
NoC-Based FPGA: Architecture and Routing

Roman Gindin, Israel Cidon, Idit Keidar
Electrical Engineering Department

Technion - Israel Institute of Technology
Haifa 32000, Israel

{rgindin@tx,idish@ee,cidon@ee}.technion.ac.il

Abstract

We present a novel network-on-chip-based architecture
for future programmable chips (FPGAs). A key challenge
for FPGA design is supporting numerous highly variable
design instances with good performance and low cost.
Our architecture minimizes the cost of supporting a wide
range of design instances with given throughput
requirements by balancing the amount of efficient hard-
coded NoC infrastructure and the allocation of “soft”
networking resources at configuration time. Although
traffic patterns are design-specific, the physical link
infrastructure is a performance bottleneck, and hence
should be hard-coded. It is therefore important to employ
routing schemes that allow for high flexibility to
efficiently accommodate different traffic patterns during
configuration. We examine the required capacity
allocation for supporting a collection of typical traffic
patterns on such chips under a number of routing
schemes. We propose a new routing scheme, Weighted
Ordered Toggle (WOT), and show that it allows high
design flexibility with low infrastructure cost. Moreover,
WOT utilizes simple, small-area, on-chip routers, and has
low memory demands.

1. Introduction

Networks-on-Chip (NoCs) e.g. [1], [4], [5], [8], [9], [12],
 [15], [17] are commonly considered as a scalable solution
for on-chip communication. However, it is also
understood that there is no "one size fits all" NoC
architecture [5], as different silicon systems have very
different requirements from their NoCs. For example, in a
System-on-Chip (SoC), the network usage patterns are
many times known a priory. Hence, the NoC can be
synthesized with the “correct” link capacities for
supporting the required usage [10]. In CMP designs [14],
 [17] the traffic patterns depend on the various executed
programs and hence can vary dramatically within the

same system implementation. Therefore, CMPs’ NoC
resources should support all perceivable software
scenarios. In contrast to both of the above, in a Field
Programmable Gate Array (FPGA), the communication
patterns are not known at fabrication time but may
become much better determined when the chip is
configured for a specific functionality. This unique
scenario implies that there a cost and performance
advantage in splitting an FPGA’s NoC construction
among the two design stages.
In this paper, we introduce a NoC design process and
architecture for FPGAs. A distinctive feature of FPGA
systems is that they include a combination of hard and
soft functionalities. The hard functionality is
implemented in silicon; it typically includes special
purpose modules like processors, multipliers, external
network and memory interfaces, etc. The soft
functionality is configured using programmable elements
(gate arrays, flip-flops, etc.) and routing components.
Modern FPGAs contain hundreds of thousands of
programmable elements, in addition to special purpose
modules [22]. As technology scales, the sheer number of
logic units will render a flat FPGA chip design
unmanageable. FPGA engineers are already experiencing
unacceptable place-and-route times for large designs with
tight timing constraints. To remedy this problem, modern
FPGA CAD tools, like Xilinx’s PlanAhead, are already
supporting a certain degree of hierarchical design: they
allow designers to implement independent modules on the
chip, which are later connected. We thus envision a future
FPGA that is organized hierarchically, whereby the chip
is divided into high-level regions (some programmable
and some hard), interconnected by a NoC.
When architecting an FPGA NoC, one has to decide
which functionalities are implemented as hard cores and
which are left as soft. There is a tradeoff between the
flexibility offered by the soft part and the higher
performance offered by hard part. Since inter-module
communication is often a bottleneck, it is important to

design the NoC architecture for high performance. We
therefore advocate laying out the network infrastructure,
including metal wires and hard-coded routers in silicon.
At the same time, in order to allow for maximum
flexibility, the NoC infrastructure should be able to
accommodate multiple routing schemes and a large
variety of traffic patterns. To this end, we allow network
interfaces to be soft. Simplistic routing schemes, like XY,
can employ small interfaces, whereas more elaborate
source-routing schemes ([1], [13]) may have the interfaces
store large routing tables. Our novel architecture is
detailed in Section 2.
The main challenge is exploiting network resources
efficiently, i.e., supporting a large number of program
designs while investing minimal resources (wires and
logic). In this context, there is an inter-play between the
link capacity requirements and the routing scheme used to
route packets between modules. A routing scheme that
balances the load over all links readily supports more
designs using smaller link capacities than an unbalanced
one.
Section 3 formally defines FPGA routing (on our
suggested architecture) as an optimization problem. In
order to study the inter-play between routing and capacity
requirements, we define a new concept called design
envelope, capturing the required capacity for a collection
of traffic patterns. The more traffic patterns the envelope
accommodates, the more flexibility is offered to the
designer configuring the chip. We study the design
envelopes required to accommodate a collection of
patterns with each of the routing schemes.
In Section 4, we present efficient solutions to the FPGA
routing problem. Note that traditional routing algorithms
like XY lead to unbalanced capacity allocation [10], and
are therefore not suitable for programmable chips. It is
possible to improve the balance by splitting the flow,
toggling between sending on XY and YX routes [18]
 [20]; we call this approach toggle XY (TXY). However,
TXY is not optimal when traffic requirements are not
symmetric, (which is very common in HW architectures).
We improve it by adding weights to flow division (based
on the design pattern), and call the resulting algorithm
weighted toggle XY (WTXY).
Unfortunately, both TXY and WTXY have a major
disadvantage – they split a single flow among two routes.
This can lead to out-of-order arrivals, requiring large
re-order buffers, especially in congested networks.
Moreover, re-ordering requires the addition of sequence
numbers to packet headers. We therefore suggest the use
of ordered algorithms, which do not split flows, and
ensure in-order arrivals. We do this by selecting one route
(XY or YX) to each source-destination flow. We present
the weighted ordered toggle (WOT) algorithm, which
assigns XY and YX routes to source-destination pairs in a
way that reduces the maximum network capacity for a
given traffic pattern. The WOT routes are calculated

when the chip is programmed, and are loaded into a
vector holding a bit per destination in the CNI.
In typical SoC and FPGA designs, the communication
load is not divided evenly among all modules. Rather, a
handful of modules are hotspot modules (or in short,
hotspots), which communicate with many other modules.
A hotspot can be an interface to external communication
or memory, a master module that communicates with a
number of slaves, a dispatcher that forwards requests
from multiple masters to multiple slaves [17], etc.
Additional examples are given by [1], e.g., in one of their
reference designs, an SDRAM module has 7 connections,
and an SRAM module has 4, while other modules have 2
or 3 connections each. We therefore focus on traffic
patterns involving one ore more hotspots, (including a
mapping of the reference example above to our
architecture), when evaluating our solutions in Section 5.
Our evaluation shows that WOT routing reduces the link
capacity cost across a wide range of designs. In some
cases, its most loaded link requires 40% less capacity than
the maximum required with XY, and up to 15% less
capacity than with TXY.
We further compare unconstrained placement of hotspots,
where the designer can locate hotspots anywhere on the
chip, with constrained placement. Our results (cf. Section
 5) show that constrained placement can significantly
reduce the cost. For example, unconstrained placement of
two hotspots with WOT routing requires 20% more
capacity (in the busiest link) than constrained placement
that dictates that the distance between the hotspots is at
least three hops. With three hotspots, unconstrained
placement requires 35% more capacity than placing the
hotspots at a distance of at least three hops.
Finally, in Section 6, we present implementations of the
four routing schemes studied in this paper. Since all our
schemes can be supported by regular router [4], [20] we
implemented only the logic required for the routing
decision leaving out other router design issues like
buffers and scheduling. We show that all of our studied
routing schemes require very few programmable elements
(at most tens) and hence occupy very little area on the
chip.
In summary, the main contributions of this paper are -
1. A new NoC-based architecture for FPGA, which
balances between the flexibility of soft logic and the
better performance of dedicated logic.
2. A design methodology for such an architecture.
3. A balanced in-order routing algorithm for this
architecture, which minimizes the cost of supporting a
large set of designs within given performance
requirements.

1.1 Related Work

Sethuraman et al. [19] propose a fully soft NoC router
design using current-day FPGA technology, which does
not include any burned-in (hard) NoC infrastructure. In

contrast, we propose an architecture for future FPGA
platforms, which is partly embedded supporting in silicon
and partly defined and tuned at configuration-time. Hard
routers offer better performance, lower power and better
silicon area usage than their soft counterparts. On the
other hand, any excess NoC resource that is not utilized in
a specific design, cannot be converted to another usage.
DyNoC [14] is an architecture for adaptive routing using
reconfigurable hardware. There are several additional
works that present adaptive and dynamic routing, like
DyAd [11], and Odd-Even routing by Chiu [6]. Unlike
our solution, these solutions do not perform offline
optimizations at configuration time; instead, they
dynamically changes routing policies on the fly. This
approach is very effective when the traffic pattern is not
known and the network should balance itself during the
runtime. However, an FPGA’s communication pattern is
many times determined at configuration time; offline
optimization can be very effective. The simpler router
design, in turn, reduces hardware cost in terms of area
and power consumption. We therefore focus on static
routing schemes in this paper.
The TXY algorithm was independently developed by Seo
et al. for interconnection networks under the name of
O1TURN [18]. It has been shown to be worst-case near-
optimal for uniform traffic, where all nodes send and
receive at the same rate [20]. In this paper, we focus on
typical hardware traffic patterns, where some modules
transmit and receive more than others. For such patterns,
our weighted algorithms outperform TXY. Moreover,
TXY results in out-of-order packet reception and hence
requires large re-order buffers. Towels et al. [21] use
linear programming for solving general flow problems for
uniform traffic, but do not cover the case of asymmetric
non-uniform patterns as considered herein.

2. High Level Architecture

This section presents the proposed architecture for NoC-
based FPGA. It first discusses our proposed hierarchical
chip structure and the advantages of such an organization.
We then discuss how the NoC paradigm is applied to
FPGA. Afterwards, we discuss which parts of the system
are hard-coded on the chip, and which are configurable
(soft). Finally, we discuss design methodology for NoC-
based FPGA.
Hierarchical Organization
We propose a hierarchical architecture for future FPGAs,
consisting of two types of regions connected by a NoC:
(1) Configurable Regions (CR), resembling today’s
FPGA, consisting of programmable logic, which is a
collection of possibly thousands of lookup tables (LUTs)
and an internal programmable routing matrix; and (2)
Functional Regions (FR), performing a predefined task,
e.g., general purpose processor, DSP, fast external
interface, etc. FRs are implemented as hard IP cores in

order to improve performance and reduce power
consumption.
There are two main reasons for such hierarchical and
modular structure for large programmable chips. First,
CAD place-and-route tools cannot cope effectively with a
flat design including a large number of modules. Even
today, commercial tools like Xilinx's PlanAhead, and
Synplicity's Amplify support a hierarchical design: the
chip designer divides the flat chip into regions,
designating which modules reside in each region. Then,
place-and-route is run per region. In the last stage,
connections among regions are wired using remaining
resources. Second, long wires incur a high cost in terms
of delay and power. In modern FPGAs, each LUT can be
wired to any other element on the chip. Utilizing the long
wires between remote elements induces long delays. Our
design eliminates such long wires, and utilizes direct
wires only within the relatively small CRs.
NoC
The regions are interconnected using a NoC. There are
several reasons to base the future FPGA on NoC. First,
NoC is much more scalable than all other interconnect
solutions, such as point-to-point wires, buses, etc. [4].
Another reason is spatial reuse, which allows for scalable
power cost compared to the increased routing matrix that
is used in traditional FPGA. Moreover, FPGAs are often
used as prototypes for ASIC. If the ASIC is migrating to
NoC, the FPGA architecture should support NoC as well.
In our architecture, the NoC is a uniform mesh and each
region is connected to a router via a local router interface.
Like other NoCs, we use wormhole routing. The router
structure is very similar to ones in previous NoC designs
(e.g., [8], [3], [15], [1]) and includes support for multiple
QoS classes, similar to QNoC [4]. Consequently, we do
not detail the design here.
While it is possible to also provide direct communication
wires between adjacent CRs not via the NoC, we chose to
avoid such communication in order to simplify the design
and the inter-region communication methodology.
Soft vs. Hard
The NoC consists of several components, like routers,
wires and a network interface. The routers and links are
part of the NoC’s hard-core infrastructure, so as to allow
maximum performance in terms of area and power. As
this hard-coded infrastructure is always laid out, it is
designed to support a large class of applications.
Due to the fact that FPGA has to support a lot of
unknown applications with different traffic patterns, we
suggest a configurable network interface (CNI), which is
a mix of soft and hard parts. Each region is connected to
the network via at least one CNI. A CR may have several
CNIs, which can be configured to work together (when
the CR acts as a single task module) or apart (when a CR
is divided into multiple modules).
 The CNI performs the following functions: network
physical interface, buffering, reordering, fragmentation/
reassembly (from application specific blocks to packets

and from packets to wormhole flits), interface to the
region modules and routing support. Most of these
functions are not application-specific, and are therefore
hard coded in order to achieve better power, area, and
performance. However, there are several application
specific functions, like adaptation layers, playback and
routing. The routing logic needs to be flexible, as
different applications have different communication
needs. Therefore, the routing layer and the application-
specific layers are configurable, i.e., implemented from
programmable elements.

Example Layout

Figure 1. Example of network on programmable chip.

Figure 1 depicts an example chip design using our
architecture. Some links (sets of parallel wires) between
routers are routed across the CRs. This can be done since
the network and CRs are designed by the same vendor at
the same time, and therefore, it is possible to deploy long
wire repeaters at the right places in the silicon of the CRs.
This allows for a regular mesh topology, and avoids the
complexity that can result from an irregular mesh [18].

Design Methodology
Given the hierarchical chip organization, the design
methodology for programming such FPGA consists of the
following phases: (i) division into high-level modules,
roughly the size of CRs; (ii) placement of high-level
modules; (iii) implementation of each module within a
region; and (iv) inter-region routing.
In the placement phase, the designer performs the
mapping of the high-level modules to the chip's
functional and configurable regions. This process
considers the gate count and functionality of the logical
modules, and chooses CRs or FRs that can accommodate
them. Clearly, modules with heavy communication
requirements between them should be placed as close as
possible, on the same CR when space allows.
Next, the routing of the inter-module communication is
performed. The routing should comply with the
constraints (capacity) of the pre-built network.

Placement was extensively studied in VLSI – e.g. [16],
and known techniques are, by-and-large, applicable to our
design. Therefore, in this paper, we focus on the routing
phase of the design, which is unique to NoC-based
FPGA.

3. FPGA Routing Problem Definition

A NoC-based FPGA is provided to the user with a pre-
built NoC infrastructure. This network needs to be
flexible enough to support many user applications that are
unknown during the design of the network. A routing
scheme for this network needs to address the challenge of
providing high resource utilization with a low
infrastructure cost. Thus, routing algorithms should be
both efficient and flexible.
This section defines FPGA routing as an optimization
problem. It assumes the placement phase is complete, and
inter-region traffic requirements are known.
A grid is comprised a set of vertexes V and edges E.
Every node on the grid has unique (x,y) coordinates. Each
coordinate ranges between 0 and n-1.
A node represents a module attached to a router, which
can be a region or part thereof.
A traffic pattern is a function +ℜ→2:Vf . This
function defines the flows between every pair of nodes. A
class of traffic patterns is a set F.
More accurately, these flows should be accommodated by
the link capacities. They do not necessarily represent the
peak traffic on the link, in case queuing delays are
tolerated during peaks. For example, capacity can be
allocated for accommodation 90% of the traffic demands,
implying that say 99% of the traffic has a known delay
bound.
A path from v1 to v2 is a connected sequence of links
that starts at node 1v and ends at node 2v .
A routing algorithm A defines the fractions of the flows
that are sent over all possible routes from every source to
every destination. For example, half of the flow is sent
over one possible route and the other half over another
route.
An ordered routing does not split flows, i.e. each pair is
mapped to a single path.
The link capacity for given A and f is the sum of all the
flows that are routed on this link.
The maximum capacity for given A and f is the capacity
of the most loaded link in the network for a given traffic
requirement pattern. On uniform meshes, this will dictate
the capacity of all links. The maximum capacity reflects
the cost of supporting the given traffic pattern.
A routing algorithm should minimize the maximum
capacity, i.e., the cost for supporting a given f.
The design envelope of a given algorithm for a class of
traffic requirement patterns F is the minimal assignment
of capacities to the links in the NoC graph, which
supports every traffic pattern in F. Each link's capacity in

the envelope is its maximum capacity over all traffic
patterns in the specified class with a given routing
algorithm A. Uniform design envelopes are preferred.
Another metric that is used to evaluate the routing
algorithms is the gate count. Gate count is the amount of
logic required for the implementation of the routing
decision circuit. Clearly, lower gate counts are preferred.

4. Routing Algorithms

We study and propose several routing algorithms and
evaluate them in terms of maximum capacity and design
envelope. This section presents the routing techniques
and analyzes the efficiency of the algorithms.

4.1 Flow splitting algorithms

This section presents routing algorithms that improve the
network's balance by splitting flows among several paths.
Before presenting these algorithms, we recall the simple
and well-known XY and YX routing algorithms, upon
which they improve.
XY routing first routes packets horizontally, towards
their X coordinate, and then vertically, towards their Y
coordinate. XY is commonly used in NoCs thanks to its
simplicity and inherent deadlock-freedom. However, it
induces unbalanced link loads [10].
YX routing uses the same technique but reverses the
order of the vertical and horizontal routing.
Toggle XY Routing (TXY) [20] improves XY's load-
balancing by routing half the packets in the XY path and
the other half in the YX path. Each packet header
includes a bit indicating whether its route is XY or YX.
Each CNI toggles between XY and YX packets. This
scheme avoids deadlocks by using two virtual channels
(VCs) per router: one for XY paths and one for YX with
any fair scheduling scheme between VCs.
Weighted Toggle XY Routing (WTXY) improves TXY
by sending different portions of flows on the XY and YX
paths.
Splitting the traffic evenly between XY and YX routes, as
in TXY, does not always achieve optimal load balancing.
In some cases, sending a different portion of the traffic by
each route may achieve better load-balancing and thus
reduce capacity requirements. For example, Figure 2
shows how the maximum link capacity is affected by the
fraction of traffic routed XY on a 5x5 grid with two
hotspots at locations (1,1) and (2,1) on the grid, where
each node send the same amount of data to every hotspot.
Here, optimal capacity is achieved when roughly 2/3 of
the traffic is routed XY, offering an almost 20%
improvement over TXY.

0 0.2 0.4 0.6 0.8 1
10

15

20

25

XY fraction

M
ax

 c
ap

ac
ity YX only

XY only

11.94

15

Figure 2. The impact of the XY fraction on 5x5 grid

with two hotspots at locations (2,1) and (1,1).
WTXY therefore chooses the best XY fraction, xyc ,

according to given traffic requirements. This fraction is
calculated offline for each application before the chip
programming phase, and is loaded to the CNI with the
rest of the configuration data. The calculation of xyc is

beyond the scope of this paper since our main focus is on
ordered algorithms.
WTXY can be implemented (see Section 6) using a
random number generator and a comparator in the
network interface that assigns the route bit in the packet
header according to xyc . Deadlocks are avoided the same

way as in TXY.

4.2 Ordered algorithms

The main problem of the algorithms described above is
the flow splitting. When flows are sent over multiple
routes, the packet arrival order may differ from the
sending order. This requires the receiver CNI to maintain
large reordering buffers. Consider, e.g. a relatively small
window of n2 outstanding packets, (2n) nodes
communicating with each hotspot and about 10% of the
nodes are hotspots.
In this case total memory requirement is () 32 21.0 nn ⋅⋅ . If
n is 7, we have to put enough memory for 16 K packets.
The situation is even worse in case there are multiple
classes of services or more source destination (S-D) pairs.
Moreover, the flow splitting routing requires
communication overhead to carry the numbering of the
packets to allow the reordering at the destination.
We therefore propose ordered algorithms, in which all the
packets between the same S-D pair are sent over the same
route. Hence, packets arrive in the order that they are
sent, and no re-order buffer is required.
A simple way to assign routes per flow is Source Toggle
XY - STXY. This algorithm toggles the routes of entire
flows. To create a better spreading of the flows, we use
both source and destination addresses to assign the route.
For example, a bitwise XOR of the source and destination
addresses is used to determine the route. Using this
technique gives us a close approximation to TXY with a
small quantization error since half of the flows is sent on
XY path and the other half on YX.
However, due to the previously shown advantages of
weighted routing, we suggest the Weighted Ordered
Toggle (WOT) algorithm. WOT divides the source-

destination routes in a way that produces best result in
terms of maximum capacity.
The remaining challenge is to develop a technique for
effectively choosing the route of each source-destination
pair. First, we present analytical solution for a single
hotspot and later show heuristic algorithm for the general
cases.
WOT Optimal Solution for Single Hotspot
In case of a single hotspot, we have a single destination
on the square grid and all other nodes on the grid send the
same flow f to it. Consider a hotspot at coordinates (x,y),
as shown in Figure 3 (coordinates range from 0 to n-1).

Figure 3. Location of a single hotspot.

For each node we define a binary indicator
ijr that dictates

whether the flow from node i to node j is routed XY or
YX. We also divide the nodes to four groups - left-down
(LD), left-up (LU), right-down (RD) and right-up (RU).
For example, the LD group consists of the nodes with
both coordinates smaller than ()yx, . In our case, index i
refers to the hotspot node. In order to find the maximum
we show two lemmas.
Lemma 1: In case of the single hotspot, and if all routes
are either XY or YX, the most loaded link is one of the
links adjacent to the hotspot.
Proof: Suppose by the way of contradiction that the most
loaded link, maxL , is not the incoming link of the hotspot.
Since the routing algorithm performs only one turn
(XY/YX) we have two possible locations of maxL .

(1) maxL shares one coordinate (X or Y) with the hotspot.
In this case, the flow reaches the hotspot with the addition
of the flow of the hotspot's closest neighbor.
(2) maxL does not share any coordinate with the hotspot

Without loss of generality, suppose that maxL located at
RU. That means that in order to reach the destination
within one turn, the flow is routed down/left or left/down
(depending on whether maxL is horizontal or vertical)
and contributes to link of the right of the hotspot.
In both cases the capacity of the adjacent link is larger or
equal to maxL .
Using

ijr indicators and the hotspot location (x,y), we can

calculate the flows on the hotspot incoming links. For
example, the flow on the left link is

()
()

fYXrxF
LDLUj

ijleft ⋅

==+= ∑

∈ ,

. This flow consists of the

flows from x nodes located on the same coordinate, which
are not split, and from the split flows from x(n-1) nodes
residing to the left of the hotspot that send the data using

YX. We calculate similar formulas to all the incoming
flows.
Lemma 2: The lowest maximum capacity achieved
when the absolute value of the difference D between
maximum horizontal and the vertical flows on the
adjacent links to the hotspot (()righttleft FFH ,maxmax =

and ()updown FFV ,maxmax =) is minimal.

Proof: Suppose by the way of contradiction that it is
possible to reduce the difference. This is done by re-
routing any flow (all the flows are the same) from the
most loaded link to any other link. If we reduce the
difference, we reduce the most loaded link which is
impossible.
Our algorithm relies on Lemma 1 and 2. In order to find
the optimum WOT route assignment we minimize the
difference D as described by the following equation -

() () () ()()rightleftrightleft FFFFVHD ,max,,maxminminmin maxmax =−=

while working with binary variables

ijr . The equation is

solved with known techniques like linear programming.
WOT General Heuristic
In general case, when the analytical solution is more
complex we suggest heuristic algorithm. We studied three
techniques –
Iterative Assignment – in this technique we first
calculate the

xyc ratio. The grid is initialized to STXY.

The algorithm serially scans the nodes and changes the
routes in such a way that XY ratio will be as close as
possible to the optimal ratio that was calculated before.
Random Assignment – in this technique we also
calculate the optimal ratio and scan the (S-D) pairs. For
each pair we assign XY routing with the probability equal
to the optimal ratio and YX with the complement
probability. In this way we’ll have approximately the
desired ratio.
Min-Max Assignment – seeks an optimal assignment
without prior knowledge of the optimal ratio. The
algorithm starts with STXY as its initial assignment. In
each step, the algorithm first finds the most loaded link, l,
and then goes over all the S-D pairs that contribute traffic
to l. For each such S-D pair, the algorithm calculates the
cost that would result from changing the route of this pair
(and only this pair) from XY to YX or vice versa. Among
these, the algorithm chooses the one that leads to the
lowest maximum capacity on links affected by the route
change. Subsequently, a new step starts with the new
route assignment. The algorithm converges either after a
predefined number of iterations or upon reaching a local
minimum. In the latter case, WOT can achieve even lower
cost than WTXY, since it is not limited to a single

xyc

ratio for the entire network.
The following graph shows the comparison between the
three systems. We compare here by the relative difference
between the achieved maximum capacity and the
maximum capacity of the WTXY algorithm. In our

simulation we randomize the number of hotspots in range
(1-3) and the also the location of the hotspots for grid size
from 5 to 10. For each grid size we perform 1000
simulations. The y-axis is

WTXY

WTXYWOT

C
CC

max

maxmax − .

5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

Grid Size

R
el

at
iv

e
Er

ro
r Min-max

Iterative
Random

Figure 4. Relative overhead for WOT route assignment

schemes vs. WTXY.
We can observe that the min-max scheme produces the
best results and is very close and sometimes even better
then WTXY in terms of maximum capacity.
In the rest of this paper, we use the min-max assignment
for evaluating the WOT algorithm.
Finally, a well known technique for ordered routing is
source-routing, where the source chooses the path to each
destination and sends it in the packet header. We
evaluated the cost of source routing in our architecture
using efficient path assignments. The required capacities
were very similar to those required by WOT, without
taking into account the increase in flow induced by the
large headers used in source-routing. Moreover, source
routing requires more lookup-table hardware for storing
the routes in each source. Therefore, we found source-
routing to be inferior to WOT in our design.

5. Evaluation

We turn to evaluate the capacity requirements of the
different routing schemes under typical on-chip traffic
patterns using simulations. First four sections show the
results for synthetic examples, and the last section shows
the result of the real-world design mapped to our
architecture.
5.1 Single Hotspot
We first examine traffic patterns in which all nodes
communicate with one hotspot with different routing
schemes. We compare the results to a theoretical lower-
bound, which is computed by dividing the hotspot's
communication requirements by the number of links
leading to it.

CORNER CENTER INTERNAL HOR. EDGE VER. EDGE
0

2

4

6

8

10

12

14

16

18

20

Location of the hot spot

C
ap

ac
ity

XY
TXY
STXY
WTXY
WOT

Figure 5. Maximum capacity requirements for one
hotspot on a 5x5 uniform grid at various locations

with different routing schemes.
We observe that XY requires the highest maximum
capacity in the most loaded link. This is expected, since
XY does not balance the load among links. By alternating
between XY and YX routes, TXY and WTXY
considerably reduce the capacity requirements, and are
optimal for hotspots located in the center or at a corner of
the grid. When the hotspot’s X and Y coordinates are not
symmetric, that is, when its distance from the edge on one
axis is greater than the other, splitting the traffic evenly
between the XY and YX routes is not optimal, and
WTXY can improve on TXY by up to 33%. Observe that
the WOT algorithm, despite of being in-order, produces a
cost that is very close to that of WTXY.
We further observe that locating a hotspot in the center of
the grid requires the smallest capacity, whereas a corner
hotspot requires the highest capacity. This is because in
the center, the load can be spread evenly among all four
directions. This suggests that smaller link capacity can be
allocated if the user is restricted in her placement of
hotspots. Some hotspot modules provide external
interfaces and must therefore reside at the edge of a chip.
Nevertheless, it is reasonable to require locating them in
the middle of an edge rather than in a corner, and
consequently save 33% in capacity. Figure 6 shows the
histogram of link capacities of the envelope for all
possible hot spot location for all the routing schemes. It is
evident that XY is highly unbalanced, with vertical links
five times as loaded as horizontal ones. In contrast, WOT
and WTXY can satisfy the design envelope with balanced
grids.

0 5 10 15 20
0

5

10

15

20

Capacity

N
um

be
r

of
 L

in
ks XY

TXY
STXY
WTXY
WOT

Figure 6. Histogram of link capacities in design

envelopes of all possible single hotspot locations.
5.2 Two hotspots

Next, we examine traffic patterns involving two hotspots.
We observe that in this case, the cost is highly dependent
on the distance between the hotspots. If the hotspots are
close together, there is a high concentration of traffic in
the area where they are located, whereas if they are far
apart, they barely impact each other, and the capacity
requirements are similar to those for a single hotspot. This
trend is depicted in Figure 7. We conclude that by
restricting the allowed distance between hotspots, one can
save up to 25% capacity. We can see that the weighted
algorithms present better results then regular and that the
ordered algorithms show costs that are very similar to the
un-ordered version (TXY vs. STXY and WTXY vs.
WOT).

1 2 3 4 5

15

20

25

30

Minimum Distance between the hotspots

C
ap

ac
ity

XY
TXY
STXY
WTXY
WOT

Figure 7. Maximum worst case link capacity required
for two hotspots versus the distance between them.

5.3 Three hotspots

Here, we examine the case of three hotspots. The minimal
distance between the closest pair among the three
hotspots is dominant in determining the load, as is shown
in Figure 8. Weighted algorithms present lower costs here
and the ordered version are very close to the flow-
splitting algorithms. In total, weighted algorithm
outperforms the regular one about 20%. We can also see
that for an unconstrained placement, WOT is even better.

1 2 3 4

20

30

40

Minimum Distance between the hotspots

C
ap

ac
ity

XY
TXY
STXY
WTXY
WOT

Figure 8. Maximum link capacity required for three

hotspots versus minimal distance between a pair of
them.

5.4 Complex traffic patterns

In this section, we compare the routing algorithm using
more realistic data patterns. We use traffic model
described in [3] . This random model has three parameters
for each node – a probability to be a hotspot, a probability
to send data to a hotspot node and a probability to send
data to a non-hotspot.
We use this model for various values of the probability.
For the symmetric graphs the weighted algorithms
produce similar costs as the non-weighted ones, but as the

asymmetry of the traffic pattern increases the influence of
the weight grows. One of the comparison graphs is shown
below. The graph presents average maximum capacities
for various grid sizes. Each grid size was simulated with
100 random patterns.

5 6 7 8 9
10

20

30

40

50

60

70

80

90

100

110

Grid Size

M
ax

. C

XY
TXY
WTXY
STXY
WOT

Figure 9. Comparison of routing schemes for 1.0=hsP

and 8.0=send
hsP , 05.0, =send

hsnoP for various grid size.
We can see that WOT incurs lower costs than all other
routing algorithms despite the constraint of in-order
routing. Further, STXY's maximum capacity is very close
to that of TXY. The following graph shows the average
improvement of the weighted algorithms for the same
case as the previous figure.

5 6 7 8 9
0.8

0.85

0.9

0.95

1

Grid Size

M
ax

. C
 R

at
io

C
max,wtxy

/C
max,txy

C
max,wot

/C
max,stxy

Figure 10 – Average improvement of the weighted

algorithms.

5.5 A Real World Example

In this section we show the results of the routing
algorithms applied to the MPEG 4 decoder design of
Bertozzi et al. [1]. The logic diagram of the design is
shown in Figure 11 .

Figure 11 – MPEG4 Decoder block diagram.

We can see that the design includes hotspots: the
SDRAM module has 7 connections; the SRAM module

has 4, while other modules have small connectivity to
other modules.
As discussed in Section 2, the design process has two
phases (1) Mapping of the logical graph to the NoC grid
and the placement of the modules; (2) routing the inter-
region flows on the NoC.
In previous examples, we worked with given mapped
designs. In order to compare the various routing
algorithms for the reference design, we need to first map
and place its modules in regions in our architecture. We
do so manually. The mapped graph is shown in Figure 12.

Figure 12 – MPEG4 mapped design.

The grid has 3 rows of regions. The first and the last rows
contain one CPU each and one large CR with 3 CNIs.
The middle row contains 2 CRs with 2 CNIs each. The
reference design is relatively small and thus mapped to a
small grid. Note that in future designs, modules are
expected to be much more complex.
Figure 13 shows the histogram of the link capacities of
this design for several routing schemes. We can see that
WOT produces the least loaded maximum link (1053
compared to 1539) and generates a balanced capacity
distribution, matching the results of our synthetic
experiments above.

81 243 405 567 729 891 1053 1215 1377 1539
0

5

10

15

Capacity

N
um

be
r

of
 L

in
ks

XY
YX
STXY
WOT

Figure 13 – MPEG4 links capacity histogram.

6. Hardware Costs

This section analyzes the incremental hardware costs for
supporting each of the different routing schemes in the
reference FPGA NoC design of Section 2. As noted
above, a simple router with 2 virtual channels to avoid

deadlock [18] supports all routing techniques presented in
this paper. The router is a constant part of the hardware
infrastructure laid by the vendor in the programmable
chip. The data width of the router and the maximum
frequency is dictated by the required capacity. The
difference between the routing techniques is in the CNI.
Recall that in our design, the CNI is located in the CR and
is partially implemented using programmable logic to
allow flexibility.
Figure 14 shows the schematic implementation of the
circuits that produce the control bit of the packet header
that determines the routing – XY or YX for each of the
routing techniques.

Figure 14 – Routing circuit implementation.

TXY is implemented with a simple flip-flop that inverts
its state every sent packet.
WTXY is a random number generator (RNG)
implemented using linear feedback shift register (LFSR)
and a comparator that compares the random value to the
predefined threshold (Cxy). If the random is larger than
Cxy – the routing bit is XY, and otherwise it is YX.
The STXY implementation is a bitwise XOR of the
source and destination IDs. The width of the XOR gate
depends on the number of bits required for unique node
ID representation. In our case, the ID width can be
limited to the logarithm of the number of nodes in the
grid - (()2log n). We implement it with 4-way LUTs’ tree
configured to perform XOR.
WOT routing circuit implementation uses Look-Up-
Tables (LUT) for logic implementation of the routing
decision. 4-way LUT is one of the basic elements of the
FPGA – c.f. [22] and is enough to implement up to 16
possible destinations. The 4-way LUT is easily expanded
by cascading and multiplexing to the desired width.
We implemented the routing decision circuits and
synthesized it using Synplify 8 synthesis tool. In our
implementation we used 5-bit ID for source and
destination identification. In Table 1 we show the actual
and theoretical cost of each routing scheme.

Table 1 – Routing circuit comparison for various
schemes.

Routin
g
Scheme

LUT count for n
– worst case

LUT
coun
t for
n = 5

Notes

TXY 1 1 -

WTXY 32 32 We used 16-bits
RNG and 16 bit
comparison

STXY ()()

 ⋅
2
log2log 2n

3 Bitwise xor of
()2log n words.Each

LUT implements
XOR of 4 bits

WOT 16
2n 2 Each LUT acts as a

16 bit ROM. We
need to cascade
several LUTs to
perform the
lookup.

This is the worst case. For sparse vectors the logic
implementation can be more efficient.
We can see that WOT routing is very efficient in terms of
hardware. Even though WTXY gate count does not
depend on the grid size at all, for smaller grids (up to
relatively large grids with n = 9) WOT performs better
than WTXY.
All the routing schemes presented here introduce a very
low overhead in terms of area and can be easily
implemented on the chip.

7. CONCLUSIONS

We have presented new hybrid architecture for
programmable chips based on NoC. We recognized that
the main challenge of such programmable chips is
designing flexible routing scheme to efficiently support
variety of application on a pre-built network
infrastructure. We studied routing schemes that can be
used in this architecture, and their impact on the capacity
requirements. We presented a simple yet efficient routing
algorithm, WOT, which can be configured to balance link
loads according to traffic patterns defined when the chip
is configured. Since WOT is an ordered algorithm, it
eliminates the need for large reordering buffers and
reduces the cost of the network. The cost of the WOT
implementation is low.

8. References

[1] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S.
Stergiou, L. Benini, G. De Micheli,”NoC Synthesis Flow for
Customized Domain Specific Multiprocessor Systems-on-
Chip”, DATE 2005
[2] D. Bertozzi and L. Benini, "Xpipes: A network-on-chip
architecture for gigascale systems-on-chip", Circuits and
Systems Magazine, IEEE Volume 4, Issue 2, 2004.
[3] E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny, "Efficient
Routing in Irregular Mesh NoCs", CCIT Report #554, Elec.
Eng. Dept, Technion, Sep. 2005.

[4] E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny, “QNoC: QoS
Architecture and Design Process for Networks on Chip”, JSA,
Feb 2004.
[5] Cidon and I. Keidar “Zooming in on Network-on-Chip
Architectures”, CCIT research report, December 2005.
[6] Chiu Ge-Ming. “The Odd-Even Turn Model for Adaptive
Routing”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 11. July 2000, pp. 729-738.
[7] W. Dally, B. Towles, “Route packets, not wires,” DAC,
Jun. 2001, pp. 684-689.
[8] K. Goossens, J. Dielissen, A. Radulescu. "AEthereal
Network on Chip: Concepts, Architectures, and
Implementations", IEEE Design and Test of Computers,
September/October, 2005.
[9] P. Guerrier and A. Greiner: “A Generic Architecture for
On-Chip Packet- Switched Interconnection”. DATE, March
2000
[10] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, A.
Kolodny. “Efficient Link Capacity and QoS Design for
Network-on-Chip”.In DATE 2006
[11] Jingcao Hu, Radu Marculescu, “DyAD - Smart Routing
for Networks-on-Chip”, DAC 2004
[12] Jantsch, J. Soininen, M. Forsell, L. Zheng, S. Kumar, M.
Millberg, J. Öberg. “Networks on chip”. In Workshop at ESSC
Conference, September 2001
[13] N. Kavaldjiev, G. J. M. Smit, P. T. Wolkotte, P. G. Jansen,
“Routing of guaranteed throughput traffic in a network-on-
chip”, Report Acquisitions Computer Hardware, November
2005
[14] M. Majer, C. Bobda, A. Ahmadinia, J. Teich, “Packet
Routing in Dynamically Changing Networks on Chip”. IPDPS
05 – Workshop 3, p 154b.
[15] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost,
“Hermes: an Infrastructure for Low Area Overhead Packet-
switching Networks on Chip”, Integration, the VLSI Journal,
Oct. 2004.
[16] H. Murata, K. Fujiyoshi,S. Nakatake, Y. Kajitani,
“Rectangle-Packing-Based Module Placement”, ICCAD-95, p
0472
[17] Radulescu, and K. Goossens, “Communication services for
networks on chip, in Domain-Specific Processors: Systems,
Architectures, Modeling, and Simulation”, Marcel Dekker, pp.
193–213, 2004
[18] D. Seo, A. Ali, W.-T. Lim, N. Rafique, M. Thottethodi.
“Near-optimal worst-case throughput routing for two-
dimensional mesh networks”. ISCA, 2005.
[19] B. Sethuraman, P. Bhattacharya, J. Khan, R. Vemuri.
“LiPaR: A Light Weight Parallel Router for FPGA based
Networks on Chip”, GLS VLSI. April 2005.
[20] B. Towles and W. J. Dally. “Worst-case Traffic for
Oblivious Routing Functions”. Computer Architecture Letters,
1, February 2002.
[21] B. Towles, W. J. Dally, S. Boyd. “Throughput-Centric
Routing Algorithm Design”, ACM symposium on Parallel
algorithms and architectures 2003, pp 200-209
[22] W. Wolf , FPGA-Based System Design, ISBN:
0131424610, June, 2004

