
Do Not Crawl in the dust:

Different URLs with Similar Text

Ziv Bar-Yossef∗ Idit Keidar Uri Schonfeld

Department of Electrical Engineering

Technion – Israel Institute of Technology

Haifa 32000, Israel.

Email: {zivby@ee,idish@ee,shuri@tx}.technion.ac.il.

October 2, 2006

Abstract

We consider the problem of dust: Different URLs with Similar Text. Such duplicate URLs
are prevalent in web sites, as web server software often uses aliases and redirections, translates
URLs to some canonical form, and dynamically generates the same page from various different
URL requests. We present a novel algorithm, DustBuster, for uncovering dust; that is, for
discovering rules for transforming a given URL to others that are likely to have similar content.
DustBuster is able to mine dust effectively from previous crawl logs or web server logs, without
examining page contents. Verifying these rules via sampling requires fetching few actual web
pages. Search engines can benefit from this information to increase the effectiveness of crawl-
ing, reduce indexing overhead as well as improve the quality of popularity statistics such as
PageRank.
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1 Introduction

The dust problem. The web is abundant with dust, Different URLs with Similar Text [18, 11,
22, 19]. For example, the URLs http://google.com/news and http://news.google.com return
similar content. Adding a trailing slash or /index.html to either will still return the same result.
Many web sites define links, redirections, or aliases, such as allowing the tilde symbol ˜ to replace
a string like /people, /users, or homepages. Some web servers are case insensitive, and can
be accessed with capitalized URL names as well as lower case ones. Some sites allow different
conventions for file extensions– .htm and .html; others allow for multiple default index file names
– index.html and default.html. A single web server often has multiple DNS names, and any can
be typed in the URL. As the above examples illustrate, dust is typically not random, but rather
stems from some general rules, which we call dust rules, such as “˜” → “/people”, or omitting
“/default.html” at the end of the URL. Additionally, our findings show that these rules remain
valid for months and even years and are valid for new pages as well as old ones.

Moreover, dust rules are typically not universal. Many are artifacts of a particular web server
implementation. For example, URLs of dynamically generated pages often include parameters;
which parameters impact the page’s content is up to the software that generates the pages. Some
sites use their own conventions; for example, a forum site we studied allows accessing story number
“num” both via the URL http://domain/story?id=num and via http://domain/story num. Our
study of the CNN web site has discovered that URLs of the form http://cnn.com/money/whatever

get redirected to http://money.cnn.com/whatever. In this paper, we focus on mining dust rules
within a given web site. We are not aware of any previous work tackling this problem.

Knowledge about dust rules can be very valuable for search engines as well as for large scale
investigation of the web, web caching, and web site traffic analysis. The fact that pages do not have
unique identifiers creates problems in almost every large scale software that deals with the web.
Knowledge about dust rules allows for a canonical URL representation, where each page has a
single canonical name. Thus, canonization using dust rules can reduce crawling overhead, reduce
indexing overhead, reduce caching overhead [18, 11], and increase the accuracy of any statistical
study of web pages, e.g., computing their popularity [6, 17]. For example, in search engines,
using knowledge about dust rules can increase the effectiveness of web crawling by eliminating
redundant accesses to the same page via multiple URLs. In one crawl we examined, the number of
URLs fetched would have been reduced by 26%. We focus on URLs with similar contents rather
than identical ones, since different versions of the same document are not always identical; they
tend to differ in insignificant ways, e.g., counters, dates, and advertisements. Likewise, some URL
parameters impact only the way pages are displayed (fonts, image sizes, etc.) without altering their
contents.

Standard techniques for avoiding dust are not based on discovering site-specific dust rules.
Universal rules, such as adding http:// or removing a trailing slash are used, in order to obtain
some level of canonization. Additional dust is found by comparing document sketches such as
shingles, which are hash-based summaries of page content. However, this is conducted on a page
by page basis, and all the pages must be fetched in order to employ this technique. By knowing
dust rules, one can dramatically reduce the overhead of this process. But how can one learn about
site-specific dust rules?
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Detecting dust from a URL list. Contrary to initial intuition, we show that it is possible to
discover likely dust rules without fetching a single web page. We present an algorithm, DustBuster,
which discovers such likely rules from a list of URLs. Such a URL list can be obtained from many
sources including a previous crawl or the web server logs. The rules are then verified (or refuted)
by sampling a small number of actual web pages.

At first glance, it is not clear that a URL list can provide reliable information regarding dust,
as it does not include actual page contents. We show, however, how to use a URL list to discover
two types of dust rules: substring substitutions and parameter substitutions. A substring substi-
tution rule α → β replaces an occurrence of the string α in a URL by the string β. A parameter
substitution rule replaces the value of a parameter in a URL by some default value or removes the
parameter altogether. Thanks to the standard syntax of parameter usage in URLs, detecting pa-
rameter substitution rules is fairly straightforward. Most of our work therefore focuses on substring
substitution rules, which are similar to the “replace” function in many editors.

DustBuster uses three heuristics, which together are very effective at detecting likely dust rules
and distinguishing them from false rules. The first heuristic is based on the observation that if a
rule α→ β is common in a web site, then we can expect to find in the URL list multiple examples
of pages accessed both ways. For example, in the site where story?id= can be replaced by story ,
we are likely to see in the URL list many different pairs of URLs that differ only in this substring;
we say that such a pair of URLs is an instance of the rule “story?id=” → “story ”. The set of
all instances of a rule is called the rule’s support. Our first attempt to uncover dust is therefore
to seek rules that have large support.

Nevertheless, some of the rules that have large support are not dust rules. For example,
when examining one site we found instances such as http://movie-forum.com/story 100 and
http://politics-forum.com/story 100which support the false rule “movie-forum”→ “politic-
s-forum”. Another example of a false rule with large support is “1” → “2”, which emanates from
instances like pic-1.jpg and pic-2.jpg, story 1 and story 2, and lecture.1 and lecture.2,
none of which are dust. Our second and third heuristics address the challenge of eliminating such
false rules.

The second heuristic is based on the observation that false rules tend to flock together. For
example in most instances of “1” → “2”, one could also replace the “1” by other digits. We therefore
ignore rules that come in large groups.

Further eliminating false rules requires calculating the fraction of dust in the support of each
rule. How could this be done without inspecting page content? Our third heuristic uses cues
from the URL list to guess which instances are likely to be dust and which are not. In case the
URL list is produced from a previous crawl, we typically have document sketches available for each
URL in the list. Document sketches are short summaries that can be used to estimate document
similarity [7]. We can thus use the sketches to estimate the likelihood that pairs of URLs are dust

and eliminate rules whose support does not contain sufficiently many dust pairs.
In case the URL list is produced from web server logs, document sketches are not available.

The only cue about the contents of URLs in these logs is the sizes of these contents. We thus use
the size field from the log to filter out instances (URL pairs) that have “mismatching” sizes. The
difficulty with size-based filtering is that the size of a dynamic page can vary dramatically, e.g.,
when many users comment on an interesting story or when a web page is personalized. To account
for such variability, we compare the ranges of sizes seen in all accesses to each page. When the size
ranges of two URLs do not overlap, they are unlikely to be dust.
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Having discovered likely dust rules, another challenge that needs to be addressed is eliminating
redundant ones. For example, the rule “http://site-name/story?id=”→ “http://site-name/s-
tory ” will be discovered, along with many consisting of substrings thereof, e.g., “?id=” →
“ ”. However, before performing validations, it is not obvious which rule should be kept in such
situations– the latter could be either valid in all cases, or invalid outside the context of the former.
Nevertheless, we are able to use support information from the URL list to remove many redundant
likely dust rules. We remove additional redundancies after performing some validations, and thus
compile a succinct list of rules.

Canonization. Once the correct dust rules are discovered, we exploit them for URL canoniza-
tion. In the general case, the canonization problem is NP-hard. Nevertheless, we have devised
an efficient canonization algorithm that typically succeeds in transforming URLs to a site-specific
canonical form.

Experimental results. We experiment with DustBuster on four web sites with very different
characteristics. Two of our experiments use web server logs, and two use crawl outputs. We find
that DustBuster can discover rules very effectively from moderate sized URL lists, with as little as
20,000 entries. Limited sampling is then used in order to validate or refute each rule.

Our experiments show that up to 90% of the top ten rules discovered by DustBuster prior to
the validation phase are found to be valid, and in most sites 70% of the top 100 rules are found to
be valid. Furthermore, we show that dust rules discovered by DustBuster may account for 47% of
the dust in a web site and that using DustBuster can reduce a crawl by 26%.

The rest of this paper is organized as follows. In Section 2, we review some related work. We
formally define what dust rules are and state the dust detection problem in Section 3. Section 4
presents the basic heuristics our algorithm uses. DustBuster and the canonization algorithm appear
in Section 5. Section 6 presents experimental results. We end with discussion and some concluding
remarks in Section 7.

2 Related work

The standard way of dealing with dust is using document sketches [5, 12, 7, 24, 10, 15, 14], which
are short document summaries used to determine similarities among documents. To compute such a
sketch, however, one needs to fetch and inspect the whole document. Our approach cannot replace
document sketches, since it does not find dust across sites or dust that does not stem from rules.
However, it is desirable to use our approach to complement document sketches in order to reduce
the overhead of collecting redundant data, and increase the percentage of unique pages found by
crawling a given site. Moreover, since document sketches do not give rules, they cannot be used for
URL canonization, which is important in order to improve the accuracy of page popularity metrics.

One common source of dust is mirroring. A number of previous works have dealt with automatic
detection of mirror sites on the web [3, 4, 8, 20]. We deal with the complementary problem of
detecting dust within one site. Mirror detection often exploits syntactic analysis of URLs and
limited sampling as we do. However, a major challenge that site-specific dust detection must
address is efficiently discovering prospective rules out of a daunting number of possibilities (all
possible substring substitutions). In contrast, mirror detection focuses on comparing given pairs of
sites, and only needs to determine whether they are mirrors.
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We are not aware of any previous algorithm for automatically detecting dust rules for search
engines from URL lists. Some companies (e.g., [27, 25, 2]) have tools for analyzing web server logs,
but their goals are very different from ours. To the best of our knowledge, they neither discover
dust nor are intended for general-purpose web search.

The problem we consider resembles the problems of grammatical inference [9] and learning one
variable pattern languages [26, 21, 16], but fundamentally differs from them since URLs are typically
not generated as context-free grammars or one variable languages. Moreover, these problems learn
from a collection of positive examples, whereas our data (the URL list) includes positive examples
of rules as well as negative ones.

Although our problem also resembles the problem of mining association rules [1], the two prob-
lems differ substantially. Whereas the input of data mining algorithms consists of a sample of
complete lists of items that belong together, our input includes individual items from different lists.
The absence of complete lists renders techniques used therein inapplicable to our problem. Another
difference is that rules cannot be deduced solely from the input URL list, since the content of the
corresponding documents is not available from this list.

3 Problem Definition

URLs. We view URLs as strings over an alphabet Σ of tokens. Tokens are either alphanumeric
strings or non-alphanumeric characters. In addition, we require every URL to start with the special
token ^ and to end with the special token $ (^ and $ are not included in Σ). For example, the
URL http://www.site.com/index.html is represented by the following sequence of 15 tokens:
ˆ,http,:,/,/,www,.,site,.,com,/,index,.,html,$. We denote by U the space of all possible URLs.

A URL u is valid, if its domain name resolves to a valid IP address and its contents can be
fetched by accessing the corresponding web server (the http return code is not in the 4xx or 5xx
series). If u is valid, we denote by doc(u) the returned document1.

dust. Two valid URLs u1, u2 are called dust, if their corresponding documents, doc(u1) and
doc(u2), are “similar”. To this end, any method of measuring the similarity between two documents
can be used. For our implementation and experiments, we use the popular resemblance measure
due to Broder et al. [7].

dust rules. In this paper, we seek general rules for detecting when two URLs are dust. A dust

rule φ is a relation over the space of URLs. φ may be a many-to-many relation. Every pair of
URLs belonging to φ is called an instance of φ. The support of a φ, denoted support(φ), is the
collection of all its instances.

We discuss two types of dust rules: substring substitutions and parameter substitutions. Pa-
rameter substitution rules either replace the value of a certain parameter appearing in the URL with
a default value, or omit this parameter from the URL altogether. Thanks to the standard syntax
of parameter usage in URLs, detecting parameter substitution rules is fairly straightforward. Most
of our work therefore focuses on substring substitution rules, which are similar to the “replace”
function in many editors. A substring substitution rule α → β is specified by an ordered pair of
strings (α, β) over the token alphabet Σ. (In addition, we allow these strings to simultaneously

1
doc(u) may include software error messages returned from the web server even though u is valid
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start with the token ^ and/or to simultaneously end with the token $.) Instances of substring
substitution rules are defined as follows:

Definition 1. (Instance of a substring substitution rule) A pair u1, u2 of URLs is an instance of a
substring substitution rule α→ β if and only if there exist strings p, s s.t. u1 = pαs and u2 = pβs.

For example, the pair of URLs http://www.site.com/index.html and http://www.site.com

is an instance of the dust rule “/index.html$” → “$”.

The dust problem. Our goal is to detect dust and eliminate redundancies in a collection of
URLs belonging to a given web site S. This is solved by a combination of two algorithms, one that
discovers dust rules from a URL list, and another that uses them in order to transform URLs to
their canonical form.

A URL list is a list of records consisting of: (1) a URL; (2) the http return code; (3) the size
of the returned document; and (4) the document’s sketch. The last two fields are optional. This
type of list can be obtained either from the web server logs or from a previous crawl. Note that
the URL list is typically only a (non-random) sample of the URLs that belong to the web site.

For a given web site S, we denote by US the set of URLs that belong to S. A dust rule φ is
said to be valid w.r.t. S, if for each u1 ∈ US and for each u2 s.t. (u1, u2) is an instance of φ, u2 ∈ US

and (u1, u2) is dust.
A dust rule detection algorithm is given a list L of URLs from a web site S and outputs an

ordered list of dust rules. The algorithm may also fetch pages (which may or may not appear in
the URL list). The ranking of rules represents the confidence of the algorithm in the validity of the
rules.

Note that we did not define until now what a web site is, nor do we limit the scope of the
problem to any such definition. The implicit assumption in this case is only that the URL list
is a representative sample of some URL collection and that the rules learned will be valid to the
entire URL collection. The URL collection may be limited to a single web site, to a certain set of
domain names or to a specific directory on the web site. Regardless of the way the URL collection
is defined we learn rules specific to that URL collection. For convenience we will define such a URL
collection to be a site.

Canonization. Let R be an ordered list of dust rules that have been found to be valid w.r.t. to
some web site S. We would like to define what is a canonization of the URLs in US using the rules
in R. To this end, we assume that application of any rule φ ∈ R to any URL u ∈ US results in a
URL φ(u) that also belongs to US (this assumption holds true in all the data sets we experimented
with)2. The rules in R naturally induce a labeled graph GR on US : there is an edge from u1 to

u2 labeled by φ if and only if u1
φ
→ u2. Since the dissimilarity between every two adjacent URLs

in GR is at most ǫ, the dissimilarity between URLs that are connected by a path of length k is
at most kǫ (dissimilarity respects the triangle inequality). We conclude that if GR has a bounded
diameter (as it does in the data sets we encountered), then every two URLs connected by a path
are similar. A canonization which maps every URL u to some URL that is reachable from u would
thus make sense, because the original URL and its canonical form are guaranteed to be dust.

2There may exist several ways of applying a rule to a URL. Our discussion assumes that one standard way is
always chosen.
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A set of canonical URLs is a subset CUS ⊆ US that is reachable from every URL in US

(equivalently, CUS is a dominating set in the transitive closure of GR). A canonization is any
mapping C : US → CUS that maps every URL u ∈ US to some canonical URL C(u), which is
reachable from u by a directed path. Our goal is to find a small set of canonical URLs and a
corresponding canonization, which is efficiently computable.

Finding the minimum size set of canonical URLs is intractable, due to the NP-hardness of
the minimum dominating set problem. Fortunately, our empirical study indicates that for typical
collections of dust rules found in web sites, efficient canonization is possible. Thus, although we
cannot design an algorithm that always obtains an optimal canonization, we will seek one that
maps URLs to a small set of canonical URLs, and always terminates in polynomial time.

Metrics. There are three measures that we use to evaluate dust detection and canonization.
The first measure is precision—the fraction of valid rules among the rules reported by the dust

detection algorithm. The second and most important measure is the discovered redundancy—the
amount of redundancy eliminated in a crawl. Formally, it is defined as the difference between the
number of unique URLs in the crawl, before and after canonization, divided by the former.

The third measure is coverage: given a large collection of URLs that includes dust, what
percentage of the duplicate URLs is detected. The number of duplicate URLs in a given URL
list is defined as the difference between the number of unique URLs and the number of unique
document sketches. Since we do not have access to the entire web site, we measure the achieved
coverage within the URL list. We count the number of duplicate URLs in the list before and after
canonization, and the difference between them divided by the former is the coverage.

One of the standard measures of information retrieval is recall, which may seem an appropriate
measure for our problem as well. In our case, recall would measure what percent of all correct dust

rules is discovered. However, it is clearly impossible to construct a complete list of all valid rules
to compare against, and therefore, recall is not directly measurable in our case, and is replaced by
coverage as explained above.

As for performance, we use four complexity measures: (1) running time; (2) storage space (in
secondary storage); (3) memory complexity; and (4) number of web pages fetched.

Clearly, there are tradeoffs between the complexity metrics and the success metrics. For ex-
ample, an algorithm that fetches a large number of web pages is more likely to achieve precision
than one that fetches few or none. We therefore contrast precision with the number of web pages
fetched, and also study the precision attained when none are fetched.

4 Basic Heuristics

Our algorithm for extracting likely string substitution rules from the URL list uses three heuristics:
the large support heuristic, the small buckets heuristic, and the similarity likeliness heuristic. Our
empirical results provide evidence that these heuristics are effective on web-sites of varying scopes
and characteristics.

4.1 Large support heuristic

Our first heuristic is the following:
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Large Support Heuristic
The support of a valid dust rule is large.

For example, if a rule “index.html$” → “$” is valid, we should expect many instances witness-
ing to this effect, e.g., www.site.com/d1/index.html vs. www.site.com/d1/ and www.site.com-

/d3/index.html vs. www.site.com/d3/. We would thus like to discover rules of large support.
Note that valid rules of small support are not very interesting anyway, because the savings gained
by applying them are negligible.

Finding the support of a rule on the web site requires knowing all the URLs associated with
the site. Since the only data at our disposal is the URL list, which is unlikely to be complete, the
best we can do is compute the support of rules in this URL list. That is, for each rule φ, we can
find the number of instances (u1, u2) of φ, for which both u1 and u2 appear in the URL list. We
call these instances the support of φ in the URL list and denote them by supportL(φ). If the URL
list is long enough, we expect this support to be representative of the overall support of the rule
on the web site.

Note that since |supportL(α → β)| = |supportL(β → α)|, for every α and β, our algorithm
cannot know whether both rules are valid or just one of them is valid. It therefore outputs the pair
α, β instead. Finding which of the two directions is valid is left to the final phase of DustBuster.

4.1.1 Characterization of support size

Given a URL list L, how do we compute the size of the support of every possible rule? To this end,
we introduce a new characterization of the support size. Consider a substring α of a URL u = pαs.
We call the pair (p, s) the envelope of α in u. For example, if u = http://www.site.com/index.html

and α =“index”, then the envelope of α in u is the pair of strings “ˆhttp://www.site.com/” and
“.html$”. By Definition 1, a pair of URLs (u1, u2) is an instance of a substitution rule α → β if
and only if there exists a shared envelope (p, s) so that u1 = pαs and u2 = pβs.

For a string α, denote by EL(α) the set of envelopes of α in URLs that satisfy the following
conditions: (1) these URLs appear in the URL list L; and (2) the URLs have α as a substring.
If α occurs in a URL u several times, then u contributes as many envelopes to EL(α) as the
number of occurrences of α in u. The following theorem shows that under certain conditions,
|EL(α) ∩ EL(β)| equals supportL(α → β). As we shall see later, this gives rise to an efficient
procedure for computing support size, since we can compute the envelope sets of each substring α
separately, and then by join and sort operations find the pairs of substrings whose envelope sets
have large intersections.

Theorem 2. Let α 6= β be two distinct, non-empty, and non-semiperiodic strings. Then,

|supportL(α→ β)| = |EL(α) ∩ EL(β)|.

A string α is semiperiodic, if it can be written as α = γkγ′ for some string γ, where |α| > |γ|,
k ≥ 1, γk is the string obtained by concatenating k copies of the string γ, and γ′ is a (possibly
empty) prefix of γ [13]. If α is not semiperiodic, it is non-semiperiodic. For example, the strings
“a.a.a” and “/////” are semiperiodic, while the strings “a.a.b” and “%////” are not.

Unfortunately, the theorem does not hold for rules where one of the strings is either semiperi-
odic or empty. For example, let α be the semiperiodic string “a.a” and β = “a”. Let u1 =
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http://a.a.a/ and let u2 = http://a.a/. There are two ways in which we can substitute α with
β in u1 and obtain u2. Similarly, let γ be “a” and δ be the empty string. There are three ways in
which we can substitute γ with δ in u1 to obtain u2. This means that the instance (u1, u2) will be
associated with three envelopes in EL(γ) ∩ EL(δ) and with two envelopes in EL(α) ∩ EL(β) and
not just one. Thus, when α or β are semiperiodic or empty, |EL(α) ∩EL(β)| can overestimate the
support size. On the other hand, such examples are quite rare, and in practice we expect a minimal
gap between |EL(α) ∩ EL(β)| and the support size.

Proof of Theorem 2. To prove the identity, we will show a 1-1 mapping from supportL(α → β)
onto EL(α)∩EL(β). Let (u1, u2) be any instance of the rule α→ β that occurs in L. By Definition
1, there exists an envelope (p, s) so that u1 = pαs and u2 = pβs. Note that (p, s) ∈ EL(α)∩EL(β),
hence we define our mapping as: fα,β(u1, u2) = (p, s). The main challenge is to prove that fα,β

is a well defined function; that is, fα,β maps every instance (u1, u2) to a single pair (p, s). This is
captured by the following lemma:

Lemma 3. Let α 6= β be two distinct, non-empty, and non-semiperiodic strings. Then, there
cannot be two distinct pairs (p1, s1) 6= (p2, s2) s.t. p1αs1 = p2αs2 and p1βs1 = p2βs2.

We are left to show that f is 1-1 and onto. Take any two instances (u1, u2),(v1, v2) of (α, β),
and suppose that fα,β(u1, u2) = fα,β(v1, v2) = (p, s). This means that u1 = pαs = v1 and u2 =
pβs = v2. Hence, necessarily (u1, u2) = (v1, v2), implying f is 1-1. Take now any envelope
(p, s) ∈ EL(α)∩EL(β). By definition, there exist URLs u1, u2 ∈ L, so that u1 = pαs and u2 = pβs.
By Definition 1, (u1, u2) is an instance of the rule α→ β, and thus fα,β(u1, u2) = (p, s).

In order to prove Lemma 3, we show the following basic property of semiperiodic strings:

Lemma 4. Let α 6= β be two distinct and non-empty strings. If β is both a suffix and a prefix of
α, then α must be semiperiodic.

Proof. Since β is both a prefix and a suffix of α and since α 6= β, there exist two non-empty strings
β0 and β2 s.t.

α = β0β = ββ2.

Let k = ⌊ |α|
|β0|

⌋. Note that k ≥ 1, as |α| ≥ |β0|. We will show by induction on k that α = βk
0β

′
0,

where β′0 is a possibly empty prefix of β0.

The induction base is k = 1. In this case, |β0| ≥ |α|
2 , and as α = β0β, |β| ≤ |β0|. Since

β0β = ββ2, it follows that β is a prefix of β0. Thus, define β′0 = β and we have:

α = β0β = β0β
′
0.

Assume now that the statement holds for ⌊ |α|
|β0|

⌋ = k − 1 ≥ 1 and let us show correctness for

⌊ |α|
|β0|

⌋ = k. As α = β0β, then ⌊ |β|
|β0|

⌋ = k − 1 ≥ 1. Hence, |β| ≥ |β0| and thus β0 must be a prefix of

β (recall that β0β = ββ2). Let us write β as:

β = β0β1.

We thus have the following two representations of α:

α = β0β = β0β0β1 and α = ββ2 = β0β1β2.
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We conclude that:
β = β1β2.

We thus found a string (β1), which is both a prefix and a suffix of β. We therefore conclude from
the induction hypothesis that

β = βk−1
0 β′0,

for some prefix β′0 of β0. Hence,
α = β0β = βk

0β
′
0.

We can now prove Lemma 3:

Proof of Lemma 3. Suppose, by contradiction, that there exist two different pairs (p1, s1) and
(p2, s2) so that:

u1 = p1αs1 = p2αs2 (1)

u2 = p1βs1 = p2βs2. (2)

These equations together with the fact that (p1, s1) 6= (p2, s2) imply that both p1 6= p2 and
s1 6= s2. Thus, by Equations (1) and (2), one of p1 and p2 is a proper prefix of the other. Suppose,
for example, that p1 is a proper prefix of p2 (the other case is identical). It follows that s2 is a
proper suffix of s1.

Let us assume, without loss of generality, that |α| ≥ |β|. There are two cases to consider:

Case (i): Both p1α and p1β are prefixes of p2. This implies that also s2α, s2β are suffixes of s1.

Case (ii): At least one of p1α and p1β is not a prefix of p2.

Case (i): In this case, p2 can be expressed as:

p2 = p1αp
′
2 = p1βp

′′
2,

for some strings p′2 and p′′2 . Thus, since |α| ≥ |β|, β is a prefix of α. Similarly:

s1 = s′1αs2 = s′′1βs2.

Thus, β is also a suffix of α. According to Lemma 4, α is therefore semiperiodic. A contradiction.
Case (ii): If p1α is not a prefix of p2, α can be written as α = α0α1 = α1α2, for some non-

empty strings α0, α1, α2, as shown in Figure 1. By Lemma 4, α is semiperiodic. A contradiction.
The case that p1β is not a prefix of p2 is handled in a similar manner.

Figure 1: Breakdown of α in Lemma 3.
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4.2 Small buckets heuristic

While most valid dust rules have large support, the converse is not necessarily true: there can be
rules with large support that are not valid. One class of such rules is substitutions among numbered
items, e.g., (lect1.ps,lect2.ps), (lect1.ps,lect3.ps), and so on. Another class is substitutions
among values of a parameter, e.g., (day=1,day=2), (day=1,day=3), etc. Some parameter substitu-
tions are dust and others are not. Moreover, the ranges of many parameter values are too large
to efficiently capture as a collection of substring substitutions (e.g., dates). We therefore do not
want to capture parameter substitution rules in this phase of the algorithm; we deal with them
separately in Section 5.3.

We would like to somehow filter out the rules with “misleading” support. The support for a
rule α → β can be thought of as a collection of recommendations, where each envelope (p, s) ∈
EL(α)∩EL(β) represents a single recommendation. Suppose now that one envelope (p, s) is willing
to give a recommendation to anybody (any rule) that asks for it, for example “ˆhttp://” → “ˆ”.
Naturally its recommendations would lose their value. This type of support only leads to many
false rules being considered. This is the intuitive motivation for the following heuristic to separate
the valid dust rules from false ones.

If an envelope (p, s) belongs to many envelope sets EL(α1), EL(α2),. . . , EL(αk), then it con-
tributes to the intersections EL(αi) ∩ EL(αj), for all 1 ≤ i 6= j ≤ k. The substrings α1, α2, . . . , αk

constitute what we call a bucket. That is, for a given envelope (p, s), bucket(p, s) is the set of all
substrings α s.t. pαs ∈ L. An envelope pertaining to a large bucket supports many rules.

Small Buckets Heuristic
Most of the support of valid dust substring substitution rules is likely to belong to small buckets.

4.3 Similarity likeliness heuristic

The above two heuristics use the URL strings alone to detect dust. In order to raise the precision of
the algorithm, we use a third heuristic that better captures the “similarity dimension”, by providing
hints as to which instances are likely to be similar.

Similarity Likeliness Heuristic
The likely similar support of a valid dust rule is large.

We show below that using cues from the URL list we can determine which URL pairs in the support
of a rule are likely to have similar content and which are not. This enables us to filter out instances
that are not dust and thereby calculate the “likely similar support” of a rule. The likely similar
support, rather than the complete support, is used to determine whether a rule is valid or not. This
heuristic turned out to be very important in removing invalid rules. For example, in a forum web
site we examined, the URL list included two sets of URLs http://politics.domain/story num

and http://movies.domain/story num with different numbers replacing “num”. The support of
the false rule “http://politics.domain” → “http://movies.domain” was large, yet since the
corresponding stories were very different, the likely similar support of the rule was found to be
small.
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How do we use the URL list to estimate similarity between documents? The simplest case is
that the URL list includes a document sketch for each URL. Such sketches are typically available
when the URL list is the output of a previous crawl of the web site. Documents sketches, such as
the shingles of Broder et al. [7], can be used to estimate the similarities among documents.

When the URL list is taken from web server logs, documents sketches are not available. In
this case we use document sizes as primitive sketches (document sizes are usually given by web
server software). We determine two documents to be similar if their sizes “match”. Size matching,
however, turns out to be quite intricate, because the same document may have very different sizes
when inspected at different points of time or by different users. This is especially true when dealing
with forums or blogging web sites. The URL list may provide sizes of documents at different times,
and therefore if two URLs have different “size” values in the URL list, we cannot immediately infer
that these URLs are not dust. Instead, we resort to a somewhat more refined strategy.

For each unique URL u that appears in the URL list, we track all its occurrences in the URL
list, and keep the minimum and the maximum size values encountered. We denote the interval
between these two numbers by Iu. We now say that two URLs, u1 and u2, have mismatching sizes,
if the intervals Iu1

and Iu2
are disjoint. That is, either the maximum size of u1 is smaller than the

minimum size of u2 or vice versa. Our experiments show that this size matching heuristic is very
effective in improving the precision of our algorithm, often increasing precision by a factor of two.

While size matching is an effective heuristic, it also has its limitations. Valid dust rules may
exist that will never be found when using the size heuristic. An example of such a dust rule is
“ps” → “pdf” which was found in the academic site only when running DustBuster without size
matching. The reason is that such documents are likely to have consistently different sizes although
their contents are similar.

5 DustBuster

In this section we describe DustBuster—our algorithm for discovering site-specific dust rules.
DustBuster has four phases. The first phase, presented in Section 5.1, uses the URL list alone
to generate a short list of likely dust rules. The second phase, detailed in Section 5.2, removes
redundancies from this list. The next phase generates likely parameter substitution rules and is
discussed in Section 5.3. The last phase, presented in Section 5.4, validates or refutes each of the
rules in the list, by fetching a small sample of pages. The last section discusses the application of
the algorithm for dust canonization.

5.1 Detecting likely dust rules

Our strategy for discovering likely dust rules, based on the heuristics described in the previous
section, is the following: we compute the size of the support of each rule that has at least one
instance in the URL list, and output the rules with largest support. Based on Theorem 2, we
compute the size of the support of a rule α → β as the size of the set EL(α) ∩ EL(β). That is
roughly what our algorithm does, but with three reservations:

(1) Based on the small buckets heuristic, we avoid considering certain rules by ignoring large
buckets in the computation of envelope set intersections. Buckets bigger than some threshold T

are called overflowing, and all envelopes pertaining to them are denoted collectively by O and are
not included in the envelope sets.
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(2) Based on the similarity likeliness heuristic, we filter support by estimating the likelihood
of two documents being similar: We eliminate additional rules by filtering out instances whose
associated documents are unlikely to be similar in content. That is, for a given instance u1 = pαs

and u2 = pβs, the envelope (p, s) is disqualified if u1 and u2 are found unlikely to be similar
using the tests introduced in Section 4.3. These techniques are provided as a boolean function
LikelySimilar which returns false only if the documents of the two input URLs are unlikely to be
similar. The set of all disqualified envelopes is then denoted Dα,β.

(3) In practice, substitutions of long substrings are rare. Hence, our algorithm considers sub-
strings of length at most S, for some given parameter S.

To conclude, our algorithm computes for every two substrings α, β that appear in the URL list
and whose length is at most S, the size of the set (EL(α) ∩ EL(β)) \ (O ∪Dα,β).

1:Function DetectLikelyRules(URLList L)
2: create table ST (substring, prefix, suffix, size range/doc sketch)
3: create table IT (substring1, substring2)
4: create table RT (substring1, substring2, support size)
5: for each record r ∈ L do
6: for ℓ = 0 to S do
7: for each substring α of r.url of length ℓ do
8: p := prefix of r.url preceding α
9: s := suffix of r.url succeeding α
10: add (α, p, s, r.size range/r.doc sketch) to ST
11: group tuples in ST into buckets by (prefix,suffix)
12: for each bucket B do
13: if (|B| = 1 or |B| > T) continue
14: for each pair of distinct tuples t1, t2 ∈ B do
15: if (LikelySimilar(t1, t2))
16: add (t1.substring, t2.substring) to IT
17: group tuples in IT into rule supports by (substring1,substring2)
18: for each rule support R do
19: t := first tuple in R
20: add tuple (t.substring1, t.substring2, |R|) to RT
21: sort RT by support size
22: return all rules in RT whose support size is ≥MS

Figure 2: Algorithm for discovering likely dust rules.

Our algorithm for discovering likely dust rules is described in Figure 2. The algorithm gets
as input the URL list L. It uses three tunable parameters– the maximum substring length, S,
the overflowing bucket size, T , and the minimum support size, MS. We assume the URL list
has been pre-processed so that: (1) only unique URLs have been kept; (2) all the URLs have been
tokenized and include the preceding ˆ and succeeding $; (3) all records corresponding to errors (http
return codes in the 4xx and 5xx series) have been filtered out; (4) for each URL, the corresponding
document sketch or size range have been recorded.

The algorithm uses three tables: a substring table ST, an instance table IT, and a rule table
RT. Their attributes are listed in Figure 2. In principle, the tables can be stored in any database
structure; our implementation uses text files.

In lines 5–10, the algorithm scans the URL list, and records all substrings of lengths 0 to
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S (where S is the maximum substring length) of the URLs in the list. A substring of length 0
represents the empty string, which occurs in some rules. For each such substring α, a tuple is
added to the substring table ST. This tuple consists of the substring α, as well as its envelope
(p, s), and either the URL’s document sketch or its size range. The substrings are then grouped
into buckets by their envelopes (line 11). Our implementation does this by sorting the file holding
the ST table by the second and third attributes. Note that two substrings α, β appear in the bucket
of (p, s) if and only if (p, s) ∈ EL(α) ∩ EL(β).

In lines 12–16, the algorithm enumerates the envelopes found. An envelope (p, s) contributes
1 to the intersection of the envelope sets EL(α) ∩ EL(β), for every α, β that appear in its bucket.
Thus, if the bucket has only a single entry, we know (p, s) does not contribute any instance to any
rule, and thus can be tossed away. If the bucket is overflowing (its size exceeds T ), then (p, s) is
also ignored (line 13).

In lines 14–16, the algorithm enumerates all the pairs (α, β) of substrings that belong to the
bucket of (p, s). If the documents associated with the URLs pαs and pβs seem likely to be similar
either through size matching or document sketch matching (line 15), (α, β) is added to the instance
table IT (line 16).

The number of times a pair (α, β) has been added to the instance table is exactly the size of
the set (EL(α) ∩ EL(β)) \ (O ∪ Dα,β), which is our estimated support for the rules α → β and
β → α. Hence, all that is left to do is compute these counts and sort the pairs by their count (lines
17–22). The algorithm’s output is an ordered list of pairs. Each pair representing two likely dust

rules (one in each direction). Only rules whose support is large enough (bigger than MS) are kept
in the list.

Complexity analysis. Let n be the number of records in the URL list and let m be the average
length (in tokens) of URLs in the URL list. We assume tokens are of constant length. The size of
the URL list is then O(mn) bits. We use Õ() to suppress logarithmic factors, which are typically
negligible.

The computation has two major bottlenecks. The first is filling in the instance table IT (lines
12–16). Since the algorithm enumerates all the buckets in ST (there are at most O(mnS) of these),
and then enumerates each pair of substrings in each bucket, it could possibly face a quadratic
blowup. Yet, since overflowing buckets are ignored, then this step takes only O(mnST 2) time. The
second bottleneck is sorting the URL list and the intermediate tables. Since all the intermediate
tables are of size at most O(mnST 2), the sorting can be carried in Õ(mnST 2) time and O(mnST 2)
storage space. By using an efficient external storage sort utility, we can keep the memory complexity
Õ(1) rather than linear. The algorithm does not fetch any pages.

5.2 Eliminating redundant rules

By design, the output of the above algorithm includes many overlapping pairs. For example, when
running on a forum site, our algorithm finds the pair (“.co.il/story?id=”, “.co.il/story ”), as
well as numerous pairs of substrings of these, such as (“story?id=”, “story ”). Note that every
instance of the former pair is also an instance of the latter. We thus say that the former refines
the latter. It is desirable to eliminate redundancies prior to attempting to validate the rules, in
order to reduce the cost of validation. However, when one likely dust rule refines another, it is not
obvious which should be kept. In some cases, the broader rule is always true, and all the rules that
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refine it are redundant. In other cases, the broader rule is false as a general rule, and is only valid
in specific contexts identified by the refining ones.

Nevertheless, in some cases, we can use information from the URL list in order to deduce that
a pair is redundant. When two pairs have exactly the same support in the URL list, this gives a
strong indication that the latter, seemingly more general rule, is valid only when showing up at the
context specified by the former rule. We can thus eliminate the latter rule from the list.

We next discuss in more detail the notion of refinement and show how to use it to eliminate
redundant rules.

Definition 5. (Refinement) A rule φ refines a rule ψ if support(φ) ⊆ support(ψ).

That is, φ refines ψ, if every instance (u1, u2) of φ is also an instance of ψ. Testing refinement
for substitution rules turns out to be easy:

Lemma 6. A substitution rule α′ → β′ refines a substitution rule α→ β if and only if there exists
an envelope (γ, δ) s.t. α′ = γαδ and β′ = γβδ.

Proof. We prove derivation in both directions. Assume, initially, that there exists an envelope (γ, δ)
s.t. α′ = γαδ and β′ = γβδ. We need to show that in this case α′ → β′ refines α→ β. Take, then,
any instance (u1, u2) of α′ → β′. By Definition 1, there exists an envelope (p′, s′) s.t. u1 = p′α′s′

and u2 = p′β′s′. Hence, if we define p = p′γ and s = δs′, then we have that u1 = pαs and u2 = pβs.
Using again Definition 1, we conclude that (u1, u2) is also an instance of α → β. This proves the
first direction.

For the second direction, assume that α′ → β′ refines α → β. Assume that none of α, β, α′, β′

starts with ˆ or ends with $. (The extension to α, β, α′, β′ that can start with ˆ or end with $ is
easy, but requires some technicalities, that would harm the clarity of this proof.) Define u1 = ˆα′$
and u2 = ˆβ′$. By Definition 1, (u1, u2) is an instance of α′ → β′. Due to refinement, it is also
an instance of α → β. Hence, there exist p, s s.t. u1 = pαs and u2 = pβs. Hence, pαs = ˆα′$ and
pβs = ˆβ′$. Since α, β do not start with ˆ and do not end with $, then p must start with ˆ and s
must end with $. Define then γ to be the string p excluding the leading ˆ, and define δ to be the
string s excluding the trailing $. We thus have: α′ = γαδ and β′ = γβδ, as needed.

The characterization given by the above lemma immediately yields an efficient algorithm for
deciding whether a substitution rule α′ → β′ refines a substitution rule α → β: we simply check
that α is a substring of α′, replace α by β, and check whether the outcome is β′. If α has multiple
occurrences in α′, we check all of them. Note that our algorithm’s input is a list of pairs rather
than rules, where each pair represents two rules. When considering two pairs (α, β) and (α′, β′),
we check refinement in both directions.

Now, suppose a rule α′ → β′ was found to refine a rule α → β. Then, support(α′ →
β′) ⊆ support(α → β), implying that also supportL(α′ → β′) ⊆ supportL(α → β). Hence,
if |supportL(α′ → β′)| = |supportL(α → β)|, it must be the case that supportL(α′ → β′) =
supportL(α → β). If the URL list is sufficiently representative of the web site, this gives an
indication that every instance of the refined rule α → β that occurs on the web site is also an
instance of the refinement α′ → β′. This makes one of the rules redundant. We choose to keep the
refinement α′ → β′, because it gives the full context of the substitution.

One small obstacle to using the above approach is the following. In the first phase of our
algorithm, we do not compute the exact size of the support |supportL(α → β)|, but rather
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calculate the quantity |(EL(α) ∩ EL(β)) \ (O ∪Dα,β)|. It is possible that α′ → β′ refines α → β

and supportL(α′ → β′) = supportL(α → β), yet |(EL(α′) ∩ EL(β′)) \ (O ∪Dα′,β′)| < |(EL(α) ∩
EL(β)) \ (O ∪Dα,β)|.

How could this happen? Consider some envelope (p, s) ∈ EL(α) ∩ EL(β), and let (u1, u2) =
(pαs, pβs) be the corresponding instance of α → β. Since supportL(α′ → β′) = supportL(α →
β), then (u1, u2) is also an instance of α′ → β′. Therefore, there exists some envelope (p′, s′) ∈
EL(α′) ∩ EL(β′) s.t. u1 = p′α′s′ and u2 = p′β′s′.

α is a substring of α′ and β is a substring of β′, thus p′ must be a prefix of p and s′ must be
a suffix of s. This implies that any URL that contributes a substring γ to the bucket of (p, s) will
also contribute a substring γ′ to the bucket of (p′, s′), unless γ′ exceeds the maximum substring
length S. In principle, then, we should expect the bucket of (p′, s′) to be larger than the bucket of
(p, s). If the maximum bucket size T happens to be exactly between the sizes of the two buckets,
then (p′, s′) overflows while (p, s) does not. In this case, the first phase of DustBuster will account
for (u1, u2) in the computation of the support of α→ β but not in the computation of the support
of α′ → β′, incurring a difference between the two.

In practice, if the supports are identical, the difference between the calculated support sizes
should be small. We thus eliminate the refined rule, even if its calculated support size is slightly
above the calculated support size of the refining rule. However, to increase the effectiveness of this
phase we run the first phase of the algorithm twice, once with a lower overflow threshold Tlow and
once with a higher overflow threshold Thigh. While the lower threshold support is more effective
in filtering out false rules the support calculated using the higher threshold is more effective in
eliminating redundant rules.

The algorithm for eliminating refined rules from the list is described in Figure 3. The algorithm
gets as input a list of pairs, representing likely rules, sorted by their calculated support size. It
uses three tunable parameters: (1) the maximum relative deficiency, MRD, (2) the maximum
absolute deficiency, MAD; and (3) the maximum window size, MW. MRD and MAD determine the
maximum difference allowed between the calculated sizes of the supports of the refining rule and
the refined rule, when we eliminate the refined rule. MW determines how far down the list we are
willing to look for refinements.

1:Function EliminateRedundancies(pairs list R)
2: for i = 1 to |R| do
3: if (already eliminated R[i]) continue
4: to eliminate current := false
5: for j = 1 to min(MW, |R| − i) do
6: if (R[i].size −R[i+ j].size >

max(MRD · R[i].size,MAD)) break
7: if (R[i] refines R[i+ j])
8: eliminate R[i+ j]
9: else if (R[i+ j] refines R[i]) then

10: to eliminate current := true
11: break
12: if (to eliminate current)
13: eliminate R[i]
14: return R

Figure 3: Eliminating redundant rules.
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The algorithm scans the list from top to bottom. For each rule R[i], which has not been
eliminated yet, the algorithm scans a “window” of rules below R[i]. Suppose s is the calculated
size of the support of R[i]. The window size is chosen so that (1) it never exceeds MW ; and (2) the
difference between s and the calculated support size of the lowest rule in the window is at most the
maximum between MRD · s and MAD. Now, if R[i] refines a rule R[j] in the window, the refined
rule R[j] is eliminated, while if some rule R[j] in the window refines R[i], R[i] is eliminated.

It is easy to verify that the running time of the algorithm is at most |R| · MW . In our
experiments, this algorithm reduces the set of rules by over 90%.

5.3 Parameter substitutions

Inline parameters in URLs typically comply with a standard format. In many sites, an inline
parameter name is preceded by ? or & and followed by = and the parameter’s value, which is
followed by either the end of the URL or &. We can therefore employ a simple regular expression
search on URLs in the URL list in order to detect popular parameters, along with multiple examples
of values for each parameter. Having detected the parameters, we check for each one whether
replacing its value with an arbitrary one is a valid dust rule. To this end, we exploit the ST table
computed by DustBuster (see Figure 2), after it has been sorted and divided into buckets. We
seek buckets whose prefix attribute ends with the desired parameter name, and then compare the
document sketches or size ranges of the relevant URLs pertaining to such buckets.

For each parameter, p, we choose some value of the parameter , vp, and add two rules to the list
of likely rules: the first, replaces the value of the parameter p with vp, the second rule, omits the
parameter altogether. Due to the simplicity of this algorithm, its detailed presentation is omitted.

5.4 Validating dust rules

So far, the algorithm has generated likely rules from the URL list alone, without fetching even a
single page from the web site. Fetching a small number of pages for validating or refuting these
rules is necessary for two reasons. First, it can significantly leverage the final precision of the
algorithm. Second, the first two phases of DustBuster, which discover likely substring substitution
rules, cannot distinguish between the two directions of a rule. The discovery of the pair (α, β)
can represent both α → β and β → α. This does not mean that in reality both rules are valid or
false simultaneously. It is often the case that only one of the directions is valid; for example, in
many sites removing the substring index.html is always valid, whereas adding one is not. Only by
attempting to fetch actual page contents we can tell which direction is valid, if any.

The validation phase of DustBuster therefore fetches a small sample of web pages from the web
site in order to check the validity of the rules generated in the previous phases. The validation
of a single rule is presented in Figure 4. The algorithm is given as input a likely rule R and a
list of URLs from the web site and decides whether the rule is valid. It uses two parameters: the
validation count, N (how many samples to use in order to validate each rule), and the refutation
threshold, ǫ (the minimum fraction of counterexamples to a rule required to declare the rule false).

Remark. The application of R to u (line 6) may result in several different URLs. For exam-
ple, there are several ways of replacing the string “people” with the string “users” in the URL
http://people.domain.com/people, resulting in the URLs http://users.domain.com/people,
http://people.domain.com/users, and http://users.domain.com/users. Our policy is to se-
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1:Function ValidateRule(R, L)
2: positive := 0
3: negative := 0
4: while (positive < (1 − ǫ)N and negative < ǫN) do
5: u := a random URL from L on which applying R results in a different URL
6: v := outcome of application of R to u
7: fetch u and v
8: if (fetch u failed) continue
9: if (fetch v failed or DocSketch(u) 6= DocSketch(v))

10 negative := negative + 1
11: else
12: positive := positive + 1
13: if (negative ≥ ǫN )
14: return false

15: return true

Figure 4: Validating a single likely rule.

lect one standard way of applying a rule. For example, in the case of substring substitutions, we
simply replace the first occurrence of the substring.

In order to determine whether a rule is valid, the algorithm repeatedly chooses random URLs
from the given test URL list until hitting a URL on which applying the rule results in a different
URL (line 5). The algorithm then applies the rule to the random URL u, resulting in a new URL
v. The algorithm then fetches u and v. Using document sketches, such as the shingling technique
of Broder et al. [7], the algorithm tests whether u and v are similar. If they are, the algorithm
accounts for u as a positive example attesting to the validity of the rule. If v cannot be fetched,
or they are not similar, then it is accounted as a negative example (lines 9–12). The testing is
stopped when either the number of negative examples surpasses the refutation threshold or when
the number of positive examples is large enough to guarantee the number of negative examples will
not surpass the threshold.

One could ask why we declare a rule valid even if we find (a small number of) counterexamples to
it. There are several reasons: (1) the document sketch comparison test sometimes makes mistakes,
since it has an inherent false negative probability; (2) dynamic pages sometimes change significantly
between successive probes (even if the probes are made at short intervals); and (3) the fetching of
a URL may sometimes fail at some point in the middle, after part of the page has been fetched.
By choosing a refutation threshold smaller than one, we can account for such situations.

Each parameter substitution rule is validated using the code in Figure 4. The validation of
substring substitutions is more complex, as it needs to address directions and refinements. The
algorithm for doing so is given in Figure 5. Its input consists of a list of pairs representing likely
substring transformations, (R[i].α,R[i].β), and a test URL list L.

For a pair of substrings (α, β), we use the notation α < β to denote that either |α| < |β| or
|α| = |β| and α precedes β in the lexicographical order. In this case, we say that the rule shrinks
the URL. We give precedence to shrinking substitutions. Therefore, given a pair (α, β), if α > β,
we first try to validate the rule α→ β. If this rule is valid, we ignore the rule in the other direction
since, even if this rule turns out to be valid as well, using this rule during canonization is only likely
to create cycles, i.e., rules that can be applied an infinite number of times because they cancel
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out each others’ changes. If the shrinking rule is invalid, though, we do attempt to validate the
opposite direction, so as not to lose a valid rule. Whenever one of the directions of (α, β) is found
to be valid, we remove from the list all pairs refining (α, β)– once a broader rule is deemed valid,
there is no longer a need for refinements thereof. By eliminating these rules prior to validating
them, we reduce the number of pages we fetch. We assume that each pair in R is ordered so that
R[i].α > R[i].β.

1:Function Validate(rules list R, test URLList L)
2 create an empty list of rules LR
3: for i = 1 to |R| do
4: for j = 1 to i - 1 do
5: if (R[j] was not eliminated and R[i] refines R[j])
6: eliminate R[i] from the list
7: break
8: if (R[i] was eliminated)
9: continue

10: if (ValidateRule(R[i].α→ R[i].β, L))
11: add R[i].α→ R[i].β to LR
12: else if (ValidateRule(R[i].β → R[i].α, L))
13: add R[i].α→ R[i].β to LR
14: else
15: eliminate R[i] from the list
16: return LR

Figure 5: Validating likely rules.

The algorithm eliminates a rule from the list either if it is found to be false or if it or its
counterpart in the other direction is a refinement of a valid rule. Note that when a rule α′ → β′

refines a rule α→ β, then the validity of the latter immediately implies the validity of the former.
The refining rule is thus made redundant and can be eliminated from the list (lines 3–10).

The running time of the algorithm is at most O(|R|2 +N |R|). Since the list is assumed to be
rather short, this running time is manageable. The number of pages fetched is O(N |R|) in the
worst-case, but much smaller in practice, since we eliminate many redundant rules after validating
rules they refine. In typical scenarios, we had to attempt to validate roughly a third of the original
list of rules.

5.5 Application for URL canonization

Finally, we explain how the discovered dust rules may be used for canonization of a URL list. Our
canonization algorithm is described in Figure 6. The algorithm receives a URL u and a list of valid
dust rules, R. The idea behind this algorithm is very simple: in each iteration, each rule in R
in turn is repeatedly applied to u up to MA times, until the rule does not change the URL; this
process is repeated up to MA times, until there is an iteration in which u is unchanged (lines 6–7).

If a rule can be applied more than once (e.g., because the same substring appears multiple times
in the URL), then each iteration in lines 4-5 applies it in the first place in the URL where it is
applicable. As long as the number of occurrences of the replaced substring in the URL does not
exceed MA, the algorithm replaces all of them.
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1:Function Canonize(URL u, rules list R)
2: for k = 1 to MA do
3: prev := u
3: for i = 1 to |R| do
4: for j = 1 to MA do
5: u := A URL obtained by applying R[i] to u
6: if (prev = u)
7: break
8: output u

Figure 6: Canonization algorithm.

We limit the number of iterations of the algorithm and applications of a rule to the parameter
MA, because otherwise the algorithm could have entered an infinite loop (if the graph GR contains
cycles). Since MA is a constant, chosen independently of the number of rules, the algorithm’s
running time is linear in the number of rules. Recall that the general canonization problem is hard,
so we cannot expect this algorithm to always produce a minimum size canonization. Nevertheless,
our empirical study shows that the savings obtained using this algorithm are high.

We believe that the algorithm’s common case success stems from two features. First, our policy
of choosing shrinking rules whenever possible typically eliminates cycles. Second, our elimination
of refinements of valid rules leaves a small set of rules, most of which do not affect each other.

6 Experimental Results

6.1 Experiment setup

We experiment with DustBuster on four web sites: a dynamic forum site, an academic site
(www.ee.technion.ac.il), a large news site (cnn.com) and a smaller news site (nydailynews.com). In
the forum site, page contents are highly dynamic, as users continuously add comments. The site
supports multiple domain names. Most of the site’s pages are generated by the same software. The
news sites are similar in their structure to many other news sites on the web. The large news site
has a more complex structure, and it makes use of several sub-domains as well as URL redirections.
The academic site is the most diverse: It includes both static pages and dynamic software-generated
content. Moreover, individual pages and directories on the site are constructed and maintained by
a large number of users (faculty members, lab managers, etc.)

In the academic and forum sites, we detect likely dust rules from web access logs, whereas in
the news sites, we detect likely dust rules from a crawl log. The small news site crawl includes
9, 456 URLs (see Table 1) and the large news site crawl includes 11, 883 unique URLs. In these
two cases, the log size is equal to the number of unique URLs since the URL list is produced from
a crawl and we do not crawl the same page twice. In the forum and academic sites, we repeat our
experiment four times with four different access logs pertaining to different time periods. In the
forum site, each of the four logs covers a single day. Each daily log includes roughly 40,000 entries,
accounting for around 15,000–20,000 unique URLs (as some URLs are accessed multiple times). In
the academic site, there is less traffic, hence we use logs representing roughly a week of activity.
Each weekly log includes between 300,000 and 500,000 entries, accounting for around 15,000 unique
URLs. In the validation phase, we use random entries from additional logs, different from those
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used to detect the rules. The canonization algorithm is tested on yet another log, different from
the ones used to detect and validate the rules.

Web Site Log Size Unique URLs

Forum Site 38816 15608

Academic Site 344266 17742

Large News Site 11883 11883

Small News Site 9456 9456

Table 1: Log sizes.

6.2 DustBuster parameter settings

Although the parameters are only heuristically chosen to obtain good results, we use the same
parameter values for all four sites and our empirical results demonstrate that these values give
good results for sites that vary in structure and size. In our experiments, the maximum substring
length, S, is set to 35 tokens, greater than the width of the widest rule. S should be big enough to
include the widest rule, which includes the most context and refines all other redundant rules. This
ensures the effectiveness of the second phase in eliminating redundant rules. For example, the rule
http://www.cnn.com → http://cnn.com refines both “www.cnn” → “cnn” and http://www →
http://. However, if S is set to 10, this rule will not be discovered, and since neither of the other
two rules refines the other, they will both appear in the likely dust rules. On the other hand, the
larger S is, the longer the algorithm runs.

The max bucket size used for detecting dust rules, Tlow, was set to 6, and the max bucket
size used for eliminating redundant rules, Thigh, was set to 11. The former is set to a lower value
because we are only interested in rules whose support comes from small buckets. On the other
hand, the latter is used to compare the support sizes of two rules in order to test whether one
refines the other. In this context, using a small threshold gives noisy results, so we use a larger
threshold in order to increase the consistency of these counts.

In the elimination of redundant rules, we allowed a relative deficiency, MRD, of up to 5%, and
an absolute deficiency, MAD, of 1. The implication of setting these parameters to higher values is
increasing the likelihood of eliminating more general valid rules. On the other hand, using lower
values may lead to missing some of the redundant rules. The maximum window size, MW, was set
to 1100 rules in our experiments. The lower this value is, the more likely it is that some redundant
rules will not be eliminated. On the other hand, a higher value increases the memory usage of the
algorithm. Empirically, our choice appears to provide a good tradeoff.

The value of MS, the minimum support size, was statically set to 3 in all our experiments so
the reduction in the crawl will be high. The algorithm uses a validation count, N, of 100. In all
our experiments, extra validations beyond 50 and up to 100 do not affect the results.

Finally, the canonization uses a maximum of 10 iterations. Again, empirically, the reduction
achieved remains the same for any number of iterations beyond 2 and up to 10.
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6.3 Shingles

The validation uses shingling to detect similarity of html, text, pdf and ps files converted to text.
Given document D, Sn(D) is defined as the set of all word sequences of length n, or n-grams, in D
(n=10 in our experiments). A hash is then applied to each of these n-grams, and the hashed n-grams
are called shingles [7]. The resemblance of two documents A and B is then defined as r(A,B) =
Sn(A)∩Sn(B)
Sn(A)∪Sn(B) . Shingles can be used to efficiently test the resemblance between two documents.
For a given document D, the shingle with the lowest value can be used as a document sketch.
The probability that two such shingles are identical is equal to the resemblance of the associated
documents. Two text documents d1, d2 are said to be similar, if the resemblance between them
exceeds 1 − δ, where δ > 0 is some small tunable threshold value. Binary documents are hashed
using the MD5 message digest algorithm [23] and compared for an exact match.

In our experiments, n-grams of length 10 are extracted from each document, a hash is applied
to all the n-grams to produce shingles, and the shingle with the lowest value is chosen. The process
is repeated 4 times with four different hash functions resulting in a document sketch of 4 shingles.
In most of our experiments, unless stated otherwise, when comparing two documents, we require
that all 4 shingles be identical. In some of our experiments we require that only two shingles of the
four are similar.

It should be noted that our algorithm is agnostic to the method used to estimate the similarity of
two documents. Although the shingles method is effective, efficient, and widely used, it has its limi-
tations. For example, in the small news site, the print version of the article includes many additional
links, anchor text and images. When requiring that four of the four shingles for each document be
equal, and setting ǫ to 5%, the rule “http://www.nydailynews.com/news/v-pfriendly/story/”
→ “http://www.nydailynews.com/news/story/” does not pass the validation phase. This rule
passes the validation phase when we set ǫ to 10% and declare two documents similar if at least two
of the four shingles are equal. There is of course a tradeoff between the dust coverage achieved and
precision.

6.4 Detecting likely dust rules and eliminating redundant ones

DustBuster’s first phase (cf. Figure 2) scans the log and detects a very long list of likely dust

rules (substring substitutions). Subsequently, the redundancy elimination phase (cf. Figure 3)
dramatically shortens this list. In all of our experiments, the latter phase has eliminated over
90% of the rules in the original list (see Table 2). For example, in the largest log in the academic
site, 26,899 likely rules were detected in the first phase, and only 2041 (8%) remained after the
second; in a smaller log 10,848 rules were detected, of which only 354 (3%) were not eliminated.
In the large news site 12, 144 were detected, 1243 remained after the second phase. In the forum
site, much fewer likely rules were detected, e.g., in one log 402 rules were found, of which 37 (9%)
remained. We believe that the smaller number of rules is a result of the forum site being more
uniformly structured than the academic one, as most of its pages are generated by the same web
server software.

In Figures 7(a) and 7(b), we examine the precision level in the short list of likely rules produced
at the end of these two phases. These graphs deal with the forum and academic sites when size
matching is used. Recall that no page contents are fetched in these phases. As this list is ordered
by likeliness, we examine the precision@k; that is, for each top k rules in this list, the curves show
which percentage of them are later deemed valid (by DustBuster’s validation phase) in at least one
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Figure 7: Precision@k achieved by likely rule detection:
(DustBuster’s first phase) without fetching actual content.

Web Site Rules Detected Rules after 2nd Phase Rules Remaining (percent)

Forum Site 402 37 9.2%

Academic Site 26899 2041 7.6%

Large News Site 12144 1243 9.76%

Small News Site 4220 96 2.3%

Table 2: Rule elimination in second phase.

direction. Figure 7(a) shows results obtained with 4 different logs in the forum site, and Figure 7(b)
shows results from 4 logs of the academic site. We observe that, quite surprisingly, DustBuster’s
detection phase achieves a very high precision rate even though it does not fetch even a single page.
In the forum, out of the 40–50 detected rules, over 80% are indeed valid. In the academic site, over
60% of the 300–350 detected rules are valid, and of the top 100 detected rules, over 80% are valid.

This high precision is achieved, to a large extent, thanks to size matching. The log in-
cludes false rules. For example, the forum site includes multiple domains, and the stories in
each domain are different. Thus, although we find many pairs http://domain1/story num and
http://domain2/story num with the same num, these represent different stories. Similarly, in
the academic site, we see pairs like http://site/course1/lecture-num.ppt and http://si-

te/course2/lecture-num.ppt, although the lectures are different. Such false rules are not de-
tected, since stories/lectures typically vary in size. Figure 8 illustrates the impact of size matching
in the academic site. We see that when size matching is not employed, the precision drops by around
50%. Thus size matching reduces the number of accesses needed for validation. Nevertheless, size
matching has its limitations– valid rules may be missed at the price of increasing precision. For
example, when running on the academic site without size matching, DustBuster discovers the rule
“ps” → “pdf”, linking two versions of the same document, whereas size matching discards this
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rule. When running DustBuster from crawl logs, where document sketches from the previous crawl
are readily available for validation, we use the document sketches to filter support rather than the
size matching heuristic.
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Figure 8: Impact of size matching on precision:
Precision@k achieved by likely rule detection (DustBuster’s first phase) without fetching actual

content. One academic log.
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Figure 9: Impact of shingle matching:
Precision@k achieved by likely rule detection (DustBuster’s first phase) without fetching actual content.

Figure 9(a) shows results obtained in the large news site (cnn.com) with and without shingles-
filtered support. When we use neither shingles-filtered support nor size matching, over 24% of the
first 50 detected rules are valid. The precision rises to 42% of the first 50 detected when we use
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shingles-filtered support. In addition, filtering reduces the list by roughly 70%. At the same time
this reduction in detected rules has little impact on the final outcome after validations, most rules
filtered out by shingles are indeed invalid.

The precision@k in the large news site is low compared to the precision@k in the academic site
shown in Figure 7(b). When examining the likely rule list we observe that some rules that we expect
to be valid, such as “http://edition.cnn.com/2006/SHOWBIZ/”→ “http://www.cnn.com/2006/-
SHOWBIZ/”, do not pass the validation phase. After reducing the similarity threshold by requiring
at least two of the four shingles to be identical and increasing ǫ to 10% these rules are found valid.
We can observe the effect of changing these two values in Figure 9(a) and Figure 9(b). The pre-
cision increased both with and without filtering support for similarity. The precision@k went up
from 0.4% at 200 to 0.74%. This demonstrates the tradeoff among the similarity requested, the
validation threshold, and the number of rules found to be valid.

An interesting phenomenon is apparent in Figures 8 and 9(a), where the precision begins low
and rises. This is due to the large support for rules that transfer one valid URL to another
albeit not with similar content. E.g., the academic site’s top five rules include four variations
on the interesting rule “/thumbnails/” → “/images/” which we find invalid because images
are compared using their MD5 message digests. Another example is “http://www.movies-for-
um.domain” → “http://www.politics-forum.domain” found using the forum web logs. The
large support for this rule stems from the similar URL structure of the two sub-sites, which are
running the same software. For example, “http://www.politics-forum.domain/story 100” and
“http://www.movies-forum.domain/story 100” are valid but different in content. Size matching
alleviates this problem, and raises the initial precision to 0.6 at 5 and 0.8 at 10.
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Figure 10: Precision among rules that DustBuster attempted to validate
vs. number of validations used (N).
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6.5 Validation

We now study how many validations are needed in order to declare that a rule is valid; that is,
we study what the parameter N in Figure 5 should be set to. To this end, we run DustBuster
with values of N ranging from 0 to 100, and check which percentage of the rules found to be valid
with each value of N are also found valid when N=100. We run this experiment only for substring
substitution rules. The results from conducting this experiment on the likely dust rules found
in 8 logs (4 from the academic site and 4 from the forum site) are shown in Figures 10(a) and
10(b). In these graphs, we only consider rules that DustBuster attempts to validate. Since many
valid rules are removed (in line 6 of Figure 5) after rules that they refine are deemed valid, the
percentage of valid rules among those that DustBuster attempts to validate is much smaller than
the percentage of valid rules in the original list. In all these experiments, 100% precision is reached
after 40 validations. Moreover, results obtained in different logs are consistent with each other.
Our aggressive elimination of redundant rules reduces the number of rules we need to validate.
For example, on one of the logs in the forum, the validation phase was initiated with 28 pairs
representing 56 likely rules (in both directions). Of these, only 19 were checked, and the rest were
removed because they or their counterparts in the opposite direction were deemed valid either
directly or since they refined valid rules. We conclude that the number of actual pages that need
to be fetched in order to validate the rules is very small.

At the end of the validation phase, DustBuster outputs a list of valid substring substitution
rules without redundancies. In the small news site we detected 5 rules (see Table 3), whereas in
the large news site we found 62 rules. In the forum site, we detect a handful of rules, whereas in
the academic site, 40–52 rules are found. The list of 7 rules found in one of the logs in the forum
site is depicted in Figure 11 below. These 7 rules or refinements thereof appear in the outputs
produced using each of the studied logs. Some studied logs include 1–3 additional rules, which
are insignificant (have very small support). Similar consistency is observed in the academic site
outputs. We conclude that the most significant dust rules can be adequately detected using a
fairly small log with roughly 15,000 unique URLs.

Web Site Valid Rules Detected

Forum Site 7

Academic Site 52

Large News Site 62

Small News Site 5

Table 3: The number of rules found to be valid.

6.6 Coverage

We now turn our attention to coverage, or the percentage of duplicate URLs discovered by Dust-
Buster, in the academic site. When multiple URLs have the same document sketch, all but one
of them are considered duplicate URLs, or duplicates. In order to study the coverage achieved by
DustBuster, we use two different logs from the same site: a training log and a test log. We run
DustBuster on the training log in order to learn dust rules (both substring substitutions and pa-
rameter substitutions) and we then apply these rules on the test log. We then count what fraction
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1 “.co.il/story ” → “.co.il/story?id=”
2 “&LastView=&Close=” → “”
3 “.php3?” → “?”
4 “.il/story ” → “.il/story.php3?id=”
5 “&NewOnly=1&tvqz=2” → “&NewOnly=1”
6 “.co.il/thread ” → “.co.il/thread?rep=”
7 “http://www.scifi.forum/story ” → “http://www.scifi.forum/story?id=”

Figure 11: Valid substring substitution rules detected in a forum site
excluding refinements of valid rules.

of the duplicates in the test log are covered by the detected dust rules. We detect duplicates in
the test log by fetching the contents of all of its URLs, and computing their document sketches.
Figure 12 classifies these duplicates. As the figure shows, 47.1% of the duplicates in the test log
are eliminated by DustBuster’s canonization algorithm using rules discovered on another log. An
additional 25.7% of the duplicates consist of images, such as arrows, bullets and horizontal lines,
which are reused and copied to various locations. This is partly due to the use of automatic tools,
which make use of the same images.

Figure 12: dust classification, academic.

17.9% of duplicates stem from exact duplicates of files. This is mainly due to replicating
a course’s site from a previous semester and modifying it. In case files are added or modified
extensively, the dust rule linking the two semesters does not pass the validation phase. Another
cause for exact copies is a research paper appearing in all the authors individual home-pages.

Another 7.5% of the duplicates are due to soft errors, such as empty search results, non-existing
user error messages, and various software errors, or in general, pages that do not provide any useful
information. Note that classifying these as duplicates is only an artifact of our methodology, which
computes similar shingles for similar error messages. Nevertheless, this type of duplicates cannot
be expected to be discovered by an algorithm such as DustBuster. Overall, DustBuster appears
to discover most of the duplicates that stems from systematic rules, and discovers the majority of
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duplicates when discounting soft errors.

6.7 Savings in crawl size

The next measure we use to evaluate the effectiveness of the method is the discovered redundancy,
i.e., the percent of the URLs we can avoid fetching in a crawl by using the dust rules to canonize
the URLs. To this end, we performed a full crawl of the academic site, and recorded in a list all
the URLs fetched. We performed canonization on this list using parameter substitution rules and
substring substitution rules learned from the crawl, and counted the number of unique URLs before
(Ub) and after (Ua) canonization. The discovered redundancy is then given by Ub−Ua

Ub
. We found

this redundancy to be 18% (see Table 4), meaning that the crawl could have been reduced by that
amount. In the two news sites, the dust rules were learned from the crawl logs and we measured
the reduction that can be achieved in the next crawl. The small news site gave us less than 0.9%
reduction when requiring that four shingles be equal (δ = 0%) and ǫ = 5%, but when requiring two
shingles to be equal and setting ǫ to 10% we get a 26% reduction. The increase in the reduction
is due to the lower similarity required, 1− δ, and the greater refutation threshold, ǫ allowing more
rules to pass as valid. This again shows the significance of the similarity measure used. The big
news site gave us a 6% reduction with ǫ = 5%. In the case of the forum site, we used four logs
to detect parameter substitution and substring substitution rules, and used these rules to reduce a
fifth log. The reduction achieved in this case was 4.7%.

Web Site ǫ δ Reduction Achieved

Academic Site 5% 0% 18%

Small News Site 5% 0% 26%

Large News Site 10% 50% 6%

Forum Site(using logs) 5% 0% 4.7%

Table 4: Reductions in crawl size achieved by DustBuster.

7 Conclusions

We have introduced the problem of mining site-specific dust rules. Knowing about such rules can
be very useful for search engines: It can reduce crawling overhead by up to 26% and thus increase
crawl efficiency, and consequently, improve search accuracy. It can also reduce indexing overhead.
Moreover, knowledge of dust rules is essential for canonizing URL names, and canonical names
are very important for statistical analysis of URL popularity based on PageRank or traffic. We
presented DustBuster, an algorithm for mining dust very effectively from a URL list. The URL
list can either be obtained from a web server log or a crawl of the site.

DustBuster cannot of course detect dust that does not stem from rules. However, there are
dust rules that DustBuster does not find. An example is a rule that substitutes two strings in the
URL simultaneously. For example in a site we examined http://somenewsite.com/print.pl-

?sid=06/06/27/2 is a printer friendly version of http://somenewsite.com/newsvac/06/06/27/-
2.shtml. As can be seen, the URL is changed in two places simultaneously. Future work may
devise an algorithm to detect such rules, as well as more complex ones.
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Finally, some pages on the web have duplicate versions where the information is spread over
multiple pages. Future work may use ideas from DustBuster in order to devise an algorithm that
detects such duplicates. For example, by using containment rather than similarity, one may be able
to map all the fragment pages to the one page that contains them all.
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