL where
it is applicable. As long as the number of occurrences of the replaced substring in the URL
does not exceed MA, the algorithm replaces all of them.

We limit the number of iterations of the algorithm and applications of a rule to the param-
eterMA, because otherwise the algorithm could have entered an infinite loop (if the graphGR

contains cycles). SinceMA is a constant, chosen independently of the number of rules, the
algorithm’s running time islinear in the number of rules. Recall that the general canonization
problem is hard, so we cannot expect this algorithm to alwaysproduce a minimum size canon-
ization. Nevertheless, our empirical study shows that the savings obtained using this algorithm
are high.

We believe that the algorithm’s common case success stems from two features. First, our
policy of choosing shrinking rules whenever possible typically eliminates cycles. Second, our
elimination of refinements of valid rules leaves a small set of rules, most of which do not affect
each other.

6 Experimental Results

Experiment setup. We experiment with DustBuster on four web sites: a dynamic forum site2,
an academic site (www.ee.technion.ac.il), a large news site (cnn.com) and a smaller news site
(nydailynews.com). In the forum site, page contents are highly dynamic, as users continuously
add comments. The site supports multiple domain names and most of the site’s pages are
generated by the same software. The news sites are similar intheir structure to many other
news sites on the web. The large news site has a more complex structure, and it makes use of
several sub-domains as well as URL redirections. Finally, the academic site is the most diverse:

2The webmaster who gave us access to the logs asked us not to specify the name of the site.

20

It includes both static pages and dynamic software-generated content. Moreover, individual
pages and directories on the site are constructed and maintained by a large number of users
(faculty members, lab managers, etc.)

In the academic and forum sites, we detect likelyDUST rules from web server logs, whereas
in the news sites, we detect likelyDUST rules from a crawl log. Table 1 depicts the sizes of
the logs used. In the crawl logs each URL appears once, while inthe web server logs the same
URL may appear multiple times. In the validation phase, we userandom entries from additional
logs, different from those used to detect the rules. The canonization algorithm is tested on yet
another set of logs, different from the ones used to detect and validate the rules.

Web Site Log Size Unique URLs
Forum Site 38,816 15,608
Academic Site 344,266 17,742
Large News Site 11,883 11,883
Small News Site 9,456 9,456

Table 1: Log sizes.

Parameter settings. The following DustBuster parameters were carefully chosen in all our
experiments. Our empirical results suggest that these settings are robust across data sets, as they
work in the 4 very different representative sites we experimented with. The maximum substring
length,S, was set to 35 tokens. The maximum bucket size used for detecting DUST rules,Tlow,
was set to 6, and the maximum bucket size used for eliminatingredundant rules,Thigh, was
set to 11. In the elimination of redundant rules, we allowed arelative deficiency, MRD, of up
to 5%, and an absolute deficiency, MAD, of 1. The maximum window size, MW, was set to
1100 rules. The value of MS, the minimum support size, was setto 3. The algorithm uses a
validation count, N, of 100 and a refutation threshold,ε, of 5%-10%. Finally, the canonization
uses a maximum of 10 iterations. Shingling [6] is used in the validation phase to determine
similarity between documents.

Detecting likely DUST rules and eliminating redundant ones. DustBuster’s first phase
scans the log and detects a very long list of likelyDUST rules. Subsequently, the redundancy
elimination phase dramatically shortens this list. Table 2shows the sizes of the lists before and
after redundancy elimination. It can be seen that in all of our experiments, over 90% of the
rules in the original list have been eliminated.

For example, in the largest log in the academic site, 26,899 likely rules were detected in
the first phase, and only 2041 (8%) remained after the second;in a smaller log 10,848 rules
were detected, of which only 354 (3%) were not eliminated. Inthe large news site 12,144 were
detected, 1243 remained after the second phase. In the forumsite, much fewer likely rules were
detected, e.g., in one log 402 rules were found, of which 37 (9%) remained. We believe that
the smaller number of rules is a result of the forum site beingmore uniformly structured than
the academic one, as most of its pages are generated by the same web server software.

In Figure 7, we examine the precision level in the short list of likely rules produced at the
end of these two phases in three of the sites. Recall that no page contents are fetched in these
phases. As this list is ordered by likeliness, we examine theprecision@k; that is, for each
top k rules in this list, the curves show which percentage of them are later deemed valid (by

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

pr
ec

is
io

n

top k rules

With Size Matching
No Size Matching

(a) Academic site, impact of size matching.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

P
re

ci
si

on

top k rules

Without shingles-filtered support
With shingles-filtered support

(b) Large news site, impact of shingle matching, 4 shingles used.

Figure 7: Precision@k of likelyDUST rules detected in DustBuster’s first two phaseswithout
fetching actual content.

Web Site Rules Rules Remaining
Detected after 2nd Phase

Forum Site 402 37 (9.2%)
Academic Site 26,899 2,041 (7.6%)
Large News Site 12,144 1,243 (9.76%)
Small News Site 4,220 96 (2.3%)

Table 2: Rule elimination in second phase.

DustBuster’s validation phase) in at least one direction. Weobserve that when similarity-based
filtering is used, DustBuster’s detection phase achieves a very high precision rate even though
it does not fetch even a single page. Figure 8 shows the results for four web server logs of the

22

forum site. Out of the 40–50 detected rules, over 80% are indeed valid. In the academic site,
over 60% of the 300–350 detected rules are valid, and of the top 100 detected rules, over 80%
are valid. In the large news sites, 74% of the top 200 rules arevalid.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

top k rules

log#4
log#3
log#2
log#1

Figure 8: Forum site showing 4 different logs, precision@k of likely DUST rules detected in
DustBuster’s first two phaseswithout fetching actual content.

This high precision is achieved, to a large extent, thanks tothe similarity-based filtering
(size matching or shingle matching), as shown in Figures 7(a) and 7(b). The log includes invalid
rules. For example, the forum site includes multiple domains, and the stories in each domain
are different. Thus, although we find many pairs of the formhttp://domain1/story_num
andhttp://domain2/story_num with the same story number, these URLs represent differ-
ent stories. Similarly, the academic site has URL pairs of theform http://site/course1/
lect-num.ppt andhttp://site/course2/lect-num.ppt , although the lectures are differ-
ent. These URL pairs are instances of invalid rules, rules that are are not detected thanks to size
matching. Figure 7(a) illustrates the impact of size matching in the academic site. We see that
when size matching is not employed, the precision drops by around 50%. Thus, size match-
ing reduces the number of accesses needed for validation. Nevertheless, size matching has its
limitations– valid rules (such as “ps ” → “pdf ”) are missed at the price of increasing precision.
Figure 7(b) shows similar results for the large news site. When we do not use shingles-filtered
support, the precision at the top 200 drops to 40%. Shingles-based filtering reduces the list of
likely rules by roughly 70%. Most of the filtered rules turnedout to be indeed invalid.

Validation. We now study how many validations are needed in order to declare that a rule is
valid; that is, we study what the parameter N in Figure 5 should be set to. To this end, we run
DustBuster with values of N ranging from 0 to 100, and check which percentage of the rules
found to be valid with each value of N are also found valid whenN=100. The results from
conducting this experiment on the likelyDUST rules found in 4 logs from the forum site and 4
from the academic site are shown in Figure 9 (similar resultswere obtained for the other sites).
In all these experiments, 100% precision is reached after 40validations. Moreover, results
obtained in different logs are consistent with each other.

In these graphs, we only consider rules that DustBuster attempts to validate. Since many
valid rules are removed (in line 6 of Figure 5) after rules that they refine are deemed valid, the

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ec

is
io

n

number of validations

log#4
log#3
log#2
log#1

(a) Forum site, 4 different logs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ec

is
io

n

number of validations

log#4
log#3
log#2
log#1

(b) Academic site, 4 different logs.

Figure 9: Precision among rules that DustBuster attempted tovalidate vs. number of validations
used (N).

percentage of valid rules among those that DustBuster attempts to validate is much smaller than
the percentage of valid rules in the original list.

Our aggressive elimination of redundant rules reduces the number of rules we need to vali-
date. For example, on one of the logs in the forum site, the validation phase was initiated with
28 pairs representing 56 likely rules (in both directions).Of these, only 19 were checked, and
the rest were removed because they or their counterparts in the opposite direction were deemed
valid either directly or since they refined valid rules. We conclude that the number of actual
pages that need to be fetched in order to validate the rules isvery small.

At the end of the validation phase, DustBuster outputs a list of valid substring substitution
rules without redundancies. Table 3 shows the number of valid rules detected on each of the
sites. The list of 7 rules found using one of the logs in the forum site is depicted in Figure
10 below. These 7 rules or refinements thereof appear in the outputs produced using each of

24

the studied logs. Some studied logs include 1–3 additional rules, which are insignificant (have
very small support). Similar consistency is observed in theacademic site outputs. We conclude
that the most significantDUST rules can be adequately detected using a fairly small log with
roughly 15,000 unique URLs.

Web Site Valid Rules Detected
Forum Site 7
Academic Site 52
Large News Site 62
Small News Site 5

Table 3: The number of rules found to be valid.

1 “.co.il/story_ ” → “ .co.il/story?id= ”
2 “\&LastView=\&Close= ” → “”
3 “.php3? ” → “?”
4 “.il/story_ ” → “ .il/story.php3?id= ”
5 “\&NewOnly=1\&tvqz=2 ” → “ \&NewOnly=1 ”
6 “.co.il/thread_ ” → “ .co.il/thread?rep= ”
7 “http://www.../story_ ” → “http://www.../story?id= ”

Figure 10: The valid rules detected in the forum site.

Coverage. We now turn our attention to coverage, or the percentage of duplicate URLs dis-
covered by DustBuster, in the academic site. When multiple URLshave the same document
sketch, all but one of them are consideredduplicates. In order to study the coverage achieved
by DustBuster, we use two different logs from the same site: atraining log and atest log. We
run DustBuster on the training log in order to learnDUST rules and we then apply these rules on
the test log. We count what fraction of the duplicates in the test log are covered by the detected
DUST rules. We detect duplicates in the test log by fetching the contents of all of its URLs and
computing their document sketches. Figure 11 classifies these duplicates. As the figure shows,
47.1% of the duplicates in the test log are eliminated by DustBuster’s canonization algorithm
using rules discovered on another log. The rest of theDUST can be divided among several
categories: (1) duplicate images and icons; (2) replicateddocuments (e.g., papers co-authored
by multiple faculty members and whose copies appear on each of their web pages); (3) “soft
errors”, i.e., pages with no meaningful content, such as error message pages, empty search
results pages, etc.

Savings in crawl size. The next measure we use to evaluate the effectiveness of the method
is the discovered redundancy, i.e., the percent of the URLs wecan avoid fetching in a crawl
by using theDUST rules to canonize the URLs. To this end, we performed a full crawl of the
academic site, and recorded in a list all the URLs fetched. We performed canonization on this
list usingDUST rules learned from the crawl, and counted the number of unique URLs before
(Ub) and after (Ua) canonization. The discovered redundancy is then given byUb−Ua

Ub
. We found

this redundancy to be 18% (see Table 4), meaning that the crawl could have been reduced
by that amount. In the two news sites, theDUST rules were learned from the crawl logs and

25

Figure 11:DUST classification, academic site.

we measured the reduction that can be achieved in the next crawl. By setting a slightly more
relaxed refutation threshold (ε = 10%), we obtained a reduction of 26% in the small news site
and 6% in the large one. In the case of the forum site, we used four logs to detectDUST rules,
and used these rules to reduce a fifth log. The reduction achieved in this case was 4.7%. In all
these experiments, the training and testing was done on logsof similar size.

Web Site Reduction Achieved
Academic Site 18%
Small News Site 26%
Large News Site 6%
Forum Site(using logs) 4.7%

Table 4: Reductions in crawl size.

7 Conclusions

We have introduced the problem of mining site-specificDUST rules. Knowing about such rules
can be very useful for search engines: It can reduce crawlingoverhead by up to 26% and
thus increase crawl efficiency. It can also reduce indexing overhead. Moreover, knowledge of
DUST rules is essential for canonizing URL names, and canonical names are very important for
statistical analysis of URL popularity based on PageRank or traffic. We presented DustBuster,
an algorithm for miningDUST very effectively from a URL list. The URL list can either be
obtained from a web server log or a crawl of the site.

Acknowledgments. We thank Tal Cohen and the forum site team, and Greg Pendler and
thehttp://ee.technion.ac.il admins for providing us with access to web server logs and
for technical assistance. We thank Israel Cidon, Yoram Moses, and Avigdor Gal for their
insightful input. We thank all our reviewers, both from the WWW2007 conference and the
TWEB journal, for their detailed and constructive suggestions.

References

[1] T. Kelly and J. C. Mogul, “Aliasing on the world wide web: prevalence and performance
implications,” in the Proceedings of the 11th International World Wide Web Conference

26

(WWW), pp. 281–292, 2002.

[2] F. Douglis, A. Feldman, B. Krishnamurthy, and J. Mogul, “Rate of change and other
metrics: a live study of the world wide web,” inthe Proceedings of the 1st USENIX
Symposium on Internet Technologies and Systems (USITS), 1997.

[3] F. McCown and M. L. Nelson, “Evaluation of crawling policies for a web-repository
crawler,” in the Proceedings of the 17th ACM Conference on Hypertext and Hypermedia
(HYPERTEXT), pp. 157–168, 2006.

[4] S. J. Kim, H. S. Jeong, and S. H. Lee, “Reliable evaluationsof URL normalization,” in
the Proceedings of the 4th International Conference on Computational Science and Its
Applications (ICCSA), pp. 609–617, 2006.

[5] Google Inc., “Google sitemaps.”http://sitemaps.google.com .

[6] A. Z. Broder, S. C. Glassman, and M. S. Manasse, “Syntactic clustering of the web,” in
the Proceedings of the 6th International World Wide Web Conference (WWW), pp. 1157–
1166, 1997.

[7] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI):
Generic syntax.”http://www.ietf.org/rfc/rfc2396.txt .

[8] “Apache http server version 2.2 configuration files.”http://httpd.apache.org/docs/
2.2/configuring.html .

[9] S. Brin, J. Davis, and H. Garcia-Molina, “Copy Detection Mechanisms for Digital Doc-
uments,” inthe Proceedings of the 14th Special Interest Group on Management of Data
(SIGMOD), pp. 398–409, 1995.

[10] H. Garcia-Molina, L. Gravano, and N. Shivakumar, “dscam: Finding document copies
across multiple databases,” inthe Proceedings of the 4th International Conference on
Parallel and Distributed Information Systems (PDIS), pp. 68–79, 1996.

[11] N. Shivakumar and H. Garcia-Molina, “Finding Near-Replicas of Documents and Servers
on the Web,” inthe Proceedings of the 1st International Workshop on the Weband
Databases (WebDB), pp. 204–212, 1998.

[12] E. Di Iorio, M. Diligenti, M. Gori, M. Maggini, and A. Pucci, “Detecting Near-replicas on
the Web by Content and Hyperlink Analysis,” inthe Proceedings of the 11th International
World Wide Web Conference (WWW), 2003.

[13] N. Jain, M. Dahlin, and R. Tewari, “Using bloom filters to refine web search results,” in
the Proceedings of the 7th International Workshop on the Weband Databases (WebDB),
pp. 25–30, 2005.

[14] T. C. Hoad and J. Zobel, “Methods for identifying versioned and plagiarized documents,”
Journal of the American Society for Information Science andTechnology, vol. 54, no. 3,
pp. 203–215, 2003.

27

[15] K. Monostori, R. A. Finkel, A. B. Zaslavsky, G. Hodász, and M. Pataki, “Comparison of
overlap detection techniques,” inthe Proceedings of the 10th International Conference on
Complex Systems (ICCS), pp. 51–60, 2002.

[16] R. A. Finkel, A. B. Zaslavsky, K. Monostori, and H. W. Schmidt, “Signature extraction for
overlap detection in documents,” inthe Proceedings of the 25th Australasian Computer
Science Conference (ACSC), pp. 59–64, 2002.

[17] J. Zobel and A. Moffat, “Exploring the similarity space,” SIGIR Forum, vol. 32, no. 1,
pp. 18–34, 1998.

[18] J. Cho, N. Shivakumar, and H. Garcia-Molina, “Finding replicated web collections,” in
the Proceedings of the 19th Special Interest Group on Management of Data (SIGMOD),
pp. 355–366, 2000.

[19] K. Bharat and A. Z. Broder, “Mirror, Mirror on the Web: A Study of Host Pairs with
Replicated Content,”Computer Networks, vol. 31, no. 11–16, pp. 1579–1590, 1999.

[20] H. Liang, “A URL-String-Based Algorithm for Finding WWW Mirror Host,” Master’s
thesis, Auburn University, 2001.

[21] K. Bharat, A. Z. Broder, J. Dean, and M. R. Henzinger, “A comparison of techniques
to find mirrored hosts on the WWW,”Journal of the American Society for Information
Science, vol. 51, no. 12, pp. 1114–1122, 2000.

[22] WebLog Expert.http://www.weblogexpert.com/ .

[23] StatCounter.http://www.statcounter.com/ .

[24] Analog.http://www.analog.cx/ .

[25] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” inthe Proceed-
ings of the 20th International Conference on Very Large Data Bases (VLDB), pp. 487–
499, 1994.

[26] M. Bognar, “A survey on abstract rewriting.” Available online at: www.di.ubi.pt/

˜ desousa/1998-1999/logica/mb.ps , 1995.

[27] P. Jaccard, “Jaccard, P. 1908. Nouvelles recherches sur la distribution florale,” vol. 44,
pp. 223–270, 1908.

[28] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[29] D. Gusfield,Algorithms on Strings, Trees and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997.

28

