
A Framework for Highly Available Services
Based on Group Communication

�

Alan Fekete
fekete@cs.usyd.edu.au

http://www.cs.usyd.edu.au/� fekete

Departmentof ComputerScienceF09

Universityof Sydney 2006,Australia.

Idit Keidar
idish@theory.lcs.mit.edu

http://theory.lcs.mit.edu/� idish

MIT Lab for ComputerScience

545TechnologySq.,Cambridge,MA 02143,USA

Abstract

We presenta framework for building highly available
services.Theframework usesgroupcommunicationto co-
ordinatea collectionof servers. Our framework is config-
urable, in that onecanadjustparameters such asthenum-
berof serversandtheextentto which they aresynchronized.
We analyzethescenariosthat canleadto theserviceavail-
ability beingtemporarily compromised,andwediscussthe
tradeoffs thatgovernthechoiceof parameters.

1 Introduction

We presenta framework for building a family of highly
availableservices.Theframework is not aserviceby itself,
but rathera templatefor implementinga varietyof specific
services.Theserviceswe considerarestateful: clientsin-
teractwith theservicein sessions; throughoutasession,the
servicestoreschangingcontext information for the client.
For example,in a video-on-demand(VoD) service[2], the
changingcontext for asessionincludesthemovie aclient is
watchingandtheclient’s currentlocationin thatmovie. In
this paperwe do not addressupdatesto the contentstored
at theservers,for example,themoviesin aVoD service;we
assumeaseparatemechanismfor these.

We usereplicationto achieve availability: A serviceis
provided by a collection of servers. The set of servers
maychangedynamicallydueto failuresandalsowhennew
serversarebroughtupto alleviatetheloadonexistingones.
A clientmaybemigratedfrom oneserver to anotherduring
anon-goingsession;theclient is unawareof changesin the
serviceprovider.

�
This work was supportedby Air Force AerospaceResearch(OSR)

contractsF49620-00-1-0097and F49620-00-1-0327,Nippon Telegraph
and Telephone(NTT) contractMIT9904-12, NSF grantsCCR-9909114
andEIA-9901592,theAustralianResearchCouncil,andtheUniversityof
Sydney SpecialStudiesProgram.

Although theserviceis designedto behighly available,
certain failure patternscan lead to undesirablebehaviors
suchas temporaryloss of service. The risk for suchun-
desirableeventscanbeminimizedat thecostof additional
resources:increasingthenumberof serversandthelevel of
synchronizationamongthem.Eachindividualhighly avail-
ableservicemayhavea differentpolicy for balancingthese
risksandcosts.Our framework providesthemechanismfor
implementingvariousdifferentpoliciesby allowing a ser-
vicebuilder to configurea numberof parameters.

An importantcontribution of this paperis the risk anal-
ysis we offer for the suggestedframework. We find what
patternsof faults risk leaving the servicenot available to
a client. We examinehow the likelihoodof suchpatterns
canbe reducedby carefully adjustingsomeparametersin
the framework, andalsothe costtradeoffs implied in such
adjustments.We concentrateon understandingthe issues
thatshouldguidethesettingof theparameters;oncea pol-
icy is chosen,its enforcementcouldbeautomatedthrough
techniquessuchasspawning new serverswhenneeded,as
describedin [5], but wedo not dealwith thatin this paper.

Our framework exploits a virtually synchronousgroup
communicationsystem(GCS)[3, 1, 7] asa building block.
Our startingpoint for this work wastheVoD serviceof [2],
which exploits groupcommunicationin order to have the
serviceremainavailablethroughnodeandlink breakdowns,
includingnetwork partitions.TheVoD serviceusesa num-
berof differentgroupsat threedifferentscales,wheresome
groupsaremonitoringandcontrolling the membershipof
others.Thesuccessof this approachis evidentin thesmall
size of the code: the VoD server, which provides all the
fault-tolerancelogic as well as managingthe accessand
transmissionof the movies, is written in under2500lines
of C++ code.

In this paper, we generalizethespecificdesignof [2] to
give anarchitecturalframework for a classof highly avail-
ableservices.Theserviceof [2] is only oneinstanceof our



framework; theframework allows a wide rangeof services
to be implementedanda wide rangeof fault-tolerancepa-
rametersto beconfiguredfor implementingdifferentavail-
ability policies.

The restof this paperis organizedas follows: In Sec-
tion 2 we describeour designgoals, illustratedby a few
exampleservicesthatcanbebuilt usingour framework. In
Section3 we describeour framework for building highly
availableservers. In Section4 we analyzethe availability
of the framework in a variety of circumstances.Section5
concludesthepaper.

2 Design Goals

Thetypeof servicethatwe envision is onewheremany
clientsconcurrentlyaccesstheservice,but eachindividual
client doesnot needto usethe serviceall the time. For
eachclient its useof the serviceis divided into sessions;
the client is connectedto the servicefor the durationof a
session,and then it disconnectsuntil a later time when it
beginsanew session.Within asession,theservicewill send
the client informationit requests,in the form of messages
called responses. We do not assumethat within a session
theinteractionsfollow aprotocolof preciselypairedrequest
andresponse;it is alsopossiblethatarequestfromtheclient
leadsto a streamof responses.

The stateof the serviceis divided into two separateas-
pects: thereis a large amountof information,the content,
thatis relevantto multiple clients.Eachresponsetheclient
receivesis partof, orderivedfrompartof, thecontent.Also,
thereis somestateinformationwhich concernsa particular
session.This sessioncontext determineswhich partsof the
contentthe client wantsto receive in responses,andhow
thoseresponsesshouldbesent.Thesessioncontext canbe
alteredasaresultof requestsfrom theclient,andit canalso
changeto reflect the fact that certainresponseshave been
sentto theclient.

We will focuson serviceswherechangesto thecontent
areinfrequent,andwheretherearenot strongconsistency
requirementson whenclientsnoticethe changes.Thusin
thispaperwewill notdealatall with changesto thecontent,
supposingthat they happenoutsidethe framework we are
describing.However, changesto thesessioncontext happen
frequently. We alsosupposethat the contentis composed
from a numberof separatecontentunits, andthateachses-
sioninvolvesaccessto onecontentunit only.

The VoD servicediscussedabove provides one exam-
ple that fits our domainof interest. Hereeachmovie is a
separatecontentunit. A sessioninvolvesa client watch-
ing onemovie. Themovie is representedby a sequenceof
frames;eachframe is sentin a messageasone response.
Thesessioncontext includesindicationof thepoint within
themovie wheretheclient is watching;thiscanbechanged

by controlmessagesfrom theclient (e.g.,“skip to thestart
of scene4”), but the locationalsoadvancesaseachframe
is sentto the client. The sessioncontext alsoincludesin-
formationon the rateat which the client wantsto receive
frames,etc.

A distance-educationservicehassharedstatewhich has
many “learning objects” including lecture notes, anima-
tions,quizquestionsetc;thesearegroupedinto topics.One
topic is a contentunit for the service. A sessioninvolves
a client (“student”) studyinga topic, by downloadingand
interactingwith someof the relevantlearningobjects.The
learningobjectsto be viewedarechosendynamicallydur-
ing thelesson,basedonboththestudent’swishes(e.g.,fol-
lowing hyper-links betweenobjects)and on the student’s
performanceon quiz questions(e.g., the servicemay pro-
vide more detailedexplanationsif the last quiz gradeis
low).

A third exampleis asearchservicewhichallowsaclient
to make successively narrower queriesby restricting the
searchin onequeryto within the resultsetof earlierones.
A possiblequerywouldbe“selectfrom theresultsof query
3 wherealsopublicationdateis after1995” or “find thein-
tersectionof theresultsof query4 with query7”; in general,
thesessioncontext is thelist of previousresultsets.

We provide a framework for implementingany service
thatfits thepatterndescribedabove, with unchangingcon-
tent andchangingsession-specificcontext. The basicde-
sign goal for our framework is that the serviceshouldbe
available,that is, the serviceshouldprovide the responses
that clientswant. The serviceshouldbe ableto overcome
processandnetwork failures,andshouldbe able to serve
a variablenumberof clients. Theavailability requirements
leadto a designwheretheserviceis providedby replicated
servers.We thereforeassumethateachcontentunit canbe
served by several servers, but we do not requirethat ev-
ery server provide every contentunit of the wholeservice.
Thus,thereplicationis partial,not total.

A secondimportantdesigngoal is to make the service
as flexible as possible,and at the sametime to keepthe
clientdesignassimpleaspossible.For example,theservice
shouldhave theflexibility to allow for dynamicchangesin
thesetof serviceproviders;theclient shouldnot beaware
of suchchanges.Therefore,achieving availability should
not betheclient’s responsibility.

Whenaclientmakesa request,it shouldgetits response
from oneof theservers.It is naturalto try to keepthesame
server throughouta singlesession,but this maynot always
be possible: the server may crashor may be overloaded.
Therefore,it is clearthat in somesituationstheclient may
needto be migratedto anotherserver during an on-going
session.As explainedabove,suchmigrationsshouldbeini-
tiatedandmanagedby theservice,not by theclient.

Let usexaminewhatpotentialproblemscanarisewhena

2



server fails andtheclient is migratedto anotherone.First,
a requestmay be lost, in which casea correspondingre-
sponsewill fail to arrive. Next, assumethataresponsedoes
arrive. Note that becausewe have treatedthe contentas
static,eachresponsecontainsacorrectsubsetof thecontent
(i.e.,aresponsecanneverbeincorrect).It may, however, be
aduplicate.Also,anunwantedresponsemayarrivebecause
theservicehasbeensendingresponsesbasedonout-of-date
context (e.g.,a VoD servicemay have lost the context up-
datewherea client asked to jump to a new location, and
thencontinueto sendframesfrom thepreviouslocation).

We can thereforeseethe following availability design
goals:

� First, thereoughtto beexactlyoneserveratatimethat
is sendingresponsesfor a particularsession.

� Also, the server that is respondingshouldhave a ses-
sion context that is up-to-date,reflectingall requests
from theclient duringthis sessionandall previousre-
sponses.

3 The Solution

We suggesta framework for highly available services.
In our framework, a serviceis providedby a collectionof
servers,eachcapableof servingsomeof the contentunits
of the service,but not necessarilyall of them. The setof
servers may changedynamicallydue to failuresand also
whennew serversarebroughtupto alleviatetheloadonex-
istingones.Clientsusingtheservicearegenerallyunaware
of suchchanges.

Theframework providesthemechanismfor meetingthe
availability designgoalsof theprevioussectionunderava-
riety of circumstances.Wheninstantiatingthe framework
to build an actualservice,onehasto definethe availabil-
ity policy; that is, to whatextentwould thedesigngoalsbe
metunderdifferentcircumstances,andatwhatexpense.We
thereforepresentthe framework with several configurable
parameters.In the next section,we studythe tradeoffs in-
volvedin differentchoicesfor parametervalues.

3.1 Meeting the design goals

Let usexaminethedesigngoalsof theprevioussection.
First, at a given time, we try to have a singleserver serve
eachclient sessionin-progress.We call this server thepri-
maryserver for thesession.Therecanbea singleprimary
server whenthereareavailableserversthat cancommuni-
catewith theclient,andwhenthenetwork is stableenough
to allow theseservers to agreeamongthemwhich oneof
themwill beprimary

�
.

�
If thenetwork is asynchronous,thenit canpreventsuchagreement[4].

However, while the network is fairly stable,andprocessfailurescanbe

The primaryserver of an on-goingsessionmayhave to
change,eitherdueto a crash,or preemptively for loadbal-
ancingpurposes.If theservercrashesin themidstof a ses-
sion, client context informationmay be lost. Information
lossmayleadto lossof service,or to missing,duplicate,or
irrelevant responses.Replicatingcontext informationmay
minimizeloss,but mayalsobecostly.

Consider, for example,the VoD service. If the primary
server crashesin the midst of sendinga video streamto a
client, a new primary server will take-over and serve the
client. To this end,the new primary server needsto know
of the session’s existence. In order to sendthe client the
correctvideo frames,the server alsoneedsto know which
framesthe previous primary had sentbeforecrashing. It
couldknow theexactlocationin thestreamwheretheserver
had failed by listening to all the communicationbetween
theprimaryandtheclient. However, sincethevideostream
hasa high bandwidth,this would resultin significantload.
Instead,the primary canperiodicallyupdateotherservers
about its location in the movie. This way, theseservers’
client context informationwould not perfectlyup-to-date,
but alsonot too far off. In theVoD serviceof [2], suchup-
datesaresentevery half a second.Thus,uponmigration,
a new primary may sendhalf a secondof duplicatevideo
framesto theclient andtheserver maybeunawareof con-
text updates(e.g.,requeststo skip to a differentpartof the
movie) sentby theclient in thelasthalf asecond.

In general,thereis atradeoff betweenthecostof keeping
up-to-datecontext information,andtheimprovedavailabil-
ity suchinformationallows for. To balancetheseparam-
eters,our framework keepscontext informationwith three
levelsof freshness.Theprimaryserver of a sessionalways
hasthemostup-to-datecontext informationfor thesession,
reflectingexactly the responsesthat weresentby the pri-
maryto theclient,andall thecontext updatesreceivedfrom
theclient. Theprimaryserver periodicallypropagatescon-
text updatesto a groupof serversproviding thesamecon-
tentunit. Theseserversmaintaina replicateddatastructure
calledthe unit database. The unit databasekeepstrack of
thesessionsthatexist for a particularcontentunit, theallo-
cationof serversto thesesessions,andsessioncontext infor-
mationasperiodicallypropagatedby eachprimary. We use
propertiesof GCSto ensurethattheunit databasesarecon-
sistent.Thenumberof serverswhichcontainreplicasof the
content,andtheperiodbetweenpropagationmessages,are
bothconfigurable.Thefreshnessof thecontext information
in theunit databaseis mainly determinedby thefrequency
of theperiodicupdates.

At an intermediatescale, we introduce the notion of
backupservers.Any numberof backupserverspersession
arechosenamongtheserversthathave replicasof thecon-
tent unit. In additionto the periodicupdatesfrom the pri-

consistentlydetected,suchagreementcanbereached.

3



mary, thebackupserverslistento context updatemessages
from theclient,but not to theresponsesof theprimary. This
mechanismeliminatestheriskof losingclientrequestsupon
migrationto a backup,but not therisk of sendingduplicate
responses.In a setting,like VoD, whereclient requestsare
fewer andsmaller than server responses,this policy does
not significantlyloadthebackupserversor theclients.The
client usestheGCSto sendits context updatemessagesto
a group containingthe primary andbackupservers. This
groupis expectedto besmall (typically consistingof up to
threeservers),andthanksto theuseof GCS,theclientneed
not beawareof thecurrentmembershipof this group. Our
designusespropertiesof GCSto guaranteethatclient con-
text updatesareat leastascurrentasinformationin theunit
database.Thenumberof backupserverspersessionis con-
figurable.

3.2 Using group communication

The solution exploits a partitionable virtually syn-
chronousGCS as a building block. The GCS includes
a membershipservice,which provideseachserver with a
view of the network topology. If a processis a member
of several groups,its failure or separationfrom the others
is reflectedconsistentlyin new views for thesegroups.At
timeswhenthe network situationis stable,views arepre-
cise (see[7]). The GCS also carriesmulticastmessages
addressedto groups; it supportsreliable delivery, totally
orderedin eachgroup,with causalorderpreserved across
groups. Delivery is virtually synchronous, that is, when
membersmove togetherfrom oneview to another, they all
receive the samemessagesin the earlier view. The GCS
supportsopengroups, thatis, a processdoesnot needto be
a memberof a multicastgroupin orderto senda message
to thatgroup.

Theservicecreatesthreekindsof multicastgroups:

Service group consistsof all theservers.Thisgroupserves
asa point of contactfor clientsto connectto the ser-
vice. We assumethat all clientshave a priori knowl-
edgeof this group’sname.

Content group (one for each content unit) consistsof
thoseserversthatstoreareplicaof thespecificcontent
unit, for example,theserversthatholdaspecificmovie
in the VoD service.All contentgroupsaresubsetsof
theservicegroup,andthesegroupsmayoverlap.

Session group (onefor eachcurrentlyconnectedsession)
asubsetof thecontentgroupconsistingof theprimary
serverandanumberof backupservers.

The setof serversparticipatingin eachof thesegroups
may changeat any time. The serviceandcontentgroups
may changedueto server failuresandalsoasnew servers

arebroughtup to alleviate the load on existing servers. A
sessiongroupmaychange,eitherdueto a server crash,or
for loadbalancingpurposes.A client is not awareof such
changes,asit usesusethe abstractgroupto communicate
with whichever servers are currently in this group. This
group layout generalizesthe approachof [2], wheresimi-
lar groupsarecreated,but with sessiongroupsconsistingof
asingleserver– thatis, thereareno backupservers.

3.3 Client interactions with groups

Whena client wishesto usetheservice,it sendsa mes-
sageto the servicegroup. Whenthis messageis received,
the servers sendto the client the list of available content
units, and the contentgroupnamefor eachof them. The
client choosesa contentgroup from this list, andsendsa
start-session messageto it.

In responseto the start-session request,one of the
serversin thecontentgroupselectsitself to betheprimary
server for this client, anda numberof otherserversselect
themselvesto be backupservers. We discussthe selection
processbelow. Theselectedservers(primaryandbackups)
join a new group,which will be the sessiongroupfor this
client. The group nameis computeddeterministicallyby
eachof the servers. The primary server then notifies the
clientof thesessiongroupname.

Oncethesessionhasstarted,theclientdoesnotdealwith
either the servicegroup or the contentgroup. The client
sendsall of its requeststo thesessiongroup. Only thepri-
maryserversendsresponsesto theclient,andthesearesent
in point-to-pointmessages.

3.4 Managing the groups

Whena start-session messagefrom a new client is re-
ceivedin thecontentgroup,eachserverthatreceivesit adds
the client to the unit database,andappliesa deterministic
functionto theunit databasein orderto selectlightly-loaded
primaryandbackupserversfor this client. Thanksto total
messageordering,the function is evaluatedover identical
databasesat thedifferentservers,andall theserverschoose
thesameprimaryandbackupservers.Theselectedservers
join thesessiongroup.

Whenever themembershipof thecontentgroupchanges
asa resultof a server crashor join, the membersreceive a
new view from theGCS.Uponreceiving thenew view, the
serversevenly re-distributetheclientsamongthem.

If thecontentgroupmembershipchangenotificationre-
flectsserver failuresonly, thenvirtual synchrony semantics
allow theserversto immediatelyreachaconsistentdecision
asto which clientseachserver will serve withoutexchang-
ing additional information; virtual synchrony guarantees
thatall theservershave receivedthesamesetof messages

4



beforethe membershipchangenotification(see[7]), thus,
all theserversin thegrouphave identicalunit databasesat
the point when they get the view. Eachsurviving server
in thecontentgroupappliesa deterministicfunctionto the
unit databasein orderto selectprimaryandbackupservers
for the clients of the failed servers. The function is cho-
sensothatthenew primaryassignedwill betheformerpri-
maryif possible,or oneof theformerbackups,if theformer
primaryhasfailed but someformer backupremainsin the
group. The ability to re-distribute the clients immediately
withoutfirst exchangingmessagesallowsserversto quickly
takeover failedservers’clients.

If a contentgroup changereflectsthe joining of new
servers(andpossiblyfailuresaswell), thenall the servers
first exchangeinformationaboutclients,and thenusethe
exchangedinformationto decidewhichclientseachof them
will serve. Theallocationis donedeterministicallybasedon
thecombinedinformation,in sucha way asto balancethe
loadfairly. For migratedclients,theold primarysendsup-
to-datecontext informationto thenew primary.

Changesin thesessiongroupmembershipareperformed
asfollows: First, any new primaryandbackupserversthat
werenot previously in the sessiongroupjoin it. Thenthe
membersthat shouldleave the sessiongroupdo so. Now
the primary server begins sendingresponsesto the client,
andalsoit begins propagatingthe sessionstatusat the ap-
propriatetimes.

4 Analysis of Fault-Tolerance

We now examinethe framework that waspresentedin
Section3, to seehow well it meetsthedesigngoalsarticu-
latedin Section2. In particular, we wantto seewhich fail-
urepatternsmight leadto clientswhich not gettingthe re-
sponsesthey want. We will examinethetradeoffs involved
in differentsettingsof the configurableaspectsof the sys-
temframework.

The first designgoal is that a given client should re-
ceive informationfrom exactly oneserver at any time. As
explainedin Section3, the group communicationservice
ensuresthat, in times of stability in the underlyingcom-
municationlayer, all membersof a sessiongrouphave the
sameinformationaboutthe groupmembership;thanksto
thetotal orderandvirtual synchrony, all have identicalunit
databases.Thus,when the membersindependentlyapply
thedeterministicfunction to decidewhich memberwill be
theprimaryserver for thesession,exactlyonememberwill
electitself asthe primary, andrespondto the client. Thus
thescenarioswhich canleadto aclientnot having aunique
primaryserverarethefollowing:

� Thegroupcommunicationmembershipservicemight
give different views of the membershipto different

servers,duringperiodswhena view changehasbegun
but is not completingproperly. This can only occur
while theunderlyingtransmissionsystemis notstable.

� Everyserver which canprovide this contentmayhave
eithercrashedor disconnectedfrom theclient. Clearly
availability is impossiblein a scenariosuch as this.
Theprobabilityof this scenariocanbereducedby in-
creasingthedegreeof replication.

� Thesessiongroupmayhave partitioned,with at least
two partitions eachseeingthe given client as con-
nectedto it. Thiscanonly happenwhile theunderlying
transmissionsystemis not transitive: that is thereare
serverswhichcan’t communicatewith oneanother, but
canbothcommunicatewith theclient. This is veryun-
likely in a LAN environment,but it doesoccursome-
timesin WANs.

The secondimportantdesigngoal for an availableser-
vice is that the primary server have an up-to-datecontext.
The context dependson both the messagessent by the
client,andonknowledgeof whichresponseshavebeensent
to theclient. We investigatetheseaspectsseparately, since
they have differentimpacts.If a primaryhasmisseda con-
text updatefrom theclient, thenit maysendresponsesthat
arecompletelyunrelatedto the clientscurrentwishes.On
theotherhand,ignoranceaboutwhich responseshavebeen
sentis lessserious,leadingatworstto duplicateresponses.

A context messagesentby theclient maybenot known
to its currentprimary in casethe messagewassentbefore
thisprimarywasamemberof thesessiongroup,andthein-
formationin it wasnotyetpropagatedto thecontentgroup.
For this to happen,all thepreviousmembersof thesession
groupmusthavefailed(or disconnectedfrom theclient)ei-
therbeforereceiving thecontext messageor beforepropa-
gatingit to thecontentgroup.

As for server responses,therecanbe uncertainlyabout
thoseresponsesthat might have beensent in the interval
betweenthe last context propagationand the crashof the
primary server

�

. For theseuncertainresponses,thereis a
clearchoicefor thenew primarythat takesover a client: it
can either transmitthe response(risking the client seeing
a duplicateif in fact the responsehadbeensentbeforeby
the previous primary), or it can not transmit(risking that
the client never seesthe response).The choiceis applica-
tion specific. For example,for MPEG-encodedvideo,one
wouldfavor duplicatedeliveryfor full image(I) framesover
therisk of losingthem,but would risk missingsomeincre-
mental(Por B) frames.

�
Recallthat,unlikecontext updatescausedbymessagesfromtheclient,

information aboutresponsessent is not known to the backupservers in
the sessiongroup, sincewe usepoint-to-pointcommunicationfrom the
primaryto theclient.

5



Combiningthe observationsabove, we seethat thereis
an interplay betweenthe configurablefactorsof the fre-
quency of propagationof the unit databaseinformation
amongthe contentgroup,and the numberof membersin
eachsessiongroup. The probability of losing context up-
datessentby theclient is thechanceof everysessiongroup
memberfailing or separatingfrom theclient duringthepe-
riod betweenpropagations.Thusthis probabilitydecreases
aseither the propagationfrequency or the sizeof the ses-
siongrouprise. However, increasingeitherof thesefactors
placesmorework oneachserver. Wheneverclientdatabase
informationis propagated,eachserver in thecontentgroup
must processit; when the sessiongroupsbecomelarger,
eachserver is a backupin moregroups,andmusttherefore
receive moreclient requests(however, the work is merely
receiving and recordingthe request;only the primary re-
sponds).

5 Conclusions

We have presenteda framework for building highly
available serviceswhich are characterizedby unchanging
server contents,andchangingcontext relatingto eachsep-
aratesession.Theframework is basedon replicationof the
contentamonga group of servers. The context informa-
tion is alsoreplicated,but in threedifferent levels of syn-
chronization:Theprimaryserver hasaccurateinformation.
Thebackupshavesomewhatdatedinformationaboutwhich
responsesthe primary sent,but accurateknowledgeof the
context updatessentby the client. The restof the replicas
have somewhat datedknowledgeof the context. GCS is
usedfor messagesfrom theclient to theservice,sothatthe
clientcanignoreissuesof changesto thesetof servers,and
hand-overwhenaserverfails,or whenloadis redistributed.
GCSis alsousedto propagateinformationaboutthecontext
from theprimaryto otherservers.Thekey configurablepa-
rametersin ourframework arethenumberof serversateach
level of synchronization,andthefrequency with which the
primarypropagatescontext to theotherservers.

Theframeworkof thispaperis ageneralizationof thede-
signusedin theVoD serviceof [2]. Our descriptionmain-
tainstheessentialcharacterof theearlierVoD design,with
processgroupsat threescales.This paperextendsthe [2]
work by making the configurableaspectsexplicit, andby
introducingbackupserverswithin thesessiongroup(giving
an intermediatelevel of context synchronizationbetween
theup-to-dateprimaryandthecontentgroupwhichreceives
propagatedcontext from theprimary).

Furthermore,we have analyzedtheframework, to show
whichpatternsof faultscanleavetheservicenotavailableto
a client. We have shown wheredifferentpropertiesof GCS
areneededin thedesign,to allow consistentdecisions.We
have examinedthe impact of the configurableparameters

on thechanceof losingavailability, andwe have explained
thetradeoffs betweenavailability andperformance.

Futurework mayintegrateinto thedesignsomedynamic
changesof theparameters,andautomaticinvocationof new
servers using the techniquesof [5]. Thus the usermight
expressa desiredservicequality in termsof a chanceof
losing a context update,and the systemcould thenadjust
theneedednumberof backupsin eachsessiongroup.

Anotherextensionworthpursuingis to integrateinto the
designa mechanismfor consistentlyupdatingthestatethat
is sharedbetweenclients,usingthe well-known replicated
statemachinetechnique[6].

References

[1] ACM. Commun.ACM 39(4),specialissueonGroupCommu-
nicationsSystems, April 1996.

[2] T. Anker, D. Dolev, and I. Keidar. Fault tolerantvideo-on-
demandservices. In 19th InternationalConferenceon Dis-
tributedComputingSystems(ICDCS), pages244–252,June
1999.

[3] K. Birman. Building Secure and ReliableNetworkApplica-
tions. Manning,1996.

[4] M. Fischer, N. Lynch,andM. Paterson.Impossibilityof dis-
tributedconsensuswith onefaulty process.J. ACM, 32:374–
382,April 1985.

[5] S. Mishra and G. Pang. Designand implementationof an
availability managementservice. In 19th InternationalCon-
ferenceon Distributed ComputingSystems(ICDCS) Work-
shoponMiddleware, pages128–133,June1999.

[6] F. B. Schneider. Implementingfault tolerantservicesusing
thestatemachineapproach:A tutorial. ACM Comput.Surv.,
22(4):299–319,December1990.

[7] R. Vitenberg, I. Keidar, G. V. Chockler, andD. Dolev. Group
CommunicationSpecifications: A Comprehensive Study.
TechnicalReport CS99-31,Institute of ComputerScience,
Hebrew University, Jerusalem,Israel,September1999. Also
TechnicalReportMIT-LCS-TR-790,MassachusettsInstitute
of Technology, Laboratoryfor ComputerScienceandTechni-
calReportCS0964,ComputerScienceDepartment,theTech-
nion,Haifa, Israel.

6


