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Abstract—We consider the problem of in-network compressed
sensing, where the goal is to recover a global, sparse signal
from local measurements using only local computation and
communication. Qur approach to this distributed compressed
sensing problem is based on the centralized Iterative Hard
Thresholding algorithm (IHT). In time-varying networks, the
network dynamics necessarily introduce inaccuracies that are not
present in a centralized implementation of IHT. To accommodate
these inaccuracies, we show how centralized IHT can be extended
to include inexact computations while still providing the same
recovery guarantees. We then leverage these new theoretical
results to develop a distributed version of IHT for dynamic
networks. Evaluations show that our algorithm outperforms the
best-known existing solution in both time and bandwidth by
several orders of magnitude.

Index Terms—distributed algorithm, iterative hard threshold-
ing, distributed consensus

I. INTRODUCTION

Recently there has been a great of deal of interest of interest
in compressed sensing over networks, including applications
such as event detection in sensor networks [1], traffic mon-
itoring in vehicle networks [2], and collaborative cognitive
radio networks [3]. In these settings, linear measurements of a
sparse signal are taken by participants or agents in a network,
and the goal is for all agents to recover the signal from
their collective measurements. Since the measurements are
distributed throughout the network, it is desirable to perform
this recovery within the network in a distributed fashion.

Several recent works have proposed algorithms for dis-
tributed compressed sensing in static networks [3]-[6]. In
sensor networks and radio networks, messages can be lost due
to interference, and in vehicle networks, the network topology
changes due to mobility. Thus, it is important for distributed
compressed sensing algorithms to accommodate networks with
time-varying topologies.

As far as we are aware, the only previously proposed
algorithm that can be applied to distributed compressed sens-
ing in a time-varying network is the distributed subgradient
algorithm [7]. While this algorithm converges to the optimal
solution of the compressed sensing problem, its convergence
rate has been observed to be slow, and thus it incurs a
high bandwidth cost. This cost is problematic in resource-
constrained networks like sensor and radio networks.

We propose an alternative approach to distributed com-
pressed sensing that is based on Iterative Hard Thresholding
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(IHT) [8]. In a centralized setting, IHT offers the benefit
of computational simplicity when compared to many other
recovery methods. Our distributed approach maintains this
same computational benefit. In addition, recent work [9] has
established that centralized IHT can be used for problems
beyond compressed sensing, for example sparse signal re-
covery from nonlinear measurements. Our distributed solution
provides the same recovery guarantees as centralized IHT and
thus can also be applied to these settings.

In our distributed implementation of IHT, each agent stores
an estimate of the signal In each iteration, every agent first
performs a simple local computation to derive an intermediate
vector. The agents then perform a global computation on their
intermediate vectors to derive the next iterate. For networks
that are time-varying, it is not possible to perform the global
computation exactly, however, it is possible to approximate the
global computation using only local communication.

We first show how centralized IHT can be extended to
accommodate inexact computations while still providing the
same recovery guarantees as the original IHT formulation.
We then leverage these new theoretical results to develop
a distributed IHT algorithm that uses multiple rounds of
a distributed consensus algorithm to execute each inexact
global computation. We call this algorithm consensus-based
distributed IHT (CB-DIHT). Our approach was inspired by
recent work on a distributed proximal gradient technique [10]
that also uses multiple rounds of distributed consensus to
perform an inexact computation in each iteration. However,
this algorithm depends on assumptions that are not satisfied by
the compressed sensing problem. We evaluate the performance
of CB-DIHT on several example problems and show that it
requires several orders of magnitude less time and bandwidth
for recovery than the distributed subgradient algorithm.

The remainder of this work is organized as follows. In Sec-
tion II, we present our system model and problem formulation.
In Section III, we present our distributed algorithm. Finally,
Section IV gives our simulation results.

II. PROBLEM FORMULATION

We consider a network of P agents. The agents may be
sensors or they may be fusion nodes that collect measurements
from several nearby sensors. We assume there is a unique
agent identified as agent 1. If this agent is not defined a priori,



one can be chosen using a variety of well-known distributed
algorithms (see [11]).

At each time step ¢, the network is modeled by a directed
graph (V, E®), where V is the set of P agents and E(*)
is the set of directed communication links between them at
time ¢. Messaging is reliable and synchronous, meaning that
any message sent in time ¢ is received before time ¢ + 1. We
adopt the following standard assumption about the network
connectivity over time [10], [12], [13].

Assumption 1: The sequence of graphs {(V, E))};>¢ sat-
isfies the following conditions:

1) The graph (V, E(®)) is strongly connected, where ()
is the set of edges that appear in infinitely many time
steps.

2) There exists an integer C' > 1 such that, if (¢,p) €
E(*) then (¢,p) € EOUEtD U...u EGHC=1) for
allt > 0.

In short, this assumption means that, while the network may
not be connected in any given time step, the union of graphs
over each interval of C' consecutive time steps is a strongly
connected graph. The agents do not know C.

The agents seek to estimate a signal z € RY that is K-
sparse, meaning x has at most K non-zero elements. Each
agent has one or more (possibly noisy) measurements of the
signal, and each has a loss function f, : RN — R, known only
to agent p, that indicates how well a given vector satisfies its
measurements. As a specific example, we consider compressed
sensing with linear measurements [14]. A more general prob-
lem formulation is considered in the technical report [18].
In compressed sensing with linear measurements, each agent
p has M, linear measurements of x taken using its sensing
matrix A, € RM»*N_ The total number of measurements
is M = 25:1Mp- The measurement vector of agent p,
denoted by, is given by b, = Apz + e,, where ¢, € RMr
is the measurement error. The loss function for agent p is

fp(x) := ||Apx — byl3, and the global loss function is the
sum of these individual loss functions,
P
f(z) = Z |Apz — bp”% = ||Az — b||§,
p=1

where 4 := [A]] - |AIT)]T and b := [b]|--- |b1T;]T.

The goal is for every agent to recover the same signal x
from their collective measurements using only communication
between neighbors in the network. To recover z, the agents
attempt to solve the optimization problem,

P
minimize f(x) := pr(x) subject to ||zl < K, (1)
p=1

where || - ||o denotes the £y norm, i.e., the number of non-zero

components. Each agent only knows its own measurements,

and so the agents must collaborate to solve this problem.
ITI. ALGORITHM

Problem (1) is NP-Hard in general [15]. However, for
suitable loss functions, efficient centralized algorithms exist.

Our distributed recovery algorithm is based on one of these,
Iterative Hard Thresholding (IHT) [8], [16], which is defined
as follows. Let T, (v) be the thresholding operator which
returns a vector where all but the K entries of v with the
largest magnitude are set to O (with ties broken arbitrarily).
IHT begins with an arbitrary K-sparse vector z(*). In each
iteration, a gradient-step is performed, followed by application
of the thresholding operator. This iteration is given by,

20 = T (a9 — 1V f®)), @)

with L > 2),,.(ATA). Here, Apa( -
eigenvalue of the matrix.

In a recent work [6], we presented a distributed implemen-
tation of IHT (DIHT) for static networks. Every agent stores
an identical copy of the signal estimate z(*). In iteration F,
each agent first performs a local computation to derive an
intermediate vector,

) denotes the largest

20 = V1, (). (3)

The agents then perform a global computation on their inter-
mediate vectors to derive the next iterate,

2 =T (oW — L3 ), 4)

which is, again, identical at every agent. These local and global
computations are identical to the IHT iteration in (2).

The global computation (4) requires the agents to compute
the sum of their intermediate vectors. In a time-varying
network, it is not possible for the agents compute this sum
exactly in finite time using any algorithm without a priori
knowledge of the network dynamics. This is because, with-
out this knowledge, an agent cannot determine when it has
received the information it needs (from all other agents) to
compute the sum. We extend DIHT to time-varying networks
by employing a distributed consensus algorithm [17] to ap-
proximate the average of the intermediate vectors and then
using this approximation in the global computation.

To use distributed consensus in DIHT, we must first consider
the effects of such approximation errors on the correctness
of the centralized IHT algorithm. We capture these approxi-
mations in the form of inexact computations of the gradient
V f. We next show that, under a limited assumption on the
accuracy of the gradient values, IHT with inexact gradients
provides the same recovery guarantees as IHT with exact
gradient computations. We then show how we leverage these
new theoretical results to develop a consensus-based DIHT
algorithm for time-varying networks.

Centralized IHT with Inexact Gradients. The algorithm
is initialized with a K-sparse vector z(®) for which f(z(%))
is finite. In each iteration, an approximate gradient step is
computed, followed by the application of the thresholding
operator. The iteration is thus given by,

2D — T (xof) — L (Vf(z®) +e<k>))7 ®)

Here, () ¢ RY is the error in the gradient computation in
iteration k.



So long as the sequence {||¢*)||?};>( is summable, algo-
rithm (5) provides the same recovery guarantees as [HT with
exact gradients. Namely, (5) converges to an L-stationary point
of problem (1), which is defined as follows.

Definition 1: For a given L > 0, a K-sparse vector z* €
RY is an L-stationary point of problem (1) if,

¥ =T, (2" — £V [f(z")).

It has been shown that L-stationarity is a necessary condition
for optimality (see [9], Theorem 3.3).

Theorem 3.1: Let A satisfy the K-regularity property, i.e.,

for every index set I C {1,2,..., N} with |I| = K, the
columns of A associated with the index set I are linearly
independent. Let {z(*)};>¢ be the sequence generated by
(5) with L > 2)\,,(ATA) and with a sequence {e(k)}tzo
satisfying > 50, [l€®)]|? < oo. Then, {z(®)}4>¢ converges to
an L-stationary point of problem (1).
The proof of this theorem is given in the technical report [18].
Consensus-Based DIHT. We now detail our CB-DIHT algo-
rithm. Each agent has an identical estimate xl(jo) = xj,i for
which fp(zimi) < 0o, p=1...P. The agents maintain iden-
tical estimates as the algorithm progresses. For each iteration
k, the agents compute their intermediate vectors according to
(3). They then execute a distributed consensus algorithm to
compute an approximation of the average of these vectors.

Multiple iterations of the consensus algorithm are executed
in each iteration of CB-DIHT, and one iteration of consensus
corresponds to a single time step ¢ in the time-varying network
model. In the consensus algorithm instance for iteration k& of
CB-DIHT, every agent has a vector-valued state, initialized to
its intermediate vector vz(,o) = ;(,k). In each time step ¢, every
agent computes a weighted average of its value and that of its
neighbors in that time step. The vector at agent p evolves as,

P
=3 wfd o, (6)
q=1

where wz(,tq) is the weight that agent p assigns to the value at

agent ¢. Under appropriate assumptions about the weights and
the network connectivity over time (e.g. Assumption 1), the
agents’ vectors converge geometrically to the average of the
initial vectors [12], [13].

After agent 1 executes s*) = [(k + ||as§k)||2)/2] time steps
of the consensus algorithm, it uses its local estimate of the

average, denoted 9@ to generate the next iterate aigkﬂ) as,
k k .

D =T (ol = fLo®), )

with Ly > %/\,,W(ATA). The value x%kﬂ) is then dis-

tributed to all other agents using a simple broadcast algorithm.
Here, an agent, once it has received the value, sends this value
once along all of its outgoing edges, excepting those edges on
which it has previously received the value. On receipt of this
value, an agent updates its local estimate x,(,k+1) to be this
value, completing one iteration of CB-DIHT.

TABLE I: Recovery problem parameters.

Problem N M P K  IAmaz(ATA) Lrv
Sparco 902 | 1000 200 50 3 1 2.01/50
Sparco 7 | 2560 600 40 20 1 2.01/50
Sparco 11 | 1024 256 64 32 ~ 2283 4570/64,
600,64

In a time-varying network, it is not possible for the agents to
independently determine when the value xgkﬂ) has been re-
ceived by all other nodes, and therefore, when to start the next
instance of distributed consensus. To overcome this challenge,
we have developed a modified consensus algorithm that we
call diffusive distributed consensus that combines the broadcast
of an iterate xik) with the consensus algorithm for iteration
k. Rather than all agents beginning the consensus algorithm
at the same time, agents begin participating the consensus
algorithm once they have received the iterate. We show that
diffusive distributed consensus also converges geometrically to
the average of the intermediate vectors. For details of diffusive
distributed consensus and CB-DIHT, we refer the reader to the
technical report [18].

Algorithm Analysis. For each iteration k, the estimates at
all agents p # 1 are identical to those at agent 1. It is
straightforward to show that the evolution of xgk) can be
formulated as an execution of centralized IHT with inexact
gradients. The error in each iteration e¢*) is the difference
between agent 1’s approximation of the average and the true
average of the intermediate vectors. Under Assumption 1,
the sequence of errors is square summable. Thus, CB-DIHT
converges to an L-stationary point of problem (1). This result
is formalized in the following theorem, a proof of which can
be found in the technical report [18].

Theorem 3.2: Let Assumption 1 hold and let A satisfy the
K-regularity property. Then the sequences {Iz(ﬁ)}kzo, p =
1...P, generated by CB-DIHT with Lyy > 2 \uu(ATA)
converge an L-stationary point of problem (1). Furthermore,
all sequences converge to the same L-stationary point.

IV. SIMULATION RESULTS

In this section, we present an experimental comparison of
CB-DIHT and the distributed subgradient algorithm. We show
evaluation results for three compressed sensing problems from
the Sparco toolbox [19]. Details of the problems are given in
Table I. For each problem, we divide the measurements evenly
so that each agent has M /P measurements.

We evaluate each algorithm’s performance on five different
classes of graphs. For each class, we generate five random
instances. The results shown in this section are the averages
of the five runs over the five instances. The first graph type
is a Barabasi-Albert (BA) scale free graph. The second and
third graphs are Erdos-Rényi (ER) random graphs where each
pair of vertices is connected with probability pr = 0.25 and
probability pr = 0.75, respectively. The fourth and fifth graphs
are geometric graphs with vertices placed uniformly at random
in a unit square. In the fourth graph, two vertices are connected
if they are within a distance of d = 0.5 of each other, and in



TABLE II: Number of distributed consensus iterations needed by CB-DIHT and the subgradient algorithm for signal recovery

to accuracy of 1072,

Sparco 902 Sparco 7 Sparco 11
Graph CB-DIHT  Subgradient || CB-DIHT Subgradient (LTSB=]2117}5IOT/64) (LT(\:/B=D§5101;64) Subgradient
BA 2.2 x 103 >3 x 10° 3.0 x 103 >3 x 10° 6.7 x 10* 2.3 x 103 >3 x 10°
ER (pr =0.25) || 2.5 x 103 >20x10° || 2.0 x10* >3 x10° 7.1 x 10* 8.1 x 102 >3 x 10°
ER (pr =0.75) || 1.8 x 103 7.4 x 103 3.3 x 103 4.0 x 104 5.8 x 104 7.7 x 102 >3 x 10°
Geo (d = 0.5) 6.5 x 103 >3 x 10° 4.9 x 104 >3 x 10° 1.0 x 10° 5.7 x 103 >3 x 10°
Geo (d =0.75) || 1.8 x 103 1.3 x 104 3.5 x 103 > 6.8 x 104 5.2 x 104 8.7 x 10? >3 x 10°

the fifth, vertices are connected if they are within a distance
of d = 0.75. To make a time-varying network, for each graph,
we choose ten random subgraphs, ensuring that the union of
these subgraphs is the original graph. We cycle through these
ten subgraphs, one per time step.

We have implemented all algorithms in Matlab. For
CB-DIHT, we use the values of L7y in Table 1. For Sparco
problem 11, Lpy = 64/600 is not sufficient to guarantee
convergence, however, our evaluations show that, in all cases,
CB-DIHT converged to the optimal solution. For the dis-
tributed subgradient algorithm, we experimented with different
step-sizes n®) = L, where a € {0.51,0.6,0.7,0.8,0.9, 1}.
No single value of a performed best in all graphs. We therefore
use a 0.7, which is the value with the second fastest
convergence rate for the vast majority of graphs.

Both CB-DIHT and the subgradient algorithm use dis-
tributed consensus as a building block; in the subgradient
algorithm, agents execute one consensus round per iteration. In
CB-DIHT, multiple diffusive consensus rounds are performed
for each iteration. We compare the algorithms by counting the
number of consensus rounds needed for ng) —z*||/||z*|| to
be less than 1072 at every agent. For CB-DIHT, x* may be
an L-stationary point that is not an optimal solution, and we
indicate when this occurs below. The subgradient algorithm
solves a convex relaxation of problem (1) and converges to
the optimal solution in all cases.

The results are shown in Table II. We ran each experiment
for a maximum of 3 x 10° consensus rounds. For problems
902 and 7, CB-DIHT converged to the optimal solution in
every instance. In problem 902, CB-DIHT outperformed the
subgradient algorithm by as much as two orders of magnitude.
For Sparco problem 7, CB-DIHT required at least one order
of magnitude fewer consensus rounds.

For problem 11 with Lyy = 4750/64, CB-DIHT converged
to a suboptimal L-stationary point in the majority of experi-
ments. For Ly = 600/64, CB-DIHT always converged to the
optimal solution. For both values of Lz, CB-DIHT required
fewer consensus rounds than the subgradient algorithm. This
difference is more pronounced with Lpy = 600/64, where
CB-DIHT outperformed the subgradient algorithm by at least
two orders of magnitude. These results indicate a need for
further investigation into the relationship between Ly and
the convergence of CB-DIHT.
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