
Timeliness, Failure-Detectors, and Consensus Performance

Idit Keidar
Technion

idish@ee.technion.ac.il

Alexander Shraer
Technion

shralex@tx.technion.ac.il

ABSTRACT
We study the implication that various timeliness and failure detec-
tor assumptions have on the performance of consensus algorithms
that exploit them. We present a general framework, GIRAF, for
expressing such assumptions, and reasoning about the performance
of indulgent algorithms.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications

General Terms
Algorithms, Performance, Reliability, Theory

Keywords
Eventual synchrony, failure detectors, lower bounds, indulgent con-
sensus.

1. INTRODUCTION

1.1 Background and motivation
Consensus is a widely-studied fundamental problem in distributed

computing, theory and practice. Roughly speaking, it allows pro-
cesses to agree on a common output. We are interested in the per-
formance of consensus algorithms in different timing models.

Although the synchronous model provides a convenient program-
ming framework, it is often too restrictive, as it requires implemen-
tations to use very conservative timeouts to ensure that messages
are never late. For example, in some practical settings, there is a
difference of two orders of magnitude between average and max-
imum message latencies [7, 5]. Therefore, a system design that
does not rely on strict synchrony is often advocated [27, 18, 9];
algorithms that tolerate arbitrary periods of asynchrony are called
indulgent [21].

As it is well-known that consensus is not solvable in asynchronous
systems [19], the feasibility of indulgent consensus is contingent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’06, July 22-26, 2006, Denver, Colorado, USA.
Copyright 2006 ACM 1-59593-384-0/06/0007 ...$5.00.

on additional assumptions. More specifically, such a system may
be asynchronous for an unbounded period of time, but eventually
reaches a Global Stabilization Time (GST) [18], following which
certain properties hold. These properties can be expressed in terms
of eventual timeliness of communication links [18, 11]1, or using
the abstraction of oracle failure detectors [9]. Protocols in such
models usually progress in asynchronous rounds, where, in each
round, a process sends messages (often to all processes), then re-
ceives messages while waiting for some condition expressed as a
timeout or as the oracle’s output, and finally performs local pro-
cessing.

Recent work has focused on weakening post-GST synchrony
assumptions [23, 1, 2, 3, 29], e.g., by only requiring one pro-
cess to have timely communication with other processes after GST.
Clearly, weakening timeliness requirements is desirable, as this
makes it easier to meet them. For example, given a good choice
of a leader process, it is possible to choose a fairly small time-
out, so that the leader is almost always able to communicate with
all processes before the timeout expires, whereas having each pro-
cess usually succeed to communicate with every other processes
requires a much larger timeout [5, 4]. In general, the weaker the
eventual timeliness properties assumed by an algorithm are, the
shorter the timeouts its implementation needs to use, and the faster
its communication rounds can be.

Unfortunately, faster communication rounds do not necessarily
imply faster consensus decision; the latter also depends on the num-
ber of rounds a protocol employs. A stronger model, although more
costly to implement, may allow for faster decision after GST. More-
over, although formally modeled as holding from GST to eternity,
in practice, properties need only hold “enough time” for the algo-
rithm to solve the problem (e.g., consensus) [18]. But how much
time is “enough” depends on how quickly consensus can be solved
based on these assumptions. Satisfying a weak property for a long
time may be more difficult than satisfying a stronger property for
a short time. Therefore, before choosing timeliness or failure de-
tector assumptions to base a system upon, one must understand the
implication these assumptions have on the running time of consen-
sus. This is precisely the challenge we seek to address in this paper.

1.2 GIRAF – General Round-based Algorithm
Framework

This question got little attention in the literature, perhaps due to
the lack of a uniform framework for comparing the performance of
asynchronous algorithms that use very different assumptions. Thus,
the first contribution of our work is in introducing a general frame-
work for answering such questions. In Section 2.2, we present GI-

1A timely link delivers messages with a bounded latency; the
bound is either known or unknown a priori.

RAF, a new abstraction of round-based algorithms, which separates
an algorithm’s computation (in each round) from its round wait-
ing condition. The former is controlled by the algorithm, whereas
the latter is determined by an environment that satisfies the spec-
ified timeliness or failure detector properties. In addition, the en-
vironment can provide additional “oracle output” information for
the protocol. In general, rounds are not synchronized among pro-
cesses. GIRAF is inspired by Gafni’s round-by-round failure detec-
tor (RRFD) [20], but extends it to allow for more expressiveness in
specifying round properties, in that the oracle output can have an ar-
bitrary range and not just a suspect list as in [20], and our rounds do
not have to be communication-closed like Gafni’s2. One model that
we study and cannot be expressed in RRFD ensures that each pro-
cess receives messages from a majority, and in addition, provides
an eventual leader oracle, Ω, which eventually outputs the same
correct leader process at all processes; many consensus algorithms
were designed for this model, e.g., [27, 14, 22]. Note that in order
to ensure communication with a majority in each round, RRFD’s
suspect list must include at most a minority of the processes, and
hence cannot, by itself, indicate which of the unsuspected processes
is leader. Thus, additional oracle output is required. In general, the
question of which systems can be implemented in RRFD was left
open [20]. In contrast, we show that GIRAF is general enough to
faithfully capture any oracle-based asynchronous algorithm in the
model of [8] (see [26]). Note that GIRAF can be used to express
models assuming various failure patterns and is not constrained to
the crash failure model (even though the models we define in this
paper do assume crash failures). Moreover, GIRAF can be used to
study problems other than consensus.

Since we focus on round-based computations, we replace the no-
tion of GST with the notion of a Global Stabilization Round (GSR)
[13]. Each run eventually reaches a round GSR, after which no
process fails, and all “eventual” properties hold. More specifically,
an environment in our model is defined using two types of prop-
erties: (1) perpetual properties, which hold in all rounds; and (2)
eventual properties, which hold from GSR onward. The eventual
counterpart of a perpetual property φ is denoted 3φ.

Since one can define different round properties, and organize al-
gorithms into rounds where these properties hold, one can prove
upper and lower bounds for the number of rounds of different types
(i.e., satisfying different properties such as all-to-all communica-
tion in each round or communication with a majority in each round)
that are sufficient and necessary for consensus. Note that, in order
to deduce which algorithm is best for a given network setting, this
analysis should be complemented with a measurement study of the
cost of rounds of different types in that specific setting. The latter
is highly dependant on the particularities of the given network and
has no general answers (e.g., in a LAN, all-to-all communication
may well cost the same as communication with majority, whereas
in a WAN it clearly does not [5, 4]). GIRAF provides generic anal-
ysis, which can be combined with network-specific measurements
to get a network-specific bottom line.

We use GIRAF to revisit the notion of oracle (or model) re-
ducibility. Traditionally, reducibility defines when one model can
be implemented in another [9, 8], without taking complexity into
account. In Section 3, we define the notion of α-reducibility, where
round GSR + l of the emulated model (for any l) occurs at most
in round GSR + α(l) in the original model, in the same run. This
notion captures reductions that incur a function α() penalty in run-
ning time. We define a special case of this notion, namely k-round
reducibility, which is simply α-reducibility with α(l) = l + k, and
2In communication-closed rounds, each message arrives in the
round in which it is sent.

captures reductions that incur a k-round penalty in running time.
Gafni [20] has posed as an open problem the question of finding
a notion of an equivalence relation between models with regard to
the extent in which one model “resembles” another. We hope that
our notion of α-reducibility (and k-round reducibility) provides a
convenient instrument to describe such relations.

1.3 Results
We use GIRAF to analyze consensus performance in different

models. In this paper, we consider a crash-failure model, where
up to t < n/2 out of n processes may crash (before GSR). Our
performance measure is the number of rounds until global decision,
i.e., until all correct processes decide, after GSR.

Dutta et al. [13] have shown that in the Eventual Synchrony (ES)
[18] model, where all links are timely from GSR onward, GSR+2,
i.e., three rounds including round GSR, is a tight lower bound for
global decision. We are interested in the implications of weakening
the ES assumptions. Following the observation that in some set-
tings communication with a leader or a majority can be achieved
with significantly shorter timeouts than required for timely com-
munication with all processes [5, 4], we focus on leader-based and
majority-based models.

The first model we define is Eventual Leader-Majority, 3LM
(see Table 1, row 2). In this model, processes are equipped with a
leader oracle, Ω [8]. We further require that the leader be a 3n-
source, where a process p is a 3j-source if it has j timely outgoing
links in every round starting from GSR [2] (the j recipients include
p, and are not required to be correct)3. Finally, we require that
each correct process eventually have timely incoming links from a
majority of correct processes (including itself) in each round; this
property is denoted 3(

�
n
2

�
+ 1)-destinationv , where the subscript

v denotes that the incoming links of a process can change in each
round. 3LM does not impose any restrictions on the environment
before GSR. One might expect that weakening the ES model in this
way would hamper the running time. Surprisingly, in Section 4,
we present a leader-based consensus algorithm for 3LM, which
achieves the tight bound for ES, i.e., global decision by GSR+2.
Our result suggests that eventually perfect failure detection is not
required for optimal performance; Ω and timely communication
with a majority suffice. Interestingly, we show in Section 5, that if
we replace Ω with an equivalent failure detector (in the “classical”
sense), namely, 3S [9], then for f < n

2
− 1 this entails a linear

lower bound on running time from GSR (see Table 1, row 3).
We next consider whether timely communication with a majority

can be used in lieu of an oracle. We define the Eventual All-from-
Majority, 3AFM, model, where each correct process eventually
has incoming timely links from a majority of processes, and out-
going timely links to a (possibly different) majority, including it-
self. It is possible for processes to have fewer outgoing links, and
in return have additional incoming ones (see Table 1, row 4). In
Section 6, we give a consensus algorithm for this model that de-
cides in constant time after GSR (five or six rounds, depending on
the number of outgoing versus incoming timely links).We are not
aware of any previous algorithm for the 3AFM model, nor any
other constant-time (from GSR) oracle-free algorithm in a timing
model other than ES. We show in [25], that the 3AFM model
is extremely scalable, i.e., implementing it in a system with many
processes is much easier than implementing many other indulgent
models.

Finally, we examine whether one can weaken the model even
further. Can we relax the assumption that all correct processes
3In [2], the link from p to itself is not counted; hence a j-source in
our terminology is a (j − 1)-source in theirs.

Model Model Properties Upper Bound Lower Bound
ES all links 3timely GSR+2 GSR+2

[13] [13]
3LM Ω, the leader is 3n-source GSR+2 GSR+2

every correct process 3(
�

n
2

�
+ 1)-destinationv Algorithm 2 [13]

3SR 3S, the unsuspected process is 3n-source
every process (n− f − 1)-destinationv GSR+2n + 2 GSR+n− 1
f < n/2− 1 and reliable links [31] Lemma 3

3AFM ∃m ∈ N, f ≤ m < n/2 s.t. if n = 2m + 1 and GSR > 0: GSR+4 GSR+2
every correct process 3(m + 1)-sourcev Otherwise: GSR+5 [13]
and 3(n−m)-destinationv Algorithm 3

3MFM(m) every correct process 3(n−m)-source
m ∈ N+ m correct processes 3n-source Unbounded Unbounded

f ≤ m < n/2 (n−m) correct processes 3(n−m)-accessible [2, 3, 29] Lemma 4
every correct process 3m-accessible
reliable links

Table 1: Upper and lower bounds on consensus global decision times in various models (t < n/2).

have incoming timely links from a majority, and allow a minor-
ity of the processes to each have one fewer timely link? (In case
n = 3, only one timely link is removed). In Section 7, we show
that the answer to this question is no, as this renders the problem
unsolvable in bounded time. We define a family of models, Even-
tual Majority-from-Majority, 3MFM(m), where, roughly speak-
ing, a majority of the processes have incoming timely links from
a majority, and the rest have incoming timely links from a minor-
ity. In order to strengthen the lower bound, we add a host of ad-
ditional assumptions (see Table 1, row 5): We require a minority
of processes to be 3n-sources. We replace j-destination assump-
tions with j-accessibility [1, 29], i.e., the existence of bidirectional
timely links with j correct processes. Finally, we require reliable
links. We show that in the resulting models, 3MFM(m), global
decision cannot be achieved in bounded time from GSR. Interest-
ingly, these models are strictly stronger than those of [2, 3, 29],
which were used for solving consensus. We note, though, that in
[29], local decision (of the leader and its accessible destinations) is
possible in constant time, whereas in [2, 3], local decision time is
unbounded as well.

As Table 1 shows, there are still several tantalizing gaps be-
tween the known upper and lower bounds in various models. More-
over, many additional models can be explored, e.g., in the middle
ground between AFM and MFM. We hope that GIRAF will allow
researchers to address many such issues in future work. Section 8
provides further discussion of future research directions.

1.4 Related work
In recent years, a number of efforts have been dedicated to under-

standing the performance of asynchronous algorithms in runs that
are synchronous (or the failure detector is perfect) from the outset
[24, 14, 22, 6, 17, 15, 30], typically focusing on the case that all
failures are initial, which corresponds to GSR= 0 in our model.

Only very recently, the issue of performance following asyn-
chronous periods has begun to get attention [13, 16]. As noted
above, [13] shows that GSR+2 is a tight bound for global decision
in ES. It uses Gafni’s RRFD [20] framework. In [16], Dutta et al.
focus on actual time rather than rounds, again in ES; they present
an algorithm that decides by GST + 17δ, where δ is a bound on
message delay from GST onward (but no matching lower bound).
This result gives a more accurate assessment of the actual running
time after GST than our round-count offers. Nevertheless, a similar
assessment might be obtained in our model if one can quantify the

time it takes the environment’s synchronization to establish GSR
after GST; this is an interesting subject for future study. We believe
that the clean separation we offer between round synchronization
and the consensus algorithm’s logic allows for more abstract and
easier to understand protocol formulations and complexity analy-
ses, as well as for proving lower bounds.

The only previous algorithm presented in the 3LM model, Paxos
[27], may require a linear number of rounds after GSR [12]. Most
other Ω-based protocols, e.g., [14, 22], wait for messages from a
majority in each round (including before GSR), which is undesir-
able, as it may cause processes to be in arbitrarily unsynchronized
rounds when some process first reaches round GSR, causing GSR
itself to take a long time. Dutta et al. [12] allow processes to “skip”
rounds in order to re-synchronize in such situations. Implementing
such approach in our framework yields an algorithm that requires
one more round than Algorithm 2.

Models that allow moving send and receive omission failures,
e.g., [34, 33], resemble our definitions of variable j-sources and j-
destinations. For example, Schmid and Weiss [34] show that con-
sensus is solvable in a model allowing each process to experience
up to fr receive omission failures and fs send omission failures if
and only if fr + fs < n. This precisely corresponds to our AFM
model. Nevertheless, these papers only deal with perpetual timely
links, and not with eventual models like 3AFM.

2. MODEL AND PROBLEM DEFINITION

2.1 Distributed computation model
We consider an asynchronous distributed system consisting of a

set Π of n > 1 processes, p1, p2, . . . , pn, fully connected by com-
munication links. Processes and links are modeled as deterministic
I/O automata [28]. An automaton’s transitions are triggered by ac-
tions, which are classified as input, output, and internal. Action π
of automaton A is enabled in state s if A has a transition of the form
(s, π, s′). The transitions triggered by input actions are always en-
abled, whereas those triggered by output and internal actions are
preconditioned on the automaton’s current state.

A run of I/O automaton A is an infinite sequence of alternating
states and actions s0, π1, s1, . . . , where s0 is A’s initial state, and
each triple (si−1, πi, si) is a transition of A. We only consider fair
runs, where no action is enabled without occurring in an infinite
suffix.

Algorithm 1 GIRAF: Generic algorithm for process pi (I/O automaton).

States:
ki ∈ N , initially 0 /*round number*/
senti[Π] ∈ Boolean array, initially ∀pj ∈ Π : senti[j] = true
FDi ∈ OracleRange, initially arbitrary
Mi[N][Π] ∈Messages∪{⊥}, initially ∀k ∈ N∀pj ∈ Π : Mi[k][j] = ⊥

Actions and Transitions:
input receive(〈m, k〉)i,j , k ∈ N output send (〈Mi[ki][i], ki〉)i,j

Effect: Mi[k][j]← m Precondition: senti[j] = false
Effect: senti[j]← true

input end-of-roundi

Effect: FDi ← oraclei (ki)
if (ki = 0) then Mi[1][i]← initialize (FDi)
else Mi[ki + 1][i]← compute (ki, Mi, FDi)
ki ← ki + 1
∀pj ∈ Π : senti[j]← false

A process pi interacts with its incoming link from process pj via
the receive(m)i,j action, and with its outgoing link to pj via the
send(m)i,j action. Communication links do not create, duplicate,
or alter messages (this property is called integrity). Messages may
be lost by links.

A threshold t < n/2 of the processes may fail by crashing. The
failure of process pi is modeled using the action crashi, which dis-
ables all locally controlled actions of pi. A process that does not
fail is correct. The actual number of failures occurring in a run is
denoted f . Process pi is equipped with a failure detector oracle,
which can have an arbitrary output range [8], and is queried using
the oraclei function.

2.2 GIRAF – General Round-based Algorithm
Framework

Algorithm 1 presents GIRAF, a generic round-based distributed
algorithm framework. To implement a specific algorithm, GIRAF
is instantiated with two functions: initialize(), and compute(). Both
are passed the oracle output, and compute() also takes as parameters
the set of messages received so far and the round number. These
functions are non-blocking, i.e. they are not allowed to wait for any
other event.

Each process’s computation proceeds in rounds. The advance-
ment of rounds is controlled by the environment via the end-of-
round input action. The end-of-roundi actions occur separately in
each process pi, and there are no restrictions on the relative rate
at which they occur at different processes, i.e., rounds are not nec-
essarily synchronized among processes. The end-of-round action
first occurs in round 0, whereupon it queries the oracle and calls
initialize(), which creates the message for sending in the first round
(round one). Subsequently, during each round, the process sends
a message to all processes and receives messages available on in-
coming links, until the end-of-round action occurs, at which point
the oracle is queried and compute() is called, which returns the mes-
sage for the next round. We say that an event of process pi occurs in
round k of run r, if there are exactly k invocations of end-of-roundi

(i.e., end-of-round invocations at process pi), before that event in r.
For simplicity, we have the algorithm send the same message to

all processes in each round; this is without loss of generality as we
are not interested in message complexity as a performance metric.
The outgoing message is stored in the incoming message buffer,
Mi[ki + 1][i], hence self-delivery is ensured. The environment
might decide not to send the message of a round to any subset of

processes, i.e., it might invoke end-of-roundi in round k without
a send(m)i,j action ever happening in round k for a process pj .
However, some of our environment definitions below will restrict
this behavior and require messages to be sent. In any case, self-
delivery is always preserved.

Our framework can capture any asynchronous oracle-based mes-
sage passing algorithm in the general model of [8] (see [26]). Thus,
GIRAF does not restrict the allowed algorithms in any way, but
rather imposes a round structure that allows for analyzing them.

Each run is determined by the algorithm automaton’s state tran-
sitions, and the environment’s actions, consisting of (i) scheduling
end-of-round actions; (ii) oracle outputs; and (iii) send and receive
actions of the communication links. Environments are specified us-
ing round-based properties, restricting the oracle outputs or mes-
sage arrivals in each round. We consider two types of environ-
ment properties: perpetual properties, which hold in each round,
and eventual properties, which hold from some (unknown) round
onward. More formally, in every run r there is a round GSR(r),
satisfying the following property:

Definition (GSR(r)): GSR(r) is the first round k, s.t. in every
round k′ ≥ k no process fails, and all eventual properties
hold in k′.

As was defined earlier, the first communication round is round
one. By slight abuse of terminology, we say that GSR(r) = 0 in
a run r if (i) there are no failures in r; (ii) the oracle properties (if
defined) hold from round zero in r; and (iii) the communication
properties hold from round one in r. (We henceforth omit the (r)
where it is clear from the context)

Note that although, in general, rounds are not synchronized among
processes, we specify below environment properties that do require
some synchronization, e.g., that some messages are received at one
process at the same round in which they are sent by another. There-
fore, an implementation of an environment that guarantees such
properties needs to employ some sort of round or clock synchro-
nization mechanism (e.g. [18, 35], or using GPS clocks).

2.3 Environment properties
We define several environment properties in GIRAF, mostly in

perpetual form. Prefixing a property with 3 means that it holds
from GSR onward. Every process has a “link” with itself, and
though it is not an actual physical link, it counts toward the j timely
links in the definitions below. Some of the properties that require

j timely links may appear with a subscript v (variable), which in-
dicates that the set of j timely links is allowed to change in each
round. Note that link integrity is assumed by the model. When
characterizing a link, we denote the source process of the link by
ps, and the recipient by pd.

reliable link: ∀k ∈ N+ if end-of-rounds occurs in round k and
pd is correct, then pd receives the round k message of ps.

timely link in round k: if end-of-rounds occurs in round k and pd

is correct, then pd receives the round k message of ps, in
round k.

j-source: process p is a j-source if there are j processes to which
it has timely outgoing links in every round; p is a j-sourcev

if in every round it has j timely outgoing links, possibly dif-
ferent in every round. (Correctness is not required from the
recipients.)

j-destination: correct process p is a j-destination if there are j
correct processes from which p has timely incoming links in
every round; p is a j-destinationv if it has j timely incoming
links from correct processes in every round.

j-accessible: correct process p is j-accessible if there are j cor-
rect processes with which p has timely bidirectional links in
every round. (We do not consider variable j-accessibility in
this paper.)

leader: ∃ correct pi s.t. for every round k ∈ N and every pj ∈ Π,
oraclej(k) = i. The range of the oracle() function is Π.

Ω failure detector: 3 leader.

Note that the reliable and timely link properties imply that the envi-
ronment sends messages on the link, i.e., the end-of-rounds action
in round k is preceded by a send(m)s,d action in round k.

2.4 Consensus and global decision
A consensus problem is defined for a given value domain, Val-

ues. In this paper, we assume that Values is a totally ordered set.
In a consensus algorithm, every process pi has a read-only variable
propi ∈ Values and a write-once variable deci ∈ Values ∪{⊥}. In
every run r, propi is initialized to some value v ∈ Values, and deci

is initialized to ⊥. We say that pi decides d ∈Values in round k of
r if pi writes d to deci when ki = k in r.

An algorithm A solves consensus if in every run r of A the fol-
lowing three properties are satisfied: (a) (validity) if a process de-
cides v then propi = v for some process pi, (b) (agreement) no
two correct processes decide differently, and (c) (termination) ev-
ery correct process eventually decides.

We say that a run of A achieves global decision at round k if
(1) every process that decides in that run decides at round k or at a
lower round; and (2) at least one process decides at round k.

3. REDUCIBILITY
In discussing different models, the question of reducibility natu-

rally arises – one is often interested whether one model is stronger
than another, or how “close” two models are. The classical notion
of reducibility among models/oracles [9, 8] does not take complex-
ity into account. We use GIRAF to provide a more fine-grained
notion of similarity between models.

We first explain how classical reducibility is expressed for GI-
RAF models. Reducibility (in the “classical” sense) means that one
model can be emulated in another. A simulation from a GIRAF
model M1 to another (GIRAF or non-GIRAF) model M2, must
work within the initialize() and compute() functions in M1, which
must be non-blocking. Simulating a GIRAF model M2 means in-
voking the initializeA() and computeA() functions of some algo-
rithm A that works in M2, while satisfying the properties of M2.

In particular, if M1 and M2 are both GIRAF models, then a re-
duction algorithm TM1→M2 instantiates the initialize() and com-
pute() functions, denoted initializeT () and computeT (), and invokes
initializeA() and computeA() in model M1. If algorithm TM1→M2

exists, we say that M2 is reducible to M1 (or weaker than M1), and
denote this by M1 ≥ M2. M1 is equivalent to M2 if M1 ≥ M2

and M2 ≥M1.
We next extend the notion of reducibility, and introduce

α-reducibility, which takes the reduction time (round) complexity
into account. Note that the definition of a run’s GSR is model-
specific: GSR(r) = k in model M if k is the first round from
which onward no process fails and the eventual properties of M
are satisfied. We denote GSR in model M and run r by GSRM (r).

Definition (α-reducibility). For α : N → N, we say that model
M2 is α-reducible to model M1, denoted M1 ≥α M2, if there
exists a reduction algorithm TM1→M2 s.t. for every run r and every
l ∈ N, round GSRM2(r) + l in model M2 occurs at most in round
GSRM1(r) + α(l) in model M1.

Definition (k-round reducibility). Model M2 is k-round reducible
(k ∈ N) to model M1, denoted M1 ≥k M2, if M1 ≥α M2 s.t.
α(l) = l + k.

In particular, if M1 ≥0 M2 then model M2 can be simulated
in model M1 with no performance penalty. In Section 5 we use
the notion of k-round reducibility to prove that 3S is 0-round re-
ducible to 3n-source.

4. OPTIMAL LEADER-BASED
ALGORITHM IN 3LM

The 3LM model requires that each process have a majority of
incoming timely links (from GSR onward), which can vary in each
round, and an Ω oracle that selects a correct 3n-source as leader.
Formally:

3LM (Leader-Majority) : t < n/2, Ω failure detector, the leader
is a 3n-source, and every correct process is a 3(

�
n
2

�
+ 1)-

destinationv .

The 3LM model is strictly weaker than ES: it is easy to show
that ES ≥0 3LM , i.e. to simulate 3LM in ES with no penalty,
since 3LM requires less 3timely links than ES, and the Ω fail-
ure detector output in any given round k can be (for example)
the lowest-id of a process whose round k message was received
in round k. Starting from GSRES this process is assured to be
correct and since in ES all correct processes receive the same set
of messages in each round, all simulated oracles will believe in
the same correct process starting at round GSRES , meaning that
GSR3LM = GSRES .

Algorithm. Algorithm 2 presents a leader-based consensus algo-
rithm for 3LM, which reaches global decision by round GSR+2.
In runs with GSR = 0, this means that consensus is achieved in 2
rounds, which is tight [10, 24]. In runs with GSR > 0, global deci-
sion is reached in 3 rounds, numbered GSR, GSR+1, and GSR+2,
which also matches the lower bound for ES [13].

Algorithm 2 works in GIRAF, and therefore implements only
the initialize() and compute() functions. These function are passed
leaderi, the leader trusted by the oracle.

The main idea of the algorithm, which ensures fast convergence,
is to trust the leader even if it competes against a higher bid of an-
other process. In contrast, Paxos [27] initiates a new “ballot”, that

Algorithm 2 Optimal leader–based algorithm for 3LM , code for process pi.
1: Additional state
2: esti ∈ Values, initially propi

3: tsi, maxTSi, lastApprovali ∈ N , initially 0
4: prevLDi, newLDi ∈ Π
5: msgTypei ∈ {PREPARE, COMMIT, DECIDE}, initially PREPARE

6: Message format
7: 〈msgType ∈ {PREPARE, COMMIT, DECIDE}, est ∈ Values, ts ∈ N , leader ∈ Π, lastApprovali ∈ N〉
8: procedure initialize(leaderi)
9: prevLDi ← newLDi ← leaderi

10: return message 〈msgTypei, esti, tsi, newLDi, lastApprovali〉 /*round 1 message*/

11: procedure compute(ki, M[*][*], leaderi)
12: if deci = ⊥ then
13: /*Update variables*/
14: prevLDi ← newLDi; newLDi ← leaderi

15: maxTSi ← max{ m.ts |m ∈M [ki][∗] }
16: if |{ j |M [ki][j] 6= ⊥ }| > bn/2c then
17: lastApprovali ← ki

18: /*Round Actions*/
19: if ∃m ∈M [ki][∗] s.t. m.msgType = DECIDE then /*decide-1*/
20: deci ← esti ← m.est; msgTypei ← DECIDE
21: else if (|{ j |M [ki][j].msgType = COMMIT }| > bn/2c)

and (M [ki][prevLDi].msgType = M [ki][i].msgType = COMMIT) then /*decide-2*/
22: deci ← esti; msgTypei ← DECIDE
23: else if (|{ j |M [ki][j].leader = prevLDi }| > bn/2c) /*commit-1*/

and (M [ki][prevLDi].lastApproval = ki − 1 ∧M [ki][prevLDi].leader = prevLDi) /*commit-2*/
and (newLDi = prevLDi) then /*commit-3*/

24: esti ←M [ki][prevLDi].est; tsi ← ki; msgTypei ← COMMIT;
25: else
26: esti ← any est′ ∈ {M [ki][j].est |M [ki][j].ts = maxTSi }
27: tsi ← maxTSi; msgTypei ← PREPARE
28: return message 〈msgTypei, esti, tsi, newLDi, lastApprovali〉 /*round ki + 1 message*/

is, aborts any pending attempts to decide on some value, whenever
a higher timestamp is observed, potentially leading to linear run-
ning time after GSR [12]. In order to ensure that the leader does
not propose a value that contradicts previous agreement, the lastAp-
proval variable (and message-field) conveys the “freshness” of the
leader’s proposed value, and the leader’s proposals are not accepted
if it is not up-to-date.

We now describe the protocol in more detail. Process pi main-
tains the following local variables: an estimate of the decision value,
esti initialized to the proposal value (propi); the timestamp of the
estimated value, tsi, and the maximal timestamp received in the
current round, maxTSi, both initialized to 0; the index of the last
round in which pi receives a message from a majority of processes,
lastApprovali, initialized to 0; the leader provided by the oracle at
the end of the previous round, prevLDi, and in the current round,
newLDi; and the message type, msgTypei, which is used as follows:
If pi sees a possibility of decision in the next round, then it sends a
COMMIT message. Once pi decides, it sends a DECIDE message in
all subsequent rounds. Otherwise, the message type is PREPARE.

We now describe the computation of round ki. If pi has not
decided, it updates its variables as follows. It saves its previous
leader assessment in prevLDi, and its new leader (as passed by the
oracle) in newLDi (line 14). It stores the highest timestamp re-
ceived in maxTSi. If pi receives a message from a majority, it
sets lastApprovali to the round number, ki. It then executes the
following conditional statements:

• If pi receives a DECIDE message then it decides on the re-
ceived estimate by writing that estimate to deci (line 20).

• If pi receives COMMIT messages from a majority of pro-
cesses, including itself and its leader, then pi decides on its
own estimate (line 22).

• Let prevLDi be the leader indicated in pi’s round ki message.
Consider the following three conditions (line 23): commit-1:
pi receives round ki messages from a majority of processes
that indicate prevLDi as their leader; commit-2: pi receives
a message from prevLDi that has prevLDi as the leader, and
lastApproval set to ki−1; and commit-3: prevLDi = newLDi.
If all three conditions are satisfied, then pi sets its message
type (for the round ki + 1 message) to COMMIT, adopts the
estimate received from prevLDi, say est′, and sets its times-
tamp to the current round number ki (line 24). We say that
pi commits in round ki with estimate est′.

• Otherwise, pi adopts the estimate and the timestamp of an
arbitrary message with the highest timestamp maxTSi, and
sets the message type to PREPARE (lines 26–27).

Finally, pi returns the message for the next round.

Correctness. We formally prove Algorithm 2’s correctness in
the full version [26]. Our main lemma shows that no two processes
decide differently, by showing that if some process decides x in
round k, then from round k − 1 onward, the only committed esti-
mate is x. (This proves agreement since a decision is made when
either a DECIDE or a majority of COMMITs is received.) We now
intuitively explain why this is correct. The claim is proven by in-
duction on round number. Let pi be the first process that decides,
and denote its decision value by x, and the decision round by k.
(the decision is by rule decide-2; rule decide-1 is not applicable

since pi is the first process to decide). Therefore, in round k, pi

hears COMMIT from majority M , including itself and its round k
prevLD, pl, and decides on its own estimate, x. Let us first ex-
amine round k − 1. Processes of M commit in this round. Rules
commit-1 and commit-3 ensure that all COMMIT messages sent in
this round have the same estimate and leader fields, namely, x, and
pl. Additionally, it is easy to see that a process’s timestamp never
decreases. Thus, since processes of M commit in round k − 1,
they have timestamps of at least k − 1 in all ensuing rounds. Now
consider round k. Any process that commits in round k hears from
a majority with the same leader, and since this majority intersects
M , the leader is pl. Therefore, any commitment in round k is made
with the estimate of pl, i.e., x.

We now consider the inductive step, i.e., round k′ > k. If pi

commits in round k′, it commits on the estimate of its leader. If
that leader sends a COMMIT message, by induction, its estimate is
x. Otherwise, the leader sends a PREPARE message. By commit-
2, that leader’s lastApproval field is set to k′ − 1 ≥ k, implying
that the leader receives a message from a majority of processes in
round k′ − 1. Therefore, it receives at least one message from a
process in M with timestamp at least k − 1. Since the highest
timestamp received is adopted, the leader adopts timestamp ts ≥
k− 1 and some estimate z. It is easy to see that if a message (other
than DECIDE) is sent with timestamp ts and estimate z, then some
process commits z in round ts. Therefore, some process commits
z in a round ≥ k − 1. By induction, we get that z = x. Therefore,
the leader adopts x with the maximal timestamp in round k′ − 1,
and pi commits x in round k′.

Performance. We now give an intuitive explanation why in round
GSR+1, every correct process pi that does not decide by the end of
that round evaluates the three commit rules (line 23) to true (this is
formally proven in the full version [26]). Since pi does not decide
by the end of GSR+1, all the processes it hears from in this round
do not decide by round GSR. By definition of 3LM , from round
GSR onward, each correct process receives messages from a ma-
jority of correct processes, including its leader, pl. Therefore, the
lastApproval field of every round GSR+1 message is GSR (notice
for the case of GSR= 0 that lastApproval is initialized to 0). More-
over, it is assured by the Ω failure detector, that from round GSR
onward, all processes trust the same leader, pl. Therefore, from
round GSR+1 onward, all running processes (including the leader
pl) send the same leader identifier in their messages. (Note that
rule commit-3 is assured to be true only starting at round GSR+1,
since prevLDi of round ki = GSR is based on the oracle’s output
in round GSR−1, in which it is not assured that all processes trust
the same leader.) We conclude that in round GSR+2 every correct
process sends a COMMIT or DECIDE message, and by the end of
that round, every correct process decides.

5. LINEAR BOUND FOR 3SR
We use the notion of k-round reducibility, to prove that at least n

rounds starting at GSR are needed to solve consensus in the 3SR
model. We formally define the 3SR model as follows:

3SR (Strong-Reliable) : reliable links, 3S failure detector, the
unsuspected process is 3n-source and all correct processes
are (n− f − 1)-destinationsv , where f < n

2
− 1.

In the full version [26], we give a formal proof of our results. Below
we state the roadmap of the proof.

LEMMA 1. Any model M3S that requires a 3S failure
detector and environment properties P is 0-round reducible to a
model M3n that assumes a correct 3n-source process and P , i.e.,
M3n ≥0 M3S .

From Lemma 1, it follows that suffices to prove the lower bound
for a model just like 3SR, but without the assumption of 3S. We
denote this model by 3SR\3S.

We prove the lower bound using the impossibility of consensus
in the mobile failure model [32], in which no process crashes, and
in each communication step there is one process whose messages
may be lost.

Below we denote the prefix of length l rounds of a run r by r(l).

LEMMA 2. For any k ∈ N , let r be a run in the mobile failure
model. There exists a run r′ in 3SR\3S with GSR(r) = k and
f = 0 such that r′(k + n− 2) = r(k + n− 2).

We strengthen the lower bound by proving that it is impossible
to reach global decision in less than n rounds from GSR in the
3SR\3S model, even with an algorithm especially tailored for
some specific GSR.

LEMMA 3. For k ∈ N, k ≥ 1, no algorithm exists that in every
run r in which GSR(r) = k achieves global decision before round
GSR(r)+(n− 1), in the 3SR\3S model.

Note that our proof (combined with Algorithm 2, which achieves
global decision by GSR+2 in 3LM) immediately implies that
3SR �k 3LM for any k < n− 3.

6. CONSTANT-TIME ALGORITHM
IN 3AFM

In this section, we investigate whether constant time decision is
possible without an oracle in a model weaker than ES. We are not
aware of any previous constant-time algorithms for such a model.

In the 3AFM model, each process has timely incoming links
from a correct majority of processes, and a majority of timely out-
going links (from GSR onward), both can vary in each round. The
number of outgoing links may decrease if more incoming links are
timely. Formally:

3AFM (All-From-Majority) : ∃m ∈ N , f ≤ m < n/2 such
that every correct process is a 3(n−m)-destinationv and a
3(m+1)-sourcev . Note that m can be different in each run.

Algorithm. Algorithm 3 is a majority-based algorithm for 3AFM,
which always reaches global decision by round GSR+5. In runs
with GSR = 0, this means that consensus is achieved in 5 rounds.
In runs with GSR > 0, global decision is reached in 6 rounds.
At the end of this section we present an optimization of the algo-
rithm for the case of n = 2m + 1 (i.e., when both (m + 1) and
(n −m) are majorities), and in the full version [26] we prove that
the optimized algorithm reaches global decision by round GSR+4
for n = 2m + 1 (when GSR > 0), and by round GSR+5 for other
values of m (f ≤ m < n/2). The code used for optimization
is marked in gray in Algorithm 3 and should be ignored until its
explanation at the end of this section.

In general, Algorithm 3 is similar to Algorithm 2. We therefore
focus mainly on the differences from Algorithm 2. Since 3AFM
does not assume a failure detector, the oracle’s output is not a pa-
rameter for compute().

The variables maintained by each process pi are similar to those
of Algorithm 2. A new variable, maxESTi, holds the maximal

Algorithm 3 Majority–based algorithm for 3AFM model. Code for process pi. Optimization for n = 2m + 1 is marked in gray.

1: Additional state
2: esti, maxESTi ∈ Values, initially propi

3: tsi, maxTSi ∈ N, initially 0
4: IgotCommiti ∈ Boolean, initially false

5: gotCommiti ∈ 2Π, initially ∅
6: msgTypei ∈ {PREPARE, PRE-COMMIT, COMMIT, DECIDE}, initially PREPARE

7: procedure initialize()
8: return message 〈msgTypei, esti, tsi , IgotCommiti, gotCommiti 〉 /*round 1 message*/

9: procedure compute(ki, M[*][*])
10: if deci = ⊥ then
11: /*Update variables*/
12: maxTSi ←max{ m.ts |m ∈M [ki][∗] }
13: maxESTi ←max{ m.est |m ∈M [ki][∗] ∧m.ts = maxTSi }
14: IgotCommiti ← ∃m ∈M [ki][∗] s.t. m.msgType = COMMIT

15: gotCommiti ← { j |M [ki][j].IgotCommit }
16: /*Round Actions*/
17: if ∃m ∈M [ki][∗] s.t. m.msgType = DECIDE then /*decide-1*/
18: deci ← esti ← m.est; msgTypei ← DECIDE
19: else if |{ j |M [ki][j].msgType = COMMIT }| > bn/2c ∧ M [ki][i].msgType = COMMIT then /*decide-2*/
20: deci ← esti; msgTypei ← DECIDE

21: else if |
S

j∈Π M [ki][j].gotCommit| > bn/2c then /*decide-3*/

22: deci ← esti ← maxESTi; msgTypei ← DECIDE

23: else if |{ j |M [ki][j].est = maxESTi }| > bn/2c then /*pre-commit*/
24: if ∃j s.t. M [ki][j].est = maxESTi ∧M [ki][j].msgType = COMMIT or PRE-COMMIT then /*commit*/
25: esti ← maxESTi; tsi ← ki; msgTypei ← COMMIT;
26: else
27: esti ← maxESTi; tsi ← maxTSi; msgTypei ← PRE-COMMIT;
28: else
29: tsi ← maxTSi; esti ← maxESTi; msgTypei ← PREPARE

30: return message 〈msgTypei, esti, tsi , IgotCommiti, gotCommiti 〉 /*round ki + 1 message*/

estimate received with timestamp maxTSi in the current round
(recall that Values is a totally ordered set). A new message type is
introduced, PRE-COMMIT. Intuitively, pre-committing is similar to
a committing, but without increasing the timestamp. An estimate
must be pre-committed by some process before it is committed.

Pre-commit is needed, since, unlike 3LM, where the leader is a
3n-source, 3AFM never assures that a process is able to convey
information to all other processes in a single round. If we hadn’t
introduced PRE-COMMIT, it would have been possible for two dif-
ferent estimates to be committed in alternating rounds, where a ma-
jority of processes hear and adopt estimate est1, (which has the
maximal timestamp) but some other process does not hear est1
and commits to est2, increasing its timestamp. In the next round
the situation flips, and est2 is adopted by a majority while est1 is
committed, and so on, precluding decision.

In 3AFM, in every round from GSR onward, each process hears
from (n−m) correct processes, and its outgoing message reaches
m+1 processes. Note that the m+1 processes the message reaches
overlaps the set of (n −m) correct processes every other process
hears from in the next round, allowing information to propagate
to all correct processes in two rounds. Thus, a single pre-commit
phase suffices to eliminate races as described above, where two
different values are repeatedly committed after GSR.

We now describe pi’s computation. If pi does not decide, it
evaluates the following two conditions: pre-commit (line 23): pi

receives messages from a majority of processes with maxESTi

as their estimate; and commit (line 24): at least one COMMIT or

PRE-COMMIT message is received with maxESTi. If both condi-
tions are true, then pi sets its message type (for the round ki + 1
message) to COMMIT, adopts the estimate maxESTi, and sets its
timestamp to the current round number ki (line 25). We say that
pi commits in round ki with estimate maxESTi. If, however,
only the first condition holds, then pi sets its message type to PRE-
COMMIT, adopts the estimate maxESTi, and sets its timestamp to
maxTSi (line 27). We say that pi pre-commits in round ki with
estimate maxESTi. If neither condition holds, pi prepares (sets
his message type to PREPARE) and adopts the estimate maxESTi

and timestamp maxTSi (line 29).

Correctness. A process may commit with different estimates in
different rounds. However, we show (in the full version [26]) that
starting from a round k in which a majority of processes M com-
mit with some estimate x onward, every commit is with estimate
x. Note that this implies agreement, since decision is impossible
before a majority of processes commit (see decision rules). To un-
derstand why this is true, note first that by rule pre-commit, all
COMMIT and PRE-COMMIT messages sent in the same round are
with the same estimate. This explains why a commitment with
y 6= x is impossible in round k. Additionally, note that a process’s
timestamp never decreases, and therefore the processes in M have
timestamps ≥ k in subsequent rounds. Suppose that a process pi

commits in round k′ > k. Rule pre-commit ensures that pi hears
from a majority. Since every two majorities intersect, pi hears from
at least one process in M . Since pi commits on maxESTi, which

has the maximal timestamp, pi commits with a timestamp ≥ k.
Using an inductive argument, we get that maxESTi = x. Since
no decision is made before a majority commits, and every decision
is either on the value of a previous decision (rule decide-1), or on
the value sent in COMMIT messages (rule decide-2), which equals
x from round k onward, all decisions are with x.

Performance. We now explain why the algorithm decides by
round GSR+5 (a formal proof appears in the full version [26]).
First, if some process decides by round GSR+3, then its DE-
CIDE message reaches every process by the end of round GSR+5.
Assume no process decides by GSR+3. Second, if no process
commits in round GSR, the maximum timestamp sent in GSR is
the same as the maximum timestamp sent in round GSR+1, and
it reaches every correct process by the end of round k1 =GSR+1,
at which point all processes have the same maxEST . Finally, if
a process commits in GSR, the use of pre-commit ensures that no
different value is committed in GSR+1, and thus this value has
the highest timestamp among those sent in round GSR+2, and this
timestamp and its estimate reach every process by the end of round
k2 =GSR+2. In both cases, every process has the same maxEST
at the end of round k = k1 or k = k2. Thus, all processes send the
same estimate in round k + 1, and in the ensuing round, a majority
of processes receives it and pre-commits (at least). In round k + 2,
every correct process receives the same estimate from majority and
a PRE-COMMIT or COMMIT message, and commits. Finally, by
round k + 3, which is at most GSR+5, every process decides by
rule decide-2.

Optimization for n = 2m + 1. We present an optimization of
Algorithm 3 for the case of n = 2m + 1 (i.e., when both (m + 1)
and (n − m) are majorities). The additional code used for the
optimization is marked in gray in Algorithm 3. In the full version
[26], we prove that the optimized algorithm reaches global decision
by round GSR+4 (five rounds) for n = 2m + 1 and by round
GSR+5 (six rounds) for other values of f ≤ m < n/2.

The optimization relies on the IgotCommit and gotCommit vari-
ables, that are used for “gossiping” about COMMIT messages. When-
ever a process receives a COMMIT message, it indicates this in its
next round message by setting IgotCommit to true. In order to have
all processes learn about commits, we use the gotCommit message
field. A process includes in the gotCommit set that it sends in round
k + 1, all processes that it knows have gotten COMMIT messages
in round k − 1 (based on IgotCommit indications sent in round k).
Thus, in round k + 1, the incoming gotCommit sets from different
processes can give pi a better picture about which processes got
COMMIT messages in round k − 1. In the full version [26], we
prove that if the union of the gotCommit groups that a process gets
exceeds bn/2c, it is safe for the process to decide on maxEST
(rule decide-3) and this optimization allows us to speed up global
decision to be by round GSR+4 instead of by round GSR+5. We
formally prove the correctness of the optimized Algorithm 3 in the
full version [26].

7. IMPOSSIBILITY OF BOUNDED TIME
GLOBAL DECISION IN 3MFM

We define the 3MFM family of models, for m ∈ N+,
f ≤ m < n/2, as follows:

3MFM(m) (Majority-From-Majority) : reliable links, every cor-
rect process is a 3(n − m)-source and 3m-accessible, m
correct processes are 3n-sources, and (n−m) correct pro-
cesses are 3(n−m)-accessible.

Note that these models are only slightly weaker than 3AFM,
where we have shown that constant-time decision is attainable. In
the full version [26], we show that the time for global decision after
GSR in all of these models is unbounded. Specifically, we prove the
following lemma:

LEMMA 4. For any m ∈ N+ s.t. f ≤ m < n/2, there exists
no consensus algorithm that reaches global decision in bounded
time from GSR in 3MFM(m).

Note that this implies that there is no k-round reduction from 3LM
or 3AFM to 3MFM(m) for any k.

Our proof builds three indistinguishable runs, using a partition
argument, to derive a contradiction. Note that our notion of timely
links is more abstract than the real-time-based definition used in
[2, 3, 29], where messages arrive within bounded latency. Nev-
ertheless, since we never explicitly reason about time duration in
constructing our runs, our proof is applicable even if all messages
on timely links in these runs are delivered within bounded latency,
and hence covers these models.

8. CONCLUSIONS AND FUTURE
DIRECTIONS

We have focused on the question of which timeliness or fail-
ure detector guarantees one should attempt to implement in a dis-
tributed system. While it is obvious that weaker timeliness/failure
detector guarantees can be practically satisfied using shorter time-
outs and cheaper hardware than stronger ones, it was not previously
established what implications the use of weaker properties has on
algorithm performance. Although from a theoretical perspective it
is interesting to discover the weakest conditions that can be used to
ensure eventual decision, in practice, timely decision is of essence.
System designers are often willing to spend more on hardware, if
this can ensure better performance. Likewise, implementations are
better off using longer timeouts if this can lead to faster decision
overall.

We have presented a general framework GIRAF, to answer such
questions. GIRAF does not restrict the set of allowed algorithms,
but rather organizes algorithms in a “round” structure, which al-
lows for analyzing their complexity. We used our framework to
show that some previously suggested guarantees were too weak to
solve consensus in a timely manner. We haver further shown that it
is possible to strengthen a model in which consensus is not solvable
in bounded time (3MFM(m) for n = 2m + 1) to get a model in
which consensus is solvable in constant time (3AFM) by adding
just one 3timely incoming link per process, for a minority of pro-
cesses. In such situations, it is worthwhile to increase timeouts
and/or buy faster hardware in order to implement stronger guaran-
tees. On the other hand, we have shown that the strong ES model
(which requires timely communication among all pairs of correct
processes) can be weakened in ways that are significant from a per-
formance standpoint (as shown in [4, 5]), and yet with little (for
3AFM) or no (for 3LM) penalty on performance of the consensus
algorithm.

We believe that GIRAF has the potential to further enhance the
understanding of performance tradeoffs between different models,
and opens vast opportunities for future work. We now point out
several exemplar directions for future research.

• One can use our new notion of α-reducibility (and k-round
reducibility) to compare various models more meaningfully
than with the classical notion of reducibility, by considering
the time (round) complexity of the reduction.

• While this paper focuses on the performance of the algorithm
after synchronization, an important complementary direction
for future study is understanding the performance of the en-
vironment’s synchronization mechanism, that is, the actual
time it takes to reach GSR in various timing models.

• It would be interesting to further study the fine line between
models that allow bounded and unbounded decision times.
For example, is it possible to weaken 3AFM by making
fewer processes 3(m+1)-sources, and still achieve constant
or bounded time consensus? and what would be the effect of
weakening the assumption that the leader is a 3n-source in
3LM, on consensus performance?

• In this paper, we have focused on global decision. It can be
interesting to investigate local consensus decision [17], i.e.,
the number of rounds until some process decides.

• Finally, there are gaps between upper and lower bounds shown
in Table 1, which might be closed.

Acknowledgments
We thank Marcos Aguilera, Partha Dutta, Rachid Guerraoui, Esh-
car Hilel, Denis Krivitski, Keith Marzullo, Yoram Moses, Neeraj
Suri for many helpful discussions. We also thank the anonymous
reviewers whose remarks helped us to greatly improve the paper.

9. REFERENCES
[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and

S. Toueg. Stable leader election. In DISC, pages 108–122,
2001.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. On implementing omega with weak reliability and
synchrony assumptions. In PODC, pages 306–314, 2003.

[3] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Communication-efficient leader election and
consensus with limited link synchrony. In PODC, pages
328–337, 2004.

[4] O. Bakr. Performance evaluation of distributed algorithms
over the Internet. Master’s thesis, MIT, Feb. 03.

[5] O. Bakr and I. Keidar. Evaluating the running time of a
communication round over the Internet. In PODC, pages
243–252, 2002.

[6] F. Brasileiro, F. Greve, A. Mostefaoui, and M. Raynal.
Consensus in one communication step. In 6th Intl.
Conference on Parallel Computing Technology, pages 42–50,
Sept. 2001.

[7] N. Cardwell, S. Savage, and T. Anderson. Modeling the
performance of short tcp connections, 1998.

[8] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. J. ACM,
43(4):685–722, July 1996.

[9] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[10] B. Charron-Bost and A. Schiper. Uniform consensus is
harder than consensus. J. Algorithms, 51(1):15–37, 2004.

[11] F. Cristian and C. Fetzer. The timed asynchronous distributed
system model. In IEEE TPDS, pages 642–657, June 1999.

[12] P. Dutha, R. Guerraoui, and I. Keidar. The overhead of
consensus failure recovery. Technical Report 200456, École
Polytechnique Fédérale de Lausanne, 2004.

[13] P. Dutha, R. Guerraoui, and I. Keidar. The overhead of
consensus failure recovery. Submitted for publication, 2005.

[14] P. Dutta and R. Guerraoui. Fast indulgent consensus with
zero degradation. In EDCC, Oct. 2002.

[15] P. Dutta and R. Guerraoui. The inherent price of indulgence.
In PODC, July 2002.

[16] P. Dutta, R. Guerraoui, and L. Lamport. How fast can
eventual synchrony lead to consensus?. In DSN, pages
22–27, 2005.

[17] P. Dutta, R. Guerraoui, and B. Pochon. Tight lower bounds
on early local decisions in uniform consensus. In DISC,
pages 264–278, Oct 2003.

[18] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. J. ACM, 35(2):288–323,
Apr. 1988.

[19] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM,
32(2):374–382, Apr. 1985.

[20] E. Gafni. Round-by-round fault detectors: Unifying
synchrony and asynchrony. In PODC, pages 143–152, 1998.

[21] R. Guerraoui. Indulgent algorithms. In 19th ACM Symp. on
Principles of Distributed Computing (PODC-19), pages
289–298, July 2000.

[22] R. Guerraoui and M. Raynal. The information structure of
indulgent consensus. IEEE Transactions on Computers,
53(4):453–466, 2004.

[23] R. Guerraoui and A. Schiper. ”Γ-accurate” failure detectors.
In WDAG, pages 269–286, 1996.

[24] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant
consensus when there are no faults - a tutorial. Technical
Report MIT-LCS-TR-821, MIT, May 2001.

[25] I. Keidar and A. Shraer. How to choose a timing model?
Technical Report CCIT 586, Department of Electrical
Engineering, Technion, May 2006.

[26] I. Keidar and A. Shraer. Timeliness, failure-detectors, and
consensus performance. Technical Report CCIT 576,
Department of Electrical Engineering, Technion, Feb. 2006.

[27] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, May 1998.

[28] N. Lynch and M. Tuttle. An introduction to Input/Output
Automata. CWI Quarterly, 2(3):219–246, 1989.

[29] D. Malkhi, F. Oprea, and L. Zhou. Omega meets paxos:
Leader election and stability without eventual timely links.
DISC, pages 199–213, sep 2005.

[30] J.-P. Martin and L. Alvisi. Fast byzantine consensus. In DSN,
pages 402–411, 2005.

[31] A. Mostefaoui and M. Raynal. Solving consensus using
Chandra-Toueg’s unreliable failure detectors: A general
quorum-based approach. In 13th Intl. Symp. on Distributed
Computing, pages 49–63, Sept. 1999.

[32] N. Santoro and P. Widmayer. Time is not a healer. 6th
Annual Symp. Theor. Aspects of Computer Science, volume
349 of LNCS:304–313, feb 1989.

[33] U. Schmid and C. Fetzer. Randomized asynchronous
consensus with imperfect communications. SRDS, 00:361,
2003.

[34] U. Schmid and B. Weiss. Impossibility results and lower
bounds for consensus under link failures. Technical Report
183/1-129, Technische Universita”t Wien, Dept. of
Automation, Apr. 2002.

[35] J. L. Welch and H. Attiya. Distributed computing:
fundamentals, simulations and advanced topics.
McGraw-Hill, Inc., Hightstown, NJ, USA, 1998.

	Introduction
	Background and motivation
	GIRAF -- General Round-based Algorithm Framework
	Results
	Related work

	Model and Problem Definition
	Distributed computation model
	GIRAF -- General Round-based Algorithm Framework
	Environment properties
	Consensus and global decision

	Reducibility
	Optimal Leader-Based Algorithm in LM
	Linear Bound for SR
	Constant-Time Algorithm in AFM
	Impossibility of Bounded Time Global Decision in MFM
	Conclusions and Future Directions
	References

