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View-oriented group communication is an important and widely used building block for many

distributed applications. Much current research has been dedicated to specifying the semantics
and services of view-oriented Group Communication Systems (GCSs). However, the guarantees

of different GCSs are formulated using varying terminologies and modeling techniques, and the
specifications vary in their rigor. This makes it difficult to analyze and compare the different
systems.

This paper provides a comprehensive set of clear and rigorous specifications, which may be
combined to represent the guarantees of most existing GCSs. In the light of these specifications,
over thirty published GCS specifications are surveyed. Thus, the specifications serve as a unifying
framework for the classification, analysis and comparison of group communication systems. The

survey also discusses over a dozen different applications of group communication systems, shedding
light on the usefulness of the presented specifications.

This paper is aimed at both system builders and theoretical researchers. The specification

framework presented in this paper will help builders of group communication systems understand
and specify their service semantics; the extensive survey will allow them to compare their service

to others. Application builders will find in this paper a guide to the services provided by a large
variety of GCSs, which would help them chose the GCS appropriate for their needs. The formal
framework may provide a basis for interesting theoretical work, for example, analyzing relative

strengths of different properties and the costs of implementing them.
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INTRODUCTION

1. INTRODUCTION

Group communication is a means for providing multi-point to multi-point commu-
nication, by organizing processes in groups. A group is a set of processes which are
members of the group. For example, a group can consist of users playing an on-line
game with each other. Another group can consist of participants in a multi-media
conference. Each group is associated with a logical name. Processes communicate
with group members by sending a message targeted to the group name; the group
communication service delivers the message to the group members.

In this paper, we focus on view-oriented group communication systems (GCSs).
Such systems provide membership and reliable multicast services. The task of
a membership service is to maintain a list of the currently active and connected
processes in a group. The output of the membership service is called a view. The
reliable multicast services deliver messages to the current view members. The first
and best known GCS was developed as part of the Isis toolkit [Birman 1986]; it
was followed by over a dozen others.

GCSs are powerful building blocks that facilitate the development of fault-tolerant
distributed systems. Classical GCS applications include replication using a variant
of the state machine/active replication approach [Lamport 78; Schneider 1990] (for
example, [Keidar and Dolev 1996; Amir et al. 1994; Fekete et al. 1997; Friedman
and Vaysburg 1997; Montresor et al. 2000]); primary-backup replication, for exam-
ple, [Guerraoui and Schiper 1997b]; support for distributed and clustered operating
systems (for example, [Kaashoek and Tanenbaum 1996; Goft and Yeger Lotem
1999; IBM 1996; Cheriton and Zwaenepoel 1985]); distributed transactions and
database replication (see [Schiper and Raynal 1996; Guerraoui and Schiper 1995;
Kemme and Alonso 1998; Keidar 1994]), resource allocation (see [Sussman and
Marzullo 1998; Babaoğlu et al. 1998a]); load balancing (see [Khazan et al. 1998;
Dolev et al. 1999]); system management (see [Amir et al. 1996]) and monitoring
(see [Al-Shaer et al. 1999]); and highly available servers for example, [Mishra and
Pang 1999; Fekete and Keidar 2001], and the video-on-demand servers of [Anker
et al. 1999; Vogels and van Renesse 1994].

More recently, GCSs have been exploited for collaborative computing (see [Chock-
ler et al. 1996; Rhee et al. 1997; Birman et al. 1998; Anker et al. 1997]), for exam-
ple, distance learning (see [Al-Shaer et al. 1997]), drawing on a shared white board
(see [Shamir 1996]), video and audio conferences (see [Chodrow et al. 1997; Valenci
1998]), application sharing (see [Krantz et al. 1998; Krantz et al. 1997]) and even
distributed musical “jam sessions” over a network [Gang et al. 1997].

Currently, real-time GCSs such as RTCAST [Abdelzaher et al. 1996] are being
developed and are being exploited for real-time applications, for example, radar
tracking, see [Johnson et al. 2000]. Another emerging research direction focuses on
the provision of object group services within the Common Object Request Broker
Architecture (CORBA) framework, for examples, see Electra [Landis and Maffeis
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1997], Orbix+Isis [IONA 1994], Eternal [Moser et al. 1998] and the Object Group
Service [Felber et al. 1998]. Furthermore, GCS has been recently identified as a key
tool for supporting fault tolerance in CORBA: the new Fault-Tolerant CORBA
specification [OMG 2000] recommends that view-oriented GCSs be used to support
active object replication in CORBA.

Traditionally, GCS developers concentrated primarily on performance, in order
to make their systems useful for real-world distributed applications. In the past
few years, the challenging task of specifying the semantics and services of GCSs has
become an active research area (see [Moser et al. 1994; Friedman and van Renesse
1995; Babaoğlu et al. 1998b; Fekete et al. 1997; De Prisco et al. 1998; Hickey et al.
1999; Keidar and Khazan 2000; Galleni and Powell 1996; Lin and Hadzilacos 1999]).
However, no comprehensive set of specifications covering all the spectrum of useful
GCS features has yet been established.

The task of defining a meaningful GCS is complicated by the fact that group
communication services strive to have processes reach agreement about membership
views, delivered messages, etc., while many agreement problems are known to be
unsolvable in failure-prone asynchronous environments. Many of the suggested
specifications fail to capture the non-triviality of existing GCSs. In particular,
many specifications are solvable by trivial algorithms (as shown in [Anceaume et al.
1995]). Others are too strong to implement (as proven in [Chandra et al. 1996]).

The main objective of this paper is to present a comprehensive set of rigorously
defined properties of GCSs that reflect the usefulness and non-triviality of numerous
existing GCS implementations. We do not define new properties; rather, we rigor-
ously formalize in a unified framework properties that have previously appeared in
numerous sources in the literature in different forms.

1.1 Unifying the GCS properties

The guarantees of different GCSs are stated using different terminologies and mod-
eling techniques, and the specifications vary greatly in their rigor. Moreover, many
suggested specifications are complicated and difficult to understand, and some were
shown to be ambiguous in [Anceaume et al. 1995]. This makes it difficult to analyze
and compare the different systems. Furthermore, it is often unclear whether a given
specification is necessary or sufficient for a certain application.

We formulate a comprehensive set of specification “building blocks” which may
be combined to represent the guarantees of most existing GCSs. In light of our
properties, we survey and analyze over thirty published specifications which cover
over a dozen leading GCSs (including Consul [Mishra et al. 1993], [Cristian and
Schmuck 1995], the configurable service of [Hiltunen and Schlichting 1998], Ensem-
ble [Hayden and van Renesse 1996], Horus [van Renesse et al. 1996], Isis [Birman
and van Renesse 1994], Newtop [Ezhilchelvan et al. 1995], Phoenix [Malloth et al.
1995], Relacs [Babaoğlu et al. 1998b], RMP [Whetten et al. 1995], Spread [Amir
and Stanton 1998], Timewheel [Mishra et al. 1998], Totem [Amir et al. 1995], Tran-
sis [Dolev and Malkhi 1996; Amir et al. 1992b] and xAMp [Rodrigues and Verissimo
1992]). We correlate the terminology used in different papers to our terminology.
This yields a semantic comparison of the guarantees of existing systems.

Another important benefit of our approach is that it allows reasoning about
the properties of applications that exploit group communication. We present here
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a set of specifications carefully compiled to satisfy the common requirements of
many fault tolerant distributed applications. We justify these specifications with
examples of applications that benefit from them and of services constructed to
effectively exploit them (some examples are: [Fekete et al. 1997; Keidar and Dolev
1996; Amir et al. 1994; Friedman and Vaysburg 1997; Amir et al. 1996; Amir et al.
1997; Anker et al. 1999; Vogels and van Renesse 1994; Sussman and Marzullo 1998;
Khazan et al. 1998]). We choose not to consider properties that are not exploited
by applications, even if these properties are satisfied by many GCSs.

Nonetheless, not all the specifications are useful for all the applications. Experi-
ence with group communication systems and reliable distributed applications has
shown that there are no “right” system semantics for all applications (see [Birman
1996], Chapter 18): Different GCSs are tailored to different applications that re-
quire different semantics and different qualities of service (QoS). Modern GCSs (for
example, Ensemble, Horus, and the configurable service of [Hiltunen and Schlichting
1998]) are designed in a flexible fashion, which allows them to support a variety of
semantics and QoS options. Such modular GCSs easily adapt to diverse application
needs. When specifying GCSs, it is important to preserve this flexibility.

In order to account for the diverse requirements of different applications, we
divide our specifications into independent properties which may be used as build-
ing blocks for the construction of a large variety of actual specifications. Individ-
ual specification properties may be matched by specific protocol layers or micro-
protocols in existing GCSs. This makes it possible to separately reason about the
guarantees of each layer and the correctness of its implementation (see [Hickey et al.
1999]). Furthermore, the modularity of our specifications provides the flexibility to
describe systems that incorporate a variety of QoS options with different semantics.

1.2 The specification style

We specify clear and rigorous properties formalized as trace properties of an I/O
automaton [Lynch and Tuttle 1989]. We use logic formulae for stating the prop-
erties, to avoid ambiguity. Arbitrary combinations of properties may be derived
as conjunctions of formulae that specify different properties. This provides sys-
tem builders with the flexibility to construct modular systems in which different
properties are fulfilled by different modules.

[Vitenberg 1998] presents a multi-sorted algebra of which the model herein is
a possible interpretation. The axioms presented in this paper also conform with
Vitenberg’s formalism. The benefit of using multi-sorted algebras is that axioms
stated using this formalism can be checked with automated theorem proving tools,
for example, the Larch Prover [Guttag et al. 1993].

1.3 The difficulties of formally specifying GCSs

Defining meaningful group communication services is not a simple task; such sys-
tems typically run in asynchronous environments in which agreement problems that
resemble the services provided by a GCS are not solvable.

Practical systems cannot do the impossible, they can only make their “best-
effort”. For example, group membership algorithms usually use time-out based
failure detection in order to track the network situation. If a message from some
process q to another process p is delayed longer than a certain time-out, then p
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will exclude q from its membership view. Theoretically, an adversary that knows
the time-out and fully controls the communication can delay messages longer than
this time-out, causing p to exclude q although q is correct. In general, an adversary
can force every deterministic membership algorithm to either constantly change its
mind or to reach inconsistent decisions that do not correctly reflect the network
situation1. However, in practical networks, communication tends to be stable and
timely during long periods. Existing group communication systems make a “best-
effort” attempt to reflect the network situation as much as possible, and indeed
succeed most of the time. Note that the group communication systems we are
concerned with are not intended for critical (real-time) applications; they run in
environments in which such applications cannot be realized. The usefulness of
these systems stems from the fact that real networks rarely behave like vicious
adversaries.

Many formal specifications of group communication systems do not capture this
notion of “best-effort”. This results in specifications that can be implemented by
trivial algorithms (as demonstrated in [Anceaume et al. 1995]). Other specifications
turned out to be too strong to implement (see [Chandra et al. 1996]). However,
since the “best-effort” principle is an important consideration of system builders,
actual systems provide more than their specifications require.

In this paper, we address the non-triviality issues using external failure detectors
and by reasoning about liveness guarantees at stable periods.

1.4 Road-map to this paper

This paper presents specifications for view-oriented group communication systems.
Such systems typically provide membership and multicast services within multicast
groups. For simplicity’s sake, we restrict our attention to the services provided
within the context of a single group. This discussion can be easily generalized to
multiple groups as long as the services are provided independently for each group.
In Section 6.5 we discuss issues that arise when ordering semantics need to be
preserved across groups (i.e., for messages multicast in separate groups).

Throughout the paper we make a distinction between basic properties and op-
tional ones. Basic properties are satisfied by most group communication systems.
In addition, many of the properties presented in this paper are meaningless unless
certain basic properties hold.

The rest of this paper is divided into two main parts: the first presents safety
properties of group communication systems, and the second, liveness properties. In
order to state the liveness properties, we use the failure detector abstraction. While
safety properties are preserved in all runs, liveness properties are conditional, that
is, are required to be satisfied only if certain assumptions on the failure detector
and the underlying network hold. In Section 9 we prove that this is inevitable:
without such assumptions, the desired liveness guarantees are not attainable.

Each of the parts begins with a model section: Section 2 presents the model
for all the properties presented in this paper; Section 8 refines the model of Sec-
tion 2, adding the failure detector abstraction and assumptions required to state

1Impossibility results to this effect may be found in Section 9 of this paper and in [Chandra et al.

1996].
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the liveness properties.
The safety properties are divided into four sections: Section 3 presents properties

of the group membership service; Section 4 – the properties of the reliable multicast
service; properties of safe (stable) message indications appear in Section 5; and
ordering and reliability properties of certain multicast service types are presented
in Section 6. The liveness properties are presented in Section 10.

Finally, Section 11 concludes the paper; it contains tables that summarize all the
properties presented in this paper. In these tables, we also distinguish between basic
and optional properties. In the Appendix, we prove a lemma which implies that
a certain combination of properties of a reliable totally ordered and fifo ordered
multicast service implies that the service also preserves the reliable causal order.
We have included the lemma in this paper, as it can be proven by logical analysis
of the properties themselves without considering GCS implementations.

SAFETY PROPERTIES OF GROUP COMMUNICATION SERVICES

2. THE MODEL AND PRESENTATION FORMALISM

The system we consider contains a set P of processes that communicate via mes-
sage passing. The underlying communication network provides unreliable datagram
message delivery. There is no known bound on message transmission time, hence
the system is asynchronous. The system model allows for the following changes:
sites may crash and recover; messages may be lost, failures may partition the net-
work into disjoint components, and previously disjoint components may merge.

In this paper, we assume that no Byzantine failures occur, that is, processes
do not behave in a malicious manner. Most of the work on group communication
does not address Byzantine failures. However, such failures are addressed in the
Rampart system [Reiter 1996] and in [Malkhi et al. 1997; Malkhi and Reiter 1997].

2.1 The specification framework

We now overview the formal framework used to specify the group communication
service. A system is modeled as a collection of components. The division into
components is oriented towards the service model rather than describing an actual
implementation: each component provides a service to other components. In prac-
tice, a single component can be implemented by a combination of hardware devices,
programs, library modules, etc. Furthermore, components are not necessarily local
and can be distributed over a set of machines.

We model both the system and individual components as untimed I/O automata
(see [Lynch and Tuttle 1989] and [Lynch 1996], Chapter 8). In this model, each
component has an internal state, invisible to other components. Components in-
teract using shared actions which can affect the state of individual components.
Specifically, an automaton interacts with its environment by two sets of external
actions: input actions and output actions. These two sets of actions comprise the
external signature of the automaton. A trace of an I/O automaton is the sequence of
external actions it takes in an execution. Executions are assumed to be sequential,
that is, actions are atomic, and no two actions can occur simultaneously. Roughly
speaking, a fair trace is a trace of an execution in which enabled actions eventually
become executed. For formal definitions, see [Lynch 1996], Chapter 8.
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In this paper, we only present service specifications, we do not discuss a specific
implementation of the service and do not provide any proof of correctness. There-
fore, we are not concerned with the internal state of components but only with their
external behavior, as reflected in their external signature and in their fair traces. A
service specification is modeled as a set of acceptable fair traces. A system satisfies
a service specification if the set of possible fair traces of the system is a subset of
the set of acceptable fair traces defined by the specification. This is in contrast
with specifications based on equality and bisimulation, which define the exact set
of possible traces of a system rather than restricting this set.

We present the GCS service specification by defining its external signature in
Section 2.2 below, and a collection of trace properties throughout the rest of this
paper. Each trace property is presented as an axiom in the set-theoretic mathemat-
ical model described in Section 2.3 below. A specification consists of an external
signature and a set of such axioms. We say that an I/O automaton satisfies the
specification if all of its fair traces satisfy the axioms that comprise the specification.

2.2 The external signature of the GCS service

The GCS specification models the behavior of the entire system. In the specifica-
tion, we use the following types:

P The set of processes.

M The set of messages sent by the application.

VID The set of view identifiers, partially ordered by the < operator.

Each action of the GCS is parameterized by a unique process p ∈ P at which
this action occurs. The GCS interacts with the application as depicted in Figure 1.
The external signature of the GCS consists of the following actions:

GCS

se
nd



re
cv



vi
ew

_c
hn

g

sa
fe

_p
re

f i
x

crash /
recover

Application

Fig. 1. External actions of the GCS.

Interaction with the application. The application uses the GCS to send and re-
ceive messages, and also receives view change notifications and possibly safe prefix
indications (cf. Section 5) from the GCS. Note: we include safe prefix indications
in the signature, although not every interesting GCS will actually provide them.
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—input send(p,m), p ∈ P,m ∈M

—output recv(p,m), p ∈ P,m ∈M
Note: The receive action does not contain the sender as an explicit parameter. In
specific implementations of the automaton, the receiver may learn of the sender’s
identity by including the sender’s identifier in the message text.

—output view chng(p, 〈id,members〉, T ), p ∈ P, id ∈ VID,members ∈ 2P , T ∈ 2P

id is the view identifier, members is the set of members in the new view and T is
the transitional set of the Extended Virtual Synchrony (EVS) [Moser et al. 1994]
model (cf. Section 4.3.1).

—output safe prefix(p,m), p ∈ P,m ∈M

Interaction with the environment. The following actions model events that may
occur in the environment and affect the GCS:

—input crash(p), p ∈ P

—input recover(p), p ∈ P

2.3 The mathematical model

We now present the mathematical model for stating trace properties of a GCS with
the signature described in Section 2.2 above. We use set theory notation to state
our axioms; we define the following sets:

P, M, VID Basic sets as described above.

V The set of views delivered in view chng actions is: VID × 2P . Thus, a view
V ∈ V is a pair. We refer to the elements in the pair as V.id and V.members .

Events Occurrences of actions2. The set of events is:
{send(p,m) | p ∈ P,m ∈M} ∪ {recv(p,m) | p ∈ P,m ∈M} ∪
{view chng(p, V, T ) | p ∈ P, V ∈ V, T ∈ 2P} ∪
{safe prefix(p,m) | p ∈ P,m ∈M} ∪
{crash(p) | p ∈ P} ∪ {recover(p) | p ∈ P}

Traces Finite or infinite sequences of events.

The first parameter in each event is a process in P. Thus, we can define the
function: pid : Events → P which returns the process at which an event occurs.

Since all of our axioms classify traces, they all take a trace as a parameter. For
clarity of the presentation, we make the trace parameter implicit: we fix a (finite
or infinite) trace, t1, t2, . . ., and all the axioms are stated with respect to this trace.
In our axioms, we omit universal quantifiers: when a variable is unbound it is
understood to be universally quantified for the scope of the entire formula.

2.4 Notation

With a view-oriented group communication service, events occur at processes within
the context of views. The function viewof : Events → V ∪ {⊥} returns the view
in the context of which an event occurred at a specific process. Note that for
a view chng event, it is not the new view introduced, but rather the process’

2We use the term of “events” in the context of specifications while using the term of “actions” to

define the automaton signatures.
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previous view. At startup time and following a crash, a process is not considered to
be in any view (modeled by ⊥). Some specifications (for example, those of [Fekete
et al. 1997; De Prisco et al. 1998; Chockler et al. 1998]) assume knowledge of a
default view in which the process is considered to be at startup time. However,
their specifications do not address the issue of recovery from crash and therefore
do not specify a process’ view following recovery. Actual GCSs, on the other hand,
do not typically assume knowledge of default views. Therefore, we chose not to
include default views in our specifications.

Definition 2.1. (viewof) The view of an event ti occurring at process p is the
view delivered to p in a view chng event, tj, which precedes ti and such that no
view chng or crash events occur at p between tj and ti; the view is ⊥ if there is
no such tj. Formally:

viewof (ti)
def
=















V if ∃j∃T (tj = view chng(pid(ti), V, T ) ∧ j < i ∧
6∃k(j < k < i ∧ (tk = crash(pid(ti)) ∨
∃T ′∃V ′tk = view chng(pid(ti), V

′, T ′))))
⊥ otherwise

We define some general shorthand predicates in Table 1 below. In all these
predicates as well as throughout the rest of this paper, variables named V and V ′

are members of V (not ⊥), variables named p and q are taken from P, variables
named m and m′ are members of M, variables named T , T ′ and S are in 2P and
variables i, j and k are integers.

Process p receives message m:

receives(p, m)
def
= ∃i ti = recv(p, m)

Process p receives message m in view V :

receives in(p, m, V )
def
= ∃i (ti = recv(p, m) ∧ viewof (ti) = V )

Process p sends message m:

sends(p, m)
def
= ∃i ti = send(p, m)

Process p sends message m in view V :

sends in(p, m, V )
def
= ∃i (ti = send(p, m) ∧ viewof (ti) = V )

Process p installs view V :

installs(p, V )
def
= ∃i∃T ti = view chng(p, V, T )

Process p installs view V in view V ′:

installs in(p, V, V ′)
def
= ∃i∃T (ti = view chng(p, V, T ) ∧ viewof (ti) = V ′)

Process p crashes in view V :

crashes in(p, V )
def
= ∃i (ti = crash(p) ∧ viewof (ti) = V )

Event ti is the next event after tj at process p:

next event(i, j, p)
def
= j < i ∧ pid(ti) = pid(tj) = p ∧ 6 ∃k (pid(tk) = p ∧ j < k < i)

Event ti is the previous event before tj at process p:

prev event(i, j, p)
def
= j > i ∧ pid(ti) = pid(tj) = p ∧ 6 ∃k (pid(tk) = p ∧ j > k > i)

Table 1. General shorthand predicate definitions.
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2.5 Assumptions about the environment

We assume that no events occur at a process between crash and recovery.

Assumption 2.1. (Execution Integrity) The next event that occurs at a process
after a crash is recovery, and the event before a recovery is a crash. Formally:
(next event(i, j, p) ∧ tj = crash(p) ⇒ ti = recover(p)) ∧
(tj = recover(p) ⇒ ∃i (prev event(i, j, p) ∧ ti = crash(p)))

In order to distinguish between the messages sent in different send events, we
assume that each message sent by the application is tagged with a unique message
identifier, which may consist, for example, of the sender identifier and a sequence
number or a timestamp. Thus, we can require that every message is sent at most
once in the system. This assumption is not essential because a GCS can provide
the same guarantees without it by adding a sequence number to distinguish be-
tween different instances of application messages. It does, however, simplify the
presentation and the definitions of further requirements.

Assumption 2.2. (Message Uniqueness) There are no two different send events
with the same content. Formally:
ti = send(p,m) ∧ tj = send(q,m) ⇒ i = j

3. SAFETY PROPERTIES OF THE MEMBERSHIP SERVICE

A membership service is a vital part of a view-oriented group communication sys-
tem. The task of a membership service is to maintain a list of the currently active
and connected processes. This list can change with new members joining and old
ones departing or failing. When this list changes, the membership service reports
the change to the members by installing a new view. The membership service strives
to install the same view at mutually connected members.

In this section we describe typical properties of membership services. We begin,
in Section 3.1, with some basic safety properties fulfilled by most group communi-
cation systems. In Section 3.2 we compare two approaches to group membership:
partitionable and primary component.

3.1 Basic properties

Our first safety property requires that a process always be a member of its view.

Property 3.1. (Self Inclusion) If process p installs view V , then p is a member
of V . Formally:
installs(p, V )⇒ p ∈ V.members

Since a membership of a view reflects the ability to communicate with the process
and a process is always able to communicate with itself, this property holds in all
group communication systems and specifications. It is explicitly specified in [Dolev
et al. 1995; Friedman and van Renesse 1995; Ezhilchelvan et al. 1995; Babaoğlu
et al. 1998b; Fekete et al. 1997; Keidar and Khazan 2000; Galleni and Powell 1996].

3.1.1 View identifier order. Our next basic property requires that the view iden-
tifiers of the views that each process installs are monotonically increasing.
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Property 3.2. (Local Monotonicity) If a process p installs view V after in-
stalling view V ′ then the identifier of V is greater than that of V ′. Formally:
ti = view chng(p, V, T ) ∧ tj = view chng(p, V ′, T ′) ∧ i > j ⇒ V.id > V ′.id

Property 3.2 has two important consequences: it guarantees that a process does
not install the same view more than once and that if two processes both install the
same two views, they install these views in the same order.

As long as there are no recoveries from crashes, Local Monotonicity is satisfied by
virtually all group membership systems (examples include: [Ricciardi and Birman
1991; Dolev et al. 1995; Amir et al. 1995; Ezhilchelvan et al. 1995; Malloth and
Schiper 1995; Keidar et al. 2000]); it is also required in all the group membership
specifications (for example, [Neiger 1996; Fekete et al. 1997; De Prisco et al. 1998]).
[Babaoğlu et al. 1998b] states an equivalent property: the order in which processes
install views ensures that the successor relation is a partial order. This is equivalent
to the property herein, since the partial order derived by successors coincides with
the partial order defined on the VID set.

However, some group communication systems may violate Local Monotonicity
in case a process crashes and recovers with the same identity: when the process
recovers, it installs its initial view, whose identifier is smaller than the last view
it installed before crashing. Such violation of Local Monotonicity may cause an
old message that has been traveling in the network since before the crash to be
mistaken for a new one.

There are several ways to remedy this shortcoming: In Isis [Ricciardi and Birman
1991] a process recovering after a crash is assigned a different identifier (using a
new incarnation number). It is also possible to overcome this problem by saving
information on a disk before each view installation. RMP guarantees uniqueness
of views, (although not monotonicity), even in the face of crashes by initializing a
local counter to be the real clock value when a computer recovers from a crash.

There are different ways to generate view identifiers: In Transis [Dolev et al. 1995]
the view identifier is a positive integer. This integer is computed based on the values
of local counters, maintained by all processes. This local counter is increased by a
process upon each installation. The view identifiers in the specifications of [Fekete
et al. 1997] and [Neiger 1996] are taken from an ordered set. Hence, an integer
counter is again a possible implementation. In Horus [Friedman and van Renesse
1995] and [Cristian and Schmuck 1995], a view identifier is a pair 〈p, c〉 where p is
the process that created the view and c is a value of a local counter on p. In Totem,
a view identifier is a triple of integers, ordered lexicographically. In [Keidar et al.
2000] the view identifier is a pair consisting of a vector that maps view members
to integer counters and an integer, where the integer part of the view identifier is
monotonically increasing. Newtop uses a logical timestamp to sign all messages. At
the moment of the new view creation the maximum value among the timestamps
of all view members satisfies all the properties of a view identifier.

The importance of view ordering properties is noted and emphasized in several
works, for example in [Hiltunen and Schlichting 1995; Friedman and Vaysburg 1997].
The protocol of [Chockler et al. 1998] uses Local Monotonicity (Property 3.2) in
order to implement a totally ordered multicast service. Other examples of appli-
cations that exploit view ordering can be found in [Keidar and Dolev 1996; Keidar
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and Dolev 2000; Amir et al. 1994; Friedman and Vaysburg 1997].

3.1.2 Initial view event. We have already seen that with a view-oriented group
communication system, events occur in the context of views. However, as per our
definitions, this is not the case for all events: events that occur before the first
view event are not considered to be occurring in any view. GCSs typically install
an initial view at startup time and upon recovery from a crash (unless they crash
before doing so), and thus every send, recv and safe prefix event in these GCSs
occurs in some view. This requirement is stated in Property 3.3 below.

Property 3.3. (Initial View Event) Every send, recv and safe prefix event
occurs within some view. Formally:
ti = send(p,m) ∨ ti = recv(p,m) ∨ ti = safe prefix(p,m) ⇒ viewof (ti) 6= ⊥

Note: In order to enforce this property, one has to restrict the behavior of the
application, so that no send events occur before the first view chng event.

The initial view can be determined in one of two ways:

—At startup, processes use the membership service to agree upon the view, as they
do for any other view. Thus, no pre-defined knowledge about processes in the
system is required. Most GCSs adopt this option, for example, Isis and Ensemble.

—Each process unilaterally decides upon its initial view without communication
with other processes. This approach is equivalent to having default views, but
with an explicit initial view installation event. Transis [Dolev et al. 1995] and
Consul [Mishra et al. 1993] take this approach.
The initial view may be singleton or may consist of all possible processes in
the system. In [Hiltunen and Schlichting 1995] these two possibilities are called
individual startup and collective startup, respectively. Transis is an example of
a GCS which uses individual startup, and collective startup is deployed, for
example, in Consul. Note that in order to install anything different than a
singleton view, a process must possess a priori knowledge about other processes
in the system. Such knowledge is assumed, for example, in [Fekete et al. 1997]
and [Mishra et al. 1993].

We do not provide a formal specification for each of these possibilities in this
paper – Property 3.3 (Initial View Event) accounts for installing initial views in the
most general way.

3.2 Partitionable vs. primary component membership services

A membership service may either be primary component3 or partitionable. In a
primary component membership service, views installed by all the processes in the
system are totally ordered. In a partitionable one, views are only partially ordered
(i.e., multiple disjoint views may exist concurrently). A GCS is partitionable if its
membership service is partitionable; otherwise it is primary component.

All the safety properties presented above concern partitionable membership ser-
vices as well as primary component ones. Since the properties above do not enforce
a total order on views, the specification presented thus far is partitionable. In order

3A primary component was originally called a primary partition.
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to specify a primary component membership service, we add a safety property that
imposes a total order on views. Property 3.4 (Primary Component Membership)
below requires that the set of views installed in a trace form a sequence such that
every two consecutive views (in this sequence) intersect. The sequence is modeled
as a function from the set of views installed in the trace to the natural numbers.

Property 3.4. (Primary Component Membership) There is a one to one func-
tion f from the set of views installed in the trace to the natural numbers, such that
f satisfies the following property:
for every view V with f(V ) > 1 there exist a view V ′, such that f(V ) = f(V ′) + 1,
and a member p of V that installs V in V ′ (i.e., V is the successor of V ′ at process
p). Formally:
∃f : {V |∃p : installs(p, V )} → N such that:
(f(V ) = f(V ′)⇒ V = V ′) ∧
∀V (f(V ) > 1 ⇒ ∃V ′ (f(V ) = f(V ′) + 1 ∧ ∃p ∈ V.members : installs in(p, V, V ′)))

This property implies that for every pair of consecutive views, there is a process
that survives from the first view to the second (i.e., does not crash between the
installations of these two views). Such a surviving process may convey information
about message exchange in the first view to the members of the second. Simi-
lar properties appear in [Malloth and Schiper 1995; Ricciardi and Birman 1991;
Yeger Lotem et al. 1997; De Prisco et al. 1998].

The first and best known group membership service is the primary component
membership service of Isis [Birman and van Renesse 1994]. It was followed by many
other primary component membership services, for example, those of Phoenix [Mal-
loth and Schiper 1995], Consul, and xAMp. Primary component membership ser-
vices are also specified in [Chandra et al. 1996; Neiger 1996; Cristian 1991; Mishra
et al. 1991; De Prisco et al. 1998; Lin and Hadzilacos 1999]. Consul, xAMp, and
[Cristian 1991] guarantee membership service properties only as long as no network
partitions occur. In contrast, Isis [Ricciardi and Birman 1991] and Phoenix do as-
sume the possibility of network partitions, but allow execution of the application to
proceed only in a single component. In Isis detached processes “commit suicide”,
whereas in Phoenix they are blocked until the link is mended.

The first partitionable membership service was introduced as part of Transis [Amir
et al. 1992a]. Since then, numerous new GCSs featuring a partitionable member-
ship service have emerged, for example, those of Totem, Horus, RMP, Newtop,
and Relacs. Partitionable membership services are discussed in the specifications
of [Moser et al. 1994; Fekete et al. 1997; Babaoğlu et al. 1996; Cristian and Schmuck
1995; Jahanian et al. 1993; Keidar and Khazan 2000]. [Hiltunen and Schlichting
1995] presents a specification of a primary component membership service and
shows how to extend it to a specification of a partitionable one.

Partitionable membership services have been used for a variety of applications, for
example, resource allocation [Sussman and Marzullo 1998; Babaoğlu et al. 1998a],
system management [Amir et al. 1996], monitoring [Al-Shaer et al. 1999], load bal-
ancing [Dolev et al. 1999], highly available servers [Mishra and Pang 1999; Anker
et al. 1999; Fekete and Keidar 2001], and collaborative computing applications
such as drawing on a shared white board [Shamir 1996], video and audio con-
ferences [Chodrow et al. 1997; Valenci 1998], application sharing [Krantz et al.
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1998; Krantz et al. 1997], and even distributed musical “jam sessions” over a net-
work [Gang et al. 1997].

In contrast, applications that maintain globally consistent shared state (for ex-
ample, [Friedman and Vaysburg 1997; Keidar and Dolev 1996; Keidar and Dolev
2000; Amir et al. 1994; Fekete et al. 1997; Khazan et al. 1998; Schiper and Raynal
1996; Guerraoui and Schiper 1995; Kemme and Alonso 1998; Keidar 1994; Guer-
raoui and Schiper 1997b]) usually avoid inconsistencies by allowing only members
of one view (the primary one) to update the shared state at a given time (see discus-
sion in [Hiltunen and Schlichting 1995]). For the benefit of such applications, some
partitionable membership services (for example, [Friedman and van Renesse 1995;
Hiltunen and Schlichting 1995]) notify processes whether they are in a primary
view or not, such that the primary views satisfy Property 3.4 (Primary Component
Membership) above. The dynamic-voting based algorithm of [Yeger Lotem et al.
1997] runs atop a partitionable membership service and provides such notifications.
The benefit of using a partitionable membership service for such applications is
that members of non-primary views may access the data for reading purposes.

4. SAFETY PROPERTIES OF THE MULTICAST SERVICE

We now discuss the multicast service, and its relationship with the group member-
ship service.

GCSs typically provide various types of multicast services. Traditionally, GCSs
provide reliable multicast services with different delivery ordering guarantees. Sev-
eral modern group communication systems have incorporated a multicast paradigm
that provides the QoS of the underlying communication, allowing a single ap-
plication to exploit multiple QoS options. For example, in RMP, the unreliable
QoS level provides the guarantees of the underlying communication. Similarly,
the MMTS [Chockler et al. 1996] extends Transis by providing a framework for
synchronization of messages with different QoS properties; Maestro [Birman et al.
1998] extends Ensemble by coordinating several protocol stacks with different QoS
guarantees, and the Collaborative Computing Transport Layer (CCTL) [Rhee et al.
1997] implements similar concepts, geared towards distributed collaborative multi-
media applications.

Most of the multicast properties we formulate below are typically fulfilled only
by reliable multicast paradigms, and not by multicast services that directly provide
the QoS of the underlying communication layer.

4.1 Basic properties

Our first property requires that messages never be spontaneously generated by the
group communication service.

Property 4.1. (Delivery Integrity) For every recv event there is preceding
send event of the same message:
ti = receive(p,m) ⇒ ∃q∃j (j < i ∧ tj = send(q,m))

This property is trivially implemented, and all GCSs support it; it is explicitly
specified in [Babaoğlu et al. 1998b; Rodrigues and Verissimo 1992; Fekete et al.
1997; De Prisco et al. 1998; Keidar and Khazan 2000].
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The following property states that messages are not duplicated by the GCS, that
is, every message is received at most once by each process:

Property 4.2. (No Duplication) Two different recv events with the same con-
tent cannot occur at the same process. Formally:
ti = recv(p,m) ∧ tj = recv(p,m) ⇒ i = j

Most GCSs eliminate duplication (some examples are: [Babaoğlu et al. 1998b;
Ezhilchelvan et al. 1995; Amir et al. 1992b; Keidar and Khazan 2000]). However,
when a GCS directly provides the same QoS as the underlying communication layer,
duplication is not eliminated, for example, in the Unreliable and Unordered QoS
levels of RMP.

4.2 Sending View Delivery and weaker alternatives

With a view-oriented group communication service, send and receive events occur
within the context of views4. Several GCS specifications require that a message be
delivered in the context of the same view as the one in which it was sent; other
specifications weaken this requirement in a variety of ways. In this section we
discuss this property and some of its weaker alternatives.

4.2.1 Sending View Delivery. Many GCSs guarantee that a message be delivered
in the context of the view in which it was sent, as specified in the following property:

Property 4.3. (Sending View Delivery) If a process p receives message m in
view V , and some process q (possibly p = q) sends m in view V ′, then V = V ′.
Formally:
receives in(p,m, V ) ∧ sends in(q,m, V ′) ⇒ V = V ′

Among the group communication systems that support Sending View Delivery
are Isis and Totem. In contrast, Newtop and RMP do not guarantee Property 4.3.
Horus allows the user to chose whether this property should be satisfied or not;
the programming model in which it is satisfied is called Strong Virtual Synchrony
(SVS) [Friedman and van Renesse 1995]. Property 4.3 also appears in various GCS
specifications (examples include [Moser et al. 1994; Fekete et al. 1997; Hiltunen and
Schlichting 1995; De Prisco et al. 1998; Keidar and Khazan 2000]).

Sending View Delivery is exploited by applications to minimize the amount of
context information that needs to be sent with each message, and the amount of
computation time needed to process messages. For example, there are cases in which
applications are only interested in processing messages that arrive in the view in
which they were sent. This is usually the case with state transfermessages sent when
new views are installed (examples of applications that send state transfer messages
include [Amir et al. 1997; Sussman and Marzullo 1998; Hiltunen and Schlichting
1995; Friedman and Vaysburg 1997; Amir et al. 1997; Amir et al. 1993; Keidar and
Dolev 1996; Keidar and Dolev 2000; Khazan et al. 1998]). Using Sending View
Delivery, such applications do not need to tag each state transfer message with the
view in which it was sent. Sending View Delivery is also useful for applications that

4Note that if there is no initial view event, messages may be sent and received in the context of

no view. The properties below only apply to those send and receive events that do occur in the

context of some view.
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send vectors of data corresponding to view members. Such an application can send
the vector without annotations, relying on the fact that the ith entry in the vector
corresponds to the ith member in the current view (as explained in [Friedman and
van Renesse 1995]). Applications that exploit Sending View Delivery are called
view-aware.

Unfortunately, in order to satisfy Sending View Delivery without discarding mes-
sages from live and connected processes, processes must block sending of messages
for a certain time period before a new view is installed. In fact, Friedman and
van Renesse [Friedman and van Renesse 1995] prove that without such blocking,
satisfying Sending View Delivery entails violating other useful properties such as
Property 4.5 (Virtual Synchrony) and Property 10.1.3 (Self-delivery) below. There-
fore, in order to fulfill Sending View Delivery, group communication systems block
sending of messages while a view change is taking place. In order to notify the
application that it needs to stop sending messages, the GCS sends a block request
to the application. The application responds with a flush message which follows all
the messages sent by the application in the old view. The application then refrains
from sending messages until the new view is delivered.

An alternative way to satisfy Property 4.3 is by discarding certain messages that
arrive in the course of a membership change or in later views, and thus violating
at least one of Self-delivery and Virtual Synchrony, as well as the “best-effort”
principle. We are not aware of any GCS that takes this approach.

4.2.2 Same View Delivery. In order to avoid blocking the application, some GCSs
weaken the Sending View Delivery property and require only that a message be
delivered at the same view at every process that delivers it. This is specified in the
Same View Delivery property as follows:

Property 4.4. (Same View Delivery) If processes p and q both receive message
m, they receive m in the same view. Formally:
receives in(p,m, V ) ∧ receives in(q,m, V ′)⇒ V = V ′

Same View Delivery is a basic property. It holds in all the group communication
systems and specifications surveyed herein, for example, in Transis, Relacs, and the
GCSs that support Property 4.3 above. (Same View Delivery is called Uniqueness
in [Babaoğlu et al. 1998b]).

Same View Delivery is strictly weaker than Sending View Delivery. However,
it is sufficient for applications that are not interested in knowing in which views
messages are multicast, some examples are: [Chockler et al. 1998; Keidar and Dolev
1996; Keidar and Dolev 2000; Amir et al. 1996; Anker et al. 1999].

Sussman and Marzullo [Sussman and Marzullo 1998] compare the relative strengths
of Same View Delivery and Sending View Delivery for solving a simple resource al-
location problem in a partitionable environment. They define a metric specific
to this application that captures the effects of the uncertainty of the global state
caused by partitioning; this uncertainty is measured in terms of the quantity of
resources that cannot be allocated. They show that when using totally ordered
multicast (cf. Section 6.3), algorithms that use Same View Delivery and Sending
View Delivery perform equally in terms of this metric, while if fifo multicast is
used (cf. Section 6.1), algorithms that use Sending View Delivery are superior with
respect to this metric to those that use Same View Delivery. This identifies a
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tradeoff between the costs of totally ordered multicast and Sending View Delivery.
There are two kinds of systems that provide Same View Delivery without Sending

View Delivery: systems that provide stronger semantics than Same View Delivery
(yet weaker than Sending View Delivery), as described in Section 4.2.3 below, and
systems that are built around a small number of servers that provide group commu-
nication services to numerous application clients (for example Transis and Spread).
In the latter kind of systems, client membership is implemented as a “light-weight”
layer that communicates with a “heavy-weight” Sending View Delivery layer asyn-
chronously using a fifo buffer, as illustrated in Figure 2. The asynchrony may cause
messages to arrive in later views than the ones in which they were sent. However,
since the asynchronous buffer preserves the order of recv and view chng events,
messages are delivered in the same view at all destinations. Thus, at the client
level, only Same View Delivery is supported. The benefit of using such a design is
that the group membership service can proceed to agree upon the new view without
waiting for flush messages indicating that all the clients are blocked.
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Fig. 2. Implementing Same View Delivery over Sending View Delivery.

4.2.3 The Weak Virtual Synchrony and Optimistic Virtual Synchrony models.
The Weak Virtual Synchrony (WVS) programming model [Friedman and van Re-
nesse 1995] eliminates the need for blocking, and yet provide support for a certain
type of view-aware applications. In WVS, every installation of a view V is pre-
ceded by at least one suggested view event. The membership of the suggested view
is an ordered superset of V . Property 4.3 (Sending View Delivery) is replaced by
the requirement that every message sent in the suggested view is delivered in the
next regular view. This allows processes to send messages while the membership
change is taking place. The processes that use WVS maintain translation tables
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that map process ranks in the suggested view to process ranks in the new view.
Thus, although messages are no longer guaranteed to be delivered in the view in
which they were sent, an application may still send vectors of data corresponding
to processes without annotations.

One shortcoming of the WVS model is that once a suggested view is delivered,
it does not allow new processes to join the next regular view. If a new process
joins while a view change is taking place, a protocol implementing WVS is forced
to install an obsolete view, and then immediately start a new view change to add
the joiner. This behavior violates the “best-effort” principle. A second shortcoming
of WVS is that it is useful only for view-aware applications that are satisfied with
knowledge of a superset of the actual view, and does not suffice for certain view-
aware applications (for example, [Yeger Lotem et al. 1997]) that require messages
to be delivered in a view identical to the one in which they are sent.

These shortcomings are remedied by the Optimistic Virtual Synchrony (OVS)
model, recently introduced in [Sussman et al. 2000]. In OVS, each view installa-
tion is preceded by an optimistic view event, which provides the application with a
“guess” what the next view will be. After this event, applications may optimisti-
cally send messages assuming that they will be delivered in a view identical to the
optimistic view (note that this will be the case unless further changes in the system
connectivity occur during the membership change). If the next view is not identi-
cal to the optimistic view, the application may still choose to use the messages (for
example, if the new view is a subset of the optimistic view and WVS semantics are
required) or roll-back the optimistic messages.

The WVS and OVS models both pose weaker alternatives to Sending View De-
livery, and both imply Property 4.4 (Same View Delivery). Furthermore, according
to the metric of [Sussman and Marzullo 1998], algorithms that exploit WVS or
OVS perform the same as those that exploit Property 4.3 (Sending View Delivery).

4.3 The Virtual Synchrony property

We now present an important property of virtually synchronous communication
that is often referred to as “Virtual Synchrony”. This property requires two pro-
cesses that participate in the same two consecutive views to deliver the same set of
messages in the former.

Property 4.5. (Virtual Synchrony) If processes p and q install the same new
view V in the same previous view V ′, then any message received by p in V ′ is also
received by q in V ′. Formally:
installs in(p, V, V ′) ∧ installs in(q, V, V ′) ∧ receives in(p,m, V ′) ⇒
receives in(q,m, V ′)

Virtual Synchrony is perhaps the best known property of GCSs, to the extent
that it engendered the whole Virtual Synchrony model5. This property was first in-
troduced in the Isis literature [Birman and Joseph 1987] in the context of a primary
component membership service and later extended to a partitionable membership
service [Friedman and van Renesse 1995; Dolev et al. 1995; Ezhilchelvan et al.

5The Virtual Synchrony property should not be confused with the Strong, Weak, Optimistic and

Extended Virtual Synchrony Models, although all of these models include this property.
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1995; Moser et al. 1994; Babaoğlu et al. 1998b]. In [Moser et al. 1994] and [Fried-
man and Vaysburg 1997] it is called “failure atomicity”, and in [Babaoğlu et al.
1998b] it is called “message agreement”. Virtual Synchrony is supported by nearly
all group communication systems, either for all multicast services (for example, in
Ensemble, Horus, Isis, Newtop, Phoenix, Relacs, Totem, and Transis) or only for
some multicast services, like the totally ordered multicast of RMP. It also appears
in specifications, for example, [Hiltunen and Schlichting 1995; Hickey et al. 1999;
Keidar and Khazan 2000; Galleni and Powell 1996]. An exception is set by the
specifications of [Fekete et al. 1997; De Prisco et al. 1998] which do not include this
property.

Virtual Synchrony is especially useful for applications that implement data repli-
cation using the state machine approach [Lamport 78; Schneider 1990], (examples
include [Keidar and Dolev 1996; Keidar and Dolev 2000; Amir et al. 1994; Friedman
and Vaysburg 1997; Amir et al. 1997; Amir et al. 1993; Khazan et al. 1998; Suss-
man and Marzullo 1998]). Such applications change their state when they receive
application messages. In order to keep the replica in a consistent state, application
messages are disseminated using totally ordered multicast.

Whenever the network partitions, the disconnected replica may diverge and reach
different states. When previously disconnected replica reconnect, they perform a
state transfer, that is, exchange special state messages in order to reach a common
state. A group communication system that supports Virtual Synchrony allows
processes to avoid state transfer among processes that “continue together” from
one view to another, as explained in [Amir et al. 1997]: Whenever the membership
service installs a new view V (with the membership V.members) at a process p, p

should first determine the set T of processes in V.members that were also in p’s
previous view V ′, and have proceeded directly from V ′ to V (i.e., installed view V ′

and did not install any view after V ′ and before V ). If, for example, T = V.members,
then according to the Virtual Synchrony property, each replica in V.members has
received the same set of messages in V ′ and therefore has the same state upon
installing view V . Hence, no state transfer is required.

T
IM

E

p q

<1,{p,q}> <1,{p,q}>

<3,{p,q}> <3,{p,q}>

<2,{q}>

Fig. 3. A possible scenario with a partitionable GCS.

Note that T (as defined above) is not necessarily the intersection of the mem-
bers sets of the new view and the previous one, as demonstrated in Figure 3. In
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this example, p and q are initially in the same connected component (both install
〈1, {p, q}〉). Later, p partitions from q. q detects this partition first and delivers the
view 〈2, {q}〉. When the slower process p also detects the fluctuation in the net-
work connectivity and activates the membership protocol, the network re-connects
and both processes deliver 〈3, {p, q}〉. From p’s point of view, the intersection of
〈3, {p, q}〉 and the preceding view is {p, q}, although Virtual Synchrony does not
guarantee that they deliver the same set of messages in view 〈1, {p, q}〉.

Thus, Virtual Synchrony is an “external observer” property. If the membership
service at p does not provide information about views installed at other processes in
V , p cannot deduce T (as defined above) solely from V and V ′, and cannot always
know whether the hypothesis of Virtual Synchrony holds. Additional information
is required to allow processes to locally deduce when state transfer is indeed not
needed. In the sections below, we present two possible solutions to this shortcoming.

4.3.1 Exploiting Virtual Synchrony using the Transitional Set. The transitional
set contains information that allows processes to locally determine whether the
hypothesis of Virtual Synchrony applies or a state transfer is required. Different
transitional sets may be delivered with the same view at different processes.

The following property specifies the requirements from the transitional set:

Property 4.6. (Transitional Set)

(1) If process p installs a view V in (previous) view V ′, then the transitional set
for view V at process p is a subset of the intersection between the member sets
of V and V ′. Formally:
ti = view chng(p, V, T ) ∧ viewof (ti) = V ′ ⇒ T ⊆ V.members ∩ V ′.members

(2) If two processes p and q install the same view, then q is included in p’s
transitional set for this view if and only if p’s previous view was also identical
to q’s previous view. Formally:
ti = view chng(p, V, T ) ∧ viewof (ti) = V ′ ∧ installs in(q, V, V ′′) ⇒ (q ∈
T ⇔ V ′ = V ′′)

Consider the example of Figure 3 above, there, p’s transitional set is {p}.
Note: The transitional set is not uniquely defined by Property 4.6. If a process

p in V.members ∩ V ′.members does not install V ′, Property 4.6 does not specify
whether p is included in transitional sets of other processes or not.

When used in conjunction with Virtual Synchrony, the transitional set delivered
at a process p reflects the set of processes whose states are identical to p’s state.
Thus, applications can exploit this information in order to determine whether state
transfer is needed as explained above (see [Amir et al. 1997] for more details).

The transitional set is easily computed without additional communication over
what is normally used for installing views: Since every membership protocol ex-
changes messages while agreeing on a new view, each process can piggyback its
previous view on a membership protocol message. The transitional set is easily
deduced from this information.

The transitional set was first introduced as part of the transitional view in the
Extended Virtual Synchrony model [Moser et al. 1994]. This model is implemented
in Transis and Totem. Later, [Babaoğlu et al. 1996] introduced the notion of an
enriched view , which, among other things, conveys information regarding the pre-
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vious view of each of its members. Likewise, the views delivered by the membership
service of [Cristian and Schmuck 1995] also convey the previous view of every view
member. The transitional set can be deduced from these views. The transitional
set is also specified in [Amir et al. 1997; Keidar and Khazan 2000].

4.3.2 Exploiting Virtual Synchrony with Agreement on Successors. The following
property provides an alternative to transitional sets:

Property 4.7. (Agreement on Successors) If a process p installs view V in
view V ′, and if some process q also installs V and q is a member of V ′ then q also
installs V in V ′. Formally:
installs in(p, V, V ′) ∧ installs(q, V ) ∧ q ∈ V ′.members ⇒ installs in(q, V, V ′)

Property 4.7 (Agreement on Successors) holds in Horus [Friedman and Vaysburg
1997], Ensemble [Hickey et al. 1999] and Relacs [Babaoğlu et al. 1998b]6. It guaran-
tees that every member in the intersection of p’s current view and p’s previous view
is also coming from the same previous view. Therefore, the hypothesis of Virtual
Synchrony applies for all the members of this intersection.

Unfortunately, this property may require processes to deliver extra views that
exclude live and connected processes. Consider the example in Figure 3 above: p

does not suspect q, but in order to satisfy the Agreement on Successors property,
p would have to install a view without q before installing the correct view with q.

5. SAFE MESSAGES

Distributed applications often require “all or nothing” semantics, that is, either
all the processes deliver a message or none of them do so. Unfortunately, “all
or nothing” semantics are impossible to achieve in distributed systems in which
messages may be lost. As an approximation to “all or nothing” semantics, the
EVS model [Moser et al. 1994] introduced the concept of safe messages. A safe
message m is received by the application at process p only when p’s GCS knows
that the message is stable, that is, all members of the current view have received
this message from the network. In this case, each member of this view will deliver
the message unless it crashes, even if the network partitions at that point. These
“approximated” semantics are called Safe Delivery in [Moser et al. 1994] and Total
Resiliency in [Whetten et al. 1995].

In this paper we follow the approach of [Fekete et al. 1997] which decouples
notification of message stability from its delivery. Thus, instead of deferring delivery
until the message becomes stable, messages are delivered without additional delay.
This delivery is augmented with a later delivery of safe indications. This approach
also changes the semantics of safe indications to refer to application-level stability
as opposed to network level. In other words, a message is stable when all members
of the current view have delivered this message to the application (and not just
received it from the network).

In our formalization, safe indications are conveyed using safe prefix events which
indicate that a prefix of the sequence of messages received in a certain view is stable:

6In [Hickey et al. 1999; Babaoğlu et al. 1998b], a stronger property is stated: when two processes

install the same view, their previous views are either identical or disjoint. The stronger property

implies that Agreement on Successors holds.
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A safe prefix(p,m) event indicates to p that message m is stable, as well as all
the messages that p received before m in the same view as m. We define three new
shorthand predicates in Table 2 below.

Process p receives message m before message m′:

recv before(p, m, m′)
def
= ∃i∃j (ti = recv(p, m) ∧ tj = recv(p,m′) ∧ i < j)

Process p receives message m before message m′, both of them in view V :

recv before in(p, m, m′, V )
def
= ∃i∃j (ti = recv(p, m) ∧ tj = recv(p,m′) ∧
viewof (ti) = viewof (tj) = V ∧ i < j)

A message m received in a view V is indicated as safe at process p:

indicated safe(p, m, V )
def
= receives in(p, m, V ) ∧ ∃i (ti = safe prefix(p, m) ∨

∃m′ (ti = safe prefix(p, m′) ∧ recv before in(p, m, m′, V )))

Message m is stable in view V :

stable(m, V )
def
= ∀p ∈ V.members(receives(p, m))

Table 2. Predicate definitions for safe messages.

The next property requires that a message is indicated as safe only if it is stable,
that is, delivered to all the members of the current view.

Property 5.1. (Safe Indication Prefix) If a message is indicated as safe, then
it is stable in the view in which it was received. Formally:
indicated safe(p,m, V ) ⇒ stable(m,V )

Note that Property 5.1 does not require that a message be stable before it is
indicated as safe. However, since processes may crash at any point in the execution,
there is no way for a system to guarantee that a message be delivered at all the
members of the current view unless it was already delivered to them. Thus, any
actual system that provides safe indications will be forced to wait until a message
m is stable before indicating m to be safe.

V ={p, q}

m' is also stable
in {p, q}

p q

recv(m )

safe_prefix(m )

recv(m ')

recv(m )

V ={p, q}

Fig. 4. The Safe Indication Reliable Prefix property.
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Consistent replication applications (for example, [Keidar and Dolev 1996; Amir
et al. 1994]) often use safe indications in conjunction with a totally ordered multicast
service that delivers messages in the same order at all the processes that deliver
them (cf. Property 6.5 in Section 6.3). It is useful for such applications to receive
safe indications that guarantee that all the members of a view V receive the same
prefix of messages in V up to the indicated message. We state this requirement in
Property 5.2 (Safe Indication Reliable Prefix) below.

Property 5.2. (Safe Indication Reliable Prefix) If message m is indicated as
safe at some process p and m is also delivered by process q in view V , then every
message delivered at q before m in V is also stable in V . Formally:
indicated safe(p,m, V ) ∧ recv before in(q,m′,m, V )⇒ stable(m′, V )

This property is illustrated in Figure 4. In conjunction with totally ordered
delivery it guarantees that all the members of V receive the same sequence of
messages in V up to m.

Safe indications are closely related to garbage collection: if a message is stable,
then a GCS will no longer need to keep it in its internal buffer. Since all GCSs
attempt to recover from message losses and all GCSs perform garbage collection,
they all internally keep track of message stability. However, some systems provide
applications with safe indications or safe messages and some do not. Examples
of systems that do provide this service include the Safe messages of Totem [Amir
et al. 1995; Moser et al. 1994] and Transis, the Totally Resilient QoS level of RMP,
the atomic, tight and delta QoS levels of xAMp, and the Uniform multicast of
Phoenix [Malloth et al. 1995]. Safe delivery is also guaranteed by Horus if one uses
the order layer above the stable layer.

Some applications require a weaker degree of atomicity. For example, in quorum
based systems it could be enough to defer delivery until the majority of the processes
have the message. This is guaranteed by Majority Resilient QoS level of RMP. The
N resilient QoS level of RMP and atLeastN QoS level of xAMp guarantee that if a
process receives a message, then at least N processes will also receive this message
unless they crash. Here N is a service parameter.

A process knows that a message is stable as soon as it learns that all other
members of the view have acknowledged its reception. Usually such acknowledg-
ments are given by the GCS level. However, in Horus it is the responsibility of
the application to acknowledge message reception. This approach may require ex-
tra communication and may be more complex, but it may yield more flexible and
powerful semantics. Horus does not deliver safe prefix notifications. Instead, the
Horus stable layer maintains a more general stability matrix at each process. The
(i, j) entry of the matrix stores the number of messages sent by i that have been
acknowledged by j. This matrix is accessible by the application, which then can
deduce the information provided by safe prefix indications. The application can
also learn about k-stability , that is, when k members have received the message.

6. ORDERING AND RELIABILITY PROPERTIES

Group communication systems typically provide different group multicast services
with a variety of ordering and reliability guarantees. Here we describe the service
types most commonly provided by GCSs: fifo, Causal and (several variants of)
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Totally ordered7 multicast. These service types involve two kinds of guarantees:
ordering and reliability. The ordering properties restrict the order in which mes-
sages are delivered, and the reliability properties extend the corresponding ordering
properties by prohibiting gaps or “holes” in the corresponding order within views.

We note that the reliability properties do not imply the corresponding order
properties. This is because the former properties apply only to messages that are
sent within the same view, and the latter apply to all messages. For example, fifo
Delivery requires that all messages sent by a single source be delivered in the order
in which they were sent, whereas Reliable fifo prohibits gaps in the fifo order only
within a single view. Prohibiting gaps across views would require the GCS to log
messages and retransmit them to new processes at view changes. GCSs generally
do not log messages. Instead, services that provide gap-free communication across
views are often implemented atop GCSs (for example, in [Keidar and Dolev 1996;
Amir et al. 1994]).

Since reliability guarantees restrict message loss within a view, they are useful
only when provided in conjunction with certain properties that synchronize view
delivery with message delivery, for example, Property 4.3 (Sending View Deliv-
ery). Similar reliable ordering properties may be stated for the OVS and WVS
models (cf. Section 4.2.3). Systems that provide only Same View Delivery without
Sending View Delivery, OVS or WVS (for example, Transis) typically implement a
“heavy-weight” service that provides Sending View Delivery and the corresponding
reliability property, and compose this service with an asynchronous fifo buffer as
demonstrated in Figure 2 in Section 4.2.2, thus yielding weaker semantics (satisfying
only Same View Delivery).

Some GCSs (for example, Isis) provide different primitives for sending messages of
different service types; others (for example, Transis) provide one send primitive and
allow the application to tag the message sent with the requested service type; while
in other systems (for example, Horus and Ensemble), a different protocol stack is
constructed for each service type, and a communication end-point (associated with
one such stack) provides exactly one service type.

In this section, we state all of the properties in terms of the send primitive. These
properties are satisfied only for messages sent with some service types and not for
other service types provided by the same GCS. In Sections 6.1, 6.2, and 6.3 we
discuss the case that all the messages are sent with the same service type: fifo in
Section 6.1, Causal in Section 6.2, and Totally ordered in Section 6.3. In Section 6.4
we discuss the case that different messages are sent with different service types. In
Section 6.5 we discuss issues that arise when ordering semantics need to be preserved
across multicast groups.

6.1 fifo multicast

The fifo service type guarantees that messages from the same sender arrive in the
order in which they were sent (Property 6.1), and that there are no gaps in the
fifo order within views (Property 6.2).

Property 6.1. (fifo Delivery) If a process p sends two messages, then these
messages are received in the order in which they were sent at every process that

7Totally ordered multicast is sometimes called atomic or agreed multicast.
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receives both. Formally:
ti = send(p,m)∧tj = send(p,m′) ∧ i < j ∧ tk = recv(q,m)∧tl = recv(q,m′) ⇒
k < l

Property 6.2. (Reliable fifo) If process p sends message m before message
m′ in the same view V , then any process q that receives m′ receives m before m′.
Formally:
ti = send(p,m) ∧ tj = send(p,m′) ∧ i < j ∧ viewof (ti) = viewof (tj) ∧
receives(q,m′) ⇒ recv before(q,m,m′)

Several group communication systems (for example, Ensemble, Horus, and RMP)
provide a reliable fifo service type which satisfies Property 6.2 and does not impose
additional ordering constraints. xAMp provides several service levels that satisfy
Property 6.1 but vary by their reliability guarantees.

This service type is a basic building block; it is useful for constructing higher
level services, for example, Totally ordered multicast protocols [Ezhilchelvan et al.
1995; Chockler et al. 1998] are often constructed over a reliable fifo service.

6.2 Causal multicast

The Causal order (first defined in [Lamport 78]) extends the fifo order by requiring
that a response m′ to a message m is always delivered after the delivery of m. The
causal order of events is formally defined in Table 3.

ti → tj
def
= (pid(ti) = pid(tj) ∧ j ≥ i) ∨ (ti = send(p, m) ∧ tj = recv(q, m)) ∨

∃k (ti → tk ∧ tk → tj)

Table 3. Causal order, recursive definition.

The Causal service type guarantees that messages arrive in Causal order (Prop-
erty 6.3), and that there are no “causal holes” within each view (Property 6.4).

Property 6.3. (Causal Delivery) If two messages m and m′ are sent so that m

causally precedes m′, then every process that receives both these messages, receives
m before m′. Formally:
ti = send(p,m)∧tj = send(p′,m′)∧ti → tj∧tk = recv(q,m)∧tl = recv(q,m′) ⇒
k < l

Property 6.4. (Reliable Causal) If message m causally precedes a message
m′, and both are sent in the same view, then any process q that receives m′ receives
m before m′. Formally:
ti = send(p,m) ∧ tj = send(p′,m′) ∧ ti → tj ∧ viewof (ti) = viewof (tj) ∧
receives(q,m′) ⇒ recv before(q,m,m′)

The cbcast (Causal Broadcast) primitive of Isis [Birman and Joseph 1987] was
perhaps the first implementation of (Reliable) Causal multicast (satisfying Prop-
erties 6.3 and 6.4). Other GCSs that provide this service level include: Transis,
Ensemble, Horus, Newtop, and xAMp.
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6.3 Totally ordered multicast

Group communication systems usually provide a Totally ordered (atomic, agreed)
service type which extends the Causal service type. However, GCSs vary in the
semantics that their Totally ordered multicast service provides. In Section 6.3.1
below, we discuss two possible ordering semantics: Strong Total Order (Prop-
erty 6.5) and Weak Total Order (Property 6.6). For a comprehensive survey of
totally ordered multicast protocols and specifications, see [Défago et al. 2000].

In addition to the ordering semantics, Totally ordered multicast provides a re-
liability guarantee. In practically all existing GCSs (examples include: Transis,
Horus, Newtop, xAMp, Totem, Phoenix, and RMP), the reliability guarantee for
Totally ordered multicast is Property 6.4 (Reliable Causal) above. In Section 6.3.2
below, we discuss a stronger alternative (Reliable Total Order).

In Table 4 we define a timestamp (TS) function to be a one-to-one function
from M to the natural numbers. We use such functions to define a total order of
messages.

A timestamp (TS) function is a one-to-one function from M to the set of natural numbers:

TS function(f)
def
= f :M→N ∧ f(m) = f(m′) ⇒ m = m′

Table 4. Timestamp (TS) function definition.

6.3.1 Strong and Weak Total Order. [Wilhelm and Schiper 1995] introduce a
classification of totally order multicast. In particular, they define strong and weak
total order in the context of a primary component membership service. Here we
extend these definitions to a partitionable environment.

Strong Total Order guarantees that messages are delivered in the same order at
all the process that deliver them:

Property 6.5. (Strong Total Order) There is a TS function f such that mes-
sages are received at all the processes in an order consistent with f . Formally:
∃f (TS function(f) ∧ ∀p∀m∀m′ (recv before(p,m,m′) ⇒ f(m) < f(m′)))

Note that the TS function merely exists: we do not require that the timestamp
values be conveyed to the application. Some applications (for example, the replica-
tion algorithm of [Keidar and Dolev 1996]), do require that message timestamps be
available to them. The ATOP algorithm [Chockler et al. 1998] which implements
totally ordered multicast in Transis conveys timestamps to its application. These
timestamps are unique and taken from a totally ordered set, but are not integers,
and thus do not correspond to the timestamps given by f .

Many group communication systems implement a weaker form of totally ordered
multicast that allows processes to disagree upon the order of messages in case they
disconnect from each other. Weak Total Order guarantees that processes that
remain connected receive messages in the same order. The property has two parts:
first, it specifies that processes that move together from a view V ′ to another view
V receive messages in V ′ in the same order; second, it specifies that processes that
remain in the same view V forever, (i.e., V is their last view) receive the messages
in this view in the same order. Like Strong Total Order, Weak Total Order is
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defined using timestamp functions. However, unlike Strong Total Order, there is
no requirement for one universal timestamp function. Rather, there can be different
timestamp functions for each pair of views V ′ and V , and for each last view V .

We use the following auxiliary shorthand definition:

Definition 6.1. (Last View) V is the last view installed at process p if p installs
view V and does not install any views after V . Formally:

last view(p, V )
def
=

∃i∃T (ti = view chng(p, V, T ) ∧ 6∃j > i ∃T ′∃V ′ tj = view chng(p, V ′, T ′))

We now define Weak Total Order:

Property 6.6. (Weak Total Order)

(1) For every pair of views V and V ′ there is a TS function f so that every
process that installs V in V ′ receives messages in V ′ in an order consistent
with f . Formally:
∀V ∀V ′∃f(TS function(f) ∧ ∀p∀m∀m′

(installs in(p, V, V ′) ∧ recv before in(p,m,m′, V ′) ⇒ f(m) < f(m′))

(2) For every view V there is a TS function f so that every process that has V

as its last view receives messages in V in an order consistent with f . Formally:
∀V ∃f(TS function(f) ∧ ∀p∀m∀m′

(last view(p, V ) ∧ recv before in(p,m,m′, V ) ⇒ f(m) < f(m′))

Applications that exploit GCSs for consistent replication require that processes
agree upon the order of messages even in case they disconnect from each other [Kei-
dar and Dolev 1996; Amir et al. 1994; Fekete et al. 1997]; otherwise, updates may
be applied in a different order in replica that disconnect from each other, violating
consistency. This feature is guaranteed only by Strong Total Order (Property 6.5)
and not by Weak Total Order. For applications that do allow copies of the shared
state to diverge while there are partitions, for example, [Amir et al. 1997; Anker
et al. 1999; Fekete and Keidar 2001], Weak Total Order suffices.

Strong Total Order is provided by Totem and by some of the implementations of
totally ordered multicast in Transis, Ensemble, Phoenix, RMP, and Horus. Many
GCSs provide a Weak totally ordered multicast service, for example, the abcast

(Atomic Broadcast) primitive of Isis, similar primitives in Amoeba [Kaashoek and
Tanenbaum 1996], Newtop, and xAMp, and certain implementations of totally
ordered multicast in Transis, Ensemble, Phoenix, RMP, and Horus.

The totally ordered multicast services, Strong or Weak, in all of the GCSs listed
above guarantee that messages arrive in Causal order (Property 6.3), and that there
are no “causal holes” within each view (Property 6.4).

6.3.2 Reliable Total Order. The Reliable Total Order property extends the Strong
Total Order property to require processes to deliver a prefix of a common sequence
of messages within each view:

Property 6.7. (Reliable Total Order) There exists a timestamp function f

such that if a process q receives a message m′, and messages m and m′ were sent
in the same view, and f(m) < f(m′), then q receives m before m′. Formally:
∃f(TS function(f) ∧
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∀V ∀m∀m′∀p∀p′∀q (sends in(p,m, V ) ∧ sends in(p ′,m ′,V ) ∧ receives(q,m′) ∧
f(m) < f(m′) ⇒ recv before(q,m,m′)))

In the Appendix, we prove Lemma A.1 which states that Property 6.7 (Reliable
Total Order) along with Property 4.3 (Sending View Delivery) and the basic Prop-
erty 4.1 (Delivery Integrity) imply Property 6.5 (Strong Total Order) for messages
received in the same view. We also prove Lemma A.2 which asserts that Prop-
erties 6.7 (Reliable Total Order) and 6.2 (Reliable fifo) along with Property 4.3
(Sending View Delivery) and the basic Properties 4.1 (Delivery Integrity), 3.2 (Local
Monotonicity) and 3.3 (Initial View Event) imply Property 6.4 (Reliable Causal).

Unfortunately, implementing Reliable Total Order imposes a performance penalty:
in order to support Reliable Total Order, existing total order algorithms would be
forced to deliberately discard messages from live and connected processes. There-
fore, no GCS we are aware of guarantees Property 6.7. The only specifications that
require Reliable Total Order are those of [Fekete et al. 1997].

The Reliable Total Order property is exploited by the replication application
in [Fekete et al. 1997]; it guarantees that operations will be applied to the database
in a consistent order without gaps. However, the application in [Fekete et al. 1997]
could have been satisfied with a weaker property: In [Keidar and Dolev 1996; Keidar
and Dolev 2000; Amir et al. 1994] a similar application exploits Property 5.2 (Safe
Indication Reliable Prefix) which uses safe prefix indications (presented in Section 5)
to denote the end of the prefix in which there are no gaps in the total order. This
property is weaker, since it does not preclude delivery of totally ordered messages
with gaps, as long as these message will never become safe (or stable). Since in all
of the aforementioned applications [Keidar and Dolev 1996; Keidar and Dolev 2000;
Fekete et al. 1997; Amir et al. 1994] updates are not applied to the database before
they are safe (stable), the weaker property is sufficient to guarantee consistency.

A similar approach was taken in [Friedman and Vaysburg 1997], which uses ex-
plicit Reliable Totally Ordered Prefix Indications to denote the end of the prefix in
which there are no gaps in the total order.

6.4 Order constraints for messages of different types

Systems that provide more than one ordering type need to specify the delivery
semantics (order constraints) of messages with different types. For example, should
Causal messages be totally ordered with respect to totally ordered messages?

Wilhelm and Schiper [Wilhelm and Schiper 1995] discuss three possible semantics
in the context of weak and strong total order. However, these semantics can be
generalized for the case of two messages m1 and m2 with any two different ordering
semantics O1 and O2 such that O2 implies O1:

—unordered : there no ordering constraints on delivery of m1 and m2

—weak incorporated : m1 and m2 deliveries should satisfy O1

—strong incorporated : m1 and m2 are delivered according to O2

For example, RMP supports weak incorporated semantics between any two mes-
sages of different service levels. Isis provides weak incorporated semantics between
messages sent by abcast and cbcast multicast primitives. However, this system
has another total order multicast primitive, gbcast (Global Broadcast), so that
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messages sent by gbcast and cbcast primitives are ordered according to strong
incorporated semantics. Isis’ successors, Horus and Ensemble, do not allow mes-
sages of different types to be sent in the same group, hence they provide unordered
semantics for messages of different types.

Transis may be configured to use one of several protocols providing totally or-
dered multicast. The more efficient ATOP protocol [Chockler et al. 1998] guarantees
only weak incorporated semantics between a Reliable Causal message and a Strong
Totally ordered message. A protocol based on Lamport’s logical timestamps [Lam-
port 78] guarantees strong incorporated semantics between messages of these two
types, but it incurs longer delivery latency. Highways [Ahuja 1993] defines different
types of “incorporated” semantics for Causal delivery and shows how they can be
efficiently combined in a GCS.

6.5 Order constraints for multiple groups

Group communication systems generally allow processes to join multiple groups.
When a message is sent, the sender indicates which group (or groups) the message
is being sent to. Messages sent in a given group are received only by the members
of that group. Views are also associated with groups – a view reflects the set
of processes that are currently members of a given group. The discussion above
focuses on ordering semantics within a single multicast group. When multicast
groups overlap, one has to determine the ordering semantics of messages that are
sent in different groups.

Atomic Multicast [Guerraoui and Schiper 2000] requires messages sent in different
groups to be delivered in the same order at all their destinations. For example,
assume that processes p and q are both members of two different multicast groups
g1 and g2. Assume also that message m1 is sent in group g1 and message m2 is
sent in group g2, and that p delivers m1 before m2. Atomic Multicast requires
that q also deliver m1 before m2. [Guerraoui and Schiper 2000] prove that fault
tolerant Atomic Multicast is costly: Unless additional assumptions (such as reliable
failure detection or reliable groups) are imposed on the model, solving Atomic
Multicast requires sending messages to additional processes that are not members
of the group the message is being sent to. Protocols that solve Atomic Multicast
without involving additional members other than those a message is being sent to
(for example, [Fritzke et al. 1998; Guerraoui and Schiper 2000]) do impose such
additional assumptions and generally do not work in a partitionable environment.

The Isis system does not provide Atomic Multicast: totally ordered messages
sent to different groups may be delivered in different orders at different recipients.
Other GCSs (for example, Transis and Totem) provide Atomic Multicast by using a
light-weight groups approach, in which all the messages are sent to a set of daemons
which totally order messages of all the groups. The daemons forward each message
to the members of the light-weight group in which the message was sent.

Horus provides users with the flexibility to chose whether Atomic Multicast will
be provided by constructing different protocol stacks: If Atomic Multicast is desired,
a light-weight group layer is used above the total order layer in the stack. Thus,
messages are first sent to the members of the heavy-weight group where they are
totally ordered and then they are multiplexed to the different groups. If Atomic
Multicast is not desired, the light-weight group layer is stacked below the total
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order layer, and messages are totally ordered in their destination groups.
GCSs that use a light-weight group structure typically allow users to send a

message to multiple light-weight groups. This service is implemented by sending
messages to the heavy-weight (or daemon) group, and then multiplexing messages
to the appropriate light-weight group. [Johnson et al. 1999] suggest a different
approach to sending a message to multiple groups. In their approach, messages
are pipelined through a sequence of groups. Such pipelining preserves the order
semantics across groups as long as groups do not overlap.

Virtually all group communication systems provide causally ordered multicast
(see [Kshemkalyani and Singhal 1998]), that is, preserve the causality of messages
sent in different groups. However, recently, [Kalantar and Birman 1999] have shown
that causally ordered multicast is also costly. They show that such multicast leads
to bursty behavior and to latencies three times longer than the latency for delivering
messages without such order constraints.

LIVENESS PROPERTIES OF GROUP COMMUNICATION SERVICES

7. INTRODUCTION

In this part of the paper we specify GCS liveness properties. Liveness is an impor-
tant complement to safety, since without requiring liveness, safety properties can
be satisfied by trivial implementations that do nothing. However, it is challenging
to specify GCS liveness properties that are sufficiently weak to be implementable
and yet are strong enough to be useful.

In order to specify meaningful liveness properties, we envision an ideal GCS, and
try to capture its ideal behavior. Ideally, one would like a membership service to
be precise, that is, to deliver a view that correctly reflects the network situation to
all the live processes; likewise, one would want a multicast service to deliver all the
messages sent in this “correct” view to all the view members. However, how can one
argue about the “correct” network situation if this situation is constantly changing?
We observe that the liveness of a GCS is bound to depend on the behavior of the
underlying network. Therefore, unless we strengthen the model, it is not feasible
to require that the GCS be “correct” in every execution. The only way to specify
useful liveness properties without strengthening the communication model is to
make these properties conditional on the underlying network behavior8.

In Section 10, we present two types of liveness properties. The first kind of
properties require that the GCS behave like the ideal GCS envisioned above, but
only in executions in which the network eventually stabilizes. Intuitively, we say
that the network eventually stabilizes if from some point onward no processes crash
or recover, communication is symmetric and transitive, and no changes occur in the
network connectivity. (This definition is made formal in Section 8). The second
type of liveness properties complement the former by requiring a weaker form of
liveness in unstable runs.

In executions in which the network does eventually stabilize, we would like the
membership service to be precise (i.e., to deliver a view that correctly reflects the

8Conditional liveness specifications of GCSs also appear in [Fekete et al. 1997; Cristian and

Schmuck 1995; Keidar et al. 2000; Keidar and Khazan 2000; Babaoğlu et al. 1998b].
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network situation to all the live processes). Unfortunately, it is impossible to im-
plement such a precise membership service in purely asynchronous environments
prone to failures. In Section 9 we prove Lemma 9.1 which asserts that a pre-
cise membership service is as strong as an eventually perfect failure detector (3P )
(formally defined in Section 8.4), which is known to be non-implementable in our
environment. Our impossibility result is not surprising. In fact, [Chandra et al.
1996] prove that even a very weak definition of group membership is impossible to
implement in asynchronous failure-prone environments.

In order to circumvent this impossibility result, we assume that the GCS uses
an external failure detector and require the liveness properties to hold only in
executions in which the failure detector behaves like an eventually perfect one.
Similar assumptions were also proposed in [Malloth and Schiper 1995; Babaoğlu
et al. 1998b]; see detailed discussion in Section 10.

It is important to note that although conditional liveness properties are guar-
anteed to hold only in certain executions, the conditions on these executions are
external to the GCS implementation. Thus, in order to satisfy such properties, a
group membership implementation has to attempt to be precise in every execu-
tion as it can never know whether there is a stable component and whether the
failure detector behaves like an eventually perfect one. Moreover, conditional live-
ness properties are composable: they allow one to reason about application liveness
under the same external conditions that the GCS is live.

8. REFINING THE MODEL TO REASON ABOUT LIVENESS

In this section we extend the model described in Section 2. Since the liveness of
a GCS depends on the network conditions and failure detector output, we extend
the external signature presented in Section 2 by adding actions that represent the
GCS’ interaction with the network and failure detector. We model the network
and the failure detector together, as a single automaton. Although in reality these
could be implemented as separate components, from the point of view of the GCS
both comprise the environment, so it is convenient to reason about the composition
of the two. Several GCSs are built atop layers that provide both network and fail-
ure detector functionalities, for example, the Multi-Send Layer of [Babaoğlu et al.
1998b] and the MUTS layer of Horus. We discuss failure detector implementation
issues in Section 8.4.1 below.

An automaton with the external signature presented in Section 2 satisfying the
GCS safety properties may be seen as a composition of two automata: a GCS-
liveness automaton with the extended signature presented in this section, and a
Network and Failure Detector automaton. This composition is depicted in Figure 5.

The network is modeled as a set of unidirectional channels that connect every
ordered pair of processes in the system. A channel between two processes represents
the collection of all network paths between the processes. We assume that the
underlying network provides an asynchronous datagram service. Messages may
be delivered out of order, and may be duplicated; there is no bound on message
transmission time. Furthermore, the communication channels can go down, in
which case messages can be be lost. Channels can go up and down any number of
times. However, if a channel is up and remains up from some point in an execution
onward, then every message sent on this channel after this point eventually reaches
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Fig. 5. Extending the external signature of the GCS to specify liveness.

its destination. We state this assumption formally below.
In Section 8.1 we present the extension to the GCS signature and some auxiliary

definitions. In Section 8.2 we specify our assumptions on the network behavior. We
then formally define the prerequisites for the liveness properties: in Section 8.3 we
define stable components, and in Section 8.4 – eventually perfect failure detectors.

8.1 Extending the GCS external signature

Interaction with the environment. We augment the GCS’s interaction with the
environment by adding communication channel up and down actions which model
changes in the connectivity from every process p to every process q:

—input channel down(p, q), p, q ∈ P

—input channel up(p, q), p, q ∈ P

Interaction with the network and failure detector. The GCS sends and receives
messages via the underlying communication network, and also receives failure de-
tection information from the failure detector:

—output net send(p,m), p ∈ P,m ∈M

—input net recv(p,m), p ∈ P,m ∈M

—input net reachable set(p, S), p ∈ P, S ∈ 2P

This action denotes that the failure detector at p believes that the set of processes
in S (and only these processes) are currently connected to p. Until the first
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net reachable set occurs at p, the set of processes p believes to be connected
to it is undefined.

The mathematical model described in Section 2.3 is extended by adding the
following to the Events set:
{channel down(p, q) | p, q ∈ P} ∪ {channel up(p, q) | p, q ∈ P} ∪
{net send(p,m) | p ∈ P,m ∈M} ∪ {net recv(p,m) | p ∈ P,m ∈M} ∪
{net reachable set(p, S) | p ∈ P, S ∈ 2P}

Notation. We define some shorthand predicates which describe the network sit-
uation in Table 5 below. Note that according to these definitions, processes are
initially alive and channels are initially up.

Process p is alive after the ith event in the trace:

alive after(p, i)
def
= 6 ∃j (tj = crash(p)) ∨ ∃j ≤ i (tj = recover(p) ∧ 6∃k > j (tk = crash(p)))

Process p is crashed after the ith event in the trace:

crashed after(p, i)
def
= ∃j ≤ i (tj = crash(p) ∧ 6∃k > j (tk = recover(p)))

The channel from p to q is up after the ith event in the trace:

up after(p, q, i)
def
= 6 ∃j (tj = channel down(p, q)) ∨

∃j ≤ i (tj = channel up(p, q) ∧ 6∃k > j (tk = channel down(p, q)))

The channel from p to q is down after the ith event in the trace:

down after(p, q, i)
def
= ∃j ≤ i (tj = channel down(p, q) ∧ 6∃k > j (tk = channel up(p, q)))

Table 5. Predicates describing the network situation.

8.2 Assumption: Live Network

We now state a liveness assumption on the network.

Assumption 8.1. (Live Network) If there is a point in the execution after which
two processes, p and q are alive and the channel from p to q is up, then from this
point onward, every message sent by p eventually arrives at q. Formally:
alive after(p, i) ∧ alive after(q, i) ∧ up after(p, q, i) ∧ ti = net send(p,m) ⇒
∃j tj = net receive(q,m)

8.3 Stable components

As explained above, our liveness properties require “ideal” behavior from the GCS
only if a stable component eventually exists and the failure detector behaves like
an eventually perfect one. We now formally define a stable component.

Definition 8.1. (Stable Component) A stable component is a set of processes
that are eventually alive and connected to each other and for which all the channels
to them from all other processes (that are not in the stable component) are down.
Formally, stable component(S), S ∈ 2P is defined as:

stable component(S)
def
= ∃i∀p ∈ S (alive after(p, i) ∧ ∀q ∈ S up after(p, q, i) ∧

∀q ∈ P \ S (down after(q, p, i) ∨ crashed after(q, i)))

Note that the existence of a stable component implies that within the stable com-
ponent communication is eventually symmetric and transitive. We do not assume
that the communication is always symmetric and transitive as part of the model.
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This is only a precondition for the liveness properties and for the failure detector’s
completeness and eventual accuracy properties stated in the next section. If the
communication over the channels is not eventually stable, symmetric and transitive,
the GCS is not required to be live and Definition 8.2 below imposes no restrictions
on the failure detector’s behavior.

It is common to assume transitivity, though it is not necessary. For example,
Phoenix [Malloth and Schiper 1995] does not assume transitivity, but instead, it
ensures eventual transitivity of communication by relaying messages. It is more
common to assume that communication is symmetric. Although in wide area net-
works lack of symmetry may occasionally occur, all the specifications that we are
aware of do not require membership to be precise in such cases.

8.4 Eventually perfect failure detectors

An eventually perfect failure detector is a failure detector that eventually stops
making mistakes, that is, there is a time after which it correctly reflects the network
situation. We now classify traces in which the failure detector behaves like an
eventually perfect one. For the sake of specifying such traces, we examine the
composition of the failure detector with the network, and classify traces in which
the reachable set reported by the failure detector eventually corresponds to the
network situation.

Definition 8.2. (Eventually perfect-like trace) The failure detector behaves like
3P in a given trace if for every stable component S, and for every process p ∈ S,
the reachable set reported to p by the failure detector is eventually S. Formally:

3P−like
def
= ∀S (stable component(S)⇒ ∀p ∈ S ∃i (ti = net reachable set(p, S)

∧ ¬(∃S′ 6= S ∃j > i tj = net reachable set(p, S′))))

Note that if no stable component exists, Definition 8.2 imposes no restrictions
on the failure detector’s behavior.

We now define an eventually perfect failure detector to be a composition of a
failure detector and a network, so that in all the traces of this composition, the
failure detector behaves like 3P , with respect to the network situation.

Definition 8.3. (Eventually perfect failure detector) An eventually perfect fail-
ure detector is a network and failure detector automaton which behaves like 3P in
every trace.

[Chandra and Toueg 1996] define several classes of unreliable failure detectors
for the crash-failure model. It is easy to see that, when restricted to the crash-
failure model, our definition of 3P coincides with the one in [Chandra and Toueg
1996], since in every execution in that model all the correct processes form a stable
component (once the last faulty process fails).

The definition of eventually perfect failure detectors is extended to partitionable
environments in [Dolev et al. 1997; Babaoğlu et al. 1998b]. The definitions presented
herein are very similar to those of [Dolev et al. 1997; Babaoğlu et al. 1998b]. The
main difference is in the modeling formalism, more specifically, in the definition
of when a channel is considered to be up. Our definition of stable components is
stated explicitly in terms of channel down and channel up events, whereas the
models in [Dolev et al. 1997; Babaoğlu et al. 1998b] do not include such events, and
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connectivity (reachability) is defined in terms of whether the last message sent on
a channel reaches its destination or not.

Another difference is that the definition of [Babaoğlu et al. 1998b] requires the
failure detector to eventually precisely detect pairwise reachability among two pro-
cesses even if a stable component does not exist. It is easy to see that this definition
is stronger than ours: an eventually perfect failure detector as defined by [Babaoğlu
et al. 1998b] is also an eventually perfect failure detector according to our defini-
tion. The stronger notion of failure detector as defined in [Babaoğlu et al. 1998b] is
required for implementing Property 10.2 (View Accuracy), which does not depend
on stable components. For space limitations, we do not include this definition here.

The classical approach to failure detectors [Chandra and Toueg 1996] requires
an oracle failure detector (for example, an eventually perfect one) to exist as part
of the system model. In contrast, we do not require an eventually perfect failure
detector to exist. Rather, we assume an arbitrary failure detector and condition
our liveness specification on the failure detector’s behavior in a given trace. Note
that the difference between the two approaches is small. Clearly, any algorithm
that meets the specification in an environment where a failure detector of class 3P

exists, also meets our conditional specification. Thus, our conditional specification
is not weaker than a classical one.

8.4.1 On implementing a failure detector. In general, since it is impossible to im-
plement 3P in an asynchronous model with process failures, it is also impossible to
implement eventually perfect failure detectors as defined above in the asynchronous
model of this paper. However, in practical networks, communication tends to be
stable and timely during long periods. Partial synchrony models [Dwork et al. 1988]
capture such network behavior. In such models, processes can measure time, and
a bound on communication latency eventually exits.

Eventually perfect failure detectors are easily implemented in these partial syn-
chrony models, over a network that satisfies Assumption 8.1. Failure detector
implementations use the network in order to send and receive messages9, and they
generate net reachable set events whenever they change their mind about net-
work connectivity. A Network and Failure Detector automaton can be obtained as
a composition of such a failure detector module with the underlying network, by
hiding actions related to messages of the failure detector.

[Chandra and Toueg 1996] present an algorithm implementing an eventually per-
fect failure detector in the crash-failure partial synchrony model where eventually
there is a bound on message transmission time, but this bound is not known to the
processes. [Babaoğlu et al. 1998b] present a variant on this algorithm, adapted to
the link failure model. It works roughly as follows:

Algorithm 8.1. Each process has an approximated bound on round-trip la-
tency, ∆p. Every process p periodically multicast a pingp message to all other
processes. Every process q responds to such a message by sending an ackq message
to p. If p does not receive an ackq message within ∆p time of sending pingp, p

suspects q (i.e., if q is in p’s reachable set, p removes q from its reachable set).

9Obviously, the failure detector implementation cannot see channel up and channel down

events.
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Once p receives such a response, if q is not in p’s reachable set, then p adds q to
the reachable set and increases ∆p by one second.

It is easy to see that if a stable component eventually exists and a bound on
message latency eventually holds, then ∆p can increase only a finite number of
times, and p’s reachable set eventually contains exactly the set of processes in
p’s connected component. Hence, the algorithm implements an eventually perfect
failure detector.

This algorithm is not used in practice, however; failure detector implementations
generally use smaller time-outs, at the risk of occasionally having false suspicions.
Practical systems often do have an expected bound on latency, which holds at
“stable” times. During “unstable” periods, messages can be delayed longer than
this bound. This system behavior is captured by the timed asynchronous system
model of [Cristian and Fetzer 1999]. In this model, it is possible to build failure
detectors that behave like eventually perfect ones during stable periods.

Note also that the Network and Failure Detector automaton has two functionali-
ties: (1) an eventually reliable communication protocol that ensures Assumption 8.1,
that is, that messages sent on channels that are up eventually reach their destina-
tions; and (2) a failure detector. These two functionalities can be implemented
separately, as explained above. However, they are often implemented jointly by the
same service, over an unreliable network. Examples of such services include the
MUTS layer of Horus, the Multi-Send Layer of [Babaoğlu et al. 1998b], and the
Core layer of Xpand [Anker et al. 2000]. TCP implements a similar service over
the unreliable IP protocol: TCP uses retransmissions in order to guarantee that
messages reach their destination while the channel is up. If the channel goes down,
the TCP connection goes down, thus reporting the failure to the application. If a
channel is up but slow, TCP can mistakenly report of a failure while there is none.

9. PRECISE MEMBERSHIP IS AS STRONG AS 3P

We now justify the use of eventually perfect failure detectors as a prerequisite for
liveness. We focus on liveness of the membership service, since live membership is
the basis for a live GCS. We show that a precise membership service is as strong as
an eventually perfect failure detector. First, we have to define a precise membership
service. We define a membership service to be precise if it delivers the same last
view to all the members of a stable component. Note that this definition is suitable
only for partitionable membership services as it requires members of all stable
components to install views.

Definition 9.1. (Precise Membership) A membership service is precise if it sat-
isfies the following requirement: for every stable component S, there exists a view
V with the members set S such that V is the last view of every process p in S.
Formally:
stable component(S) ⇒ ∃V (V.members = S ∧ ∀p ∈ S last view(p, V ))

Lemma 9.1. Precise Membership is as strong as an eventually perfect failure
detector.

Proof: We provide a constructive proof of how an eventually perfect failure de-
tector can be implemented using a precise membership service. We begin with a
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Fig. 6. Reducing precise membership to an eventually perfect failure detector.

group membership service implemented atop a network and failure detector automa-
ton. We hide the net reachable set events, so that they will not appear in traces.
Then, for each process p, we construct an automatonMEMBtoFDp (see Figure 6).
MEMBtoFDp receives view chng events from the group membership and gener-
ates net reachable set events as follows: whenever a view chng(p, V, T ) occurs,
net reachable set(p, V.members) is generated. We compose the MEMBtoFD

automata of all the processes with the group membership service.
We now show that if the membership service is precise, every generated trace

of this composition is 3P − like. Let p be a process. If p is not a member of
a stable component, there are no restrictions on the failure detector’s behavior.
Assume that there exists a stable component S such that p ∈ S, then by Precise
Membership, p installs a last view V with V.members = S. Thus, p generates
net reachable set(p, S) and does not generate any net reachable set events af-
terwards, and thus satisfies the requirement for a 3P − like trace.

Note that the same result applies to the process failure model: In that model,
the set of correct processes forms a stable component in every execution. Thus, a
precise membership service in that model is required to deliver to all the correct
processes a last view consisting of exactly the correct processes.
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Note that it is possible to implement a precise membership service using an
eventually perfect failure detector – Section 10.3 surveys many examples of group
communication systems that provide precise membership services when the failure
detector they employ behaves like an eventually perfect one. GCS liveness is also
specified using external failure detectors in [Schiper and Ricciardi 1993; Malloth
and Schiper 1995; Babaoğlu et al. 1998b; Hiltunen and Schlichting 1995].

10. LIVENESS PROPERTIES

We now specify liveness properties for partitionable GCSs (cf. Section 3.2). These
properties are not suitable for primary component GCSs, as they require processes
to install views in some situations even if they are not in a primary component. We
do not specify liveness properties for a primary component GCS, since the liveness
of such a service is dependent on the specific implementation and the policy it
employs to guarantee Property 3.4 (Primary Component Membership). Note that
primary component membership services block if they cannot form a primary view.
For example, a primary component membership can block if the network partitions
into three minority components or if all the members of the latest view10 crash.

We define two kinds of liveness properties. In Section 10.1 we define liveness prop-
erties that are conditional on the existence of a stable component. In Section 10.2
we define complementary liveness properties in order to account for situations in
which no stable component exists. In Section 10.3 we survey related work.

10.1 Liveness properties for stable runs

In this section, we state four liveness properties: Membership Precision, Multicast
Liveness, Self Delivery and Safe Indication Liveness. Obviously, Safe Indication
Liveness is only required if the system provides safe notifications (cf. Section 5).
All of these properties are conditional; they are required to hold in runs in which
there exists a stable component S and the failure detector behaves like 3P .

Property 10.1. (Liveness) If the failure detector behaves like 3P , then for
every stable component S, there exists a view V with the members set S such that
the following four properties hold for every process p in S. Formally:
3P − like ∧ stable component(S) ⇒ ∃V (V.members = S ∧ ∀p ∈ S

1. Membership Precision p installs view V as its last view. Formally:
last view(p, V )

2. Multicast Liveness Every message p sends in V is received by every process
in S. Formally:
sends in(p,m, V ) ⇒ ∀q ∈ S receives(q,m)

3. Self Delivery p delivers every message it sent in any view unless it crashed
after sending it. Formally:
ti = send(p,m) ∧ 6 ∃j > i tj = crash(p) ⇒ receives(p,m)

4. Safe Indication Liveness Every message p sends in V is indicated as safe by
every process in S. Formally:
sends in(p,m, V ) ⇒ ∀q ∈ S indicated safe(q,m, V ))

10Recall that in a primary component membership service views are totally ordered.
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Formally, stability of the connected component is required to last forever. Never-
theless, in practice, it only has to hold “long enough” for the membership protocol
to execute and for the failure detector module to stabilize, as explained in [Dwork
et al. 1988; Guerraoui and Schiper 1997a]. However, we cannot explicitly bound this
time period in an asynchronous model, because its duration depends on external
conditions such as message latency, process scheduling and processing time.

10.2 Additional liveness properties

10.2.1 Membership Accuracy. Property 10.1.1 (Membership Precision) guaran-
tees that if a stable component eventually exists, the membership service installs
a precise view at all the members in this component. When a stable component
does not exist, most group communication systems still strive to provide meaningful
views, even if these views may keep changing. This desirable behavior is captured
by the following property, originally formulated in [Babaoğlu et al. 1998b]:

Property 10.2. (Membership Accuracy) If there is a time after which processes
p and q are alive and the channel from q to p is up, then p eventually installs a view
that includes q, and every view that p installs afterwards also includes q. Formally:
up after(q, p, i) ∧ alive after(p, i) ∧ alive after(q, i) ⇒
∃j ∃V ∃T (tj = view chng(p, V, T ) ∧ q ∈ V.members ∧ ∀k > j ∀V ′ ∀T ′

(tk = view chng(p, V ′, T ′) ⇒ q ∈ V ′.members))

Implementing this property requires a failure detector that eventually provides
precise information about pairwise reachability between two processes, even when
a stable component does not exist. Such a failure detector is defined in [Babaoğlu
et al. 1998b]. For space limitations, we do repeat this definition here.

Membership Accuracy does not require processes to eventually stop installing
views. Hence, it does not imply Property 10.1.1 (Membership Precision). More-
over, while no stable component exists, Membership Accuracy does not require
processes that are connected to each other to install the same view or to deliver
each other’s messages. This diminishes the usefulness of this property for applica-
tions. Membership Accuracy is provided by most GCSs. However, it is not provided
by membership services that do not install views while a stable component does
not exist (for example, [Keidar et al. 2000]).

10.2.2 Termination of Delivery. The following alternative to Property 10.1.2
(Multicast Liveness) was suggested in [Friedman and van Renesse 1995; Dolev et al.
1995; Babaoğlu et al. 1998b]:

Property 10.3. (Termination of Delivery) If a process p sends a message m

in a view V , then for each member q of V , either q delivers m, or p installs a next
view V ′ in V . Formally:
sends in(p,m, V ) ∧ q ∈ V.members ⇒ delivers(q,m) ∨ crashes in(p, V ) ∨
∃V ′ installs in(p, V ′, V )

Membership Precision and Termination of Delivery together imply Multicast
Liveness (Property 10.1.2). In addition, Property 10.3 (Termination of Delivery)
requires that the membership service not block even when the network is unstable.
We believe that this property is not particularly useful for applications: when the
network is unstable, a membership service satisfying this property will continuously
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install views without any guarantee to deliver messages in these views. Continu-
ously installing new views at unstable times may increase the load and lengthen the
unstable period. Furthermore, any membership service that satisfies Property 10.3
is forced to install obsolete views, that is, views that are known to be changing soon.
However, most existing membership algorithms do satisfy Property 10.3 (Termina-
tion of Delivery). An exception is the membership service of [Keidar et al. 2000]
which does not install a view if it knows that this view is already obsolete.

10.3 Related work

10.3.1 Membership Precision and Accuracy. Precision is one of the most fun-
damental properties of a membership service. A group communication system is
useless if its membership service is not precise at least to some extent.

GCSs typically exploit some failure detection mechanism based on time-outs or
other methods (for example, [Vogels 1996]) in order to detect conditions under which
the membership protocol should be invoked. The failure detector also provides an
initial approximation of the view that the membership service would agree upon.
If this approximation is precise, so is the output of the membership service. Thus,
practically all of the existing GCSs satisfy Property 10.1.1 (Membership Precision),
even if it does not explicitly appear in their specifications.

Property 10.1.1 (Membership Precision) is explicitly specified in [Anker et al.
1998]. The specification of [Keidar et al. 2000] summarizes the two preconditions
for precision – stable component and eventually perfect failure detection – into a
single one. It requires that if a connected set S of processes exists, such that the
net reachable set at every member of S remains S forever, then all members of
S eventually install the same last view. This latter precondition is weaker than
the original two preconditions, since the actual connected component may contain
additional members that are not included in S.

The specifications of [Friedman and van Renesse 1995; Lin and Hadzilacos 1999]
are also conditional on the failure detector output. For example, they require that a
process q be excluded from a view only if the failure detector module at some view
member suspects q. The specifications of [Lin and Hadzilacos 1999] also require
that if all active processes almost always suspect (do not suspect) q, then their
views almost always do not include (respectively, do include) q. This property is
different from Membership Accuracy in that it only applies when all processes agree
on the inclusion of some member, not whenever pairwise reachability is established
between two processes. Like Membership Accuracy and unlike Membership Preci-
sion, this property does not require processes to eventually stop installing views.
Also unlike Membership Precision, it requires liveness whenever processes agree
on the inclusion of some member, even if there is no agreement upon the entire
connected component.

Phoenix [Malloth and Schiper 1995] exploits a failure detector which is weaker
than an eventually perfect one. Given the weaker failure detector, Phoenix guar-
antees progress but not precision: it guarantees that each invocation of the mem-
bership protocol will terminate, but correct processes may be removed from the
membership and forced to re-join infinitely many times. We observe, however, that
in executions in which the network eventually stabilizes and the underlying fail-
ure detector used by Phoenix behaves like an eventually perfect one, Phoenix also
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satisfies Membership Precision.
The specifications of [Fekete et al. 1997; Cristian and Schmuck 1995; Mishra et al.

1998] guarantee precision of the membership service at periods during which the
underlying network is stable and timely. These specifications are formulated in the
timed asynchronous system model; they guarantee the timeliness of the service and
not just eventual termination. Of course, such guarantees can only be made when
network message delivery and process scheduling are timely. The specifications are
parameterized by timeouts suited for the underlying network and by constants that
depend on the protocol implementation. Since in this paper we do not focus on a
specific protocol, we cannot provide such an analysis.

10.3.2 Multicast and Safe Indication Liveness. Like Membership Precision, Prop-
erty 10.1.2 (Multicast Liveness) is satisfied by all the existing GCSs, although it
does not always explicitly appear in their specifications. This property eliminates
trivial GCS implementations that capriciously discard messages without delivering
them. Similar properties appear in [Fekete et al. 1997; Keidar and Khazan 2000].

In primary component GCSs, message stability may be formulated as follows: If
a process delivers a message in view V , then all non-faulty members of V eventually
deliver this message. This is called Uniformity in the Isis literature and in [Schiper
and Sandoz 1993] and Unanimity in [Rodrigues and Verissimo 1992].

Property 10.1.3 (Self Delivery) requires that if the network eventually stabilizes,
processes deliver all of their own messages unless they crash after sending them.
Self Delivery complements Multicast Liveness by requiring delivery of messages sent
in any view, not just those sent in the last view.

All the GCSs that we are aware of satisfy Self Delivery, some examples are: Isis,
Transis, Totem, Horus, and Newtop. In RMP, Self Delivery holds for all multicast
services except for the Unreliable one. However, this property does not hold in the
specifications of [Fekete et al. 1997].

Some specifications that include Sending View Delivery (for example, [Moser
et al. 1994; Keidar and Khazan 2000]) define self-delivery as a safety property that
holds between each pair of consecutive views installed by a process. Since a process
cannot know whether there will eventually be a stable component, in both cases,
a process must deliver the messages it sent in the current view before it installs
the next view. Other specifications (for example, [Babaoğlu et al. 1998b]) require
a process to deliver its own messages in all executions, not just stable ones. Again,
since the GCS cannot deduce whether stability holds in a certain execution, these
two formulations of Self Delivery are essentially equivalent.

Property 10.1.4 (Safe Indication Liveness) appears only in the specification of
[Fekete et al. 1997] as this is the only work that explicitly introduces safe indications.

CONCLUSIONS

11. SUMMARY

We have presented a comprehensive set of specifications which may be combined
to represent the guarantees of most existing GCSs. We have specified clear and
rigorous properties formalized as trace properties of I/O automata. In light of these
specifications, we have surveyed and analyzed over thirty published specifications
which cover a dozen leading GCSs. We have correlated the terminology used in
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different papers to our terminology.
We have seen that the main components of a GCS are the membership and mul-

ticast services. In Table 6, we summarize the safety properties of the membership
and multicast services, distinguishing between basic properties and optional ones.

Basic Properties Optional Properties

Property Page Property Page

Self Inclusion 12 Primary Component Membership 15
Local Monotonicity 13 Sending View Delivery 17

Initial View Event 14 Virtual Synchrony 20

Delivery Integrity 16 Transitional Set 22

No Duplication 17 Agreement on Successors 23

Same View Delivery 18

Table 6. Summary of safety properties of the membership and multicast services.

In order to account for the diverse requirements of different applications, we
followed a modular paradigm in this paper: Our specifications are divided into
independent properties which may be used as building blocks for the construction
of a large variety of actual specifications. Individual specification requirements may
be matched by specific protocol layers in modular GCSs. This makes it possible
to separately reason about the guarantees of each layer and the correctness of
its implementation. Furthermore, the modularity of our specifications provides
the flexibility to describe systems that incorporate a variety of QoS options with
different semantics. Table 7 summarizes the properties of different ordering and
reliability services (fifo, causal and totally ordered) we have described in this
paper, as well as safe message indications. In the future, our framework may be
used for specifying additional qualities of service and semantics.

fifo Multicast Causal Multicast

fifo Delivery 26 Causal Delivery 27

Reliable fifo 27 Reliable Causal 27

Totally Ordered Multicast Safe Indications

Strong Total Order 28 Safe Indication Prefix 24

Weak Total Order 29 Safe Indication Reliable Prefix 25

Reliable Total Order 29

Table 7. Properties of different ordered multicast services and of safe message indications.

We have presented specifications of GCSs running in asynchronous failure-prone
environments in which agreement problems that resemble group communication
services are not solvable. We addressed the non-triviality issues and suggested ways
to circumvent impossibility results by specifying conditional liveness guarantees
and by using external failure detectors. We have argued that our specifications are
non-trivial on one hand, and feasible to implement on the other. In Table 8 we
summarize the liveness properties.

The set of specifications presented here has been carefully assembled to sat-
isfy the common requirements of numerous fault tolerant distributed applications.
Throughout the paper, the specifications are justified with examples of applications
that benefit from them.
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Basic Properties Optional Properties

Property Page Property Page

Membership Precision 40 Safe Indication Liveness 40

Multicast Liveness 40 Termination of Delivery 41
Self Delivery 40 Membership Accuracy 41

Table 8. Summary of liveness properties.

We hope that the specifications framework presented in this paper will help
builders of group communication systems understand and specify their service se-
mantics, and that the extensive survey will allow them to compare their service to
others. Application builders will find in this paper a guide to the services provided
by a large variety of GCSs, which would help them chose the GCS appropriate for
their needs. Moreover, we hope that the formal framework will provide a basis for
interesting theoretical work, analyzing relative strengths of different properties and
the costs of implementing them.

In the Appendix, we present Lemma A.2 which states that a certain combination
of properties of a reliable totally ordered and fifo ordered multicast service implies
that the service also preserves the reliable causal order. We have included the lemma
in this paper, as it can be proven by logical analysis of the properties themselves
without considering GCS implementations. By reasoning about implementations,
using arguments about when one execution of an algorithm “looks like” another
execution to a certain instance of the algorithm, one can prove many other links
between properties. For example, one can prove a “dual” assertion to Lemma A.2,
showing that a non-reliable totally ordered and fifo ordered multicast service is also
causally ordered. An interesting research direction would be to explore additional
relationships and tradeoffs between different properties.
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APPENDIX

A. PROVING A RELATIONSHIP BETWEEN DIFFERENT PROPERTIES

First, we prove that Property 6.7 (Reliable Total Order) implies Property 6.5
(Strong Total Order) for messages received in the same view:

Lemma A.1. Property 6.7 (Reliable Total Order) along with Property 4.3 (Send-
ing View Delivery) and the basic Property 4.1 (Delivery Integrity) imply Prop-
erty 6.5 (Strong Total Order) for messages received in the same view.

Proof: Let ts be the timestamp function f whose existence is given in Property 6.7
(Reliable Total Order). We will now prove that ∀p∀m∀m′(recv before in(p,m,m′, V )
⇒ ts(m) < ts(m′)), which will imply Property 6.5 (Strong Total Order).
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First, m 6= m′, otherwise the same message is received twice which is a con-
tradiction to Delivery Integrity (Property 4.1). Therefore, ts(m) 6= ts(m′). Now,
assume by contradiction that ts(m) > ts(m′). Then, by Delivery Integrity (Prop-
erty 4.1) there are send(q,m) and send(q′,m′), and by Sending View Delivery
(Property 4.3) viewof(send(q,m)) = viewof(send(q′,m′)). Hence, we can apply
Reliable Total Order (Property 6.7) and conclude that recv before(p,m′,m). This
contradicts the assumption that recv before in(p,m,m′, V ). 2

Similar proofs can be given to relate Property 6.2 (Reliable fifo) with Prop-
erty 6.1 (fifo delivery) and Property 6.4 (Reliable Causal) with Property 6.3
(Causal). We do not present these proofs here because they are trivial.

Now, we prove that a certain combination of properties of a reliable totally or-
dered and fifo ordered multicast service implies that the service also preserves the
reliable causal order.

Lemma A.2. Properties 6.7 (Reliable Total Order) and 6.2 (Reliable fifo) along
with Property 4.3 (Sending View Delivery) and the basic Properties 4.1 (Delivery
Integrity), 3.2 (Local Monotonicity) and 3.3 (Initial View Event) imply Property 6.4
(Reliable Causal).

Proof: First, let us prove the following claims:

Claim A.2.1. If ti = recv(p,m), tk = send(p,m′), i < k and viewof (ti) =
viewof (tk), then ts(m) < ts(m′)

Proof: First, m 6= m′, by Delivery Integrity (Property 4.1) since every message
can be sent only once (by Message Uniqueness, Assumption 2.2). Since m 6= m′,
ts(m) 6= ts(m′). Now, assume the contrary, that is, ts(m) > ts(m′). Then,
by Reliable Total Order (Property 6.7), since there is recv(p,m), there is also
recv(p,m′) before recv(p,m). This means that p receives its own message m′

before sending it. Since every message can be sent only once, this is a contradiction
to the basic Delivery Integrity property 4.1. Thus, ts(m) < ts(m′). 2

Claim A.2.2. If ti and tk are two events of types send or recv that occur
at the same process p, such that i < k, then either viewof (ti) = viewof (tk) or
viewof (ti).vid < viewof (tk).vid.

Proof: Immediate from Initial View Event and Strong Local Monotonicity. 2

Claim A.2.3. If send(p,m)→ send(p′,m′), then there is a sequence of events
either S1 = send(p1=p,m1=m)→ send(p1,m

′
1)→ recv(p2,m

′
1)→ send(p2,m2)→

recv(p3,m2) → send(p3,m3) → . . . → recv(pn =p′,mn−1) → send(pn =p′,mn =
m′) or S2 = send(p1 = p,m1 = m) → recv(p2,m1) → send(p2,m2) → . . . →
recv(pn=p′,mn−1)→ send(pn=p′,mn=m′).

Proof: By the recursive definition of causal order (in Table 3), there is a sequence
S of events starting with send(p,m) and ending with send(p′,m′). Each pair ti
and tk of consecutive events in this sequence is either sending and receiving of the
same message, or pid(ti) = pid(tk) and i < k. Let us fix a process q such that some
event in S occurred at q, and look at the first and the last event in S that occurred
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at q. The last event is always a send event. The first event is a send event for
q = p, and recv event for q 6= p. Therefore, if for each process q, we leave only
the first and the last event in S that occurred at q and remove all the intermediate
events from S, we obtain the required sequence. 2

We now proceed to the proof of the lemma. Let us assume that ti = send(p,m)→
tk = send(p′,m′), viewof (ti) = viewof (tk) and there exists recv(q,m′). We
should prove that there is also recv(q,m), and recv(q,m) precedes recv(q,m′).
By Claim A.2.3, there is a a sequence S1 of events send(p1 = p,m′

1 = m) →
send(p1,m1) → recv(p2,m1) → send(p2,m2) → . . . → recv(pn = p′,mn−1) →
send(pn=p′,mn=m′) 11.

First, let us prove that all events in this sequence occur in the same view. Assume
the contrary. Then there is a pair of consecutive events tj and tl in S such that
viewof (tj) 6= viewof (tl). If tj and tl are send and recv of the same message, then
viewof (tj) = viewof (tl), by Sending View Delivery. Therefore, tj and tl occurred at
the same process, and j < l. Using Claim A.2.2, we conclude that viewof (tj).vid <

viewof (tl).vid. Hence, viewof (send(p1,m
′
1)).vid ≤ viewof (send(p1,m1)).vid =

viewof (recv(p2,m1)).vid ≤ viewof (send(p2,m2)).vid = . . . = viewof (tj).vid <

viewof (tl).vid = . . . = viewof (recv(pn,mn−1)).vid ≤ viewof (send(pn,mn)).vid.
Summarizing, viewof (ti).vid < viewof (tk).vid. This is a contradiction to the lemma
condition that viewof (ti) = viewof (tk).

Since there are send(p1,m
′
1), later send(p1,m1) and recv(p2,m1) in the same

view, there is also recv(p2,m
′
1) preceding recv(p2,m1), by Property 6.2 (Reliable

fifo). By Lemma A.1 we can apply Property 6.5 (Strong Total Order) and conclude
that ts(m′

1) < ts(m1). Applying Claim A.2.1 to recv(pi,mi−1) and send(pi,mi)
for 2 ≤ i ≤ n, we conclude that ts(mi−1) < ts(mi). Thus, ts(m′

1=m) < ts(mn=
m′). Since there is recv(q,m′), then, by Property 6.7 (Reliable Total Order), there
is also recv(q,m) preceding recv(q,m′). 2
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