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Abstract 

 
We present a novel network-on-chip-based architecture 
for future programmable chips (FPGAs).  A key challenge 
for FPGA design is supporting numerous highly variable 
design instances with good performance and low cost.  
Our architecture minimizes the cost of supporting a wide 
range of design instances with given throughput 
requirements by balancing the amount of efficient hard-
coded NoC infrastructure and the allocation of “soft” 
networking resources at configuration time. Although 
traffic patterns are design-specific, the physical link 
infrastructure is a performance bottleneck, and hence 
should be hard-coded. It is therefore important to employ 
routing schemes that allow for high flexibility to 
efficiently accommodate different traffic patterns during 
configuration. We examine the required capacity 
allocation for supporting a collection of typical traffic 
patterns on such chips under a number of routing 
schemes. We propose a new routing scheme, Weighted 
Ordered Toggle (WOT), and show that it allows high 
design flexibility with low infrastructure cost. Moreover, 
WOT utilizes simple, small-area, on-chip routers, and has 
low memory demands.  
 
1. Introduction 
 
Networks-on-Chip (NoCs) e.g.  [1],  [4],  [5],  [8],  [9],  [12], 
 [15], [17] are commonly considered as a scalable solution 
for on-chip communication. However, it is also 
understood that there is no "one size fits all" NoC 
architecture  [5], as different silicon systems have very 
different requirements from their NoCs. For example, in a 
System-on-Chip (SoC), the network usage patterns are 
many times known a priory. Hence, the NoC can be 
synthesized with the “correct” link capacities for 
supporting the required usage  [10]. In CMP designs  [14], 
 [17] the traffic patterns depend on the various executed 
programs and hence can vary dramatically within the 

same system implementation. Therefore, CMPs’ NoC 
resources should support all perceivable software 
scenarios.    In contrast to both of the above, in a Field 
Programmable Gate Array (FPGA), the communication 
patterns are not known at fabrication time but may 
become much better determined when the chip is 
configured for a specific functionality.  This unique 
scenario implies that there a cost and performance 
advantage in splitting an FPGA’s NoC construction 
among the two design stages.  
In this paper, we introduce a NoC design process and 
architecture for FPGAs. A distinctive feature of FPGA 
systems is that they include a combination of hard and 
soft functionalities.  The hard functionality is 
implemented in silicon; it typically includes special 
purpose modules like processors, multipliers, external 
network and memory interfaces, etc. The soft 
functionality is configured using programmable elements 
(gate arrays, flip-flops, etc.) and routing components. 
Modern FPGAs contain hundreds of thousands of 
programmable elements, in addition to special purpose 
modules  [22]. As technology scales, the sheer number of 
logic units will render a flat FPGA chip design 
unmanageable. FPGA engineers are already experiencing 
unacceptable place-and-route times for large designs with 
tight timing constraints. To remedy this problem, modern 
FPGA CAD tools, like Xilinx’s PlanAhead, are already 
supporting a certain degree of hierarchical design: they 
allow designers to implement independent modules on the 
chip, which are later connected. We thus envision a future 
FPGA that is organized hierarchically, whereby the chip 
is divided into high-level regions (some programmable 
and some hard), interconnected by a NoC.  
When architecting an FPGA NoC, one has to decide 
which functionalities are implemented as hard cores and 
which are left as soft. There is a tradeoff between the 
flexibility offered by the soft part and the higher 
performance offered by hard part. Since inter-module 
communication is often a bottleneck, it is important to 



design the NoC architecture for high performance. We 
therefore advocate laying out the network infrastructure, 
including metal wires and hard-coded routers in silicon. 
At the same time, in order to allow for maximum 
flexibility, the NoC infrastructure should be able to 
accommodate multiple routing schemes and a large 
variety of traffic patterns. To this end, we allow network 
interfaces to be soft. Simplistic routing schemes, like XY, 
can employ small interfaces, whereas more elaborate 
source-routing schemes ( [1], [13]) may have the interfaces 
store large routing tables. Our novel architecture is 
detailed in Section  2. 
The main challenge is exploiting network resources 
efficiently, i.e., supporting a large number of program 
designs while investing minimal resources (wires and 
logic). In this context, there is an inter-play between the 
link capacity requirements and the routing scheme used to 
route packets between modules. A routing scheme that 
balances the load over all links readily supports more 
designs using smaller link capacities than an unbalanced 
one.  
Section  3 formally defines FPGA routing (on our 
suggested architecture) as an optimization problem. In 
order to study the inter-play between routing and capacity 
requirements, we define a new concept called design 
envelope, capturing the required capacity for a collection 
of traffic patterns. The more traffic patterns the envelope 
accommodates, the more flexibility is offered to the 
designer configuring the chip. We study the design 
envelopes required to accommodate a collection of 
patterns with each of the routing schemes.  
In Section  4, we present efficient solutions to the FPGA 
routing problem. Note that traditional routing algorithms 
like XY lead to unbalanced capacity allocation  [10], and 
are therefore not suitable for programmable chips. It is 
possible to improve the balance by splitting the flow, 
toggling between sending on XY and YX routes  [18] 
 [20]; we call this approach toggle XY (TXY). However, 
TXY is not optimal when traffic requirements are not 
symmetric, (which is very common in HW architectures). 
We improve it by adding weights to flow division (based 
on the design pattern), and call the resulting algorithm 
weighted toggle XY (WTXY).  
Unfortunately, both TXY and WTXY have a major 
disadvantage – they split a single flow among two routes. 
This can lead to out-of-order arrivals, requiring large 
re-order buffers, especially in congested networks. 
Moreover, re-ordering requires the addition of sequence 
numbers to packet headers. We therefore suggest the use 
of ordered algorithms, which do not split flows, and 
ensure in-order arrivals. We do this by selecting one route 
(XY or YX) to each source-destination flow. We present 
the weighted ordered toggle (WOT) algorithm, which 
assigns XY and YX routes to source-destination pairs in a 
way that reduces the maximum network capacity for a 
given traffic pattern. The WOT routes are calculated 

when the chip is programmed, and are loaded into a 
vector holding a bit per destination in the CNI. 
In typical SoC and FPGA designs, the communication 
load is not divided evenly among all modules. Rather, a 
handful of modules are hotspot modules (or in short, 
hotspots), which communicate with many other modules. 
A hotspot can be an interface to external communication 
or memory, a master module that communicates with a 
number of slaves, a dispatcher that forwards requests 
from multiple masters to multiple slaves  [17], etc. 
Additional examples are given by  [1], e.g., in one of their 
reference designs, an SDRAM module has 7 connections, 
and an SRAM module has 4, while other modules have 2 
or 3 connections each. We therefore focus on traffic 
patterns involving one ore more hotspots, (including a 
mapping of the reference example above to our 
architecture), when evaluating our solutions in Section  5.   
Our evaluation shows that WOT routing reduces the link 
capacity cost across a wide range of designs. In some 
cases, its most loaded link requires 40% less capacity than 
the maximum required with XY, and up to 15% less 
capacity than with TXY. 
We further compare unconstrained placement of hotspots, 
where the designer can locate hotspots anywhere on the 
chip, with constrained placement. Our results (cf. Section 
 5) show that constrained placement can significantly 
reduce the cost. For example, unconstrained placement of 
two hotspots with WOT routing requires 20% more 
capacity (in the busiest link) than constrained placement 
that dictates that the distance between the hotspots is at 
least three hops. With three hotspots, unconstrained 
placement requires 35% more capacity than placing the 
hotspots at a distance of at least three hops.  
Finally, in Section  6, we present implementations of the 
four routing schemes studied in this paper. Since all our 
schemes can be supported by regular router  [4],  [20] we 
implemented only the logic required for the routing 
decision leaving out  other router design issues like 
buffers and scheduling. We show that all of our studied 
routing schemes require very few programmable elements 
(at most tens) and hence occupy very little area on the 
chip. 
In summary, the main contributions of this paper are -  
1. A new NoC-based architecture for FPGA, which 
balances between the flexibility of soft logic and the 
better performance of dedicated logic.  
2.  A design methodology for such an architecture. 
3. A balanced in-order routing algorithm for this 
architecture, which minimizes the cost of supporting a 
large set of designs within given performance 
requirements. 
 
1.1 Related Work 
 
Sethuraman et al.  [19] propose a fully soft NoC router 
design using current-day FPGA technology, which does 
not include any burned-in (hard) NoC infrastructure. In 



contrast, we propose an architecture for future FPGA 
platforms, which is partly embedded supporting in silicon 
and partly defined and tuned at configuration-time.  Hard 
routers offer better performance, lower power and better 
silicon area usage than their soft counterparts.  On the 
other hand, any excess NoC resource that is not utilized in 
a specific design, cannot be converted to another usage. 
DyNoC  [14] is an architecture for adaptive routing using 
reconfigurable hardware.  There are several additional 
works that present adaptive and dynamic routing, like 
DyAd  [11], and Odd-Even routing by Chiu  [6]. Unlike 
our solution, these solutions do not perform offline 
optimizations at configuration time; instead, they 
dynamically changes routing policies on the fly. This 
approach is very effective when the traffic pattern is not 
known and the network should balance itself during the 
runtime. However, an FPGA’s communication pattern is 
many times determined at configuration time; offline 
optimization can be very effective. The simpler router 
design, in turn, reduces hardware cost in terms of area 
and power consumption. We therefore focus on static 
routing schemes in this paper.  
The TXY algorithm was independently developed by Seo 
et al. for interconnection networks under the name of 
O1TURN  [18]. It has been shown to be worst-case near-
optimal for uniform traffic, where all nodes send and 
receive at the same rate  [20]. In this paper, we focus on 
typical hardware traffic patterns, where some modules 
transmit and receive more than others. For such patterns, 
our weighted algorithms outperform TXY. Moreover, 
TXY results in out-of-order packet reception and hence 
requires large re-order buffers. Towels et al.  [21] use 
linear programming for solving general flow problems for 
uniform traffic, but do not cover the case of asymmetric 
non-uniform patterns as considered herein.  
 
2. High Level Architecture 
 
This section presents the proposed architecture for NoC-
based FPGA. It first discusses our proposed hierarchical 
chip structure and the advantages of such an organization. 
We then discuss how the NoC paradigm is applied to 
FPGA. Afterwards, we discuss which parts of the system 
are hard-coded on the chip, and which are configurable 
(soft). Finally, we discuss design methodology for NoC-
based FPGA.  
Hierarchical Organization 
We propose a hierarchical architecture for future FPGAs, 
consisting of two types of regions connected by a NoC:  
(1) Configurable Regions (CR), resembling today’s 
FPGA, consisting of programmable logic, which is a 
collection of possibly thousands of lookup tables (LUTs) 
and an internal programmable routing matrix; and (2) 
Functional Regions (FR), performing a predefined task, 
e.g., general purpose processor, DSP, fast external 
interface, etc. FRs are implemented as hard IP cores in 

order to improve performance and reduce power 
consumption.  
There are two main reasons for such hierarchical and 
modular structure for large programmable chips. First, 
CAD place-and-route tools cannot cope effectively with a 
flat design including a large number of modules. Even 
today, commercial tools like Xilinx's PlanAhead, and 
Synplicity's Amplify support a hierarchical design: the 
chip designer divides the flat chip into regions, 
designating which modules reside in each region. Then, 
place-and-route is run per region. In the last stage, 
connections among regions are wired using remaining 
resources. Second, long wires incur a high cost in terms 
of delay and power. In modern FPGAs, each LUT can be 
wired to any other element on the chip. Utilizing the long 
wires between remote elements induces long delays. Our 
design eliminates such long wires, and utilizes direct 
wires only within the relatively small CRs.  
NoC 
The regions are interconnected using a NoC.  There are 
several reasons to base the future FPGA on NoC. First, 
NoC is much more scalable than all other interconnect 
solutions, such as point-to-point wires, buses, etc.  [4]. 
Another reason is spatial reuse, which allows for scalable 
power cost compared to the increased routing matrix that 
is used in traditional FPGA. Moreover, FPGAs are often 
used as prototypes for ASIC. If the ASIC is migrating to 
NoC, the FPGA architecture should support NoC as well. 
In our architecture, the NoC is a uniform mesh and each 
region is connected to a router via a local router interface. 
Like other NoCs, we use wormhole routing. The router 
structure is very similar to ones in previous NoC designs 
(e.g.,  [8], [3], [15], [1]) and includes support for multiple 
QoS classes, similar to QNoC  [4]. Consequently, we do 
not detail the design here.   
While it is possible to also provide direct communication 
wires between adjacent CRs not via the NoC, we chose to 
avoid such communication in order to simplify the design 
and the inter-region communication methodology.  
Soft vs. Hard 
The NoC consists of several components, like routers, 
wires and a network interface. The routers and links are 
part of the NoC’s hard-core infrastructure, so as to allow 
maximum performance in terms of area and power. As 
this hard-coded infrastructure is always laid out, it is 
designed to support a large class of applications.   
Due to the fact that FPGA has to support a lot of 
unknown applications with different traffic patterns, we 
suggest a configurable network interface (CNI), which is 
a mix of soft and hard parts. Each region is connected to 
the network via at least one CNI. A CR may have several 
CNIs, which can be configured to work together (when 
the CR acts as a single task module) or apart (when a CR 
is divided into multiple modules). 
 The CNI performs the following functions: network 
physical interface, buffering, reordering, fragmentation/ 
reassembly (from application specific blocks to packets 



and from packets to wormhole flits), interface to the 
region modules and routing support. Most of these 
functions are not application-specific, and are therefore 
hard coded in order to achieve better power, area, and 
performance. However, there are several application 
specific functions, like adaptation layers, playback and 
routing. The routing logic needs to be flexible, as 
different applications have different communication 
needs. Therefore, the routing layer and the application-
specific layers are configurable, i.e., implemented from 
programmable elements. 
 
Example Layout 

 
Figure 1. Example of network on programmable chip. 

Figure 1 depicts an example chip design using our 
architecture. Some links (sets of parallel wires) between 
routers are routed across the CRs. This can be done since 
the network and CRs are designed by the same vendor at 
the same time, and therefore, it is possible to deploy long 
wire repeaters at the right places in the silicon of the CRs. 
This allows for a regular mesh topology, and avoids the 
complexity that can result from an irregular mesh  [18].  
 
Design Methodology 
Given the hierarchical chip organization, the design 
methodology for programming such FPGA consists of the 
following phases: (i) division into high-level modules, 
roughly the size of CRs; (ii) placement of high-level 
modules;  (iii) implementation of each module within a 
region; and (iv) inter-region routing.  
In the placement phase, the designer performs the 
mapping of the high-level modules to the chip's 
functional and configurable regions. This process 
considers the gate count and functionality of the logical 
modules, and chooses CRs or FRs that can accommodate 
them. Clearly, modules with heavy communication 
requirements between them should be placed as close as 
possible, on the same CR when space allows.   
Next, the routing of the inter-module communication is 
performed. The routing should comply with the 
constraints (capacity) of the pre-built network.  

Placement was extensively studied in VLSI – e.g.  [16], 
and known techniques are, by-and-large, applicable to our 
design. Therefore, in this paper, we focus on the routing 
phase of the design, which is unique to NoC-based 
FPGA.  
 
3. FPGA Routing Problem Definition 
 
A NoC-based FPGA is provided to the user with a pre-
built NoC infrastructure. This network needs to be 
flexible enough to support many user applications that are 
unknown during the design of the network. A routing 
scheme for this network needs to address the challenge of 
providing high resource utilization with a low 
infrastructure cost. Thus, routing algorithms should be 
both efficient and flexible.  
This section defines FPGA routing as an optimization 
problem. It assumes the placement phase is complete, and 
inter-region traffic requirements are known.  
A grid is comprised a set of vertexes V and edges E. 
Every node on the grid has unique (x,y) coordinates. Each 
coordinate ranges between 0 and n-1.  
A node represents a module attached to a router, which 
can be a region or part thereof. 
A traffic pattern is a function +ℜ→2:Vf . This 
function defines the flows between every pair of nodes. A 
class of traffic patterns is a set F.   
More accurately, these flows should be accommodated by 
the link capacities. They do not necessarily represent the 
peak traffic on the link, in case queuing delays are 
tolerated during peaks. For example, capacity can be 
allocated for accommodation 90% of the traffic demands, 
implying that say 99% of the traffic has a known delay 
bound. 
A path from v1 to v2 is a connected sequence of links 
that starts at node 1v  and ends at node 2v .  
A routing algorithm A defines the fractions of the flows 
that are sent over all possible routes from every source to 
every destination. For example, half of the flow is sent 
over one possible route and the other half over another 
route.  
An ordered routing does not split flows, i.e. each pair is 
mapped to a single path.  
The link capacity for given A and f is the sum of all the 
flows that are routed on this link.  
The maximum capacity for given A and f is the capacity 
of the most loaded link in the network for a given traffic 
requirement pattern. On uniform meshes, this will dictate 
the capacity of all links. The maximum capacity reflects 
the cost of supporting the given traffic pattern. 
A routing algorithm should minimize the maximum 
capacity, i.e., the cost for supporting a given f.  
The design envelope of a given algorithm for a class of 
traffic requirement patterns F is the minimal assignment 
of capacities to the links in the NoC graph, which 
supports every traffic pattern in F. Each link's capacity in 



the envelope is its maximum capacity over all traffic 
patterns in the specified class with a given routing 
algorithm A. Uniform design envelopes are preferred.  
Another metric that is used to evaluate the routing 
algorithms is the gate count. Gate count is the amount of 
logic required for the implementation of the routing 
decision circuit. Clearly, lower gate counts are preferred.  
 
4. Routing Algorithms 
 
We study and propose several routing algorithms and 
evaluate them in terms of maximum capacity and design 
envelope.  This section presents the routing techniques 
and analyzes the efficiency of the algorithms.  
 
4.1 Flow splitting algorithms 
 
This section presents routing algorithms that improve the 
network's balance by splitting flows among several paths. 
Before presenting these algorithms, we recall the simple 
and well-known XY and YX routing algorithms, upon 
which they improve.  
XY routing first routes packets horizontally, towards 
their X coordinate, and then vertically, towards their Y 
coordinate. XY is commonly used in NoCs thanks to its 
simplicity and inherent deadlock-freedom. However, it 
induces unbalanced link loads  [10].  
YX routing uses the same technique but reverses the 
order of the vertical and horizontal routing.   
Toggle XY Routing (TXY)  [20] improves XY's load-
balancing by routing half the packets in the XY path and 
the other half in the YX path. Each packet header 
includes a bit indicating whether its route is XY or YX. 
Each CNI toggles between XY and YX packets. This 
scheme avoids deadlocks by using two virtual channels 
(VCs) per router: one for XY paths and one for YX with 
any fair scheduling scheme between VCs. 
Weighted Toggle XY Routing (WTXY) improves TXY 
by sending different portions of flows on the XY and YX 
paths.  
Splitting the traffic evenly between XY and YX routes, as 
in TXY, does not always achieve optimal load balancing. 
In some cases, sending a different portion of the traffic by 
each route may achieve better load-balancing and thus 
reduce capacity requirements. For example, Figure 2 
shows how the maximum link capacity is affected by the 
fraction of traffic routed XY on a 5x5 grid with two 
hotspots at locations (1,1) and (2,1) on the grid, where 
each node send the same amount of data to every hotspot.  
Here, optimal capacity is achieved when roughly 2/3 of 
the traffic is routed XY, offering an almost 20% 
improvement over TXY. 
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Figure 2. The impact of the XY fraction on 5x5 grid 

with two hotspots at locations (2,1) and (1,1). 
WTXY therefore chooses the best XY fraction, xyc , 

according to given traffic requirements. This fraction is 
calculated offline for each application before the chip 
programming phase, and is loaded to the CNI with the 
rest of the configuration data. The calculation of xyc  is 

beyond the scope of this paper since our main focus is on 
ordered algorithms.  
WTXY can be implemented (see Section  6) using a 
random number generator and a comparator in the 
network interface that assigns the route bit in the packet 
header according to xyc . Deadlocks are avoided the same 

way as in TXY.  
 
4.2 Ordered algorithms 
 
The main problem of the algorithms described above is 
the flow splitting. When flows are sent over multiple 
routes, the packet arrival order may differ from the 
sending order. This requires the receiver CNI to maintain 
large reordering buffers. Consider, e.g. a relatively small 
window of n2  outstanding packets, ( 2n ) nodes 
communicating with each hotspot and about 10% of the 
nodes are hotspots. 
In this case total memory requirement is ( ) 32 21.0 nn ⋅⋅ . If 
n is 7, we have to put enough memory for 16 K packets. 
The situation is even worse in case there are multiple 
classes of services or more source destination (S-D) pairs.  
Moreover, the flow splitting routing requires 
communication overhead to carry the numbering of the 
packets to allow the reordering at the destination.  
We therefore propose ordered algorithms, in which all the 
packets between the same S-D pair are sent over the same 
route. Hence, packets arrive in the order that they are 
sent, and no re-order buffer is required.  
A simple way to assign routes per flow is Source Toggle 
XY - STXY. This algorithm toggles the routes of entire 
flows. To create a better spreading of the flows, we use 
both source and destination addresses to assign the route. 
For example, a bitwise XOR of the source and destination 
addresses is used to determine the route. Using this 
technique gives us a close approximation to TXY with a 
small quantization error since half of the flows is sent on 
XY path and the other half on YX. 
However, due to the previously shown advantages of 
weighted routing, we suggest the Weighted Ordered 
Toggle (WOT) algorithm. WOT divides the source-



destination routes in a way that produces best result in 
terms of maximum capacity.  
The remaining challenge is to develop a technique for 
effectively choosing the route of each source-destination 
pair. First, we present analytical solution for a single 
hotspot and later show heuristic algorithm for the general 
cases. 
WOT Optimal Solution for Single Hotspot  
In case of a single hotspot, we have a single destination 
on the square grid and all other nodes on the grid send the 
same flow f to it. Consider a hotspot at coordinates (x,y), 
as shown in Figure 3 (coordinates range from 0 to n-1).   

 
Figure 3. Location of a single hotspot. 

For each node we define a binary indicator 
ijr  that dictates 

whether the flow from node i to node j is routed XY or 
YX. We also divide the nodes to four groups - left-down 
(LD), left-up (LU), right-down (RD) and right-up (RU). 
For example, the LD group consists of the nodes with 
both coordinates smaller than ( )yx, . In our case, index i 
refers to the hotspot node. In order to find the maximum 
we show two lemmas. 
Lemma 1:  In case of the single hotspot, and if all routes 
are either XY or YX, the most loaded link is one of the 
links adjacent to the hotspot. 
Proof: Suppose by the way of contradiction that the most 
loaded link, maxL , is not the incoming link of the hotspot.  
Since the routing algorithm performs only one turn 
(XY/YX) we have two possible locations of maxL .  

(1) maxL  shares one coordinate (X or Y) with the hotspot. 
In this case, the flow reaches the hotspot with the addition 
of the flow of the hotspot's closest neighbor. 
(2) maxL  does not share any coordinate with the hotspot 

Without loss of generality, suppose that maxL located at 
RU. That means that in order to reach the destination 
within one turn, the flow is routed down/left or left/down 
(depending on whether maxL  is horizontal or vertical) 
and contributes to link of the right of the hotspot.  
In both cases the capacity of the adjacent link is larger or 
equal to maxL  .                                                                    
Using 

ijr  indicators and the hotspot location (x,y), we can 

calculate the flows on the hotspot incoming links. For 
example, the flow on the left link is 

( )
( )

fYXrxF
LDLUj

ijleft ⋅







==+= ∑

∈ ,

. This flow consists of the 

flows from x nodes located on the same coordinate, which 
are not split, and from the split flows from x(n-1) nodes 
residing to the left of the hotspot that send the data using 

YX. We calculate similar formulas to all the incoming 
flows. 
Lemma 2:  The lowest maximum capacity achieved 
when the absolute value of the difference D  between 
maximum horizontal and the vertical flows on the 
adjacent links to the hotspot ( ( )righttleft FFH ,maxmax =  

and ( )updown FFV ,maxmax = ) is minimal. 

Proof: Suppose by the way of contradiction that it is 
possible to reduce the difference. This is done by re-
routing any flow (all the flows are the same) from the 
most loaded link to any other link. If we reduce the 
difference, we reduce the most loaded link which is 
impossible.                                                                         
Our algorithm relies on Lemma 1 and 2. In order to find 
the optimum WOT route assignment we minimize the 
difference D  as described by the following equation -  

( ) ( ) ( ) ( )( )rightleftrightleft FFFFVHD ,max,,maxminminmin maxmax =−=

 
while working with binary variables 

ijr . The equation is 

solved with known techniques like linear programming. 
WOT General Heuristic 
In general case, when the analytical solution is more 
complex we suggest heuristic algorithm. We studied three 
techniques –  
Iterative Assignment – in this technique we first 
calculate the 

xyc  ratio. The grid is initialized to STXY. 

The algorithm serially scans the nodes and changes the 
routes in such a way that XY ratio will be as close as 
possible to the optimal ratio that was calculated before.  
Random Assignment – in this technique we also 
calculate the optimal ratio and scan the (S-D) pairs. For 
each pair we assign XY routing with the probability equal 
to the optimal ratio and YX with the complement 
probability. In this way we’ll have approximately the 
desired ratio.  
Min-Max Assignment – seeks an optimal assignment 
without prior knowledge of the optimal ratio. The 
algorithm starts with STXY as its initial assignment. In 
each step, the algorithm first finds the most loaded link, l, 
and then goes over all the S-D pairs that contribute traffic 
to l. For each such S-D pair, the algorithm calculates the 
cost that would result from changing the route of this pair 
(and only this pair) from XY to YX or vice versa. Among 
these, the algorithm chooses the one that leads to the 
lowest maximum capacity on links affected by the route 
change. Subsequently, a new step starts with the new 
route assignment. The algorithm converges either after a 
predefined number of iterations or upon reaching a local 
minimum. In the latter case, WOT can achieve even lower 
cost than WTXY, since it is not limited to a single 

xyc  

ratio for the entire network.  
The following graph shows the comparison between the 
three systems. We compare here by the relative difference 
between the achieved maximum capacity and the 
maximum capacity of the WTXY algorithm. In our 



simulation we randomize the number of hotspots in range 
(1-3) and the also the location of the hotspots for grid size 
from 5 to 10. For each grid size we perform 1000 
simulations. The y-axis is 
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Figure 4. Relative overhead for WOT route assignment 

schemes vs. WTXY. 
We can observe that the min-max scheme produces the 
best results and is very close and sometimes even better 
then WTXY in terms of maximum capacity.   
In the rest of this paper, we use the min-max assignment 
for evaluating the WOT algorithm.   
Finally, a well known technique for ordered routing is 
source-routing, where the source chooses the path to each 
destination and sends it in the packet header. We 
evaluated the cost of source routing in our architecture 
using efficient path assignments. The required capacities 
were very similar to those required by WOT, without 
taking into account the increase in flow induced by the 
large headers used in source-routing. Moreover, source 
routing requires more lookup-table hardware for storing 
the routes in each source. Therefore, we found source-
routing to be inferior to WOT in our design.  
 
5. Evaluation 
 
We turn to evaluate the capacity requirements of the 
different routing schemes under typical on-chip traffic 
patterns using simulations. First four sections show the 
results for synthetic examples, and the last section shows 
the result of the real-world design mapped to our 
architecture. 
5.1 Single Hotspot 
We first examine traffic patterns in which all nodes 
communicate with one hotspot with different routing 
schemes.  We compare the results to a theoretical lower-
bound, which is computed by dividing the hotspot's 
communication requirements by the number of links 
leading to it. 
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Figure 5. Maximum capacity requirements for one 
hotspot on a 5x5 uniform grid at various locations 

with different routing schemes. 
We observe that XY requires the highest maximum 
capacity in the most loaded link. This is expected, since 
XY does not balance the load among links. By alternating 
between XY and YX routes, TXY and WTXY 
considerably reduce the capacity requirements, and are 
optimal for hotspots located in the center or at a corner of 
the grid. When the hotspot’s X and Y coordinates are not 
symmetric, that is, when its distance from the edge on one 
axis is greater than the other, splitting the traffic evenly 
between the XY and YX routes is not optimal, and 
WTXY can improve on TXY by up to 33%. Observe that 
the WOT algorithm, despite of being in-order, produces a 
cost that is very close to that of WTXY. 
We further observe that locating a hotspot in the center of 
the grid requires the smallest capacity, whereas a corner 
hotspot requires the highest capacity. This is because in 
the center, the load can be spread evenly among all four 
directions. This suggests that smaller link capacity can be 
allocated if the user is restricted in her placement of 
hotspots. Some hotspot modules provide external 
interfaces and must therefore reside at the edge of a chip. 
Nevertheless, it is reasonable to require locating them in 
the middle of an edge rather than in a corner, and 
consequently save 33% in capacity. Figure 6 shows the 
histogram of link capacities of the envelope for all 
possible hot spot location for all the routing schemes. It is 
evident that XY is highly unbalanced, with vertical links 
five times as loaded as horizontal ones. In contrast, WOT 
and WTXY can satisfy the design envelope with balanced 
grids. 
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Figure 6. Histogram of link capacities in design 

envelopes of all possible single hotspot locations. 
5.2 Two hotspots 
 



Next, we examine traffic patterns involving two hotspots. 
We observe that in this case, the cost is highly dependent 
on the distance between the hotspots. If the hotspots are 
close together, there is a high concentration of traffic in 
the area where they are located, whereas if they are far 
apart, they barely impact each other, and the capacity 
requirements are similar to those for a single hotspot. This 
trend is depicted in Figure 7. We conclude that by 
restricting the allowed distance between hotspots, one can 
save up to 25% capacity.  We can see that the weighted 
algorithms present better results then regular and that the 
ordered algorithms show costs that are very similar to the 
un-ordered version (TXY vs. STXY and WTXY vs. 
WOT).  
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Figure 7. Maximum worst case link capacity required 
for two hotspots versus the distance between them. 

 
5.3 Three hotspots 
 
Here, we examine the case of three hotspots. The minimal 
distance between the closest pair among the three 
hotspots is dominant in determining the load, as is shown 
in Figure 8. Weighted algorithms present lower costs here 
and the ordered version are very close to the flow-
splitting algorithms. In total, weighted algorithm 
outperforms the regular one about 20%. We can also see 
that for an unconstrained placement, WOT is even better.  
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Figure 8. Maximum link capacity required for three 

hotspots versus minimal distance between a pair of 
them.  

 
5.4 Complex traffic patterns 
 
In this section, we compare the routing algorithm using 
more realistic data patterns. We use traffic model 
described in  [3] . This random model has three parameters 
for each node – a probability to be a hotspot, a probability 
to send data to a hotspot node and a probability to send 
data to a non-hotspot.  
We use this model for various values of the probability. 
For the symmetric graphs the weighted algorithms 
produce similar costs as the non-weighted ones, but as the 

asymmetry of the traffic pattern increases the influence of 
the weight grows. One of the comparison graphs is shown 
below. The graph presents average maximum capacities 
for various grid sizes. Each grid size was simulated with 
100 random patterns.  
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Figure 9. Comparison of routing schemes for 1.0=hsP  

and 8.0=send
hsP  , 05.0, =send

hsnoP  for various grid size. 
We can see that WOT incurs lower costs than all other 
routing algorithms despite the constraint of in-order 
routing. Further, STXY's maximum capacity is very close 
to that of TXY. The following graph shows the average 
improvement of the weighted algorithms for the same 
case as the previous figure.  
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Figure 10 – Average improvement of the weighted 

algorithms. 
 
5.5 A Real World Example 
 
In this section we show the results of the routing 
algorithms applied to the MPEG 4 decoder design of 
Bertozzi et al.  [1]. The logic diagram of the design is 
shown in Figure 11 .  

 
Figure 11 – MPEG4 Decoder block diagram. 

We can see that the design includes hotspots: the 
SDRAM module has 7 connections; the SRAM module 



has 4, while other modules have small connectivity to 
other modules. 
As discussed in Section  2, the design process has two 
phases  (1) Mapping of the logical graph to the NoC grid 
and the placement of the modules; (2) routing the inter-
region flows on the NoC. 
In previous examples, we worked with given mapped 
designs. In order to compare the various routing 
algorithms for the reference design, we need to first map 
and place its modules in regions in our architecture. We 
do so manually. The mapped graph is shown in Figure 12.  

 
Figure 12 – MPEG4 mapped design. 

The grid has 3 rows of regions. The first and the last rows 
contain one CPU each and one large CR with 3 CNIs. 
The middle row contains 2 CRs with 2 CNIs each. The 
reference design is relatively small and thus mapped to a 
small grid. Note that in future designs, modules are 
expected to be much more complex.  
Figure 13 shows the histogram of the link capacities of 
this design for several routing schemes. We can see that 
WOT produces the least loaded maximum link (1053 
compared to 1539) and generates a balanced capacity 
distribution, matching the results of our synthetic 
experiments above.  
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Figure 13 – MPEG4 links capacity histogram. 

 
6. Hardware Costs 
 
This section analyzes the incremental hardware costs  for 
supporting each of the different routing schemes in the 
reference FPGA NoC design of Section  2. As noted 
above, a simple router with 2 virtual channels to avoid 

deadlock  [18] supports all routing techniques presented in 
this paper. The router is a constant part of the hardware 
infrastructure laid by the vendor in the programmable 
chip. The data width of the router and the maximum 
frequency is dictated by the required capacity. The 
difference between the routing techniques is in the CNI. 
Recall that in our design, the CNI is located in the CR and 
is partially implemented using programmable logic to 
allow flexibility.  
Figure 14 shows the schematic implementation of the 
circuits that produce the control bit of the packet header 
that determines the routing – XY or YX for each of the 
routing techniques.  

 
Figure 14 – Routing circuit implementation. 

TXY is implemented with a simple flip-flop that inverts 
its state every sent packet.  
WTXY is a random number generator (RNG) 
implemented using linear feedback shift register (LFSR) 
and a comparator that compares the random value to the 
predefined threshold (Cxy). If the random is larger than 
Cxy – the routing bit is XY, and otherwise it is YX.  
The STXY implementation is a bitwise XOR of the 
source and destination IDs. The width of the XOR gate 
depends on the number of bits required for unique node 
ID representation. In our case, the ID width can be 
limited to the logarithm of the number of nodes in the 
grid -  ( ( )2log n ). We implement it with 4-way LUTs’ tree 
configured to perform XOR.  
WOT routing circuit implementation uses Look-Up-
Tables (LUT) for logic implementation of the routing 
decision. 4-way LUT is one of the basic elements of the 
FPGA – c.f.  [22] and is enough to implement up to 16 
possible destinations. The 4-way LUT is easily expanded 
by cascading and multiplexing to the desired width.  
We implemented the routing decision circuits and 
synthesized it using Synplify 8 synthesis tool. In our 
implementation we used 5-bit ID for source and 
destination identification. In Table 1 we show the actual 
and theoretical cost of each routing scheme.   

Table 1 – Routing circuit comparison for various 
schemes. 

Routin
g 
Scheme 

LUT count for n 
– worst case 

LUT 
coun
t for 
n = 5 

Notes 

TXY 1 1 - 



WTXY 32 32 We used 16-bits 
RNG and 16 bit 
comparison 

STXY ( )( )







 ⋅
2
log2log 2n

 

3 Bitwise xor of 
( )2log n  words.Each 

LUT implements 
XOR of 4 bits 

WOT  16
2n  2 Each LUT acts as a 

16 bit ROM. We 
need to cascade 
several LUTs to 
perform the 
lookup.  

This is the worst case. For sparse vectors the logic 
implementation can be more efficient. 
We can see that WOT routing is very efficient in terms of 
hardware. Even though WTXY gate count does not 
depend on the grid size at all, for smaller grids (up to 
relatively large grids with n = 9) WOT performs better 
than WTXY.   
All the routing schemes presented here introduce a very 
low overhead in terms of area and can be easily 
implemented on the chip.  
 
7. CONCLUSIONS 
 
We have presented new hybrid architecture for 
programmable chips based on NoC. We recognized that 
the main challenge of such programmable chips is 
designing flexible routing scheme to efficiently support 
variety of application on a pre-built network 
infrastructure. We studied routing schemes that can be 
used in this architecture, and their impact on the capacity 
requirements. We presented a simple yet efficient routing 
algorithm, WOT, which can be configured to balance link 
loads according to traffic patterns defined when the chip 
is configured. Since WOT is an ordered algorithm, it 
eliminates the need for large reordering buffers and 
reduces the cost of the network. The cost of the WOT 
implementation is low.  
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