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In diesem Sinne kannst du’s wagen.
Verbinde dich; du sollst, in diesen Tagen,
Mit Freuden meine Künste sehn,
Ich gebe dir was noch kein Mensch gesehn.1

— Mephistopheles in Faust I, by J. W. Goethe

Abstract

We consider a set of clients collaborating through an online service provider that is subject to at-
tacks, and hence not fully trusted by the clients. We introduce the abstraction of a fail-aware un-
trusted service, with meaningful semantics even when the provider is faulty. In the common case,
when the provider is correct, such a service guarantees consistency (linearizability) and liveness
(wait-freedom) of all operations. In addition, the service always provides accurate and complete
consistency and failure detection.

We illustrate our new abstraction by presenting a Fail-Aware Untrusted STorage service (FAUST).
Existing storage protocols in this model guarantee so-called forking semantics. We observe, how-
ever, that none of the previously suggested protocols suffice for implementing fail-aware untrusted
storage with the desired liveness and consistency properties (at least wait-freedom and linearizabil-
ity when the server is correct). We present a new storage protocol, which does not suffer from this
limitation, and implements a new consistency notion, called weak fork-linearizability. We show how
to extend this protocol to provide eventual consistency and failure awareness in FAUST.

1 Introduction

Nowadays it is common for users to keep data at remote online service providers. Such services allow
clients that reside in different domains to collaborate with each other through acting on shared data.
Examples include distributed filesystems, versioning repositories for source code, Web 2.0 collaboration
tools like Wikis and discussion forums, and “cloud computing” services, whereby shared resources,
software, and information are provided on demand. Clients access the provider over an asynchronous
network in day-to-day operations, and occasionally communicate directly with each other. Because the
provider is subject to attacks, or simply because the clients do not fully trust it, the clients are interested
in a meaningful semantics of the service, even when the provider misbehaves.
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1In this mood you can dare to go my ways. / Commit yourself; you shall in these next days / Behold my arts and with great

pleasure too. / What no man yet has seen, I’ll give to you.
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The service allows clients to invoke operations and should guarantee both consistency and liveness
of these operations whenever the provider is correct. More precisely, the service considered here should
ensure linearizability [12], which provides the illusion of atomic operations. As a liveness condition,
the service ought to be wait-free, meaning that every operation of a correct client eventually completes,
independently of other clients. When the provider is faulty, it may deviate arbitrarily from the protocol,
exhibiting so-called Byzantine faults. Hence, some malicious actions cannot be prevented. In particular,
it is impossible to guarantee that every operation is live, as the server can simply ignore client requests.
Linearizability cannot be ensured either, since the server may respond with an outdated return value to
a client, omitting more recent update operations that affected its state.

In this paper, we tackle the challenge of providing meaningful service semantics in such a setting
and define a class of fail-aware untrusted services. We also present FAUST, a Fail-Aware Untrusted
STorage service, which demonstrates our new notion for online storage. We do this by reinterpreting in
our model, with an untrusted provider, two established notions: eventual consistency and fail-awareness.

Eventual consistency [24] allows an operation to complete before it is consistent in the sense of
linearizability, and later notifies the client when linearizability is established and the operation becomes
stable. Upon completion, only a weaker notion holds, which should include at least causal consis-
tency [13], a basic condition that has proven to be important in various applications [1, 25]. Whereas
the client invokes operations synchronously, stability notifications occur asynchronously; the client can
invoke more operations while waiting for a notification on a previous operation.

Fail-awareness [9] additionally introduces a notification to the clients in case the service cannot
provide its specified semantics. This gives the clients a chance to take appropriate recovery actions.
Fail-awareness has previously been used with respect to timing failures; here we extend this concept to
alert clients of Byzantine server faults whenever the execution is not consistent.

Our new abstraction of a fail-aware untrusted service, introduced in Section 3, models a data storage
functionality. It requires the service to be linearizable and wait-free when the provider is correct, and
to be always causally consistent, even when the provider is faulty. Furthermore, the service provides
accurate consistency information in the sense that every stable operation is guaranteed to be consistent
at all clients and that when the provider is accused to be faulty, it has actually violated its specification.
Furthermore, the stability and failure notifications are complete in the sense that every operation even-
tually either becomes stable or the service alerts the clients that the provider has failed. For expressing
the stability of operations, the service assigns a timestamp to every operation.

The main building block we use to implement our fail-aware untrusted storage service is an untrusted
storage protocol. Such protocols guarantee linearizability when the server is correct, and weaker, so-
called forking consistency semantics when the server is faulty [20, 16, 4]. Forking semantics ensure
that if certain clients’ perception of the execution is not consistent, and the server causes their views to
diverge by mounting a forking attack, they eventually cease to see each other’s updates or expose the
server as faulty. The first protocol of this kind, realizing fork-linearizable storage, was implemented by
SUNDR [20, 16].

Although we are the first to define a fail-aware service, the existing untrusted storage protocols come
close to supporting fail-awareness, and it has been implied that they can be extended to provide such a
storage service [16, 17]. However, none of the existing forking consistency semantics allow for wait-
free implementations; in previous protocols [16, 4] concurrent operations by different clients may block
each other, even if the provider is correct. In fact, no fork-linearizable storage protocol can be wait-free
in all executions where the server is correct [4].

A weaker notion called fork-*-linearizability has been proposed recently [17]. But as we show in
Section 7, the notion (when adapted to our model with only one server) cannot provide wait-free client
operations either. Fork-*-linearizability also permits a faulty server to violate causal consistency, as we
show in Section 8. Thus, no existing semantics for untrusted storage protocols is suitable for realizing
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our notion of fail-aware storage.
In Section 4, we define a new consistency notion, called weak fork-linearizability, which circum-

vents the above impossibility and has all necessary features for building a fail-aware untrusted storage
service. We present a weak fork-linearizable storage protocol in Section 5 and show that it never causes
clients to block, even if some clients crash. The protocol is efficient, requiring a single round of message
exchange between a client and the server for every operation, and a communication overhead of O(n)
bits per request, where n is the number of clients.

Starting from the weak fork-linearizable storage protocol, we introduce our fail-aware untrusted
storage service (FAUST) in Section 6. FAUST adds mechanisms for consistency and failure detection,
issues eventual stability notifications whenever the views of correct clients are consistent with each
other, and detects all violations of consistency caused by a faulty server. The FAUST protocol lets the
clients exchange messages infrequently.

In summary, the contributions of this paper are:

1. The new abstraction of a fail-aware untrusted service, which guarantees linearizability and wait-
freedom when the server is correct, eventually provides either consistency or failure notifications,
and ensures causal consistency (Sections 2–3);

2. The insight that no existing forking consistency notion can be used for realizing fail-aware un-
trusted storage, because they inherently rule out wait-free implementations (Sections 4, 7, and 8);

3. An efficient wait-free protocol giving a Byzantine emulation of untrusted storage, relying on the
novel notion of weak fork-linearizability (Section 5); and

4. The implementation of FAUST, our fail-aware untrusted storage service, from a wait-free un-
trusted storage protocol (Section 6).

Although this paper focuses on fail-aware untrusted services that provide a data storage functionality,
we believe that the notion can be generalized to a large variety of services.

Related work. In order to provide wait-freedom when linearizability cannot be ensured, numerous
real-world systems guarantee notions of eventual consistency, for example, Coda [14], Bayou [24],
Tempest [19], and Dynamo [8]. As in many of these systems, the clients in our model are not simultane-
ously present and may be disconnected temporarily. Thus, eventual consistency is a natural choice for
the semantics of our online storage application. Eventual consistency can be expressed through many
different semantics [22].

FAUST adds timestamps to operation responses for consistency notifications, similar to some of
the systems just mentioned. The stability notion of a fail-aware untrusted service resembles the one
of Bayou [24] and other weakly consistent replicated systems [22], where an operation becomes stable
when its position in the order of operations has been permanently determined. Stability is also used
in multicast communication protocols [2, 5], where a message becomes stable if it has reached all its
destinations.

The notion of fail-awareness [9] is exploited by many systems in the timed asynchronous model,
where nodes are subject to crash failures [7]. Note that unlike in previous work, detecting an inconsis-
tency in our model constitutes evidence that the server has violated its specification, and that it should
no longer be used.

The pioneering work of Mazières and Shasha [20] introduces untrusted storage protocols and the
notion of fork-linearizability (under the name of fork consistency). SUNDR [16] and later work [4]
implement storage systems respecting this notion. The weaker notion of fork-sequential consistency has
been suggested by Oprea and Reiter [21]. Neither fork-linearizability nor fork-sequential consistency
can guarantee wait-freedom for client operations in all executions where the server is correct [4, 3].
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Fork-*-linearizability [17] has been introduced recently (under the name of fork-* consistency),
with the goal of allowing wait-free implementations of a service constructed using replication, when
more than a third of the replicas may be faulty. In our context, we consider only the special case of a
non-replicated service.

The CATS system [26] adds accountability to a storage service. Similar to our fail-aware approach,
CATS makes misbehavior of the storage server detectable by providing auditing operations. However, it
relies on a much stronger assumption in its architecture, namely, a trusted external publication medium
accessible to all clients, like an append-only bulletin board with immutable write operations. The server
periodically publishes a digest of its state there and the clients rely on it for audits. When the server in
FAUST additionally signs all its responses to clients using digital signatures, then we obtain the same
level of strong accountability as CATS (i.e., that any misbehavior leaves around cryptographically strong
non-repudiable evidence and that no false accusations are possible).

Exploring a similar direction, the A2M-Storage service [6] guarantees linearizability, even when
the server is faulty. It relies on the strong assumption of a trusted module with an immutable log that
prevents equivocation by a malicious server. A2M-Storage provides two protocols: in the pessimistic
protocol, a client first reserves a sequence number for an operation and then submits the actual operation
with that sequence number; in the optimistic protocol, the client submits an operation right away, assum-
ing that it knows the latest sequence number, and then restarts when the predicted sequence number was
outdated. Both protocols guarantee weaker notions of liveness than FAUST when the server is correct.
In fact, if a client fails just after reserving a sequence number in the pessimistic protocol, it prevents all
other clients from progressing. The optimistic protocol is lock-free in the sense that some client always
makes progress, but progress is not guaranteed for all clients. On the other hand, FAUST guarantees
wait-freedom when the server is correct, that is, all correct clients complete every operation, regardless
of failures or concurrent operations by other clients.

The idea of monitoring applications to detect consistency violations due to Byzantine behavior was
considered in previous work in peer-to-peer settings, for example in PeerReview [10]. Eventual consis-
tency has recently been used in the context of Byzantine faults by Zeno [23]; Zeno uses replication to
tolerate server faults and always requires some servers to be correct. Zeno relaxes linearizable semantics
to eventual consistency for gaining liveness, as does FAUST, but provides a slightly different notion of
eventual consistency to clients than FAUST. In particular, Zeno may temporarily violate linearizability
even when all servers are correct, which means inconsistencies are reconciled at a later point in time,
whereas in FAUST linearizability is only violated if the server is Byzantine, but the application might
be notified of operation stability (consistency) after the operation completes.

2 System Model

We consider an asynchronous distributed system consisting of n clients C1, . . . , Cn and a server S.
Every client is connected to S through an asynchronous reliable channel that delivers messages in first-
in/first-out (FIFO) order. In addition, there is a low-bandwidth communication channel among every
pair of clients, which is also reliable and FIFO-ordered. We call this an offline communication method
because it stands for a method that exchanges messages reliably even if the clients are not simultaneously
connected. The system is illustrated in Figure 1. The clients and the server are collectively called parties.
System components are modeled as deterministic I/O Automata [18]. An automaton has a state, which
changes according to transitions that are triggered by actions. A protocol P specifies the behaviors of
all parties. An execution of P is a sequence of alternating states and actions, such that state transitions
occur according to the specification of system components. The occurrence of an action in an execution
is called an event.
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Figure 1: System architecture. Client-to-client communication may use offline message exchange.

All clients follow the protocol, and any number of clients can fail by crashing. The server might be
faulty and deviate arbitrarily from the protocol. A party that does not fail in an execution is correct.

2.1 Preliminaries

Operations and histories. Our goal is to emulate a shared functionality F , i.e., a shared object, to the
clients. Clients interact with F via operations provided by F . As operations take time, they are repre-
sented by two events occurring at the client, an invocation and a response. A history of an execution σ
consists of the sequence of invocations and responses of F occurring in σ. An operation is complete
in a history if it has a matching response. For a sequence of events σ, complete(σ) is the maximal
subsequence of σ consisting only of complete operations.

An operation o precedes another operation o′ in a sequence of events σ, denoted o <σ o′, whenever o
completes before o′ is invoked in σ. A sequence of events π preserves the real-time order of a history σ if
for every two operations o and o′ in π, if o <σ o′ then o <π o′. Two operations are concurrent if neither
one of them precedes the other. A sequence of events is sequential if it does not contain concurrent
operations. For a sequence of events σ, the subsequence of σ consisting only of events occurring at
client Ci is denoted by σ|Ci (we use the symbol | as a projection operator). For some operation o, the
prefix of σ that ends with the last event of o is denoted by σ|o.

An operation o is said to be contained in a sequence of events σ, denoted o ∈ σ, whenever at least
one event of o is in σ. Thus, every sequential sequence of events corresponds naturally to a sequence of
operations. Analogously, every sequence of operations corresponds naturally to a sequential sequence
of events.

An execution is well-formed if the sequence of events at each client consists of alternating invoca-
tions and matching responses, starting with an invocation. An execution is fair, informally, if it does
not halt prematurely when there are still steps to be taken or messages to be delivered (see the standard
literature for a formal definition [18]).

Read/write registers. A functionality F is defined via a sequential specification, which indicates the
behavior of F in sequential executions.

The functionality considered in this paper is a storage service composed of registers. Each registerX
stores a value x from a domainX and offers read and write operations. Initially, a register holds a special
value ⊥ 6∈ X . When a client Ci invokes a read operation, the register responds with a value x, denoted
readi(X) → x; when Ci invokes a write operation with value x, denoted writei(X,x), the response of
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X is OK. By convention, an operation with subscript i is executed by Ci. The sequential specification
requires that each read operation returns the value written by the most recent preceding write operation,
if there is one, and the initial value otherwise. We assume that all values that are ever written to a register
in the system are unique, i.e., no value is written more than once. This can easily be implemented by
including the identity of the writer and a sequence number together with the stored value.

Specifically, the functionality F is composed of n single-writer/multi-reader (SWMR) registers
X1, . . . , Xn, where every client may read from every register, but only client Ci can write to regis-
ter Xi for i = 1, . . . , n. The registers are accessed independently of each other. In other words, the
operations provided by F to Ci are writei(Xi, x) and readi(Xj) for j = 1, . . . , n.

Cryptographic primitives. The protocols of this paper use hash functions and digital signatures from
cryptography. Because the focus of this work is on concurrency and correctness and not on cryptography,
we model both as ideal functionalities implemented by a trusted entity.

A hash function maps a bit string of arbitrary length to a short, unique representation. The function-
ality provides only a single operation H; its invocation takes a bit string x as parameter and returns an
integer h with the response. The implementation maintains a list L of all x that have been queried so
far. When the invocation contains x ∈ L, then H responds with the index of x in L; otherwise, H adds
x to L at the end and returns its index. This ideal implementation models only collision resistance but
no other properties of real hash functions. The server may also invoke H .

The functionality of the digital signature scheme provides two operations, sign and verify. The
invocation of sign takes an index i ∈ {1, . . . , n} and a string m ∈ {0, 1}∗ as parameters and returns a
signature s ∈ {0, 1}∗ with the response. The verify operation takes the index i of a client, a putative
signature s, and a string m ∈ {0, 1}∗ as parameters and returns a Boolean value b ∈ {FALSE, TRUE}
with the response. Its implementation satisfies that verify(i, s,m) → TRUE for all i ∈ {1, . . . , n}
and m ∈ {0, 1}∗ if and only if Ci has executed sign(i,m) → s before, and verify(i, s,m) → FALSE

otherwise. Only Ci may invoke sign(i, ·) and S cannot invoke sign. Every party may invoke verify.

Traditional consistency and liveness properties. Our definitions rely on the notion of a possible view
of a client, defined as follows.

Definition 1 (View). A sequence of events π is called a view of a history σ at a client Ci w.r.t. a func-
tionality F if σ can be extended (by appending zero or more responses) to a history σ′ such that:

1. π is a sequential permutation of some subsequence of complete(σ′);
2. π|Ci = complete(σ′)|Ci ; and
3. π satisfies the sequential specification of F .

Intuitively, a view π of σ at Ci contains at least all those operations that either occur at Ci or are
apparent from Ci’s interaction with F . Note there are usually multiple views possible at a client. If two
clients Ci and Cj do not have a common view of a history σ w.r.t. a functionality F , we say that their
views of σ are inconsistent with each other.

One of the most important consistency conditions for concurrent operations is linearizability, which
guarantees that all operations occur atomically.

Definition 2 (Linearizability [12]). A history σ is linearizable w.r.t. a functionality F if there exists a
sequence of events π such that:

1. π is a view of σ at all clients w.r.t. F ; and
2. π preserves the real-time order of σ.
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The notion of causal consistency for shared memory [13] weakens linearizability and allows clients
to observe different orders of those write operations that do not influence each other. It is based on
the notion of potential causality [15]. Recall that F consists of registers. For two operations o and o′

in a history σ, we say that o causally precedes o′, denoted o →σ o′, whenever one of the following
conditions holds:

1. Operations o and o′ are both invoked by the same client and o <σ o′;
2. Operation o is a write operation of a value x to some register X and o′ is a read operation from X

returning x; or
3. There exists an operation o′′ ∈ σ such that o→σ o

′′ and o′′ →σ o
′.

In the literature, there are several variants of causal consistency. Here, we formalize the intuitive
definition of causal consistency by Hutto and Ahamad [13].

Definition 3 (Causal consistency). A history σ is causally consistent w.r.t. a functionality F if for each
client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. F ;
2. For each operation o ∈ πi, all write operations that causally precede o in σ are also in πi; and
3. For all operations o, o′ ∈ πi such that o→σ o

′, it holds that o <πi o
′.

Finally, a shared functionality needs to ensure liveness. A desirable requirement is that clients should
be able to make progress independently of the actions or failures of other clients. A notion that formally
captures this idea is wait-freedom [11].

Definition 4 (Wait-freedom). A history is wait-free if every operation by a correct client is complete.

By slight abuse of terminology, we say that an execution satisfies a notion such as linearizability,
causal consistency, wait-freedom, etc., if its history satisfies the respective condition.

3 Fail-Aware Untrusted Services

Consider a shared functionality F that allows clients to invoke operations and returns a response for
each invocation. Our goal is to implement F with the help of server S, which may be faulty.

We define a fail-aware untrusted service OF from F as follows. When S is correct, then it should
emulate F and ensure linearizability and wait-freedom. When S is faulty, then the service should always
ensure causal consistency and eventually provide either consistency or failure notifications. For defining
these properties, we extend F in two ways.

First, we include with the response of every operation of F an additional parameter t, called the
timestamp of the operation. We say that an operation of OF returns a timestamp t when the opera-
tion completes and its response contains timestamp t. The timestamps returned by the operations of
a client increase monotonically. Timestamps are used as local operation identifiers, so that additional
information can be provided to the application by the service regarding a particular operation, after that
operation has already completed (using the stable notifications as defined below).

Second, we add two new output actions at client Ci, called stablei and faili, which occur asyn-
chronously. (Note that the subscript i denotes an action at client Ci.) The action stablei includes a
vector of timestamps W as a parameter and informs Ci about the stability of its operations with respect
to the other clients.
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Definition 5 (Operation stability). Let o be a complete operation of Ci that returns a timestamp t. We
say that o is stable w.r.t. a client Cj , for j = 1, . . . , n, after some event stablei(W ) has occurred at Ci
with W [j] ≥ t. An operation o of Ci is stable w.r.t. a set of clients C, where C includes Ci, when o is
stable w.r.t. all Cj ∈ C. Operations that are stable w.r.t. all clients are simply called stable.

Informally, stablei defines a stability cut among the operations ofCi with respect to the other clients,
in the sense that if an operation o of client Ci is stable w.r.t. Cj , then Ci and Cj are guaranteed to have
the same view of the execution up to o. If o is stable, then the prefix of the execution up to o is
linearizable. The service should guarantee that every operation eventually becomes stable, but this may
only be possible if S is correct. Otherwise, the service should notify the users about the failure.

Failure detection should be accurate in the sense that it should never output false suspicions. When
the action faili occurs, it indicates that the server is demonstrably faulty, has violated its specification,
and has caused inconsistent views among the clients. According to the stability guarantees, the client
application does not have to worry about stable operations, but might invoke a recovery procedure for
other operations.

When considering an execution σ of OF , we sometimes focus only on the actions corresponding
to F , without the added timestamps, and without the stable and fail actions. We refer to this as the
restriction of σ to F and denote it by σ|F (similar notation is also used for restricting a sequence of
events to those occurring at a particular client).

Definition 6 (Fail-aware untrusted service). A shared functionality OF is a fail-aware untrusted ser-
vice with functionality F , if OF implements the invocations and responses of F and extends it with
timestamps in responses and with stable and fail output actions, and where the history σ of every fair
execution such that σ|F is well-formed satisfies the following conditions:

1. (Linearizability with correct server) If S is correct, then σ|F is linearizable w.r.t. F ;
2. (Wait-freedom with correct server) If S is correct, then σ|F is wait-free;
3. (Causality) σ|F is causally consistent w.r.t. F ;
4. (Integrity) When an operation o of Ci returns a timestamp t, then t is bigger than any timestamp

returned by an operation of Ci that precedes o;
5. (Failure-detection accuracy) If faili occurs, then S is faulty;
6. (Stability-detection accuracy) If o is an operation of Ci that is stable w.r.t. some set of clients C

then there exists a sequence of events π that includes o and a prefix τ of σ|F such that π is a view
of τ at all clients in C w.r.t. F . If C includes all clients, then τ is linearizable w.r.t. F ;

7. (Detection completeness) For every two correct clients Ci and Cj and for every timestamp t
returned by an operation of Ci, eventually either fail occurs at all correct clients, or stablei(W )
occurs at Ci with W [j] ≥ t.

We now illustrate how a fail-aware service can be used by clients who collaborate from across the
world by editing a file. Suppose that the server S is correct and three correct clients access it: Alice and
Bob from Europe, and Carlos from America. Since S is correct, linearizability is preserved. However,
the clients do not know this, and rely on stable notifications for detecting consistency. Suppose that it
is daytime in Europe, Alice and Bob use the service, and they see the effects of each other’s updates.
However, they do not observe any operations of Carlos because he is asleep.

Suppose Alice completes an operation that returns timestamp 10, and subsequently receives a noti-
fication stableAlice([10, 8, 3]), indicating that she is consistent with Bob up to her operation with time-
stamp 8, consistent with Carlos up to her operation with timestamp 3, and trivially consistent with herself
up to her last operation (see Figure 2). At this point, it is unclear to Alice (and to Bob) whether Carlos is
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only temporarily disconnected and has a consistent state, or if the server is faulty and hides operations
of Carlos from Alice (and from Bob). If Alice and Bob continue to execute operations while Carlos
is offline, Alice will continue to see vectors with increasing timestamps in the entries corresponding to
Alice and Bob. When Carlos goes back online, since the server is correct, all operations issued by Alice,
Bob, and Carlos will eventually become stable at all clients.

Alice
Bob

Carlos

1 2 3 8 9 10t =

Figure 2: The stability cut of Alice indicated by the notification stableAlice([10, 8, 3]). The values of t
are the timestamps returned by the operations of Alice.

In order to implement a fail-aware untrusted service, we proceed in two steps. The first step consists
of defining and implementing a weak fork-linearizable Byzantine emulation of a storage service. This
notion is formulated in the next section and implemented in Section 5. The second step consists of
extending the Byzantine emulation to a fail-aware storage protocol, as presented in Section 6.

4 Forking Consistency Conditions

This section introduces the notion of a weak fork-linearizable Byzantine emulation of a storage service.
Section 4.1 first recalls existing forking semantics that are relevant here. Afterwards, in Section 4.2, the
new notion of weak fork-linearizability is introduced. Section 4.3 defines Byzantine emulations with
forking conditions.

4.1 Previously Defined Conditions

The notion of fork-linearizability [20] (originally called fork consistency) requires that when an oper-
ation is observed by multiple clients, the history of events occurring before the operation is the same.
For instance, when a client reads a value written by another client, the reader is assured to be consistent
with the writer up to the write operation.

Definition 7 (Fork-linearizability). A history σ is fork-linearizable w.r.t. a functionality F if for each
client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. F ;
2. πi preserves the real-time order of σ;
3. (No-join) For every client Cj and every operation o ∈ πi ∩ πj , it holds that πi|o = πj |o.

Li and Mazières [17] relax this notion and define fork-*-linearizability (under the name of fork-*
consistency) by replacing the no-join condition of fork-linearizability with:

4. (At-most-one-join) For every client Cj and every two operations o, o′ ∈ πi∩πj by the same client
such that o precedes o′, it holds that πi|o = πj |o.

The at-most-one-join condition of fork-*-linearizability guarantees to a client Ci that its view is
identical to the view of any other client Cj up to the penultimate operation of Cj that is also in the view
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of Ci. Hence, if a client reads values written by two operations of another client, the reader is assured
to be consistent with the writer up to the first of these writes.

But oddly, fork-*-linearizability still requires that the real-time order of all operations in the view
is preserved, including the last operation of every other client. Furthermore, fork-*-linearizability does
not preserve linearizability when the server is correct and permit wait-free client operations at the same
time, as we show in Section 7.

4.2 Weak Fork-Linearizability

We introduce a new consistency notion, called weak fork-linearizability, which permits wait-free proto-
cols and is therefore suitable for implementing fail-aware untrusted services. It is based on the notion
of weak real-time order that removes the above anomaly and allows the last operation of every client to
violate real-time order. Let π be a sequence of events and let lastops(π) be a function of π returning the
set containing the last operation from every client in π (if it exists), that is,

lastops(π) ,
⋃

i=1,...,n

{
o ∈ π|Ci

∣∣ there is no operation o′ ∈ π|Ci such that o precedes o′ in π
}
.

We say that π preserves the weak real-time order of a sequence of operations σ whenever π ex-
cluding all events belonging to operations in lastops(π) preserves the real-time order of σ. With these
notions, we are now ready to state weak fork-linearizability.

Definition 8 (Weak fork-linearizability). A history σ is weakly fork-linearizable w.r.t. a functionalityF
if for each client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. F ;
2. πi preserves the weak real-time order of σ;
3. For every operation o ∈ πi and every write operation o′ ∈ σ such that o′ →σ o, it holds that
o′ ∈ πi and that o′ <πi o; and

4. (At-most-one-join) For every client Cj and every two operations o, o′ ∈ πi∩πj by the same client
such that o precedes o′, it holds that πi|o = πj |o.

Compared to fork-linearizability, weak fork-linearizability only preserves the weak real-time order
in the second condition. The third condition in Definition 8 explicitly requires causal consistency;
this is implied by fork-linearizability, as shown in Section 8. The fourth condition allows again an
inconsistency for the last operation of every client in a view, through the at-most-one-join property from
fork-*-linearizability. Hence, every fork-linearizable history is also weakly fork-linearizable.

w1(X1,u)C1

C2
r2(X1)→ur2(X1)→⊥

Figure 3: A weak fork-linearizable history that is not fork-linearizable.

Consider the following history, shown in Figure 3: Initially, X1 contains ⊥. Client C1 executes
write1(X1, u), then client C2 executes read2(X1) → ⊥ and read2(X1) → u. During the execution
of the first read operation of C2, the server pretends that the write operation of C1 did not occur. This
history is weak fork-linearizable. The sequences:

π1 : write1(X1, u)
π2 : read2(X1)→ ⊥, write1(X1, u), read2(X1)→ u
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are a view of the history at C1 and C2, respectively. They preserve the weak real-time order of the
history because the write operation in π2 is exempt from the requirement. However, there is no way to
construct a view of the execution at C2 that preserves the real-time order of the history, as required by
fork-linearizability. Intuitively, every protocol that guarantees fork-linearizability prevents this example
because the server is supposed to reply to C2 in a read operation with evidence for the completion of a
concurrent or preceding write operation to the same register. But this implies that a reader should wait
for a concurrent write operation to finish.

Weak fork-linearizability and fork-*-linearizability are not comparable in the sense that neither no-
tion implies the other one. This is illustrated in Section 7 and follows, intuitively, because the real-time
order condition of weak fork-linearizability is less restricting than the corresponding condition of fork-
*-linearizability, but on the other hand, weak fork-linearizability requires causal consistency, whereas
fork-*-linearizability does not.

4.3 Byzantine Emulation

We are now ready to define the requirements on our service. When the server is correct, it should guar-
antee the standard notion of linearizability. Otherwise, one of the three forking consistency conditions
mentioned above must hold. In the following, let Γ be one of fork, fork-*, or weak fork.

Definition 9 (Γ-linearizable Byzantine emulation). A protocol P emulates a functionality F on a
Byzantine server S with Γ-linearizability whenever the following conditions hold:

1. If S is correct, the history of every fair and well-formed execution of P is linearizable w.r.t. F ;
and

2. The history of every fair and well-formed execution of P is Γ-linearizable w.r.t. F .

Furthermore, we say that such an emulation is wait-free when every fair and well-formed execution of
the protocol with a correct server is wait-free.

A storage service in this paper is the functionality of an array of n SWMR registers, and a storage
protocol provides a storage service. As mentioned before, we are especially interested in storage proto-
cols that have only wait-free executions when the server is correct. In Section 7 we show that wait-free
fork-*-linearizable Byzantine emulations of a storage service do not exist; this was already shown for
fork-linearizability and fork sequential consistency [3].

5 A Weak Fork-Linearizable Untrusted Storage Protocol

We present a wait-free weak fork-linearizable emulation of n SWMR registers X1, . . . , Xn, where
client Ci writes to register Xi.

At a high level, our untrusted storage protocol (USTOR) works as follows. When a client invokes
a read or write operation, it sends a SUBMIT message to the server S. The server processes arriving
SUBMIT messages in FIFO order; when the server receives multiple messages concurrently, it processes
each message atomically. The client waits for a REPLY message from S. When this message arrives, Ci
verifies its content and halts if it detects any inconsistency. Otherwise, Ci sends a COMMIT message to
the server and returns without waiting for a response, returning OK for a write and the register value for
a read. Sending a COMMIT message is simply an optimization to expedite garbage collection at S; this
message can be eliminated by piggybacking its contents on the SUBMIT message of the next operation.
The bulk of the protocol logic is devoted to dealing with a faulty server.

11



The USTOR protocol for clients is presented in Algorithm 1, and the USTOR protocol for the server
appears in Algorithm 2. The notation uses operations, upon-clauses, and procedures. Operations corre-
spond to the invocation events of the corresponding operations in the functionality, upon-clauses denote
a condition and are actions that may be triggered whenever their condition is satisfied, and procedures
are subroutines called from an operation or from an upon-condition. In the face of concurrency, op-
erations and upon-conditions act like monitors: only one thread of control can execute any of them at
a time. By invoking wait for condition, the thread releases control until condition is satisfied. The
statement return args at the end of an operation means that it executes output response(args), which
triggers the response event of the operation (denoted by response with parameters args).

We augment the protocol so that Ci may output an asynchronous event faili, in addition to the
responses of the storage functionality. It signals that the client has detected an inconsistency caused
by S; the signal will be picked up by a higher-layer protocol.

We describe the protocol logic in two steps: first in terms of its data structures and then by the flow
of an operation.

Data structures. The variables representing the state of client Ci are denoted with the subscript i.
Every client locally maintains a timestamp t that it increments during every operation (lines 113 and
126). Client Ci also stores a hash x̄i of the value most recently written to Xi (line 107).

A SUBMIT message sent by Ci includes t and a DATA-signature δ by Ci on t and x̄i; for write
operations, the message also contains the new register value x. The timestamp of an operation o is the
value t contained in the SUBMIT message of o.

The operation is represented by an invocation tuple of the form (i, oc, j, σ), where oc is either READ

or WRITE, j is the index of the register being read or written, and σ is a SUBMIT-signature by Ci on oc,
j, and t. In summary, the SUBMIT message is

〈SUBMIT, t, (i, oc, j, σ), x, δ〉.

Client Ci holds a timestamp vector Vi, so that when Ci completes an operation o, entry Vi[j] holds
the timestamp of the last operation by Cj scheduled before o and Vi[i] = t. In order for Ci to maintain
Vi, the server includes in the REPLY message of o information about the operations that precede o in the
schedule. Although this prefix could be represented succinctly as a vector of timestamps, clients cannot
rely on such a vector maintained by S. Instead, clients rely on digitally signed timestamp vectors sent
by other clients. To this end, Ci signs Vi and includes Vi and the signature ϕ in the COMMIT message.
The COMMIT message has the form

〈COMMIT, Vi,Mi, ϕ, ψ〉,

where Mi and ψ are introduced later.
The server stores the register value, the timestamp, and the DATA-signature most recently received

in a SUBMIT message from every client in an array MEM (line 202), and stores the timestamp vector
and the signature of the last COMMIT message received from every client in an array SVER (line 204).

At the point when S sends the REPLY message of operation o, however, the COMMIT messages of
some operations that precede o in the schedule may not yet have arrived at S. Hence, S includes explicit
information in the REPLY message about the invocations of such submitted and not yet completed oper-
ations. Consider the schedule at the point when S receives the SUBMIT message of o, and let o∗ be the
most recent operation in the schedule for which S has received a COMMIT message. The schedule ends
with a sequence o∗, o1, . . . , o`, o for ` ≥ 0. We call the operations o1, . . . , o` concurrent to o; the server
stores the corresponding sequence of invocation tuples in L (line 205). Furthermore, S stores the index
of the client that executed o∗ in c (lines 203 and 219). The REPLY message from S to Ci contains c, L,
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and the timestamp vector V c from the COMMIT message of o∗ together with a signature ϕc by Cc. We
use client index c as superscript to denote data in a message constructed by S, such that if S is correct,
the data was sent by the indicated client Cc. Hence, the REPLY message for a write operation consists of

〈REPLY, c, (V c,M c, ϕc), L, P 〉,

where M c and P are introduced later; the REPLY message for a read operation additionally contains the
value to be returned.

We now define the view history VH(o) of an operation o to be a sequence of operations, as will be
explained shortly. Client Ci executing o receives a REPLY message from S that contains a timestamp
vector V c, which is either 0n or accompanied by a COMMIT-signature ϕc by Cc, corresponding to some
operation oc of Cc. The REPLY message also contains the list of invocation tuples L, representing a
sequence of operations ω1, . . . , ωm. Then we set

VH(o) ,

{
ω1, . . . , ωm, o if V c = 0n

VH(oc), ω
1, . . . , ωm, o otherwise,

where the commas stand for appending operations to sequences of operations. Note that if S is correct,
it holds that oc = o∗ and o1, . . . , o` = ω1, . . . , ωm. View histories will be important in the protocol
analysis.

After receiving the REPLY message (lines 117 and 129),Ci updates its vector of timestamps to reflect
the position of o according to the view history. It does that by starting from V c (line 138), incrementing
one entry in the vector for every operation represented in L (line 143), and finally incrementing its own
entry (line 147).

During this computation, the client also derives its own estimate of the view history of all concurrent
operations represented in L. For representing these estimates compactly, we introduce the notion of
a digest of a sequence of operations ω1, . . . , ωm. In our context, it is sufficient to represent every
operation ωµ in the sequence by the index iµ of the client that executes it. The digest D(ω1, . . . , ωm) of
a sequence of operations is defined recursively using a hash function H as

D(ω1, . . . , ωm) ,

{
⊥ if m = 0

H
(
D(ω1, . . . , ωm−1)‖im

)
otherwise.

The collision resistance of the hash function implies that the digest can serve a unique representation for
a sequence of operations in the sense that no two distinct sequences that occur in an execution have the
same digest.

Client Ci maintains a vector of digests Mi together with Vi, computed as follows during the execu-
tion of o. For every operation ok by a client Ck corresponding to an invocation tuple in L, the client
computes the digest d of VH(o)|ok , i.e., the digest of Ci’s expectation of Ck’s view history of ok, and
stores d in Mi[k] (lines 139, 146, and 148).

The pair (Vi,Mi) is called a version; client Ci includes its version in the COMMIT message, together
with a so-called COMMIT-signature on the version. We say that an operation o or a client Ci commits a
version (Vi,Mi) when Ci sends a COMMIT message containing (Vi,Mi) during the execution of o.

Definition 10 (Order on versions). We say that a version (Vi,Mi) is smaller than or equal to a version
(Vj ,Mj), denoted (Vi,Mi) ≤̇ (Vj ,Mj), whenever the following conditions hold:

1. Vi ≤ Vj , i.e., for every k = 1, . . . , n, it holds that Vi[k] ≤ Vj [k]; and
2. For every k such that Vi[k] = Vj [k], it holds that Mi[k] = Mj [k].
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Furthermore, we say that (Vi,Mi) is smaller than (Vj ,Mj), and denote it by (Vi,Mi) <̇ (Vj ,Mj),
whenever (Vi,Mi) ≤̇ (Vj ,Mj) and (Vi,Mi) 6= (Vj ,Mj). We say that two versions are comparable
when one of them is smaller than or equal to the other.

Suppose that an operation oi of client Ci commits (Vi,Mi) and an operation oj of client Cj commits
(Vj ,Mj) and consider their order. The first condition orders the operations according to their timestamp
vectors. The second condition checks the consistency of the view histories of Ci and Cj for operations
that may not yet have committed. The precondition Vi[k] = Vj [k] means that some operation ok of Ck
is the last operation of Ck in the view histories of oi and of oj . In this case, the prefixes of the two view
histories up to ok should be equal, i.e., VH(oi)|ok = VH(oj)|ok ; since Mi[k] and Mj [k] represent these
prefixes in the form of their digests, the condition Mi[k] = Mj [k] verifies this. Clearly, if S is correct,
then the version committed by an operation is bigger than the versions committed by all operations that
were scheduled before. In the analysis, we show that this order is transitive, and that for all versions
committed by the protocol, (Vi,Mi) ≤̇ (Vj ,Mj) if and only if VH(oi) is a prefix of VH(oj).

The COMMIT message from the client also includes a PROOF-signature ψ by Ci on Mi[i] that will
be used by other clients. The server stores the PROOF-signatures in an array P (line 206) and includes
P in every REPLY message.

Algorithm flow. In order to support its extension to FAUST in Section 6, protocol USTOR not only
implements read and write operations, but also provides extended read and write operations. They serve
exactly the same function as standard counterparts, but additionally return the relevant version(s) from
the operation.

Client Ci starts executing an operation by incrementing the timestamp and sending the SUBMIT

message (lines 116 and 128). When S receives this message, it updates the timestamp and the DATA-
signature in MEM[i] with the received values for every operation, but updates the register value in
MEM[i] only for a write operation (lines 209–210 and 213). Subsequently, S retrieves c, the index of
the client that committed the last operation in the schedule, and sends a REPLY message containing c and
SVER[c] = (V c,M c, ϕc). For a read operation from Xj , the reply also includes MEM[j] and SVER[j],
representing the register value and the largest version committed by Cj , respectively. Finally, the server
appends the invocation tuple to L (line 215).

After receiving the REPLY message, Ci invokes a procedure updateVersion. It first verifies the
COMMIT-signature ϕc on the version (V c,M c) (line 136). Then it checks that (V c,M c) is at least as
large as its own version (Vi,Mi), and that V c[i] has not changed compared to its own version (line 137).
These conditions always hold when S is correct, since the channels are reliable with FIFO order and
therefore, S receives and processes the COMMIT message of an operation before the SUBMIT message
of the next operation by the same client.

Next, Ci starts to update its version (Vi,Mi) according to the concurrent operations represented in
L. It starts from (V c,M c). For every invocation tuple in L, representing an operation by Ck, it checks
the following (lines 140–146): first, that S received the COMMIT message of Ck’s previous operation
and included the corresponding PROOF-signature in P [k] (line 142); second, that k 6= i, i.e., that Ci
has no concurrent operation with itself (line 144); and third, after incrementing Vi[k], that the SUBMIT-
signature of the operation is valid and contains the expected timestamp Vi[k] (line 144). Again, these
conditions always hold when S is correct. During this computation, Ci also incrementally updates the
digest d and assigns d to Mi[k] for every operation. As the last step of updateVersion, Ci increments
its own timestamp Vi[i], computes the new digest, and assigns it to Mi[i] (lines 147–148). If any of the
checks fail, then updateVersion outputs faili and halts.

For read operations, Ci also invokes a procedure checkData. It first verifies the COMMIT-signa-
ture ϕj by the writer Cj on the version (V j ,M j) (line 150). If S is correct, this is the largest version
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Algorithm 1 Untrusted storage protocol (USTOR). Code for client Ci, part 1.

101: notation
102: Strings = {0, 1}∗ ∪ {⊥}
103: Clients = {1, . . . , n}
104: Opcodes = {READ,WRITE,⊥}
105: Invocations = Clients× Opcodes× Clients× Strings

106: state
107: x̄i ∈ Strings, initially ⊥ // hash of most recently written value
108: (Vi,Mi) ∈ Nn

0 × Stringsn, initially (0n,⊥n) // last version committed by Ci

109: operation writei(x) // write x to register Xi

110: (· · · )← writexi(x)
111: return OK

112: operation writexi(x) // extended write x to register Xi

113: t← Vi[i] + 1 // timestamp of the operation
114: x̄i ← H(x)
115: τ ← sign(i, SUBMIT‖WRITE‖i‖t); δ ← sign(i, DATA‖t‖x̄i)
116: send message 〈SUBMIT, t, (i,WRITE, i, τ), x, δ〉 to S
117: wait for receiving a message 〈REPLY, c, (V c,M c, ϕc), L, P 〉 from S
118: updateVersion(i, (c, V c,M c, ϕc), L, P )
119: ϕ← sign(i, COMMIT‖Vi‖Mi); ψ ← sign(i, PROOF‖Mi[i])
120: send message 〈COMMIT, Vi,Mi, ϕ, ψ〉 to S
121: return (Vi,Mi)

122: operation readi(Xj) // read from register Xj

123: (xj , · · · )← readxi(Xj)
124: return xj

125: operation readxi(Xj) // extended read from register Xj

126: t← Vi[i] + 1 // timestamp of the operation
127: τ ← sign(i, SUBMIT‖READ‖j‖t); δ ← sign(i, DATA‖t‖x̄i))
128: send message 〈SUBMIT, t, (i, READ, j, τ),⊥, δ〉 to S
129: wait for a message 〈REPLY, c, (V c,M c, ϕc), (V j ,M j , ϕj), (tj , xj , δj), L, P 〉 from S
130: updateVersion(j, (c, V c,M c, ϕc), L, P )
131: checkData(c, (V c,M c, ϕc), j, (V j ,M j , ϕj), (tj , xj , δj))
132: ϕ← sign(i, COMMIT‖Vi‖Mi); ψ ← sign(i, PROOF‖Mi[i])
133: send message 〈COMMIT, Vi,Mi, ϕ, ψ〉 to S
134: return (xj , Vi,Mi, V

j ,M j)

committed by Cj and received by S before it replied to Ci’s read request. The client also checks
the integrity of the returned value xj by verifying the DATA-signature δj on tj and on the hash of xj

(line 151). Furthermore, it checks that the version (V j ,M j) is smaller than or equal to (V c,M c)
(line 152). Although Ci cannot know if S returned data from the most recently submitted operation of
Cj , it can check thatCj issued the DATA-signature during the most recent operation oj ofCj represented
in the version of Ci by checking that tj = Vi[j] (line 152). If S is correct and has already received the
COMMIT message of oj , then it must be V j [j] = tj , and if S has not received this message, it must be
V j [j] = tj − 1 (line 153).

Finally, Ci sends a COMMIT message containing its version (Vi,Mi), a COMMIT-signature ϕ on the
version, and a PROOF-signature ψ on Mi[i] (lines 120 and 133).

When the server receives the COMMIT message from Ci containing a version (Vi,Mi), it stores the
version and the PROOF-signature in SVER[i] and stores the COMMIT-signature in P [i] (lines 221 and
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Algorithm 1 (cont.) Untrusted storage protocol (USTOR). Code for client Ci, part 2.

135: procedure updateVersion(j, (c, V c,M c, ϕc), L, P )
136: if not

(
(V c,M c) = (0n,⊥n) or verify(c, ϕc, COMMIT‖V c‖M c)

)
then output faili; halt

137: if not
(
(Vi,Mi) ≤̇ (V c,M c) and V c[i] = Vi[i]

)
then output faili; halt

138: (Vi,Mi)← (V c,M c)
139: d←M c[c]
140: for q = 1, . . . , |L| do
141: (k, oc, l, τ)← L[q]
142: if not

(
Mi[k] = ⊥ or verify(k, P [k], PROOF‖Mi[k])

)
then output faili; halt

143: Vi[k]← Vi[k] + 1
144: if k = i or not verify(k, τ, SUBMIT‖oc‖l‖Vi[k]) then output faili; halt
145: d← H(d‖k)
146: Mi[k]← d
147: Vi[i] = Vi[i] + 1
148: Mi[i]← H(d‖i)

149: procedure checkData(c, (V c,M c, ϕc), j, (V j ,M j , ϕj), (tj , xj , δj))
150: if not

(
(V j ,M j) = (0n,⊥n) or verify(j, ϕj , COMMIT‖V j‖M j)

)
then output faili; halt

151: if not
(
tj = 0 or verify(j, δj , DATA‖tj‖H(xj))

)
then output faili; halt

152: if not
(
(V j ,M j) ≤̇ (V c,M c) and tj = Vi[j]

)
then output faili; halt

153: if not
(
V j [j] = tj or V j [j] = tj − 1

)
then output faili; halt

Algorithm 2 Untrusted storage protocol (USTOR). Code for server.
201: state
202: MEM[i] ∈ N0 ×X × Strings, // last timestamp, value, and DATA-sig. received from Ci

initially (0,⊥,⊥), for i = 1, . . . , n
203: c ∈ Clients, initially 1 // client who committed last operation in schedule
204: SVER[i] ∈ Nn

0 × Stringsn × Strings, // last version and COMMIT-signature received from Ci

initially (0n,⊥n,⊥), for i = 1, . . . , n
205: L ∈ Invocations∗, initially empty // invocation tuples of concurrent operations
206: P ∈ Stringsn, initially ⊥n // PROOF-signatures

207: upon receiving a message 〈SUBMIT, t, (i, oc, j, τ), x, δ〉 from Ci:
208: if oc = READ then
209: (t′, x′, δ′)← MEM[i]
210: MEM[i]← (t, x′, δ)
211: send message 〈REPLY, c, SVER[c], SVER[j],MEM[j], L, P 〉 to Ci

212: else
213: MEM[i]← (t, x, δ)
214: send message 〈REPLY, c, SVER[c], L, P 〉 to Ci

215: append (i, oc, j, τ) to L

216: upon receiving a message 〈COMMIT, Vi,Mi, ϕ, ψ〉 from Ci:
217: (V c,M c, ϕc)← SVER[c]
218: if Vi > V c then
219: c← i
220: remove the last tuple of the form (i, · · · ) and all preceding tuples from L
221: SVER[i]← (Vi,Mi, ϕ)
222: P [i]← ψ
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222). Last but not least, the server checks if this operation is now the last committed operation in the
schedule by testing Vi > V c; if this is the case, the server stores i in c and removes from L the tuples
representing this operation and all operations scheduled before. Note that L has at most n elements
because at any time there is at most one operation per client that has not committed.

The following result summarizes the main properties of the protocol. As responding with a faili
event is not foreseen by the specification of registers, we ignore those outputs in the theorem.

Theorem 1. Protocol USTOR in Algorithms 1 and 2 emulates n SWMR registers on a Byzantine server
with weak fork-linearizability; furthermore, the emulation is wait-free in all executions where the server
is correct.

Proof overview. A formal proof of the theorem appears in Appendix A. Here we explain intuitively
why the protocol is wait-free, how the views of the weak fork-linearizable Byzantine emulation are
constructed, and why the at-most-one-join property is preserved.

To see why the protocol is wait-free when the server is correct, recall that the server processes arriv-
ing SUBMIT messages atomically and in FIFO order. The order in which SUBMIT messages are received
therefore defines the schedule of the corresponding operations, which is the linearization order when S
is correct. Since communication channels are reliable and the event handler for SUBMIT messages sends
a REPLY message to the client, the protocol is wait-free in executions where S is correct.

We now explain the construction of views as required by weak fork-linearizability. It is easy to
see that whenever an inconsistency occurs, there are two operations oi and oj by clients Ci and Cj
respectively, such that neither one of VH(oi) and VH(oj) is a prefix of the other. This means that if
oi and oj commit versions (Vi,Mi) and (Vj ,Mj), respectively, these versions are incomparable. By
Lemma 16 in Appendix A, it is not possible then that any operation commits a version greater than
both (Vi,Mi) and (Vj ,Mj). Yet the protocol does not ensure that all operations appear in the view of
a client ordered according to the versions that they commit. Specifically, a client may execute a read
operation or and return a value that is written by a concurrent operation ow; in this case, the reader
compares its version only to the version committed by the operation of the writer that precedes ow
(line 152). Hence, ow may commit a version incomparable to the one committed by or, although ow
must appear before or in the view of the reader.

In the analysis, we construct the view πi of clientCi as follows. Let oi be the last complete operation
of Ci and suppose it commits version (Vi,Mi). We construct πi in two steps. First, we consider all
operations that commit a version smaller than or equal to (Vi,Mi), and order them by their versions.
As explained above, these versions are totally ordered since they are smaller than (Vi,Mi). We denote
this sequence of operations by ρi. Second, we extend ρi to πi as follows: for every operation or =
readj(Xk) → v in ρi such that the corresponding write operation ow = writek(Xk, v) is not in ρi, we
add ow immediately before the first read operation in ρi that returns v. We will show that if a write
operation of client Ck is added at this stage, no subsequent operation of Ck appears in πi. Thus, if two
operations o and o′ of Ck are both contained in two different views πi and πj and o precedes o′, then
o ∈ ρi and o ∈ ρj . Because the order on versions is transitive and because the versions of the operations
in ρi and ρj are totally ordered, we have that ρi|o = ρj |o. This sequence consists of all operations that
commit a version smaller than the version committed by o. It is now easy to verify that also πi|o = πj |o
by construction of πi and πj . This establishes the at-most-one-join property.

Complexity. Each operation entails sending exactly three protocol messages (SUBMIT, REPLY, and
COMMIT). Every message includes a constant number of components of the following types: time-
stamps, indices, register values, hash values, digital signatures, and versions. Additionally, the COMMIT

message contains a list L of invocation tuples and a vector P of digital signatures. Although in theory,
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timestamps, hash values, and digital signatures may grow without bound, they grow very slowly. In
practice, they are typically implemented by constant-size fields, e.g., 64 bits for a timestamp or 256 bits
for a hash value. Let κ denote the maximal number of bits needed to represent a timestamp, hash value,
or digital signature. For the sake of the analysis, we will assume that the number of steps taken by all
parties of the protocol together is bounded by 2κ. Register values in X require at most log |X | bits.
Indices are represented using O(κ) bits. Versions consist of n timestamps and n hash values, and thus
require O(nκ) bits. For each client, at most one invocation tuple appears in L and at most one PROOF-
signature in P . Hence, the sizes of L and P are alsoO(nκ) bits. All in all, the bit complexity associated
with an operation is O(log |X | + nκ). Note that if S is faulty and sends longer messages, then some
check by a client fails. Therefore, in all cases, each completed operation incurs at mostO(log |X |+nκ)
communication complexity.

6 Fail-Aware Untrusted Storage Protocol

In this section, we extend the USTOR protocol of the previous section to a fail-aware untrusted storage
protocol (FAUST). The new component at the client side calls the USTOR protocol and uses the offline
client-to-client communication channels; its purpose is to detect the stability of operations and server
failures. For both goals, FAUST needs access to the version of every operation, as maintained by the
USTOR protocol; FAUST therefore calls the extended read and write operations of USTOR.

For stability detection, the protocol performs extra dummy operations periodically, for confirming
the consistency of the preceding operations with respect to other clients. A client maintains the maximal
version committed by the operations of every other client. When the client determines that a version
received from another client is consistent with the version committed by an operation of its own, then it
notifies the application that the operation has become stable w.r.t. the other client.

Our approach to failure detection takes up the intuition used for detecting forking attacks in previous
fork-linearizable storage systems [20, 16, 4]. When a client ceases to obtain new versions from another
client via the server, it contacts the other client directly with a PROBE message via offline communication
and asks for the maximal version that it knows. The other client replies with this information in a
VERSION message, and the first client verifies that all versions are consistent. If any check fails, the
client reports the failure and notifies the other clients about this with a FAILURE message. The maximal
version received from another client may also cause some operations to become stable; this combination
of stability detection and failure detection is a novel feature of FAUST.

Figure 4 illustrates the architecture of the FAUST protocol. Below we describe at a high level how
FAUST achieves its goals, and refer to Algorithm 3 for the details. For FAUST, we extend our pseudo-
code by two elements. The notation periodically is an abbreviation for upon TRUE. The condition
completion of o with return value args in an upon-clause stands for receiving the response of some
operation o with parameters args.

Protocol overview. For every invocation of a read or write operation, the FAUST protocol at client Ci
directly invokes the corresponding extended operation of the USTOR protocol. For every response
received from the USTOR protocol that belongs to such an operation, FAUST adds the timestamp of the
operation to the response and then outputs the modified response. FAUST retains the version committed
by every operation of the USTOR protocol and takes the timestamp from the i-th entry in the timestamp
vector (lines 316 and 325). More precisely, client Ci stores an array VERi containing the maximal
version that it has received from every other client. It sets VERi[i] to the version committed by the most
recent operation of its own and updates the value of VERi[j] when a readxi(Xj) operation of the USTOR
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Figure 4: Architecture of the fail-aware untrusted storage protocol (FAUST).

protocol returns a version (Vj ,Mj) committed by Cj . Let maxi denote the index of the maximum of all
versions in VERi.

To implement stability detection, Ci periodically issues a dummy read operation for the register of
every client in a round-robin fashion (lines 331-332). In order to preserve a well-formed interaction with
the USTOR protocol, FAUST ensures that it invokes at most one operation of USTOR at a time, either a
read or a write operation from the application or a dummy read. We assume that the application invokes
read and write operations in a well-formed manner and that these operations are queued such that they
are executed only if no dummy read executes concurrently (this is omitted from the presentation for
simplicity). The flags execopi and execdummyi indicate whether an application-triggered operation or a
dummy operation is currently executing at USTOR, respectively. The protocol invokes a dummy read
only if execxi and dummyexeci are FALSE.

However, dummy read operations alone do not guarantee stability-detection completeness accord-
ing to Definition 6 because a faulty server, even when it only crashes, may not respond to the client
messages in protocol USTOR. This prevents two clients that are consistent with each other from ever
discovering that. To solve this problem, the clients communicate directly with each other and exchange
their versions, as explained next.

For every entry VERi[j], the protocol stores in Ti[j] the time when the entry was most recently
updated. If a periodic check of these times reveals that more than δ time units have passed without an
update from Cj , then Ci sends a PROBE message with no parameters directly to Cj (lines 329–330).
Upon receiving a PROBE message, Cj replies with a message 〈VERSION, (V,M)〉, where (V,M) =
VERj [maxj ] is the maximal version that Cj knows. Client Ci also updates the value of VERi[j] when it
receives a bigger version from Cj in a VERSION message. In this way, the stability detection mechanism
eventually propagates the maximal version to all clients. Note that a VERSION message sent by Ci does
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Algorithm 3 Fail-aware untrusted storage protocol (FAUST). Code for client Ci.
301: state
302: ki ∈ Clients, initially 0
303: VERi[j] ∈ Nn

0 × Stringsn, initially (0n,⊥n), for j = 1, . . . , n // biggest received from Cj

304: maxi ∈ Clients, initially 1 // index of client with maximal version
305: Wi ∈ Nn

0 , initially 0n // maximal timestamps of Ci’s operations observed by different clients
306: wchangei ∈ {FALSE, TRUE}, initially TRUE // indicates that Wi changed since last stablei(Wi)
307: execopi ∈ {FALSE, TRUE}, initially FALSE // indicates that a non-dummy operation is executing
308: execdummyi ∈ {FALSE, TRUE}, initially FALSE // indicates that a dummy operation is executing
309: Ti ∈ Nn, initially 0n // time when last updated version was received from Cj

310: operation writei(x):
311: execopi ← TRUE
312: invoke USTOR.writexi(x)

313: upon completion of USTOR.writexi
with return value (Vi,Mi):

314: execopi ← FALSE
315: update(i, (Vi,Mi))
316: output (OK, Vi[i])

317: operation readi(Xj):
318: execopi ← TRUE
319: invoke USTOR.readxi(Xj)

320: upon completion of USTOR.readxi
with return value (x, Vi,Mi, Vj ,Mj):

321: update(i, (Vi,Mi))
322: update(j, (Vj ,Mj))
323: if execopi then
324: execopi ← FALSE
325: output (x, Vi[i])
326: else
327: execdummyi ← FALSE

328: periodically:
329: D ← {Cj | time()− Ti[j] > δ}
330: send message 〈PROBE〉 to all Cj ∈ D
331: if not execopi and not execdummyi then
332: ki ← ki mod n+ 1
333: execdummyi ← TRUE
334: invoke USTOR.readxi(ki)

335: procedure update(j, (V,M)):
336: if not

(
(V,M) ≤̇ VERi[maxi] or
VERi[maxi] ≤̇ (V,M)

)
then

337: fail()
338: if VERi[j] <̇ (V,M) then
339: VERi[j]← (V,M)
340: Ti[j]← time()
341: if VERi[maxi] <̇ (V,M) then
342: maxi ← j
343: if Wi[j] < V [i] then
344: Wi[j]← V [i]
345: wchangei ← TRUE

346: upon wchangei:
347: wchangei ← FALSE
348: output stablei(Wi)

349: upon receiving msg. 〈PROBE〉 from Cj :
350: send message 〈VERSION, VERi[i]〉 to Cj

351: upon receiving msg. 〈VERSION,(V,M)〉 from Cj :
352: update(j, (V,M))

353: procedure fail():
354: send message 〈FAILURE〉 to all clients
355: output faili
356: halt

357: upon receiving USTOR.faili or
receiving a message 〈FAILURE〉 from Cj :

358: fail()

not necessarily contain a version committed by an operation of Ci.
Whenever Ci receives a version (V,M) from Cj , either in a response of the USTOR protocol or in a

VERSION message, it calls a procedure update that checks (V,M) for consistency with the versions that
it already knows. It suffices to verify that (V,M) is comparable to VERi[maxi] (line 336). Furthermore,
when VERi[j] ≤̇ (V,M), then Ci updates VERi[j] to the bigger version (V,M).

The vectorWi in stablei(Wi) notifications contains the i-th entries of the timestamp vectors in VERi,
i.e., Wi[j] = Vj [i], where (Vj ,Mj) = VERi[j] for j = 1, . . . , n. Hence, whenever the i-th entry in a
timestamp vector in VERi[j] is larger than Wi[j] after an update to VERi[j], then Ci updates Wi[j]
accordingly and issues a notification stablei(Wi). This means that all operations of FAUST at Ci that
returned a timestamp t ≤W [j] are stable w.r.t. Cj .
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Note that Ci may receive a new maximal version from Cj by reading from Xj or by receiving
a VERSION message directly from Cj . Although using client-to-client communication has been sug-
gested before to detect server failures [20, 16], FAUST is the first algorithm in the context of untrusted
storage to employ offline communication explicitly for detecting stability and for aiding progress when
no inconsistency occurs.

The client detects server failures in one of three ways: first, the USTOR protocol may output
USTOR.faili if it detects any inconsistency in the messages from the server; second, procedure up-
date checks that all versions received from other clients are comparable to the maximum of the versions
in VERi; and last, another client that has detected a server failure sends a FAILURE message via offline
communication. When one of these conditions occurs, the client enters procedure fail, sends a FAILURE

message to alert all other clients, outputs faili, and halts.
The following result summarizes the properties of the FAUST protocol.

Theorem 2. Protocol FAUST in Algorithm 3 implements a fail-aware untrusted storage service consist-
ing of n SWMR registers.

Proof overview. A proof of the theorem appears in Appendix B; here we sketch its main ideas. Note
that properties 1, 2, and 3 of Definition 6 immediately follow from the properties of the USTOR protocol:
it is linearizable and wait-free whenever the server is correct, and weak fork-linearizable at all times.
Property 4 (integrity) holds because subsequent operations of a client always commit versions with
monotonically increasing timestamp vectors. Furthermore, the USTOR protocol never detects a failure
when the server is correct, even when the server is arbitrarily slow, and the versions committed by its
operations are monotonically increasing; this ensures property 5 (failure-detection accuracy).

We next explain why FAUST ensures property 6 of a fail-aware untrusted service (stability-detection
accuracy). It is easy to see that any version returned by an extended operation of USTOR at Ci which
is subsequently stored in VERi[i] is comparable to all other versions stored in VERi. Additionally, we
show (Lemma 22 in Appendix B) that every complete operation of the USTOR protocol at a client Cj
that does not cause FAUST to output failj , commits a version that is comparable to VERi[j].

When combined, these two properties imply that when Ci receives a version from Cj that is larger
than the version (Vi,Mi) committed by some operation oi of Ci, then all versions committed by op-
erations of Cj that do not fail are comparable to (Vi,Mi). Hence, when (Vi,Mi) <̇ VERi[j] and oi
becomes stable w.r.t. Cj , then Cj has promised, intuitively, to Ci that they have a common view of the
execution up to oi.

For property 7 (detection completeness), we show that every complete operation of FAUST at Ci
eventually becomes stable with respect to every correct client Cj , unless a server failure is detected.
Suppose that Ci and Cj are correct and that some operation oi of Ci returned timestamp t. Under
good conditions, when the server is correct and the network delivers messages in a timely manner, the
FAUST protocol eventually causes Cj to read from Xi. Every subsequent operation of Cj then commits
a version (Vj ,Mj) such that Vj [i] ≥ t. Since Ci also periodically reads all values, Ci eventually reads
from Xj and receives such a version committed by Cj , and this causes oi to become stable w.r.t. Cj .

However, it is possible that Ci does not receive a suitable version committed by Cj , which makes
oi stable w.r.t. Cj . This may be caused by network delays, which are indistinguishable to the clients
from a server crash. At some point, Ci simply stops to receive new versions from Cj and, conversely,
Cj receives no new versions from Ci. But at most δ time units later, Cj sends a PROBE message to
Ci and eventually receives a VERSION message from Ci with a version (Vi,Mi) such that Vi[i] ≥ t.
Analogously, Ci eventually sends a PROBE message to Cj and receives a VERSION message containing
some (Vj ,Mj) from Cj with Vj [i] ≥ t. This means that oi becomes stable w.r.t. Cj .
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7 Impossibility of Wait-Free Fork-*-Linearizable Byzantine Emulations

This section shows that fork-*-linearizable Byzantine emulations cannot be wait-free in all executions
where the server is correct. This result implies the corresponding impossibility for fork-linearizable
Byzantine emulations established before [4]. A similar result about fork-sequentially-consistent Byzan-
tine emulations has been shown in a companion paper [3].

Theorem 3. There is no protocol that emulates the functionality of n ≥ 1 SWMR registers on a Byzantine
server S with fork-*-linearizability that is wait-free in every execution with a correct S.

Proof. Towards a contradiction, assume that there exists such an emulation protocol P . Then in any fair
and well-formed execution of P with a correct server, every operation of a correct client completes. We
next construct three executions of P , called α, β, and γ, with two clients, C1 and C2, accessing a single
SWMR register X1. All executions considered here are fair and well-formed, as can easily be verified.
The clients are always correct.

We note that protocol P describes the asynchronous interaction of the clients with S. This interac-
tion is depicted in the figures only when necessary.

w1(X1,u)
C1

C2
r2

1(X1)→⊥ r2
2

... r2
z(X1)→u

S
...

t0

r2
3 r2

z-1

Figure 5: Execution α: S is correct.

Execution α. We construct an execution α, shown in Figure 5, in which S is correct. Client C1

executes a write operation write1(X1, u) and C2 executes multiple read operations from X1, denoted ri2
for i = 1, . . . , z, as explained next.

The execution begins with C2 invoking the first read operation r12. Since S and C2 are correct and
we assume that P is wait-free in all executions when the server is correct, r12 completes. Since C1 did
not yet invoke any operations, it must return the initial value ⊥.

Next, C1 invokes w1 = write1(X1, u). This is the only operation invoked by C1 in α. Every time
a message is sent from C1 to S during w1, if a non-⊥ value was not yet read by C2 from X1, then the
following things happen in order: (a) the message from C1 is delayed by the asynchronous network;
(b) C2 executes operation ri2 reading from X1, which completes by our wait-freedom assumption; (c)
the message from C1 to S is delivered. The operation w1 eventually completes (and returns OK) by our
wait-freedom assumption. After that point in time, C2 invokes one more read operation from X1 if and
only if all its previous read operations returned ⊥. According to the first property of fork-*-linearizable
Byzantine emulations, since S is correct, this last read must return u 6= ⊥ because it was invoked after
w1 completed. We denote the first read in α that returns a non-⊥ value by rz2 (note that z ≥ 2 since r12
necessarily returns ⊥ as explained above). By construction, rz2 is the last operation of C2 in α. We note
that if messages are sent from C1 to S after the completion of rz2 , they are not delayed.

We denote by t0 the invocation point of rz−12 in α. This point is marked by a vertical dashed line in
Figures 5-7.
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Figure 6: Execution β: S is correct.

Execution β. We next define execution β, in which S is also correct. The execution is shown in
Figure 6. It is identical to α until the end of rz−22 , i.e., until just before point t0 (as defined in α and
marked by the dashed vertical line). In other words, execution β results from α by removing the last
two read operations. If z = 2, this means that there are no reads in β, and otherwise rz−22 is the last
operation of C2 in β. Operation w1 is invoked in β like in α; if β does not include r12, then w1 begins
at the start of β, and otherwise, it begins after the completion of r12. Since the server and C1 are correct,
by our wait-freedom assumption w1 completes.

w1(X1,u)C1
C2 ...

t0

r2
1(X1)→⊥ r2

2 r2
z-2 r2

z(X1)→ur2
z-1

Figure 7: Execution γ: S is faulty. It is indistinguishable from α to C2 and indistinguishable from β
to C1.

Execution γ. Our final execution is γ, shown in Figure 7, in which S is faulty. Execution γ begins just
like the common prefix of α and β until immediately before point t0, and w1 begins in the same way as
it does in β. In γ, the server simulates β to C1 by hiding all operations of C2, starting with rz−12 . Since
C1 cannot distinguish these two executions, w1 completes in γ just like in β. After w1 completes, the
server simulates α for the two remaining reads rz−12 and rz2 by C2. We next explain how this is done.
Notice that in α, the server receives at most one message from C1 between t0 and the completion of rz2 ,
and this message is sent before time t0 by our construction of α. In γ, which is identical to α until just
before t0, the same message (if any) is sent by C1 and therefore the server has all needed information
in order to simulate α for C2 until the end of rz2 . Hence, the output of rz−12 and rz2 is the same as in α
since it depends only on the state of C2 before these operations and on the messages received from the
server during their execution.

Thus, γ is indistinguishable from α to C2 and indistinguishable from β to C1. However, we next
show that γ is not fork-*-linearizable. Observe the sequential permutation π2 required by the definition
of fork-*-linearizability (i.e., the view of C2). As the sequential specification of X1 must be preserved
in π2, and since rz2 returns u, we conclude that w1 must appear in π2. Since the real-time order must
be preserved as well, the write appears before rz−12 in the view. However, this violates the sequential
specification ofX1, since rz−12 returns⊥ and not the most recently written value u 6= ⊥. This contradicts
the definition of P as a protocol that guarantees fork-*-linearizability in all executions.
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8 Comparing Forking Consistency Conditions and Causal Consistency

The purpose of this section is to explore the relation between causal consistency and the forking consis-
tency notions introduced in Section 4.1. First, we show that fork-linearizability implies causal consis-
tency.

Theorem 4. Every fork-linearizable history w.r.t. a functionality F of composed of registers is also
causally consistent w.r.t. F .

Proof. Consider a fork-linearizable execution σ. We will show that the views of the clients satisfying
the definition of fork-linearizability also preserve the requirement of causal consistency, which is that
for each operation in every client’s view, all write operations that causally precede it appear in the view
before the particular operation. More formally, let πi be some view of σ at a client Ci according to fork-
linearizability and let o be an operation in πi. We need to prove that any write operation o′ that causally
precedes o appears in πi before o. According to the definition of causal order, this can be proved by
repeatedly applying the following two arguments.

First, assume that both o and o′ are operations by the same client Cj and consider a view πj at Cj .
Since πj includes all operations by Cj , also o and o′ appear in πj . Since o′ precedes o and since πj
preserves the real-time order of σ according to fork-linearizability, operation o′ precedes o also in πj .
By the no-join condition, we have that πoi = πoj and, therefore, o′ also appears before o in πi.

Second, assume that o′ is of the form writej(X, v) and o is of the form readk(X)→ v. In this case,
operation o′ is contained in πi and precedes o because πi is a view of σ at Ci; in particular, the third
property of a view guarantees that πi satisfies the sequential specification of a register.

The next two theorems establish that causal-consistency and fork-*-linearizability are incomparable,
in the sense that neither notion implies the other one if we consider a storage service with multiple
SWMR registers.

The definition of weak fork-linearizability implies trivially that every weakly fork-linearizable his-
tory is also causally consistent. The next theorem shows that a fork-*-linearizable history may not be
causally consistent with respect to functionalities with multiple registers.

w1(X1,u)
C1

C2
r2(X1)→u w2(X2, v)

C3
r3(X2)→v r3(X1)→⊥

Figure 8: A fork-*-linearizable history that is not causally consistent.

Theorem 5. There exist histories that are fork-*-linearizable but not causally consistent w.r.t. a func-
tionality containing two or more registers.

Proof. Consider the following execution, shown in Figure 8: Client C1 executes write1(X1, u), then
client C2 executes read2(X1) → u, write2(X2, v), and finally, client C3 executes read3(X2) → v,
read3(X1)→ ⊥. Define the client views according to the definition of fork-*-linearizability as

π1 : write1(X1, u).
π2 : write1(X1, u), read2(X1)→ u, write2(X2, v).
π3 : write2(X2, v), read3(X2)→ v, read3(X1)→ ⊥.
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It is easy to see that π1, π2, and π3 satisfy the conditions of fork-*-linearizability. In particular, since
no two operations of any client appear in two views, the at-most-one-joint condition holds trivially.
But clearly, α is not causally consistent: write1(X1, u) causally precedes write2(X2, v) which itself
causally precedes read3(X1)→ ⊥; thus, returning⊥ violates the sequential specification of a read/write
register.

Conversely, a causally consistent history may not be fork-*-linearizable with respect to even one
register.

w1(X1,u)C1

C2
r2(X1)→u r2(X1)→v r2(X1)→w

w1(X1,v) w1(X1,w)

Figure 9: A causally consistent execution that is not fork-*-linearizable.

Theorem 6. There exist histories that are causally consistent but not fork-*-linearizable with respect to
a functionality with one register.

Proof. Consider the following execution, shown in Figure 9: Client C1 executes three write operations,
write1(X1, u), write1(X1, v), and write1(X1, w). After the last one completes, client C2 executes three
read operations, read2(X1) → u, read2(X1) → v, and read2(X1) → w. We claim that this execution
is causally consistent. Intuitively, the causally dependent write operations are seen in the same order by
both clients. More formally, the view of C1 according to the definition of causal consistency contains
only operations of C1, and the view of C2 contains all operations, with the write and read operations
interleaved so that they satisfy the sequential specification; this is consistent with the causal order of the
execution.

However, the execution is not fork-*-linearizable, as we explain next. The view π2 ofC2, as required
by the definition of fork-*-linearizability, must be the sequence:

write1(X1, u), read2(X1)→ u, write1(X1, v), read2(X1)→ v, write1(X1, w), read2(X1)→ w.

But the operations read2(X1)→ u and write1(X1, v) violate the real-time order requirement of fork-*-
linearizability.

9 Conclusion

We tackled the problem of providing meaningful semantics for a service implemented by an untrusted
provider. As clients increasingly use online services provided by third parties, such as in cloud comput-
ing, the importance of addressing this problem becomes more prominent. For such environments, we
presented the new abstraction of a fail-aware untrusted service. This notion generalizes the concepts of
eventual consistency and fail-awareness to account for Byzantine faults. We realize this new abstraction
in the context of an online storage service with so-called forking semantics. Our service guarantees
linearizability and wait-freedom when the server is correct, provides accurate and complete consistency
and failure notifications, and ensures causal consistency at all times. We observed that no previous
forking consistency notion can be used for building fail-aware untrusted storage, because these notions
inherently rule out wait-free implementations. We then presented a new forking consistency condition
called weak fork-linearizability, which does not suffer from this limitation. We developed an efficient
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wait-free protocol for implementing fail-aware untrusted storage with weak fork-linearizability. Finally,
we used this untrusted storage protocol to implement fail-aware untrusted storage.

Two problems are left open by this work. First, we did not consider Byzantine client faults. However,
the USTOR and FAUST protocols can be extended to deal with such behavior with known methods [20].
Most problems can be avoided by having the clients verify that their peers provide consistent informa-
tion about past operations. Such methods are orthogonal to our contributions, however, and a precise
formulation of the semantics that can be achieved are beyond this work. Second, our protocol require a
communication complexity proportional to the number of clients. It remains open to determine if this is
an inherent limitation of the model and, potentially, to find more scalable solutions.
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A Analysis of the Weak Fork-Linearizable Untrusted Storage Protocol

This section is devoted to the proof of Theorem 1. We start with some lemmas that explain how the
versions committed by clients should monotonically increase during the protocol execution.

Lemma 7 (Transitivity of order on versions). Consider three versions (Vi,Mi), (Vj ,Mj), and
(Vk,Mk). If (Vi,Mi) ≤̇ (Vj ,Mj) and (Vj ,Mj) ≤̇ (Vk,Mk), then (Vi,Mi) ≤̇ (Vk,Mk).

Proof. First, Vi ≤ Vj and Vj ≤ Vk implies Vi ≤ Vk because the order on timestamp vectors is transitive.
Second, let c be any index such that Vi[c] = Vk[c]. Since Vi[c] ≤ Vj [c] and Vj [c] ≤ Vk[c], but Vi[c] =
Vk[c], we have Vj [c] = Vk[c]. From (Vi,Mi) ≤̇ (Vj ,Mj) it follows that Mi[c] = Mj [c]. Analogously, it
follows that Mj [c] = Mk[c], and hence Mi[c] = Mk[c]. This means that (Vi,Mi) ≤̇ (Vk,Mk).

Lemma 8. Let oi be an operation of Ci that commits a version (Vi,Mi) and suppose that during its
execution, Ci receives a REPLY message containing a version (V c,M c). Then (V c,M c) <̇ (Vi,Mi).

Proof. We first prove that (V c,M c) ≤̇ (Vi,Mi). According to the order on versions, we have to show
that for all k = 1, . . . , n, we have either V c[k] < Vi[k] or V c[k] = Vi[k] and M c[k] = Mi[k]. Note
how the computation of (Vi,Mi) starts from (Vi,Mi) = (V c,M c) (line 138); later, an entry Vi[k] is
either incremented (lines 143 and 147), hence V c[k] < Vi[k], or not modified, and then M c[k] = Mi[k].
Moreover, Vi[i] is incremented exactly once, and therefore (V c,M c) 6= (Vi,Mi)

Lemma 9. Let o′i and oi be two operations of Ci that commit versions (V ′i ,M
′
i) and (Vi,Mi), respec-

tively, such that o′i precedes oi. Then:

1. o′i and oi are consecutive operations of Ci if and only if V ′i [i] + 1 = Vi[i]; and
2. (V ′i ,M

′
i) <̇ (Vi,Mi).

Proof. At the start of oi, clientCi remembers the most recent version (V ′i ,M
′
i) that it committed. During

the execution of o′i, Ci receives from S a version (V c,M c) and verifies that V ′i [i] = V c[i] (line 137)
and sets Vi = V ′i . Afterwards, Ci increments Vi[i] (line 147) exactly once (as guarded by the check
on line 144). This establishes the first claim of the lemma. The second claim follows from the check
(V ′i ,M

′
i) ≤̇ (V c,M c) (line 137) and from Lemma 8 by transitivity of the order on versions.

The next lemma addresses the situation where a client executes a read operation that returns a value
written by a preceding operation or a concurrent operation.

Lemma 10. Suppose oi is a read operation of Ci that reads a value x from register Xj and commits
version (Vi,Mi). Then the version (V j

0 ,M
j
0 ) that Ci receives with x in the REPLY message satisfies

(V j
0 ,M

j
0 ) <̇ (Vi,Mi). Moreover, suppose oj is the operation of Cj that writes x. Then all operations

of Cj that precede oj commit a version smaller than (Vi,Mi).

Proof. Let (V c,M c) be the version that Ci receives during oi in the REPLY message, together with
(V j

0 ,M
j
0 ), which was committed by an operation oj0 of Cj (line 150). In procedure checkData, Ci

verifies that (V j
0 ,M

j
0 ) ≤̇ (V c,M c); Lemma 8 shows that (V c,M c) <̇ (Vi,Mi); hence, we have that

(V j
0 ,M

j
0 ) <̇ (Vi,Mi) from the transitivity of the order on versions. Because the timestamp tj that was

signed together with x under the DATA-signature (line 151) is equal to V j
0 [j] or to V j

0 [j] + 1 (line 153),
it follows from Lemma 9 that either oj precedes oj0, or oj is equal to oj0, or oj0 immediately precedes oj .
In either case, the claim follows.

We now establish the connection between the view history of an operation and the digest vector in
the version committed by that operation.
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Lemma 11. Let oi be an operation invoked byCi that commits version (Vi,Mi). Furthermore, if Vi[j] >
0, let ω denote the operation of Cj with timestamp Vi[j]; otherwise, let ω denote an imaginary initial
operation o⊥. Then Mi[j] is equal to the digest of the prefix of VH(oi) up to ω, i.e.,

Mi[j] = D
(
VH(oi)|ω

)
.

Proof. We prove the lemma by induction on the construction of the view history of oi. Consider op-
eration oi executed by Ci and the REPLY message from S that Ci receives, which contains a version
(V c,M c). The base case of the induction is when (V c,M c) = (0n,⊥n). The induction step is the case
when (V c,M c) was committed by some operation oc of client Cc.

For the base case, note that for any j, it holds M c[j] = ⊥, and this is equal to the digest of an empty
sequence. During the execution of oi in updateVersion, the version (Vi,Mi) is first set to (V c,M c)
(line 138) and the digest d is set to M c[c]. Let us investigate how Vi and Mi change subsequently.

If j 6= i, then Vi[j] and Mi[j] change only when an operation by Cj is represented in L. If there is
such an operation, Ci computes d = D

(
VH(oi)|ω

)
and setsMi[j] to d by the end of the loop (lines 140–

146). In other words, the loop starts at the same position and cycles through the same sequence of
operations ω1, . . . ωm as the one used to define the view history. This establishes the claim when ω is
the operation of Cj with timestamp Vi[j].

If i = j, then the test in line 144 ensures that there is no operation by Cj represented in L. After
the execution of the loop, Vi[i] is incremented (line 147), the invocation tuple of oi is included into the
digest at the position corresponding to the definition of the view history, and the result stored in Mi[i].
Hence, Mi[i] = D

(
VH(oi)

)
and the claim follows also for ω = oi.

For the induction step, note that M c[c] = D
(
VH(oc)

)
by the induction assumption. For any j such

that V c[j] = Vi[j], the claim holds trivially from the induction assumption. During the execution of
oi in updateVersion, the reasoning for the base case above applies analogously. Hence, the claim holds
also for the induction step, and the lemma follows.

Lemma 12. Let oi be an operation that commits version (Vi,Mi) such that Vi[j] > 0 for some j ∈
{1, . . . , n}. Then the operation of Cj with timestamp Vi[j] is contained in VH(oi).

Proof. Consider the first operation õ ∈ VH(oi) that committed a version (Ṽ , M̃) such that Ṽ [j] = Vi[j].
According to the test on line 144, the operation of Cj with timestamp Vi[j] is concurrent to õ and
therefore is contained in VH(oi) by construction.

Lemma 13. Consider two operations oi and oj that commit versions (Vi,Mi) and (Vj ,Mj), respec-
tively, such that Vi[k] = Vj [k] > 0 for some k ∈ {1, . . . , n}, and let ok be the operation of Ck with
timestamp Vi[k]. Then Mi[k] = Mj [k] if and only if VH(oi)|ok = VH(oj)|ok .

Proof. By Lemma 12, ok is contained in the view histories of oi and oj . Applying Lemma 11 to both
sides of the equation Mi[k] = Mj [k] gives

D
(
VH(oi)|ok

)
= Mi[k] = Mj [k] = D

(
VH(oj)|ok

)
.

Because of the collision resistance of the hash function in the digest function, two outputs of D are only
equal if the respective inputs are equal. The claim follows.

We introduce another data structure for the analysis. The commit history CH(o) of an operation o
is a sequence of operations, defined as follows. Client Ci executing o receives a REPLY message from
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S that contains a timestamp vector V c, which is either equal to 0n or comes together with a COMMIT-
signature ϕc by Cc, corresponding to some operation oc of Cc. Then we set

CH(o) ,

{
o if V c = 0n

CH(oc), o otherwise.

Clearly, CH(o) is a subsequence of VH(o); the latter also includes all concurrent operations.

Lemma 14. Consider two consecutive operations oµ and oµ+1 in a commit history and the versions
(V µ,Mµ) and (V µ+1,Mµ+1) committed by oµ and oµ+1, respectively. For k = 1, . . . , n, it holds
V µ+1[k] ≤ V µ[k] + 1.

Proof. The lemma follows easily from the definition of a commit history and from the statements in
procedure updateVersion during the execution of oµ+1, because V µ+1 is initially set to V µ (line 138)
and V µ+1[k] is incremented (line 143) at most once for every k.

The purpose of the versions in the protocol is to order the operations if the server is faulty. When
a client executes an operation, the view history of the operation represents the impression of the past
operations that the server provided to the client. But if an operation oj that committed (Vj ,Mj) is
contained in VH(oi), where oi committed (Vi,Mi), this does not mean that (Vj ,Mj) ≤̇ (Vi,Mi). Such
a relation holds only when VH(oj) is also a prefix of VH(oi), as the next lemma shows.

Lemma 15. Let oi and oj be two operations that commit versions (Vi,Mi) and (Vj ,Mj), respectively.
Then (Vj ,Mj) ≤̇ (Vi,Mi) if and only if VH(oj) is a prefix of VH(oi).

Proof. To show the forward direction, suppose that (Vj ,Mj) ≤̇ (Vi,Mi). Clearly, Vj [j] > 0 because
Cj completed oj and Vj [j] ≤ Vi[j] according to the order on versions. In the case that Vj [j] = Vi[j], the
assumption of the lemma implies that Mj [j] = Mi[j] by the order on versions. The claim now follows
directly from Lemma 13.

It is left to show the case Vj [j] < Vi[j]. Let om be the first operation in CH(oi) that commits a
version (Vm,Mm) such that Vm[j] > Vj [j]; let oc be the operation that precedes om in its commit
history and suppose oc commits (V c,M c). Note that V c[j] ≤ Vj [j]. According to Lemma 14, we have
V c[j] = Vj [j] = Vm[j]− 1.

Let o′j be the operation of Cj with timestamp Vj [j] + 1. Note that oj and o′j are two consecutive
operations of Cj according to Lemma 9. There are two possibilities for the relation between o′j and om:

Case 1: If o′j = om, then we observe from the definitions of view histories and commit histories that
VH(o′j) is a prefix of VH(oi). We only have to prove that VH(oj) is a prefix of VH(o′j).

According to the protocol, Cj verifies that V c[j] = Vj [j] > 0 and that (Vj ,Mj) ≤̇ (V c,M c)
(line 137). By the definition of the order on versions, we get M c[j] = Mj [j]. Lemma 13 now
implies that VH(oj) is a prefix of VH(oc), which, in turn, is a prefix of VH(o′j) according to the
definition of view histories, and the claim follows.

Case 2: If o′j was a concurrent operation to om, then the invocation tuple of o′j was contained in L
received by the client executing om, and the client verified the PROOF-signature by Cj in P [j]
from operation oj on M c[j]. If the verification succeeds, we know that M c[j] = D

(
VH(oj)

)
according to Lemma 11. According to the verification of the SUBMIT-signature from Cj on
V c[j], we have Vj [j] = V c[j] > 0 (line 144); hence, Lemma 13 implies that VH(oj) is a prefix
of VH(oc) and the claim follows because VH(oc) is a prefix of VH(oi) by the definition of view
histories.
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To prove the backward direction, suppose that (Vj ,Mj) ˙6≤ (Vi,Mi). There are two possibilities
for this comparison to fail: there exists a k such that either Vj [k] > Vi[k] or that Vi[k] = Vj [k] and
Mi[k] 6= Mj [k].

In the first case, Lemma 12 shows that there exists an operation ok by client Ck in VH(oj) that is
not contained in VH(oi). Thus, VH(oj) is not a prefix of VH(oi).

In the second case, Lemma 13 implies that VH(oi)|ok is different from VH(oj)|ok , and, again,
VH(oj) is not a prefix of VH(oi). This concludes the proof.

This result connects the versions committed by two operations to their view histories and shows that
the order relation on committed versions is isomorphic to the prefix relation on the corresponding view
histories. The next lemma contains a useful formulation of this property.

Lemma 16 (No-join). Let oi and oj be two operations that commit versions (Vi,Mi) and (Vj ,Mj),
respectively. Suppose that (Vi,Mi) and (Vj ,Mj) are incomparable, i.e., (Vi,Mi) ˙6≤ (Vj ,Mj) and
(Vj ,Mj) ˙6≤ (Vi,Mi). Then there is no operation ok that commits a version (Vk,Mk) that satisfies
(Vi,Mi) ≤̇ (Vk,Mk) and (Vj ,Mj) ≤̇ (Vk,Mk).

Proof. Suppose for the purpose of reaching a contradiction that there exists such an operation ok. From
Lemma 15, we know that VH(oi) and VH(oj) are not prefixes of each other. But the same lemma also
implies that VH(oi) is a prefix of VH(ok) and that VH(oj) is a prefix of VH(ok). This is only possible
if one of VH(oi) and VH(oj) is a prefix of the other, and this contradicts the previous statement.

We are now ready to prove that our algorithm emulates a storage service of n SWMR registers
on an untrusted server with weak fork linearizability. We do this in two steps. The first theorem below
shows that the protocol execution with a correct server is linearizable and wait-free. The second theorem
below shows that the protocol preserves weak fork-linearizability even with a faulty server. Together
they imply Theorem 1.

Theorem 17. In every fair and well-formed execution with a correct server:

1. Every operation of a correct client is complete; and
2. The history is linearizable w.r.t. n SWMR registers.

Proof. Consider a fair and well-formed execution σ of protocol USTOR where S is correct. We first
show that every operation of a correct client is complete. According to the protocol for S, every client
that sends a SUBMIT message eventually receives a REPLY message from S. This follows because the
parties use reliable FIFO channels to communicate, the server processes arriving messages atomically
and in FIFO order, and at the end of processing a SUBMIT message, the server sends a REPLY message
to the client.

It remains to show that a correct client does not halt upon receiving the REPLY message and therefore
satisfies the specification of the functionality. We now examine all checks by Ci in Algorithm 1 and
explain why they succeed when S is correct.

The COMMIT-signature on the version (V c,M c) received from S is valid because S sends it together
with the version that it received from the signer (line 136). For the same reason, also the COMMIT-
signature on (V j ,M j) (line 150) and the DATA-signature on tj and H(xj) (line 151) are valid.

Suppose Ci executes operation oi. In order to see that (Vi,Mi) ≤̇ (V c,M c) and Vi[i] = V c[i]
(line 137), consider the schedule constructed by S: The schedule at the point in time when S receives
the SUBMIT message corresponding to oi is equal to the view history of oi. Moreover, the version
committed by any operation scheduled before oi is smaller than the version committed by oi.

According to Algorithm 2, S keeps track of the last operation in the schedule for which it has re-
ceived a COMMIT message and stores the index of the client who executed this operation in c (line 203).

31



Note that SVER[c] holds the version (M c, V c) committed by this operation. Therefore, when Ci re-
ceives a REPLY message from S containing (M c, V c), the check (Vi,Mi) ≤̇ (V c,M c) succeeds since
the preceding operation of Ci already committed (Vi,Mi). This preceding operation is in VH(oi) by
Lemma 12; moreover, it is the last operation of Ci in the schedule, and therefore, Vi[i] = V c[i].

Next, we examine the verifications in the loop that runs through the concurrent operations repre-
sented in L (lines 140–146). Suppose Ci is verifying an invocation tuple representing an operation ok
of Ck. It is easy to see that the PROOF-signature of Ck in P [k] was created during the most recent
operation o′k of Ck that precedes ok, because Ck and S communicate using a reliable FIFO channel and,
therefore, the COMMIT message of o′k has been processed by S before the SUBMIT message of ok. It
remains to show that the value Mi[k], on which the signature is verified (line 142), is equal to M ′k[k],
where (M ′k, V

′
k) is the version committed by o′k. Since o′k is the last operation by Ck in the schedule

before oc, it holds V ′k[k] = V c[k]. Furthermore, it holds (V ′k,M
′
k) ≤̇ (V c,M c) and this means that

M ′k[k] = M c[k] by the order on versions. Since Mi is set to M c before the loop (line 138), we have that
Mi[k] = M c[k] = M ′k[k] and the verification of the PROOF-signature succeeds.

Extending this argument, since V c[k] holds the timestamp of o′k, the timestamp of ok is V c[k] + 1,
and thus the SUBMIT-signature of ok is valid (line 144). Since no operation of Ci that precedes oi
occurs in the schedule after oc, and since L includes only operations that occur in the schedule after oc
(according to line 220), no operation by Ci is represented in L. Therefore, the check that k 6= i succeeds
(line 144).

For a read operation from Xj , client Ci receives the timestamp tj and the value xj , together with a
version (V j ,M j) committed some operation oj of Cj . Consider the operation ow of Cj that writes xj .
It may be that ow = oj if S has received its COMMIT message before the read operation. But since Cj
sends the timestamp and the value with the SUBMIT message to S, it may also be that oj precedes ow.
Ci first verifies that (V j ,M j) ≤̇ (V c,M c), and this holds because (V c,M c) was committed by the last
operation in the schedule (line 152). Furthermore, Ci checks that tj = Vi[j] (line 152); because both
values correspond to the timestamp of the last operation by Cj scheduled before oi, the check succeeds.
Finally, Ci verifies that (V j ,M j) is consistent with tj : if ow = oj , then V j [j] = tj ; otherwise, ow is
the subsequent operation of Cj after oj , and V j [j] = tj − 1 (line 153).

For the proof of the second claim, we have to show that the schedule constructed by S satisfies the
two conditions of linearizability. First, the schedule preserves the real-time order of σ because any op-
eration o that precedes some operation o′ is also scheduled before o′, according to the instructions for S.
Second, every read operation from Xj returns the value written either by the most recent completed
write operation of Cj or by a concurrent write operation of Cj .

Let σ be the history of a fair and well-formed execution of the protocol. The definition of weak
fork-linearizability postulates the existence of sequences of events πi for i = 1, . . . , n such that πi is a
view of σ at client Ci. We construct πi in three steps:

1. Let oi be the last complete operation ofCi in σ and suppose it committed version (Vi,Mi). Define
αi to be the set of all operations in σ that committed a version smaller than or equal to (Vi,Mi).

2. Define βi to be the set of all operations oj of the form writej(Xj , x) from σ \ αi for any x such
that αi contains a read operation returning x. (Recall that written values are unique.)

3. Construct a sequence ρi from αi by ordering all operations in αi according to the versions that
these operations commit, in ascending order. This works because all versions are smaller than
(Vi,Mi) by construction of αi, and, hence, totally ordered by Lemma 16. Next, we extend ρi to
πi by adding the operations in βi as follows. For every oj ∈ βi, let x be the value that it writes;
insert oj into πi immediately before the first read operation that returns x.
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Theorem 18. The history of every fair and well-formed execution of the protocol is weakly fork-linear-
izable w.r.t. n SWMR registers.

Proof. We use αi, βi, ρi, and πi as defined above.

Claim 18.1. Consider some πi and let oj , o′j ∈ σ be two operations of client Cj such that o′j ∈ πi. Then
oj <σ o

′
j if and only if oj ∈ αi and oj <πi o

′
j .

Proof. To show the forward direction, we distinguish two cases. If o′j ∈ βi, then it must be a write
operation and there is a read operation ok in αi that returns the value written by o′j . According to
Lemma 10, any other operation of Cj that precedes o′j commits a version smaller than the version
committed by ok. In particular, this applies to oj . Since ok ∈ αi, we also have oj ∈ αi by construction
and oj <πi ok since πi contains the operations of αi ordered by the versions that they commit. Moreover,
because o′j appears in πi immediately before ok, it follows that oj <πi o

′
j .

If o′j 6∈ βi, on the other hand, then o′j ∈ αi, and Lemma 9 shows that oj commits a version that
is smaller than the version committed by o′j . Hence, by construction of αi, we have that oj ∈ αi and
oj <πi o

′
j .

To establish the reverse implication, we distinguish the same two cases as above. If o′j ∈ βi, then
then it must be a write operation and there is a subsequent read operation ok ∈ αi that returns the value
written by o′j . Since oj ∈ αi by assumption and oj <πi ok, it must be that the version committed by oj
is smaller than the version committed by ok because the operations of ρi are ordered according to the
versions that they commit. Hence, oj <σ o′j by Lemma 9.

If o′j 6∈ βi, on the other hand, then o′j ∈ αi. Since the operations of ρi are ordered according to the
versions that they commit, the version committed by oj is smaller than the version committed by o′j .
Lemma 9 now implies that oj <σ o′j .

Recall the function lastops(πi) from the definition of weak real-time order, denoting the last opera-
tions of all clients in πi.

Claim 18.2. For any πi, we have that βi ⊆ lastops(πi).

Proof. We have to show that operation oj ∈ βi invoked by Cj is the last operation of Cj in πi. Towards
a contradiction, suppose there is another operation o∗j of Cj that appears in πi after oj . Because the
execution is well-formed, operations oj and o∗j are not concurrent. If oj <σ o∗j , then Claim 18.1 implies
that oj ∈ αi, contradicting the assumption oj ∈ βi. On the other hand, if o∗j <σ oj , then Claim 18.1
implies that o∗j <πi oj . Since each operation appears at most once in πi, this contradicts the assumption
on o∗j .

The next claim is only needed for the proof of Theorem 2 in Appendix B.

Claim 18.3. Let o′i be a complete operation of Ci, let ok be any operation in πi|o
′
i , let (V ′i ,M

′
i) be

the version committed by o′i, and let oj be an operation that commits version (Vj ,Mj) such that
(V ′i ,M

′
i) ≤̇ (Vj ,Mj). Then ok is invoked before oj completes.

Proof. Suppose ok commits version (Vk,Mk). If ok ∈ αi, then (Vk,Mk) ≤̇ (V ′i ,M
′
i) by construction

of αi, and in particular V ′i [k] ≥ Vk[k]. If ok ∈ βi, then there exists some read operation or ∈ αi that
commits (Vr,Mr) ≤̇ (V ′i ,M

′
i) and returns the value written by ok. Thus, V ′i [k] ≥ Vr[k] ≥ Vk[k]. In

both cases, we have that V ′i [k] ≥ Vk[k]. Since Vj ≥ V ′i , we conclude that Vj [k] ≥ Vk[k] > 0. According
to the protocol logic, this means that ok is invoked before oj , and in particular before oj completes.

Claim 18.4. πi is a view of σ at Ci w.r.t. n SWMR registers.
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Proof. The first requirement of a view holds by construction of πi.
We next show the second requirement of a view, namely that all complete operations in σ|Ci are

contained in πi. Because the oi is the last complete operation of Ci, and all other operations of Ci
commit smaller versions by Lemma 9, the statement follows immediately from Lemma 15.

Finally, we show that the operations of πi satisfy the sequential specification of n SWMR registers.
The specification requires for every read operation or ∈ πi, which returns a value x written by an
operation ow of Cw, that ow appears in πi before or, and there must not be any other write operation by
Cw in πi between ow and or.

Suppose or is executed by Cr and commits version (Vr,Mr); note that Cr in checkData makes
sure that Vr[w] is equal to the timestamp t that Cr receives together with the data (according to the
verification of the DATA-signature in line 151 and the check in line 152). Since βi contains only write
operations, we conclude that or ∈ αi. Let o′w be the operation of Cw with timestamp t. According to
the protocol, o′w is either equal to ow or the last one in a sequence of read operations executed by Cw
immediately after ow.

We distinguish between two cases with respect to o′w. The first case is o′w ∈ βi. Then o′w = ow and
o′w appears in πi immediately before the first read operation that returns x, and o′w is the last operation
of Cw in πi as shown by Claim 18.2. Therefore, no further write operation of Cw appears in πi and the
sequential specification of the register holds.

The second case is o′w ∈ αi; suppose o′w commits version (V ′w,M
′
w), where V ′w[w] = t by definition.

Lemma 12 shows that o′w ∈ VH(or). Because or and o′w are in αi, versions (Vr,Mr) and (V ′w,M
′
w)

are ordered and we conclude from Lemma 15 that this is only possible when (V ′w,M
′
w) <̇ (Vr,Mr).

Therefore, o′w appears in πi before or by construction.
We conclude the argument for the second case by showing that there is no further write operation

by Cw between o′w and or in πi. Towards a contradiction, suppose there is such an operation õw of Cw.
Suppose õw has timestamp t̃ and note that V ′w[w] < t̃ follows from Lemma 9.

We distinguish two further cases. First, suppose õw ∈ αi. Since o′w precedes õw and since o′w ∈ αi,
it follows from Lemma 9 that Vr[w] = V ′w[w] < t̃. This contradicts the assumption that õw appears
before or in πi because the operations in πi restricted to αi are ordered by the versions they commit.

Second, suppose õw ∈ βi. By construction õw appears in πi immediately before some read operation
õr ∈ αi that commits (Ṽr, M̃r). Note that õr precedes or and that t̃ = Ṽr[w] according to the verification
in checkData. Hence, Vr[w] = V ′w[w] < t̃ = Ṽr, and this contradicts the assumption that õr appears
before or in πi because the operations in πi restricted to αi are ordered according to the versions they
commit.

Claim 18.5. πi preserves the weak real-time order of σ. Moreover, let π−i be the sequence of operations
obtained from πi by removing all operations of βi that complete in σ; then π−i preserves the real-time
order of σ.

Proof. We first show that ρi preserves the real-time order of σ. Let oj and ok be two operations in ρi that
commit versions (Vj ,Mj) and (Vk,Mk), respectively, such that oj executed by Cj precedes ok executed
byCk in σ. Since ok is invoked only after oj completes,Cj does not find in L any operation byCk with a
valid SUBMIT-signature on a timestamp equal to or greater than Vk[k]. Hence Vj [k] < Vk[k], and, thus,
(Vj ,Mj) <̇ (Vk,Mk). Since oj and ok are ordered in ρi according to their versions by construction,
we conclude that oj appears before ok also in ρi. The extension to the weak real-time order and the
operations in πi follows immediately from Claim 18.2.

For the second part, note that we have already shown that every pair of operations from π−i ∩ αi
preserves the real-time order of σ. Moreover, the claim also holds vacuously for every pair of operations
from π−i \αi because neither operation completes before the other one. It remains to show that every two
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operations oj ∈ π−i \αi ⊆ βi and ok ∈ αi preserve the real-time order of σ. Suppose oj is the operation
of Cj with timestamp t. Since oj does not complete, not preserving real-time order means that ok <σ oj
and oj <πi ok. Suppose for the purpose of a contradiction that this is the case. Since oj ∈ βi, it appears
in πi immediately before some read operation or ∈ αi that commits a version (Vr,Mr). From the check
in line 152 in Algorithm 1 we know that Vr[j] ≥ t. Since oj has not been invoked by the time when
ok completes, ok must be different from or and it follows or <ρi ok by assumption. Hence, the version
(Vk,Mk) committed by ok is larger than (Vr,Mr), and this implies Vk[j] ≥ t. But this contradicts the
fact that oj has not yet been invoked when ok completes, because according to the protocol logic, when
an operation commits a version (Vl,Ml) with Vl[j] > 0, then the operation of Cj with timestamp Vi[j]
must have been invoked before.

Claim 18.6. For every operation o ∈ πi and every write operation o′ ∈ σ, if o′ →σ o then o′ ∈ πi and
o′ <πi o.

Proof. Recalling the definition of causal precedence, there are three ways in which o′ →σ omight arise:

1. Suppose o and o′ are operations executed by the same client Cj and o′ <σ o. Since o ∈ πi,
Claim 18.1 shows that o′ ∈ πi and o′ <πi o.

2. If o is a read operation that returns x and o′ is the operation that writes x, then the fact that πi is a
view of σ at Ci, as established by Claim 18.4, implies that o′ ∈ πi and precedes o in πi.

3. If there is another operation o′′ such that o′ →σ o′′ and o′′ →σ o, then, using induction, o′′ is
contained in πi and precedes o, and o′ is contained in πi and precedes o′′, and, hence, o′ precedes
o in πi.

Claim 18.7. For every client Cj , consider an operation ok of client Ck, such that either ok ∈ αi ∩αj or
for which there exists an operation o′k of Ck such that ok precedes o′k. Then πi|ok = πj |ok .

Proof. In the first case that ok ∈ αi∩αj , then by construction of ρi and ρj , and by the transitive order on
versions, ρi|ok and ρj |ok contain exactly those operations that commit a version smaller than the version
committed by ok. Hence, ρi|ok = ρj |ok . Any operation ow ∈ βi that appears in πi|ok is present in βi
only because of some read operation or ∈ ρi|ok . Since or also appears in ρj |o as shown above, ow is
also included in βj and appears in πj immediately before or and at the same position as in πi. Hence,
πi|ok = πj |ok .

In the second case, the existence of o′k implies that ok is not the last operation of Ck in πi and, hence,
ok ∈ αi and ok ∈ αj . The statement then follows from the first case.

Claims 18.4–18.7 establish that the protocol is weak fork-linearizable w.r.t. n SWMR registers.

B Analysis of the Fail-Aware Untrusted Storage Protocol

We prove Theorem 2, i.e., that protocol FAUST in Algorithm 3 satisfies Definition 6. The functional-
ity F is n SWMR registers; this is omitted when clear from the context.

The FAUST protocol relies on protocol USTOR for untrusted storage. We refer to the operations
of these two protocols as fail-aware-level operations and storage-level operations, respectively. In the
analysis, we have to rely on certain properties of the low-level untrusted storage protocol, which are
formulated in terms of the storage operations read and write. But we face the complication that here, the
high-level FAUST protocol provides read and write operations, and these, in turn, access the extended
read and write operations of protocol USTOR, denoted by writex and readx.

In this section, we denote storage-level operations by oi, oj , . . . as before. It is clear from inspection
of Algorithm 1 that all of its properties for read and write operations also hold for its extended read
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and write operations with minimal syntactic changes. We denote all fail-aware-level operations in this
section by õi, õj , . . . , in order to distinguish them from the operations at the storage level.

The FAUST protocol invokes exactly one storage-level operation for every one of its operations and
also invokes dummy read operations. Therefore, the fail-aware-level operations executed by FAUST
correspond directly to a subset of the storage-level operations executed by USTOR.

We say we sieve a sequence of storage-level events σ to obtain a sequence of fail-aware-level
events σ̃ by removing all storage-level events that are part of dummy read operations and by mapping
every one of the remaining storage-level events to its corresponding fail-aware-level event.

Note that read operations can be removed from a sequence of events without affecting whether
the sequence satisfies the sequential specification of read/write registers. More precisely, when we
remove the events of a set of read operations Q from a sequence of events π that satisfies the sequential
specification, the resulting sequence π̃ also satisfies the sequential specification, as is easy to verify.
This implies that if π is a view of a history σ, then π̃ is a view of σ̃, where σ̃ is obtained from σ by
removing the events of all operations inQ. Analogously, if σ is linearizable or causally consistent, then
σ̃ is linearizable or causally consistent, respectively. We rely on this property in the analysis.

Analogously, removing all events of a set of read operations from a sequence π and from a history σ
does not affect whether π is a view of σ. Hence, sieving does not affect whether a history linearizable and
whether some sequence is a view of a history. Furthermore, according to the algorithm, an invocation
(in σ̃) of a fail-aware-level operation triggers immediately an invocation (in σ) at the storage level, and,
analogously, a response at the fail-aware level (in σ̃) occurs immediately after a corresponding response
(in σ) at the storage level. Thus, sieving preserves also whether a history wait-free. We refer to these
three properties as the invariant of sieving below.

Lemma 19 (Integrity). When an operation õi of Ci returns a timestamp t, then t is bigger than any
timestamp returned by an operation of Ci that precedes õi.

Proof. Note that t = Vi[i], where (Vi,Mi) is the version committed by the corresponding storage-
level operation (lines 316 and 325). By Lemma 9, Vi[i] is larger than the timestamp of any preceding
operation of Ci.

Lemma 20 (Failure-detection accuracy). If Algorithm 3 outputs faili, then S is faulty.

Proof. According to the protocol, client Ci outputs faili only if one of three conditions are met: (1) the
untrusted storage protocol outputs USTOR.faili; (2) in update, the version (V,M) received from a client
Cj during a read operation or in a VERSION message is incomparable to VERi[maxi]; or (3) Ci receives
a FAILURE message from another client.

For the first condition, Theorem 1 guarantees that Algorithm 1 does not output USTOR.faili when
S is correct. The second condition does not occur since the view history of every operation is a prefix
of the schedule produced by the correct server, and all versions are therefore comparable, according
to Lemma 15 in the analysis of the untrusted storage protocol. And the third condition cannot be met
unless at least one client sends a FAILURE message after detecting condition (1) or (2). Since no client
deviates from the protocol, this does not occur.

The next lemma establishes requirements 1–3 of Definition 6. The causal consistency property
follows because weak fork-linearizability implies causal consistency.

Lemma 21 (Linearizability and wait-freedom with correct server, causality). Let σ̃ be a fair execu-
tion of Algorithm 3 such that σ̃|F is well-formed. If S is correct, then σ̃|F is linearizable w.r.t. F and
wait-free. Moreover, σ̃|F is weak fork-linearizable w.r.t. F .
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Proof. As shown in the preceding lemma, a correct the server does not cause any client to output fail.
Since S is correct, the corresponding execution σ of the untrusted storage protocol is linearizable and
wait-free by Theorem 1. According to the invariant of sieving, also σ̃|F is linearizable and wait-free.

In case S is faulty, the execution σ at the storage level is weak fork-linearizable w.r.t. F according
to Theorem 18. Note that in case a client detects incomparable versions, its last operation in σ does
not complete in σ̃|F . But omitting a response from σ does not change the fact that it is weak fork-
linearizable because it can be added again by Definition 8. The invariant of sieving then implies that
σ̃|F is also weak fork-linearizable w.r.t. F .

Lemma 22. Let õj be a complete fail-aware-level operation of Cj and suppose the corresponding
storage-level operation oj commits version (Vj ,Mj). Then the value of VERi[j] at Ci at any time
of the execution is comparable to (Vj ,Mj).

Proof. Let (V ∗,M∗) = VERi[j] at any time of the execution. If Ci has assigned this value to VERi[j]
during a read operation from Xj , then an operation of Cj committed (V ∗,M∗) and the claim is im-
mediate from Lemma 9. Otherwise, Ci has assigned (V ∗,M∗) to VERi[j] after receiving a VERSION

message containing (V ∗,M∗) from Cj .
Notice that when Cj sends this message, it includes its maximal version at that time, in other words,

(V ∗,M∗) = VERj [maxj ]. Consider the point in the execution when VERj [maxj ] = (V ∗,M∗) for the
first time. If oj completes before this point in time, then (Vj ,Mj) ≤̇ VERj [maxj ] = (V ∗,M∗) by
the maintenance of the maximal version (line 342) and by the transitivity of versions. On the other
hand, consider the case that oj completes after this point in time. Since õj completes in σ̃|F , the
check on line 336 has been successful, and thus (Vj ,Mj) ≤̇ (V ◦,M◦), where (V ◦,M◦) is the value of
VERj [maxj ] at the time when õj completes. Because (V ◦,M◦) is also greater than or equal to (V ∗,M∗)
by the maintenance of the maximal version (line 342), Lemma 16 (no-join) implies that (Vj ,Mj) and
(V ∗,M∗) are comparable.

Lemma 23. Suppose a fail-aware-level operation õi of Ci is stable w.r.t. Cj and suppose the corre-
sponding storage-level operation oi commits version (Vi,Mi). Let õj be any complete fail-aware-level
operation of Cj and suppose the corresponding storage-level operation oj commits version (Vj ,Mj).
Then (Vi,Mi) and (Vj ,Mj) are comparable.

Proof. Let (V ∗,M∗) = VERi[j] at the time when õi becomes stable w.r.t. Cj , and denote the operation
that commits (V ∗,M∗) by o∗.

It is obvious from the transitivity of versions and from the maintenance of the maximal version
(line 342) that (Vi,Mi) ≤̇ VERi[maxi]. For the same reasons, we have (V ∗,M∗) ≤̇ VERi[maxi].
Hence, Lemma 16 (no-join) shows that (Vi,Mi) and (V ∗,M∗) are comparable.

We now show that (Vi,Mi) ≤̇ (V ∗,M∗). Note that when stablei(Wi) occurs at Ci, then Wi[j] ≥
Vi[i]. According to lines 343–345 in Algorithm 3, we have that V ∗[i] = Wi[j] ≥ Vi[i]. Then Lemma 12
implies that oi appears in VH(o∗). By Lemma 15, since (Vi,Mi) is comparable to (V ∗,M∗), either
Hv(oi) is a prefix of Hv(o∗) or Hv(o∗) is a prefix of Hv(oi). But since oi ∈ VH(o∗), it must be that
Hv(oi) is a prefix ofHv(o∗). From Lemma 15, it follows that (Vi,Mi) ≤̇ (V ∗,M∗).

Considering the relation of (V ∗,M∗) to (Vj ,Mj), it must be that either (Vj ,Mj) ≤̇ (V ∗,M∗) or
(V ∗,M∗) ≤̇ (Vj ,Mj) according to Lemma 22. In the first case, the lemma follows from Lemma 16
(no-join), and in the second case, the lemma follows by the transitivity of versions.

Lemma 24 (Stability-detection accuracy). If õi is a fail-aware-level operation of Ci that is stable w.r.t.
some set of clients C, then there exists a sequence of events π̃ that includes õi and a prefix τ̃ of σ̃|F such
that π̃ is a view of τ̃ at all clients in C w.r.t. F . If C includes all clients, then τ̃ is linearizable w.r.t. F .
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Proof. Let oi be the storage-level operation corresponding to õi, and let (Vi,Mi) be the version commit-
ted by oi. Let σ be any history of the execution of protocol USTOR induced by σ̃. Let αi, βi, ρi, and πi
be sets and sequences of events, respectively, defined from σ according to the text before Theorem 18.
We sieve πi|oi to obtain a sequence of fail-aware-level operations π̃ and let τ̃ be the shortest prefix of
σ̃|F that includes the invocations of all operations in π̃.

We next show that π̃ is a view of τ̃ at Cj w.r.t. F for any Cj ∈ C. According to the definition of
a view, we create a sequence of events τ̃ ′ from τ̃ by adding a response for every operation in π̃ that is
incomplete in σ̃|F ; we add these responses to the end of τ̃ (there is at most one incomplete operation for
each client).

In order to prove that π̃ is a view of τ̃ atCj w.r.t. F , we show (1) that π̃ is a sequential permutation of
a subsequence of complete(τ̃ ′); (2) that π̃|Cj = complete(τ̃ ′)|Cj ; and (3) that π̃ satisfies the sequential
specification of F . Property (1) follows from the fact that π̃ is sequential and includes only operations
that are invoked in τ̃ and by construction of complete(τ̃ ′) from τ̃ . Property (3) holds because πi is a
view of σ at Ci w.r.t. F according to Claim 18.4, and because the sieving process that constructs π̃ from
π|oi preserves the sequential specification of F .

Finally, we explain why property (2) holds. We start by showing that the set of operations in π̃|Cj

and complete(τ̃ ′)|Cj is the same. For any operation õj ∈ π̃|Cj , property (1) already establishes that
õj ∈ complete(τ̃ ′). It remains to show that any õj ∈ complete(τ̃ ′) also satisfies õj ∈ π̃|Cj .

The assumption that õj is in complete(τ̃ ′) means that either õj ∈ π̃ or that õj is complete already
in τ̃ . In the former case, the implication holds trivially. In the latter case, because the corresponding
storage-level operation oj ∈ πi|oi is complete and commits (Vj ,Mj), Lemma 23 implies that (Vj ,Mj)
and (Vi,Mi) are comparable. If (Vj ,Mj) ≤̇ (Vi,Mi), then oj ∈ πi|oi by construction of πi, and fur-
thermore, õj ∈ π̃|Cj by construction of πi. Otherwise, it may be that (Vi,Mi) <̇ (Vj ,Mj), but we show
next that this is not possible.

If (Vi,Mi) <̇ (Vj ,Mj), then by definition of τ̃ , the invocation of some operation õk ∈ π̃ appears
in σ̃|F after the response of õj . By construction of π̃, the corresponding storage-level operation ok is
contained in πi|oi . According to the protocol, operations and upon clauses are executed atomically, and
therefore the invocation of ok appears in σ after the response of oj . At the same time, Claim 18.3 implies
that ok is invoked before oj completes, a contradiction.

To complete the proof of property (2), it is left to show that the order of the operations in π̃|Cj and in
complete(τ̃ ′)|Cj is the same. By Claim 18.1, πi preserves the real-time order of σ among the operations
of Cj . Therefore, π̃ also preserves the real-time order of σ̃|F among the operations of Cj . On the other
hand, since τ̃ is a prefix of σ̃|F and since τ̃ ′ is created from τ̃ by adding responses at the end, it easy to
see that the operations of Cj in τ̃ ′ are in the same order as in σ̃|F .

For the last part of the lemma, it suffices to show that when C includes all clients, and, hence, π̃
is a view of τ̃ at all clients, then π̃ preserves the real-time order of τ̃ . By Lemma 23, every complete
operation in σ̃|F corresponds to a complete storage-level operation that commits a version comparable
to (Vi,Mi). Therefore, all operations of πi|oi that correspond to a complete fail-aware-level operation
are in πi|oi ∩ αi. There may be incomplete fail-aware-level operations as well, and the above argument
shows that the corresponding storage-level operations are contained in πi|oi ∩ βi. We create a sequence
of events σ′ from σ|oi by removing the responses of all operations in πi|oi ∩ βi. Claim 18.5 implies that
πi|oi preserves the real-time order of σ′. Notice that sieving σ′ also yields σ̃|F . Therefore, π̃ preserves
the real-time order of σ̃|F and since τ̃ is a prefix of σ̃|F , we conclude that π̃ also preserves the real-time
order of τ̃ .

Lemma 25 (Detection completeness). For every two correct clients Ci and Cj and for every time-
stamp t returned by some operation õi of Ci, eventually either fail occurs at all correct clients or
stablei(W ) occurs at Ci with W [j] ≥ t.
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Proof. Notice that whenever fail occurs at a correct client, the client also sends a FAILURE message
to all other clients. Since the offline communication method is reliable, all correct clients eventually
receive this message, output fail, and halt. Thus, for the remainder of this proof we assume that Ci
and Cj do not output fail and do not halt. We show that stablei(W ) occurs eventually at Ci such that
W [j] ≥ t. Let oi be the storage-level operation corresponding to õi. Note that oi completes and suppose
it commits version (Vi,Mi). Thus, Vi[i] = t.

We establish the lemma in two steps: First, we show that VERj [maxj ] eventually contains a version
that is greater than or equal to (Vi,Mi). Second, we show that also VERi[j] eventually contains a version
that is greater than or equal to (Vi,Mi).

For the first step, note that every VERSION message that Ci sends to Cj after completing õi contains
a version that is greater than or equal to (Vi,Mi), by the maintenance of the maximal version (line 342)
and by the transitivity of versions. Since the offline communication method is reliable and both Ci
and Cj are correct, Cj eventually receives this message and updates VERj [maxj ] to this version that is
greater than or equal to (Vi,Mi).

Suppose that Ci does not send any VERSION message to Cj after completing õi. This means that
Ci never receives a PROBE message from Cj and hence, Ci 6∈ D at Cj . This is only possible if Cj
updates Tj [i] periodically, at the latest every δ time units, when receiving a version from Ci during a
read operation from Xi. Therefore, one of these read operations eventually returns a version (V ′i ,M

′
i)

committed by an operation o′i of Ci, where o′i = oi or oi precedes o′i. Thus, (Vi,Mi) ≤̇ (V ′i ,M
′
i) and by

the maintenance of the maximal version at Cj (line 342) and by the transitivity of versions, we conclude
that (Vi,Mi) ≤̇ VERj [maxj ] when the read operation completes. This concludes the first step of the
proof.

We now address the the second step. Note when Cj sends to Ci a VERSION message at a time
when (Vi,Mi) ≤̇ VERj [maxj ] holds, the message includes a version that is also greater than or equal to
(Vi,Mi). When Cj receives this message, it stores this version in VERi[j].

Suppose that after the first time when (Vi,Mi) ≤̇ VERj [maxj ] holds,Cj does not send any VERSION

message to Ci. Using the same argument as above with the roles of Ci and Cj reversed, we conclude
that Ci periodically executes a read operation from Xj and stores the received versions in VERi[j].
Eventually some read operation o′i commits a version (V ′i ,M

′
i) and returns a version (Vj ,Mj) committed

by an operation of Cj that was invoked after oi completed. Lemma 10 shows that (Vj ,Mj) ≤̇ (V ′i ,M
′
i),

and since oi and o′i are both operations of Ci and oi precedes o′i, it follows (Vi,Mi) ≤̇ (V ′i ,M
′
i) from

Lemma 9. Then Lemma 16 (no-join) implies that (Vi,Mi) is comparable to (Vj ,Mj), and it must be
that (Vi,Mi) ≤̇ (Vj ,Mj) since oi precedes oj . Thus, after completing o′i, we observe that VERi[j] is
greater than or equal to (Vi,Mi).

To conclude the argument, note that when VERi[j] contains a version greater than or equal to
(Vi,Mi) for the first time, then wchangei = TRUE and this triggers a stablei(W ) notification with
W [j] ≥ t.
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