Consistency and High Availability of Information
Dissemination in Multi-Processor Networks

Dissertation submitted for the degree “Doctor of Philosophy”

Idit Keidar

Submitted to the Senate of the Hebrew University in Jerusalem (1998)

This work was carried out under the supervision of
Prof. Danny Dolev.

To Mordechai, Daphna and Merav

Acknowledgments

This thesis brings to conclusion seven wonderful years in which I have been a member of the Transis
group, as an undergraduate student, a masters student, and finally a PhD student; years during
which I was happy to come to the lab in the morning, and had a smile on my face most of the time
(at least after my morning cup of coffee). I am thankful to those who made these years so pleasant
and enlightening.

First and foremost, I am deeply grateful to my advisor and the head of the Transis group,
Danny Dolev. His vision and personality made the Transis group the successful and cheerful group
that it is, has been during all these years, and will surely continue to be in the future. Through
these years, Danny has been to me an inspiration, as well as a shoulder to cry on. His belief in me
encouraged me to proceed further with my research.

Next, I thank the “forefathers” of Transis: Dahlia Malkhi and Yair Amir, who were also my
first mentors in the Transis group. I have learned much from them while they were here. Their
seminal ideas inspired much of my research in the years after they left. I also had the pleasure to
continue working with Dahlia later on.

This thesis reflects the second generation of Transis: it describes the concepts of the second
generation systems which are being developed by a second generation of PhD students (the heirs of
the Transis dominion). The system which is the focus of this thesis was envisioned and developed
together with Tal Anker and Gregory (Grisha) Chockler. I also greatly enjoy fruitful collaboration
on many on-going projects with both.

I have remarkably benefited from many insightful comments and suggestions from Ohad Rodeh;
his original ideas were like a fresh breeze on a hot summer day. I have learned a lot from my
discussions with Roman Vitenberg and Grisha Chockler on specifications of group communication
systems, as reflected in the specifications in this thesis.

The membership service was developed together with Jeremy Sussman from UCSD, and the dy-
namic voting protocol was developed jointly with Esti Yeger Lotem. I am enormously appreciative
of their contribution to this work; it was a genuine pleasure working with both.

My research has also benefited from research and lab projects that were conducted in the Transis
group (some of them under my guidance) by Gabriel Benhanokh, David Breitgand, Nabil Huleihel,
Zohar Levi, Ariel Nowersztern, Michael Rozman, Gadi Shamir and Jonathan Wexler.

I had the virtue to collaborate with Ken Birman and Roy Friedman and Nabil Huleihel on

papers that did not make their way into this thesis. I have benefited from many fruitful discussions

with them, as well as with Catriel Beeri, Mark Hayden, Nancy Lynch, Robbert van Renesse, Injong
Rhee and many other people around the world, alas it is impossible to name them all.

Finally, I thank my husband Mordechai & Keidar for sharing with me all the experiences these
years. I thank my daughters Daphna > and Merav > Keidar (who were both born while I was
working on my PhD) for reminding me that there are other things to life besides my research.
Special thanks go to my parents for their support, especially my mom, who made a huge effort to

come to Jerusalem to watch the kids so I could work longer hours.

Idit Keidar,
Jerusalem, Israel, August 1998.

Contents

List of Figures

-

General
1 Introduction

2 The Model
2.1 The Computation Model e
2.2 The Failure Model e e e e e e e

2.3 Failure Detectors e e e e e e e e e

3 Group Communication Systems and Specifications
3.1 Background: Typical Group Communication Services.
3.2 Modularity: The New Trend in GCS
3.3 On the Formal Specifications of Group Communication
3.3.1 The Impossible oL e
3.3.2 The “Best Effort” Principleo o o oo

3.3.3 Circumventing the Impossibility Result

II Highly Available Groupware Services

4 The Service Design
4.1 The Service Architectureo
4.2 Multimedia Multicast Transport Services (MMTS)
4.3 Advanced Group Membership Services and Policies

vii

xi

10
10
11
12
12
13
13

15

viii CONTENTS

4.3.1 Group Membership Services oo 20
4.3.2 Hierarchical directory serviceso Lo oo 21
4.3.3 Group Policies L 21

4.4 The Session SErvices o v v v v it e e e e e 22
4.4.1 Support for replicationo 22
4.4.2 Coordination and Floor Control 23

5 Scalable Group Membership Services 24
5.1 Imtroduction. e e e 24
5.2 The Environment Model Lo 27
5.2.1 Reliable FiIFO Multicast Communication Channels 27

5.3 The System Architecture 27
5.4 The CONGRESS Basic Service o e 29
5.4.1 CONGRESS SEIVICES v v i v ittt et e e e e e e 29
5.4.2 CONGRESS Guarantees o vttt ittt e 31

5.5 Semantics of the VS Membership Serviceso L. 32
5.5.1 Agreement on Views 33
5.5.2 Strong Virtual Synchrony 34

5.6 Implementation of the MOSHE VS Membership Protocol 36
5.6.1 Message Flow in MOSHE i, 36
5.6.2 Supporting Virtual Synchrony Lo 0oL, 37
5.6.3 Computing the Proposed View, 38
5.6.4 Recovery from Server Failures 40

5.7 Comparison with other membership algorithms 41
5.8 Advanced Group Membership Services oL 43
6 Totally Ordered Broadcast 44
6.1 Introduction 44
6.1.1 The Problem e 45
6.1.2 Related Work L L e e e e 46

6.2 The System Architecture 47
6.2.1 Properties of the TO-GCS 48

6.3 Problem Definition: The Guarantees of COReL 49

CONTENTS

6.4

The COReL Algorithm
6.4.1 Reliable Multicast o
6.4.2 Message Ordering e e
6.4.3 Notation L
6.4.4 Invariants of the Algorithm oL,
6.4.5 Handling View Changes it

7 Dynamic Voting for Primary Components

7.1
7.2

7.3
7.4

7.5
7.6
7.7

Introduction e e
The Model o . e e e e
7.2.1 The Membership Service oo e
Problem Definition oL e
The Primary Component Protocol 0.
7.4.1 Dynamic QUOrums oL oo e e e e e e e
7.4.2 Variables and Notation 0o
7.4.3 The Protocol e
7.4.4 Resolving Ambiguous Sessions
Evaluating the Efficiency
Dynamically Changing Quorum Requirements

Using Dynamic Voting in Conjunction with COReL.

IIT Theoretical Foundations

8 Majority-Resilient Atomic Commit

8.1
8.2
8.3

8.4

Introduction L L
The Model e e
Background — Distributed Transaction Management
8.3.1 Problem Definition L0 Lo e
8.3.2 Two Phase Commit e
8.3.3 Quorums e e e e e
8.3.4 The Extent of Blocking in Commit Protocols
Quorum-Based Three Phase Commit

8.4.1 Basic Three Phase Commit i i i i i it i .

ix

50
50
51
53
53
54

60
60
64
64
65
66
66
67
68
70
71
74
75

77

8.4.2 Recovery Procedure for Three Phase Commit
8.4.3 Three Phase Commit Blocks a Quorum
8.5 The E3PC Protocol
8.5.1 E3PC: Enhancing Three Phase Commit
8.5.2
8.5.3
8.5.4
8.5.5
8.6 Replicated Database Systems
8.6.1 Using E3PC with Accessible Copies Protocols
8.7 Failure Detectors and Weak Atomic Commit

8.8 Discussion

Appendix

A Correctness Proofs
A.1 Correctness Proof of COReL
A.1.1 Causal Order
A.1.2 Total Order
A.1.3 Liveness of COReL
A.2 Correctness Proof of the Dynamic Voting Protocol
A.3 Correctness of the Dynamically Changing Quorum System
A4 Correctness Proof of E3PC

Bibliography

Quorum-Based Recovery Procedure
E3PC does not Block a Quorum
Correctness of E3PC

Using Different Quorums for Commit and Abort

CONTENTS

List of Figures

4.1 The system architecture.o Lo 18
5.1 The membership service architecture. oL o000, 28
5.2 Events occurring in MOSHE when process ¢ is joining VS group G. 37
6.1 The layer structure of COReL. ittt 48
6.2 View change handler.. Lo 54
6.3 Establishing a new primary component., 56
6.4 Retransmissionrule. L L e e e 57
7.1 A session of the protocol executed by process p. 69
7.2 Theresolution rules. oL 70
7.3 Learning rules. e e e e 70
8.1 The centralized two phase commit protocol.o, 83
8.2 The quorum-based three phase commit protocol. 86
8.3 Three phase commit and the recovery procedure. 87
8.4 The quorum-based recovery procedure for three phase commit. 88
8.5 The decision rule for the quorum-based recovery procedure. 88
8.6 Three phase commit blocks a quorum.o, 89
8.7 The recovery procedure for E3PC.o o o oo, 92
8.8 The decision rule for E3PC.o 93
8.9 E3PC does not block a quorum. Lo Lo o e 94
8.10 The decision rule for E3PC with commit and abort quorums. 96
8.11 E3PC adjusted to the accessible copies protocol. 98

xi

xii LIST OF FIGURES

Part 1

(General

Chapter 1

Introduction

This thesis presents general tools for the development of highly available distributed applications
such as replicated servers and Computer Supported Cooperative Work (CSCW) applications. A
desktop and multi-media conferencing tool [Rod91] is an example of a CSCW application, incor-
porating various activities such as video transmission and management of replicated work space.
These services are becoming popular today, with the world-wide increase of communication capac-
ity: Replicated servers in clusters are becoming a leading solutions for scalability, fault tolerance
and performance, and world-spanning conferences and interactive games over the Internet are be-
coming more and more popular. Unfortunately, the subtleties involved in such systems are not
well understood and many industries apply ad-hoc solutions without fully understanding their
limitations and guarantees.

The contribution of this thesis is in providing application builders with tools and concepts that
facilitate the development of such systems while accurately understanding their limitations and
guarantees. These concepts are demonstrated and were tested in prototype implementations.

This thesis suggests a comprehensive framework for the development of highly available group-
ware and CSCW applications, geared towards multi-process failure prone environments (e.g., the
Internet). The services are fault tolerant and scalable. The suggested framework incorporates a
wide variety of services ranging from efficient communication solutions to tools for maintaining
consistency of distributed information in the face of faults. These services support multi-party
conferencing in dynamic discussion groups, while keeping track of the dynamically changing set of
participants in each group. The service architecture is presented in Chapter 4.

The services exploit the group communication paradigm: Group communication systems pro-
vide application builders with reliable multicast communication services within dynamically chang-

ing groups, as well as membership services which inform the members when other members crash

4 CHAPTER 1. INTRODUCTION

or join the group. General background on group communication systems is provided in Chapter 3.

Unlike classical group communication systems, our design separates the membership services
from the multicast communication substrate. The membership is implemented as a separate server
(daemon) on each machine that interacts with the multicast communication substrate and with the
application. This separation makes the communication services more efficient since most of the time
the membership does not change. This design also facilitates using the same membership services
for a variety of quality of service (QoS) communication options [CHKD96, BFHR98, RCHS97].
Examples of QoS options include high bandwidth, low latency, and also reliable (loss free) multicast.
Decomposing the service into separate modules also makes it easier to reason about, i.e., formally
specify the service guarantees and assumptions, and prove correctness. The membership service is

presented in detail in Chapter 5.

In addition to the multicast communication service and the membership service, we provide
application builders with session level services. These services relieve the application builder of the
need to explicitly deal with the subtleties of changes in the network situation. The session services
exploit the strong group communication semantics in order to efficiently maintain consistency of
objects in the face of failures. This thesis focuses on important building blocks for consistent
replication: Chapter 6 presents a highly available Totally Ordered Broadcast service, which may be
used, e.g., for consistent replication. Chapter 7 presents a highly available service for maintaining

the primary network component in the network. Other session services are described in Section 4.4.

Chapter 6 presents a Totally Ordered Broadcast protocol, which guarantees a fully serializable
history of object updates. This is achieved by prohibiting arbitrary updates of the object in disjoint
network components; often, only the members of a primary component may update the object. The
algorithm in Chapter 6 exploits group communication as a building block. It always allows members
of a primary component in the system to update the object. It may be used in conjunction with
several types of primary component services that notify processes when they are members of the

current primary component e.g., a service based on dynamic voting presented in Chapter 7.

The underlying concepts demonstrated by the services constructed in this thesis are general

and apply to a large family of distributed systems and applications.

Fault tolerant distributed services are now being developed by many commercial companies;
highly available servers running in clusters are the leading new generation solution for scalability
and performance. At the basis of many of these commercial systems lie concepts that were developed

in academic projects and systems. The underlying concepts of this work will play a role in future

development of such systems. In particular, the formal reasoning we apply to our systems will
assists commercial system builders understand the guarantees and limitations behind the systems
they construct, and also help identify the tradeoffs involved.

Chapter 8 presents a novel protocol, E3PC, for atomic commitment, that always allows a
majority to make progress. The “classical” three phase commit (3PC) protocol [Ske82] sometimes
allows a majority to make progress, but if failures cascade, a majority may become connected and
still remain blocked. We have identified this shortcoming, and have developed a new structure that
allows information to propagate through the sequence of majorities formed in the system. E3PC
improves the classical 3PC without adding extra communication by following this structure.

In [FKM™95] we show that this structure is common to all algorithms that always achieve
agreement with a majority, and therefore is an important concept for developing fault-tolerant
consistent algorithms. The protocol in Chapter 6 exploits similar principles (and bears the same

structure).

Chapter 2

The Model*

This thesis is concerned with highly available groupware services in asynchronous
partitionable message passing environments. All the protocols presented in this
thesis are run among a set of processes connected by an underlying asynchronous
communication network, and all tolerate crash and partition failures. This chapter
presents the computation model, and introduces definitions which are used through-
out this thesis. Section 2.1 introduces the computation model. Section 2.2 describes
the asynchronous partitionable failure model, which is common to all the chapters
of this thesis. Where different assumptions are made, they are explicitly stated in
the relevant chapters.

It is well-known that in asynchronous failure-prone environments, agreement
problems such as Consensus and non-blocking atomic commit are not solv-
able [FLP85, Gue95]. In order to render such problems solvable, the model is
often augmented with external failure detectors. In Section 2.3, we define classes
of failure detectors for the partitionable failure model. These definitions are used
throughout the rest of this thesis.

2.1 The Computation Model

We assume that each process is equipped with a failure detector, which provides hints regarding
which processes may be faulty at any given time. The information provided by the failure detectors
need not be accurate, although some restrictions on their behavior are imposed. These restrictions
are described in Section 2.3.

A process is modeled as a (possibly infinite) automaton, which takes steps that consist of
receiving receive events from the network and suspect lists from the failure detector, doing some
local computation, and then generating zero or more send events. A process p is said to suspect
another process ¢ if ¢ is in p’s suspect list. Events of type receive may be empty, i.e., containing
null messages. (This allows processes to initiate operations spontaneously). If the message is not

empty, we say that the process receives a message, or that the message is delivered to the process.

*The definitions of failure detectors in this chapter are based on work by Dolev, Friedman, Keidar and
Malkhi [DFKM96, FKM 195, DFKM97].

2.2. THE FAILURE MODEL 7

In order to distinguish between the messages sent in different send events, we assume that each
message sent is tagged with a unique message identifier, which may consist, e.g., of the sender
identifier and a sequence number or a timestamp. Thus, we can require that every message is sent
at most once in the system.

A process can also incur crash and recover events from the environment. Every recover
event is immediately preceded by a crash event, and a crash event may be immediately followed
only by a recover event, or by no events at all.

A history of a process is a sequence of events as they occur in that process, in which a crash
event is not followed by any other event. An ezecution (run) is a collection of histories, one for
each process, in which there is a mapping from each receive event to a corresponding send event.
In this paper we consider only executions in which there are no causal cycles [CL85, Lam78].

An execution ¢’ is a sub-ezecution of another execution o if both include histories of the same
set of processes, and the history of each process p; in ¢’ is a prefix of p;’s history in . Given an
execution o and a sub-execution o’ of o, the collection of history suffixes obtained by eliminating
the history of each process in ¢/ from its corresponding history in o is an extension of o'. We
denote this extension by o\ ¢’. An execution or a sub-execution is infinite if the history it contains

for every process is either infinite or ends with a crash event.

2.2 The Failure Model

The underlying communication network provides datagram message delivery. There is no known
bound on message transmission time, hence the system is asynchronous. Processes fail by crashing,
and crashed processes may later recover. Live processes are considered correct, crashed processes
are faulty. In protocols that explicitly mention the use of stable storage (e.g, the protocol in
Chapter 6), recovered processes come up with their stable storage intact. Communication links
may fail and recover. Malicious failures are not considered; messages are neither corrupted nor

spontaneously generated by the network, as stated in the following property:

Property 2.2.1 (Message Integrity) For any message m delivered by a process p, there is a

preceding send event of m at some process q.

Definitions

cause

The causal partial order [Lam?78] is defined as the transitive closure of: mn == m/ if receive,(m) —

send, (m') or if send,(m) — send,(m’).

8 CHAPTER 2. THE MODEL

Let o be an infinite execution, ¢’ a sub-execution of o, ¢ a sub-execution of ¢/, and let T be

the extension o'\ 0”. Note that if ¢’ above is infinite, then 0 = o’. We use the following definitions:

alive Process p is alive in 7 if p does not crash in 7 and it incurs the same number of crashes and
recoveries in o’

connected Processes p and ¢ are connected in 7 if p and ¢ are alive in 7, p receives in o every
message that was sent from ¢ to p in 7,' and vice versa.

A set of processes P is connected in 7, if for every two processes p,gq € P, p and ¢ are
connected in 7.

If o' is infinite, p and g are (P is) permanently connected in o.

detached Processes p and g are detached in 7 if p does not receive (in o) any message that ¢ sends

in 7 and vice versa.2

A set of processes P is detached from a set of processes () in 7 if for every process p € P and
every process g € (), p and ¢ are detached in 7. Note that the definitions of detached and
connected do not complement each other.

If ¢’ is infinite, p and ¢ (P and Q) are permanently detached in o.

connected component 3 A set of processes P is a connected component in 7, if P is connected
in 7, and P is detached from N \ P in 7.

If P has k members, it is also called a k-connected component in 7.

If ¢’ is infinite, P is a permanently connected component in o.

A permanently connected component defines a stable situation in which members of the compo-
nent are alive and can exchange messages among themselves, but cannot receive any message from
processes outside the component. Note that, although messages are guaranteed to be delivered

within a permanently connected component, there is no bound on the latency of these messages.

2.3 Failure Detectors

Failure detectors are useful abstractions for specifying services and protocols in a distributed envi-
ronment prone to failures. Failure detectors provide a clear analysis of the effects of failures on the
solvability of certain problems in distributed environments.

Chandra and Toueg [CT96] defined classes of distributed failure detectors: Each process has

access to a local failure detector module which maintains a list of the processes that it currently

!Since network latency is not zero, and processes continuously send messages, requiring that the message will
arrive in 7 would be too strong.

*Note, in particular, that a crashed process is detached from any other process.

3A component is sometimes called a partition. In our terminology, a partition splits the network into several
components.

2.3. FAILURE DETECTORS 9

suspects to have crashed. Failure detectors are categorized according to their degree of completeness,
i.e., their success in detecting failures, and their accuracy, i.e., their ability to avoid false suspicions.
The failure detectors definitions presented in [CT96] are described in the fail-stop model, which is
limited to crash failures only. Below, we extend these definitions to the partitionable failure model.

The most intuitive way to extend failure detector definitions to a partitionable environment is
to detect detached processes as well as faulty ones. We adapt Chandra and Toueg’s definitions of

strong completeness and accuracy to detect detached processes as follows:

Strong completeness If p and q are permanently detached from each other and p is alive then p
eventually permanently suspects ¢ (i.e., there is a time after which p suspects ¢ forever).

Strong accuracy If p and g are permanently connected then p does not suspect gq.

Eventual strong accuracy If p and ¢ are permanently connected then there is a time after which
p does not suspect q.

Using these properties, we now define perfect and eventually perfect failure detectors:

Perfect failure detector A perfect failure detector is a failure detector which fulfills the strong
completeness and strong accuracy properties.

Eventual perfect failure detector An eventually perfect failure detector is a failure detector
which fulfills the strong completeness and eventual strong accuracy properties.

Is it important to note that in environments in which messages are never lost, non-crashed
processes are always connected. Thus, in such environments, our definitions are compatible with
those proposed by Chandra and Toueg in [CT96].

Definitions of failure detectors that detect detached processes in partitionable environments
were also suggested by Babaoglu et al. in [BDM95]. In [BDM95], eventual symmetry of connected
processes (i.e., if p is not connected to ¢ then ¢ is eventually not connected to p) is a requirement of
the model, while in our approach, if communication does not preserve eventual symmetry then there
are no restrictions on the failure detector’s behavior. Like [BDM95], we focus on eventual perfect
failure detectors and use these reachability detectors to analyze the solvability of a partitionable
membership service that eventually stabilizes in the partitionable failure model.

Other possible detection properties, such as weak completeness, are meaningless w.r.t. detecting
detached processes; Babaoglu et al. [BDM95] observe that the resulting eventual weak and eventual
strong reachability detector classes are not equivalent. Furthermore, neither of them is strong

enough for solving the partitionable membership problem defined in [BDM95].

Chapter 3

Group Communication Systems and
Specifications™

The service presented in this thesis follows the group communication paradigm.
This chapter provides general background about this paradigm: Section 3.1 de-
scribes typical services of group communication systems (GCSs) and Section 3.2
discusses contemporary research in this area. Section 3.3 addresses the challenge of
formally specifying the guarantees of group communication systems.

3.1 Background: Typical Group Communication Services

Group communication is a powerful paradigm for the development of fault-tolerant distributed
applications and for CSCW groupware and multi-media applications. GCSs introduce the notion
of group abstraction that allows processes to be easily arranged into multicast groups. A multicast
group is identified by the logical name assigned to it when the group is created. Each message
targeted to the group’s logical name is guaranteed to be delivered to all the currently connected
and operational group’s members. This allows to handle a set of processes as a single logical
connection. Furthermore, processes may dynamically join or leave these groups.

Some of the leading GCSs today are: Consul [MPS91b], Ensemble [HvR96], Horus [vRHB94],
ISIS [BvR94, BSS91], Newtop [EMS95], Phoenix [MFSW95], Relacs [BDGB94], RMP [WMK95],
Totem [AMMS95, MMSA*96] and Transis [ADKM92b].

GCSs typically support reliable multicast and membership services. The task of the membership
service is to maintain a listing of the currently active and connected processes in each group and
to deliver this information to the application whenever it changes. The output of the membership

service is called a view. The reliable multicast services deliver messages to the current view members.

*This chapter is based on the introduction to a survey by Vitenberg, Keidar, Chockler and Dolev [VKCD98].

10

3.2. MODULARITY: THE NEW TREND IN GCS 11

A membership service may either be primary component' or partitionable; in a partitionable
membership several disjoint network components may co-exist while in a primary component mem-
bership, only members of one connected component are considered alive. The first and most well
known group membership service was the primary component membership of ISIS [BvR94]. It was
followed by many more primary component membership services, e.g., [MS94, MPS91b, RV92].
The first partitionable membership service was introduced as part of the Transis [ADKM92b,
DM96, ADKM92a| group communication system. Later, numerous new GCSs featuring a par-
titionable membership have emerged, e.g., Totem [AMMSt95 MMSA*96], Horus [vRBMY96],
RMP [WMKO95], Newtop [EMS95] and RELACS [BDGBY4].

Typically, GCSs provide the application builder with various types of efficient reliable multicast
services. For example, the causal multicast service guarantees that the reply to a message is never
delivered before the message. The totally ordered multicast service extends the causal service in
such a way that all messages are delivered in the same order at all targets.

A GCS usually runs in an environment in which processes and communication links can fail,
and in which messages may be lost or arbitrarily delayed. In such environments, the GCS simu-
lates a “benign” world in which message delivery is reliable within the set of reachable (live and
connected) processes. Furthermore, several GCSs provide semantic models such as Virtual Syn-
chrony [BJ8T7|, Strong Virtual Synchrony [FvR95] and Extended Virtual Synchrony [MAMSA94).
Such models define relationships between view changes and message delivery which enable the ap-
plication to derive some useful information regarding which processes delivered the message (as

explained in [VKCD98, ACDV97]).

3.2 Modularity: The New Trend in GCS

Experience with group communication systems and reliable distributed applications has shown that
there are no “right” system semantics for all applications [Bir96]: different GCSs are tailored to
different applications, which require different semantics and qualities of service (QoS).

The Horus [vRBMY6] system tackled this problem with a new paradigm: modularity. Horus
and its successor Ensemble [HvR96] are flexible GCSs comprised of independent protocol layers
that implement different service levels and semantics. This approach allows the application builder
to tailor a GCS to his needs, treating protocol layers as building blocks.

Modular design has another important advantage: It is possible to separately reason about the

YA primary component was originally called a primary partition.

12 CHAPTER 3. GROUP COMMUNICATION SYSTEMS AND SPECIFICATIONS

guarantees of each layer and the correctness of its implementation. Recently, the I/O automata
formalism was exploited for specification and reasoning about GCSs [FLS97, Cho97, DPFLS98,
CHD98]. The modular “layered” design nicely maps into compositions of I/O automata. This
approach uncovers the subtleties of the interaction between the GCS and its applications, as well
as among the layers of the GCS.

Another benefit of modularity is its flexibility to incorporate a variety of QoS options. Re-
cently, several emerging projects addressed the challenge of incorporating QoS communication into
the framework of group communication. For example, the MMTS [CHKD96] extends the Tran-
sis [ADKM92b, DM96] GCS by providing a framework for synchronization of messages with dif-
ferent QoS requirements; Maestro [BFHRY8] extends the Ensemble [HvR96] group communication
system by coordinating several protocol stacks with different QoS guarantees and the Collabora-
tive Computing Transport Layer (CCTL) [RCHS97] implements similar concepts, geared towards

distributed collaborative multimedia applications.

3.3 On the Formal Specifications of Group Communication

In this section we discuss the difficulties one encounters when trying to formally specify meaningful

group communication systems.

3.3.1 The Impossible

Group communication systems typically run in asynchronous failure prone environments. Unfor-
tunately, in such environments, agreement problems that resemble the services provided by GCSs
are not solvable. An example of such a problem is Terminating Reliable Broadcast (TRB) [HT93],
which requires non-faulty processes to either deliver every message sent or to declare the sender as
faulty. Ideally, group multicast should resemble TRB in that it should require non-faulty processes
to either deliver every message, or to deliver a view change that excludes the sender. Hence, an
ideal group multicast service is also impossible to implement.

The issue of solvability of the group membership problem was recently the subject of extensive
research. Ideally, we would like a membership service to eventually reflect the actual network
connectivity. For example, consider the case that the network stabilizes so that a group G of
processes remains permanently alive and connected, and all other processes have crashed. If such
stabilization occurs, we would like the membership service to eventually report G as the current

view and then report of no further view changes.

3.3. ON THE FORMAL SPECIFICATIONS OF GROUP COMMUNICATION 13

Unfortunately, this desired membership service is impossible to achieve. To see this, note that
in the asynchronous fail-stop model, where communication links are reliable and crashed processes
never recover, such network stabilization always eventually occurs. Therefore, when restricted
to the fail-stop model, a desired membership service is as strong as an eventual perfect failure
detector [CT96], which is not implementable in asynchronous fail-stop environments. In fact, it has
been proven by [CHTCB96] that even a very weak version of the group membership problem is not

solvable in asynchronous environments.

3.3.2 The “Best Effort” Principle

Practical systems cannot do the impossible, they can only make their “best-effort”. This concept is
illustrated by the following example: No system builder can guarantee that his group membership
service will always correctly reflect the network situation. A powerful adversary that fully con-
trols the communication can force every deterministic membership algorithm to be incorrect or to
constantly change its mind. However, existing group communication systems make a “best-effort”
attempt to reflect the network situation as much as possible, and indeed succeed most of the time.
Note that the group communication systems we are concerned with are not intended for critical
(real-time) applications; they run in environments in which such applications can not be realized.
The usefulness of these systems stems from the fact that real networks rarely behave like vicious
adversaries.

Many formal specifications of group communication systems do not capture this notion of “best
effort”. This results in specifications that can in fact be implemented by algorithms weaker than
the actual implementations (or even by trivial algorithms) [ACBMT95]. However, since the “best
effort” principle is an important consideration of system builders, actual systems provide more
than their specifications require. For example, the Internet Protocol (IP) [Pos81] is an unreliable
datagram protocol that does not guarantee to deliver any message. Yet few would argue that IP is

useless.

3.3.3 Circumventing the Impossibility Result

Specifications of group communication were made non-trivial using a variety of techniques. The
first attempts at non-trivial membership specifications [DMS94] ruled out only those classes of
trivial algorithms which, despite changes in the actual network situation, might at some point

cease reporting view changes. These attempts were criticized as too trivial in [ACBMT95].

14 CHAPTER 3. GROUP COMMUNICATION SYSTEMS AND SPECIFICATIONS

Later specifications explicitly linked the behavior of the GCS to the output of an external failure
detector module. The output of a failure detector is a list of suspects, i.e., processes which are
suspected to be faulty. For example, [FvR95, DMS95] require that a process not be removed from
the view unless it is a suspect.

Other specifications [MS94, BDM95, VKCD98] take this approach one step further, and ex-
ploit the notion of eventual perfect failure detectors (defined in Section 2.3). The specifications
in [MS94, BDM95] guarantee that if the external failure detector is an eventual perfect one then
the membership service will at some point begin to correctly reflect the network situation. We
follow this approach in this thesis. Note that the eventual perfect failure detector is used here as an
analysis tool to identify external conditions under which the membership service behaves correctly.

Another approach [FLS97] is to guarantee correct behavior of the GCS at periods during which
the underlying network is stable and timely. The specifications of [FLS97] are stronger than the
failure detector based ones in that they guarantee the timeliness of the service and not just eventual
termination. Of course, such guarantees can only be made when network message delivery and
process scheduling are timely. The specifications are parameterized by timeouts suited for the

underlying networks.

Part 11

Highly Available Groupware Services

15

Chapter 4

The Service Design®

This chapter presents a general framework for the construction of groupware
and computer supported cooperative work (CSCW) applications. Examples of such
applications include: multi-media and desktop conferencing, distance learning, in-
teractive games and simulations, and collaborative computing.

The suggested framework integrates a comprehensive set of services which sup-
ports sharing of a variety of applications among dynamically changing groups of
users. The services are fault tolerant and scalable, and are therefore appropriate
for multi-processor failure prone networks such as the Internet. The services exploit
the group communication paradigm for dynamic discussion groups, and for keeping
track of the dynamically changing set of participants.

The main services are over-viewed in this chapter, and are presented in more
detail in the next chapters.

4.1 The Service Architecture

This thesis presents a general framework for the construction of highly available distributed ap-
plications such as replicated servers, groupware and computer supported cooperative work (CSCW)
applications. Examples of CSCW applications include: multi-media and desktop conferencing,
distance learning, interactive games, and simulations. The service design follows the group com-
munication paradigm.

Unlike classical group communication systems, our design separates the membership services
from the multicast communication substrate. The membership is implemented as a separate server
(daemon) on each machine that interacts with the multicast communication substrate and with the
application. This separation makes the communication services more efficient since most of the time
the membership does not change. This design also facilitates using the same membership services
for a variety of quality of service (QoS) communication options [BFHR98, RCHS97, CHKD96].

Decomposing the service into separate modules also makes it easier to reason about, i.e., formally

*This chapter is based on a paper by Anker, Chockler, Dolev and Keidar [ACDK97].

17

18 CHAPTER 4. THE SERVICE DESIGN

specify the service guarantees and assumptions, and prove correctness. An overview of the mem-
bership services is described in Section 4.3. Chapter 5 describes the membership services in detail.
The service exploits a novel concept: a multi-media multicast transport service (MMTS) [CHKD96],
that supports multiple QoS group communication options!. This makes the services inherently fault
tolerant, and allows the application builder to define the tradeoffs between the level of synchro-
nization/reliability and the timeliness of message delivery. The MMTS is described in Section 4.2.
In addition to the multicast communication service and the membership service, we provide
application builders with session level services. These services relieve the application builder of the
need to explicitly deal with the subtleties of changes in the network situation. The session services
exploit the strong group communication semantics in order to efficiently maintain consistency of
objects in the face of failures. An overview of the session services is presented in Section 4.4.

The service architecture is depicted in Figure 4.1.

Application

Session Membership
Services Services

Multicast Communication Substrate (MMTS)

Figure 4.1: The system architecture.

4.2 Multimedia Multicast Transport Services (MMTS)

In [CHKDY6] a novel concept is introduced: a multi-media multicast transport service (MMTS)
that supports QoS group communication. The MMTS provides a framework for synchronization of
messages with different QoS requirements.

The MMTS concept is particularly beneficial for applications that integrate services with a

'In [CHKDY96] the membership services are regarded as part of the MMTS. Here, we follow the approach taken
by Maestro [BFH97], which separates the group multicast services from the membership services.

4.2. MULTIMEDIA MULTICAST TRANSPORT SERVICES (MMTS) 19

variety of QoS needs. For example, multi-media and desktop conferencing systems require Quality of
Service (Qo0S) communication for video transmission. Nonetheless, such applications are concerned
with more than just transmitting a stream of video: they need to exchange messages for connection
establishment, dynamic group management, and negotiation and re-negotiation of Quality of Service
(QoS) [RR96]. Furthermore, it is desirable to make such systems fault tolerant.

Recently, several emerging projects addressed the challenge of incorporating QoS communica-
tion into the framework of group communication. Maestro [BFHR98] extends the Ensemble [HvR96]
group communication system by coordinating several protocol stacks with different QoS guarantees.
The Collaborative Computing Transport Layer (CCTL) [RCHS97] implements similar concepts,
geared towards distributed collaborative multimedia applications. Both systems implement and
elaborate the concept of MMTS.

The vic [MJ95] video conferencing tool over the MBone? is a flexible framework for packet
video. This approach uses a conference bus for broadcasting the various media in a conference
session (e.g., whiteboard media, audio, and video). In the VIC architecture, the conference bus
may be used along with a coordination tool. The MMTS can be viewed as integrating both the
conference bus and the coordination tool.

The MMTS concept is flexible, it can exploit various underlying communication protocols and
technologies, e.g., RSVP [ZDE*93], ST-IT [Top90] and ATM QoS. Furthermore, it modularly sup-
ports integration of new QoS options, e.g., the cyclic UDP QoS [Smi94] that was implemented as
a protocol layer in the Horus system [VvR94].

One of the important challenges that need to be addressed when using groupware toolkits for
a multimedia application is how to combine services with strong semantics with the QoS required
by the multimedia application.

The MMTS allows the user to provide optional synchronization barriers among streams of
messages of different QoS types. Synchronization barriers are implemented using reliable messages.
Using synchronization barriers, the user may enforce order semantics w.r.t. messages of different
streams. These barriers may delay “faster” messages until the arrival of “slower” messages that
they depend on. For soft real-time applications, that can tolerate some bounded delay, a best-
effort synchronization mechanism is provided. The best-effort service delays the message delivery
for some pre-defined timeout in order to try to synchronize the different channels used by the

application. After this timeout, the message may be either discarded or delivered in spite of the

*Information about the MBone can be found in http://www.best.com/ prince/techinfo/mbone.html.

20 CHAPTER 4. THE SERVICE DESIGN

lack of synchronization, according to the application’s specification.

This concept generalizes the A-Causal communication mode [BMR96, Yav92]. In this commu-
nication mode, messages may be lost. Each message has a lifetime, A, after which its data is no
longer meaningful, hence the message may be discarded.

Another example of best-effort semantics is the cyclic UDP [Smi94] prioritized best-effort mes-
sage recovery mechanism. Cyclic UDP allows the user to specify priorities for messages. Messages
with a higher priority are recovered before messages with a lower priority. Message recovery at-
tempts are stopped after a certain timeout period. Cyclic UDP may be incorporated in the MMTS,
(as described in [CHKDY6]), by recovering lost messages only until the synchronization barrier mes-

sage is delivered.

4.3 Advanced Group Membership Services and Policies

We provide a hierarchical group membership service with support for group policies. These services
are valuable building blocks for conferencing applications and interactive games. The membership

service is implemented as a separate process (daemon).

4.3.1 Group Membership Services

The basic membership service is based on the CONGRESS CONnnection-oriented Group-address
RESolution Service [ABDLY7, ABDL96|, which is designed for ATM networks, but may be ex-
ploited in other networks as well. CONGRESS supports two types of services: address resolution,
which is a single query about the group membership, and incremental updates, which provides the
user with updates every time the group membership changes.

CONGRESS provides basic efficient group resolution services for performance driven applications.
It does not impose agreement on the order of membership changes, thus different members may
incur the same membership changes in different orders. Furthermore, CONGRESS does not deal with
message transmission, and in particular, does not impose any semantics on message ordering w.r.t.
to membership changes.

Our membership service allows applications that require consistency to agree upon the order of
membership changes, and thus incur membership changes in the same order. This is done by using
CONGRESS incremental updates in conjunction with a one round agreement protocol, as described
in Chapter 5. The agreement protocol is run only for groups that explicitly request this service.

Group communication systems usually provide strong semantics of message ordering w.r.t. mem-

4.3. ADVANCED GROUP MEMBERSHIP SERVICES AND POLICIES 21

bership changes, e.g., virtual synchrony [BJ87, FvR95, MAMSA94]. Virtual synchrony requires
synchronization among the applications and the membership service. This service is costly: it
incurs a delay period in which messages may not be transmitted [FvR95]. This synchronization
greatly facilitates the design of applications that require consistency (e.g., applications with shared
data [BJ87, ABCD96, KD96, ADMSM94, SM98]), but is too costly for applications that require
real-time message delivery (e.g., video transmission).

We provide virtually synchronous communication for groups and message types that explic-
itly request this service. The implementation of virtual synchrony is described in more detail in

Chapter 5.

4.3.2 Hierarchical directory services

An important innovation of our membership service is the support for hierarchical directory services.
We maintain a hierarchy of groups: A group may be a sub-group of a parent group. A parent group
may contain a number of sub-groups. The listing of sub-groups and their memberships are available
only to the members of the parent group. This concept is useful for applications containing a number
of logically related groups, e.g., a conferencing applications with several discussion groups.

In order to supports the notion of a secure multicast group [RKBvR94, RHDB98, RD97], the
access to the group hierarchy is regulated by an authentication server. Only authorized members
are allowed to join secure groups. The hierarchical directory services allows secure groups to be
hidden from unauthorized parties, by coupling them as sub-groups of the same secure parent group.

The membership service may maintain two membership sets for each process group: active
members who may provide input in the group, and passive members who receive messages sent to

the group but cannot send messages to the group.

4.3.3 Group Policies

The membership service may also allow users to determine policies regarding the membership and
nature of communication in a group. The policies are declared when the group is created. If no
policy is declared, then the policies are inherited from the parent group. There are two basic types
of policies: membership policies and run-time policies.

Membership policies restrict the ability of processes to become members of the group. Restric-
tions may be imposed on the number of members in a group, and also on the properties of the
members. For example, a conference over the Internet may allow only two members from each

country to participate in the discussion. If due to a membership policy, a user’s join request may

22 CHAPTER 4. THE SERVICE DESIGN

currently not be fulfilled, we allow the user to block until the join will become possible. Membership
policies are enforced by the membership service.

Run-time policies are specified at group creation time, and are enforced at run-time. Run time
policies may define, for example, the number of users that may concurrently provide input in a
group, and who is responsible for dispensing the right of speech. The floor control mechanism
(described in Section 4.4.2) enforces such policies.

Run-time policies are used in conjunction with membership policies. An example application
that exploits both types of policies is an interactive chess server. The chess server allows two players
to play in each game (actively join the “players” group), and allows other users to watch the game
and exchange comments (passively join the “players” group, and actively join the “voyeur” group).
Permission to play a game is granted according to the player’s rank. Each of the two players may

make a move only when it is his turn.

4.4 The Session Services

The service architecture allows supporting a wide range of session level services geared towards the
needs of typical classes of distributed applications. Among them are tools for coordination and
floor control in conferencing systems, consistent object replication, security, etc. In this thesis we
elaborate on consistent replication services, which are over-viewed in Section 4.4.1. In Section 4.4.2

we discuss coordination services and floor control.

4.4.1 Support for replication

Numerous distributed applications use replication in order to increase their availability and relia-
bility. This raises the need for a service that would preserve replicas in a consistent state despite
network and machine failures: When the network partitions into several disjoint components, the
states of disconnected replicas may diverge. When processes reconnect, all the processes should be
brought to a common state.

We distinguish between two levels of consistency services: short-term and long-term. The short-
term consistency service guarantees to preserve consistency within a group of connected processes.
When a partition is mended, the states of previously disconnected replicas are unified using a
state transfer protocol. The protocol in [ACDV97] exploits group communication for efficient
implementation of state transfer.

The long-term consistency service guarantees a 1-copy serializable history of object updates.

4.4. THE SESSION SERVICES 23

That is, for every execution o of the replicated data service there is a sequence 7 of (non-distributed)
object updates such that o produces the same output and has the same effect on the data as ex-
ecuting 7 on a single copy of the object (cf. [BHG87]). This is achieved by prohibiting arbitrary
updates of the object in disjoint network components, often, only the members of a primary com-
ponent may update the object. The long-term consistency service is described in Chapter 6. We
also provide a dynamic voting-based primary component service that notify processes when they

are members of the current primary component which is described in Chapter 7.

4.4.2 Coordination and Floor Control

Different groups may impose different run-time policies on the eligibility of members to provide
input of various types (e.g., video, audio, text) in a group. The policy is defined when the group
is created. The floor control mechanism enforces this policy. An example policy may allow all the
participants to type text concurrently in a text chat, and yet allow only one member to update
a shared file at a given time. Another possible policy may designate a group of parties as the
conference managers which are responsible for dispensing the right of speech. Ordinary members
are allowed to speak only when they obtain permission to speak.

The floor control mechanism manages the dynamic switching of the right to produce input
among multiple conference parties. This service is particularly useful in distance learning appli-
cations, in which students are typically not allowed to intervene when the teaching is in progress.
Nevertheless, the teacher may grant students permission to ask questions at the end of a topic
presentation.

The floor control supports the token abstraction to designate a party (or group of parties) that
are currently allowed to produce the input. The interface also allows parties to indicate their wish
to obtain the token. If some participants were defined as conference managers they can pass the
token among the ordinary parties at any given time.

If all the group members are equal in rights, they can freely compete for the token. The reliable
totally ordered multicast service helps guarantee the uniqueness of the token holder. When the
current token holder finishes its “monologue”, he can explicitly pass the token to another party or

return it to the system so that other parties can compete for it.

Chapter 5

Scalable Group Membership Services*

This chapter presents a new architecture for a scalable group membership service
for wide area environments. This architecture provides two different service levels
and their semantics, each geared to different applications with different needs. This
chapter focuses on a novel scalable group membership algorithm, which provides
virtually synchronous communication semantics.

The novelty of our design is in its client-server approach: In our design, member-
ship is not maintained by every process, but only by a few dedicated servers. Thus,
membership maintenance induces very low overhead when membership changes are
infrequent. Our design is inherently scalable and suitable for wide area networks.
It allows lightweight clients to benefit from advanced membership services. Fur-
thermore, our design supports the coexistence of full-fledged clients along with thin
clients.

5.1 Introduction

Group communication [ACM96] is an important abstraction, widely used for distributed and
communication-oriented applications. Such applications typically require the coordination of large
and dynamic sets of processes at different sites. The group communication abstraction is essential
for the modular design of groupware and other multi-user applications in such networks. The most
important aspects of this abstraction are the maintenance of group membership and the semantics
of interleaving membership change notifications within the flow of regular messages.

Different applications utilize group communication for different purposes, and hence require
different semantics from the group membership service they utilize (as explained in [BFHRYS,
CHKDY6, Bir96]). For example, video conferencing applications need a general knowledge of which
peers are interested in joining the conference, in order to know where to multicast the video stream,

and where to receive it from. Such applications do not require the synchronization of membership

*This chapter is based on a paper by Anker, Chockler Dolev and Keidar [ACDK98] and on work by Keidar,
Sussman, Dolev and Marzullo [KSDM].

24

5.1. INTRODUCTION 25

change notifications with regular messages.

On the other end of the spectrum, consistent data replication may greatly benefit from strong
semantics [BJ87, ABCD96, KD96, FLS97, ADMSM94, SM98|. For example, some group commu-
nication systems provide virtual synchrony semantics, which synchronize membership notifications
with regular messages and thus simulate a “benign” world in which message delivery is reliable
within the set of live processes. This enables synchronization among applications, but is costly:
it incurs a delay period in which messages may not be transmitted [FvR95]. Therefore, it is not
appropriate for applications that require real-time message delivery (e.g., video transmission).

Computer Supported Cooperative Work (CSCW) [Rod91] groupware and multimedia appli-
cations involve different services that require different Qualities of Service (QoS) and different
semantics from the group membership which they use, for example, an on-line conferencing ap-
plication may incorporate multimedia multicast as well as coordination and sharing of consistent
information (e.g., a shared white board).

Extensive research is currently being carried out to optimize scalable reliable multicast protocols
in order to meet the demands of such applications [Car94, FIM*95, PSK94, PSLB97]. Many of
these applications make use of highly dynamic multicast groups. Such protocols often need to
be complemented by a membership mechanism that maintains the dynamically changing set of
members in each multicast group.

However, the design of a scalable membership service for WANs is a challenging task. Issues

that need to be addressed include:

e Message latency tends to be large and highly unpredictable in a WAN, as compared to the
relative consistency of message latency in a local-area network (LAN). This high latency
works against algorithms in which processes repeatedly exchange messages in order to reach

a decision.

e Failure detection in a WAN is usually less accurate than failure detection in a LAN. Inaccurate
failure detection may cause a membership algorithm to change views frequently. This is costly
as it can cause applications to engage in additional communication for re-synchronizing their

shared state.

e There is no efficient support for the flooding of messages in a WAN, as opposed to a LAN. A
group membership service supporting multiple groups in a WAN must take care not to flood

the network.

26 CHAPTER 5. SCALABLE GROUP MEMBERSHIP SERVICES

This chapter describes a new architecture for construction of a scalable group membership
service for wide area environments. The membership service provides two different service levels and
semantics, each geared to different applications with different needs. In addition, our membership

server provides advanced services such as a hierarchical directory of groups and secure groups.

The two different service semantics are geared towards different kinds of applications: the
CONnection-oriented Group-address RESolution Service (CONGRESS) [ABDL97, Ank97] member-
ship service provides simple semantics of membership approximation, and the Membership Object-
oriented Service for Heterogeneous Environments (MOSHE) service, which extends CONGRESS, pro-
vides full virtual synchrony semantics. In this chapter we focus on implementing MOSHE atop of

CONGRESS.

There are many different formulations of group membership services (some examples may be
found in [VKCD98, DMS94, DMS95, BDM97]), and various definitions of virtual synchrony seman-
tics (and variants such as strong virtual synchrony, extended virtual synchrony), e.g., [VKCD98,
BJ87, FvR95, MAMSA94, FLS97]. MOSHE provides semantics which have been proven useful for
several distributed applications [ABCD96, KD96, FLS97, ADMSM94, SM98]. In particular, the

total ordering protocol presented in Chapter 6 exploits these semantics.

Numerous group membership protocols providing similar semantics were constructed (e.g., [CS95,
AMMS*95, MMSA196, EMS95, ADKM92a, MPS91a, MSMA91, DMS94, MS94, BDM97]). The
novelty of MOSHE is in its client-server approach: The servers maintain the membership of clients
in groups. The client-server design is a major challenge, since the protocol has to synchronize
different entities. Our implementation focuses on minimizing the number of messages sent in order

to achieve preciseness, without sacrificing efficiency.

In our design, membership is not maintained by every process, but only by a few dedicated
servers. Thus, membership maintenance induces very low overhead when membership changes are
infrequent, and the strong semantics required by some parts of the application induce no overhead

for those parts which require weaker semantics.

The rest of this chapter is organized as follows: Section 5.2 describes the environment model and
Section 5.3, the system architecture. The features of the basic membership service, CONGRESS, are
described in Section 5.4. The guarantees of the virtually synchronous membership service, MOSHE,
are specified in Section 5.5. Section 5.6 overviews the implementation of MOSHE. Section 5.7 com-
pares MOSHE with other membership algorithms. Section 5.8 describes the advanced membership

services.

5.2. THE ENVIRONMENT MODEL 27

5.2 The Environment Model

The membership service exploits an external failure detector (FD) module (as explained in Chap-
ter 2). It is assumed that the failure detector fulfills strong completeness, i.e., it eventually suspects
every process that has permanently crashed or disconnected. We do not discuss here how the failure
detector is implemented. A framework for implementing a failure detector in a WAN is provided
in [Vog96].

We further assume that the failure detector module operates in conjunction with the underlying
communication, so that no messages are ever received from a suspected process, i.e., a receive
event cannot occur for a message whose sender is in the receiver’s suspect list.

We assume that the communication between pairs of processes preserves the FIFO order, as

specified below:

5.2.1 Reliable rFirO Multicast Communication Channels

Our membership service is constructed atop a reliable FIFO multicast service, which fulfills the

following properties:

Property 5.2.1 (Reliable F1ro Order) If process p sends two messages to process q: my and
later mo, and if q receives both messages, then these messages are received in the order in which
they were sent.

Furthermore, while process q does not suspect process p, q receives p’s messages without gaps,
i.e., if process p sends a message m' between m1 and ms, and between the receipt of m1 and mo, q

does not suspect p, then q also receives m' between mi and mo.

Property 5.2.2 (No Duplication) FEvery message received by a process p is received only once

by p.

The reliable FIFO service preserves the Message Integrity property (Property 2.2.1) of the un-

derlying communication links.

5.3 The System Architecture

Our membership service differs from those of other group communication systems in that it complies

with the client-server paradigm (please see Figure 5.1). Processes that communicate with each other

28 CHAPTER 5. SCALABLE GROUP MEMBERSHIP SERVICES

are clients of the membership service. The clients communicate with each other using reliable FIFO
multicast channels! which allow them to multicast messages to all the members of a group.

Sockets or CORBA

———Create/Join/Leave——» MOSHE
Client
r-——Propose/View——— CONGRESS
[FD]

Reliable FIFO Multicast

NETWORK

Figure 5.1: The membership service architecture.

The task of the membership service is to maintain a listing of the currently active and connected
group members, and to deliver this information to clients in a consistent manner, when the mem-
bership changes. The changes in the group membership are reported in views. A client becomes
a member of a group by joining the group, and stops being a member by leaving the group, or by
crashing.

We currently support two options for client-server interaction: The first option is based on a
reliable point-to-point FIFO service built directly atop the low-level socket interface. The second
option utilizes the Common Object Request Broker Architecture (CORBA) [OMG98] which is the
industrial standard for building client-server applications. Some of the advantages of using CORBA
include: simplified object-oriented design, network transparency, client-server failure detection, and
the possibility of using standard CORBA services (e.g., security, naming and event services).

Within the CORBA framework, objects (i.e., entities consisting of an interface and an im-
plementation) are registered over a virtual software bus, called the Object Request Broker (ORB).
Whenever a CORBA application issues a request to a previously registered (possibly remote) object,
the ORB locates the object and forwards the request to it. For more details, please see [ACDK98].

The membership server is designed according to the object-oriented paradigm and written in
the Java programming language. The membership server consists of two objects: MOSHE and
CONGRESS. The CONGRESS substratum accumulates the group membership and failure detection

information and disseminates it among the membership servers. CONGRESS resides directly on top

!The clients may use a multimedia multicast transport service (MMTS) as described in Section 4.2. The MMTS
provides a variety of QoS options, among them reliable FIFO multicast.

5.4. THE CONGRESS BASIC SERVICE 29

of a network layer (such as ATM or IP).

MOSHE extends CONGRESS to provide membership services with strong membership and message
delivery semantics. Examples of such semantics include virtual synchrony and the ordered delivery
of views. In addition, MOSHE provides some advanced services such as hierarchical and secure
group services. In order to synchronize multicast message delivery with membership change events,
MOSHE clients multicast synchronization messages via the MMTS.

Client requests are first processed by the MOSHE object. For each client request, this processing
includes updating the group hierarchy (if necessary) as well as authorization and/or authentication
for secure groups. Then, the request is delegated to the CONGRESS object for further dissemination
among the other membership servers.

When a change in the membership of some group is reported by CONGRESS, MOSHE checks if
the group requires strong semantics. If it doesn’t, MOSHE immediately informs the group members
of the new membership. Otherwise, MOSHE initiates an additional synchronization round at the

end of which the view is reported.

5.4 The CONGRESS Basic Service

CONGRESS [ABDL97] is a protocol for resolving (i.e., mapping a multicast group name into a set
of members identifiers) and maintaining the membership of multicast groups. CONGRESS operates
over point-to-point connections, and is scalable to a WAN.

In order to be scalable and efficient, CONGRESS minimizes the network traffic required to main-
tain the dynamic group membership. The saving in network traffic is achieved by using a hierarchy
of dedicated servers, which propagate necessary information about multicast groups to clients in
the server’s area. Furthermore, CONGRESS does not flood the WAN on every group membership
change. This is achieved through careful maintenance of a distributed spanning tree for each of
the multicast groups. A single membership change in a multicast group G incurs O(|G|) protocol

messages.

5.4.1 CONGRESS Services

The CONGRESS services are provided by an interface that consists of the following basic functions:

e join(G): Make the invoking client a member of group G.

e leave(G): Remove the invoking member from the membership in G.

30 CHAPTER 5. SCALABLE GROUP MEMBERSHIP SERVICES

e resolve(G): Request to resolve a multicast group name G into an approximated set of mem-

bers identifiers.

A client may learn of the membership of a group from the following membership notification

events:

e resolve-reply is a response to a resolve request. It consists of an approximated list of

members.

e Incremental membership notification (MN) is a notification of a change in the group’s
membership, due to join, or leave events, or due to a change in the suspect list reported by
the failure detector. A change in the suspect list can occur due to a suspected process crash

or communication link failure, or due to recovery of either a process or a communication link.

Incremental membership notifications report only the difference between the new membership
and the one previously reported. For example, MN(“join”, a, G) denotes a membership
notification that reflects the fact that process a has joined group G, either due to a join

request or due to recovery of the communication link to a.

Definitions

We now introduce the following definitions:

e An incremental membership notification reflects one of the following events w.r.t. a process:
join, leave, process crash, failure of the communication link to a process, false suspicion of
a process, or a refutation of a false suspicion. In some cases, an incremental membership
notification may reflect the outcome of a series of such events, e.g., if a process has discon-
nected, and later crashed and recovered and then reconnected, then the outcome of latter
three events would be reflected in a single “join” notification. A resolve-reply reflects the

final outcome of a series of events.

o The membership of group G calculated by a client is constructed by resolving a group name
once, and subsequently applying the incremental membership notifications as they arrive. For
example, if the resolve-reply received in response to the initial resolve request for group G

was {b, c}, then applying the membership notification MN(a, G) yields the new membership:
{a,b,c}.

5.4. THE CONGRESS BASIC SERVICE 31

e We say that process a is a potential member of group G if a has joined G (i.e., issued a join),

and afterwards a has neither crashed nor issued a leave.

5.4.2 CONGRESS Guarantees

In this section, we describe the properties that CONGRESS guarantees w.r.t. the membership infor-
mation it provides.

The first property guarantees that two membership notifications w.r.t. the process are received
in the order of the events which they reflect. This guarantee is called per-source chronological

ordering of membership events.

Property 5.4.1 (Per-Source Chronological Ordering of Membership Events) Membership
notification events reflecting events w.r.t. the same process occur in the same order as the events

that they reflect.

Note, however, that membership notification events w.r.t. different processes may occur in
different orders at different processes. This is illustrated in Example 1 below. Agreement on the
order of notifications would require running a synchronization round for each membership change.
Such a synchronization round is performed by MOSHE for groups that require it, as explained in

Section 5.6.

Example 1 Assume that a and b are two members of a group G. Assume further that the mem-
bership at both of them is {a,b}. Now, assume that c and d join group G at approzimately the same
time. Assume also that c is topologically close to a and that d is topologically close to b. It is highly
probable that a will receive CONGRESS’ notification about ¢ joining G before receiving notification
about d joining G, and that b will receive the notifications in the reverse order (i.e., the notification
about d will be received before the notification about ¢ at b). This implies that a will calculate the
membership of G first as {a,b}, then as {a,b,c} and finally as {a,b,c,d}, whereas b will calculate
the membership first as {a,b}, then as {a,b,d} and only then as {a,b,c,d}.

Since the network is asynchronous and protocol messages may be delayed, membership infor-
mation at distinct CONGRESS servers may differ at any given time. It has been proven that it is
impossible to make strong guarantees regarding the preciseness of the membership derived from
notifications at instable time periods (please see discussion in Section 5.5.1). If, however, the net-
work stabilizes, and no new membership events occur in group G, then eventually all the members

of G will have a precise view of the membership in G. This is formulated in the following property:

32 CHAPTER 5. SCALABLE GROUP MEMBERSHIP SERVICES

Property 5.4.2 (Eventual Preciseness) Let G be a group, and ty a point in time s.t. the set of
potential members of G has not changed after time tg. Furthermore, assume that after time to all
the potential members of G are in the same connected component, and do not suspect each other.
Then there is a time t1 > ty s.t. at time t1 all the potential members of G have the same calculated

membership, which consists of ezactly the set of potential members of G.

Consider, for instance, Example 1 above. There, the membership eventually becomes {a, b, ¢, d}
at all the processes.

Two points are worth noting about the above definition:

1. If there are live potential members of GG in two disjoint network components, then we would
like processes in each component to have a calculated membership consisting of the set of
potential members of G in the local component. It is easy to see that this requirement is

fulfilled by any protocol that fulfills Property 5.4.2.

2. For simplicity’s sake, we required that stability would last forever. In practice, however, the
following situation holds: Let ¢; be a time by which all the events that occurred before time 2
have been reflected by membership notification events at all the processes. If the membership
of G stabilizes for only a finite time interval [tg, t3], s.t. t2 > t1 then all the potential members
of G will also have the same calculated membership. This membership will consist of exactly

the set of potential members of G during the interval [¢;, £5].

The stronger guarantees are formulated and proven in [Ank97].

5.5 Semantics of the VS Membership Services

Some applications require membership services with only weak semantics, and some require strong
semantics. Applications that need to consistently maintain a replicated state (e.g., coherent cache),
greatly benefit from virtually synchronous communication and membership semantics. The MOSHE
membership service provides such semantics for groups that explicitly request this service. We call
such groups VS groups. The protocol that implements these semantics is the MOSHE VS membership
protocol. The VS membership service, together with the reliable FIFO multicast service comprise a
virtually synchronous communication service, which fulfills the specifications stated below. These
specifications are derived from the formal specifications presented in [VKCD98].

The membership protocol encapsulates membership notifications in views. A view v is a triple

consisting of: the group name, denoted v.G; the group membership (i.e., the list of members),

5.5. SEMANTICS OF THE VS MEMBERSHIP SERVICES 33

denoted v.M, and a view identifier, denoted v.id. We say that the view v occurs in the group v.G.
We omit v.G where it is obvious. The view identifier is taken from a partially ordered set (in our
implementation, it is an integer). We say that a process is a member of view v if it is in v.M.

The key features of the membership provided by MOSHE for VS groups are:
e Agreement on the order of views.
e Synchronization of multicast messages with view reports (virtual synchrony).

We elaborate on these features below.

5.5.1 Agreement on Views

Agreement on the order of views allows processes that continue together to perceive changes of
the membership in the same order. With the CONGRESS basic service, two processes that continue
together may receive membership notifications in different order, as illustrated in Example 1 in
Section 5.4. The membership service uses CONGRESS incremental membership notifications in
conjunction with a one round agreement protocol, which allows processes that remain connected
to receive views in the same order. The MOSHE VS membership protocol guarantees the following

set of properties:

Property 5.5.1 (View Identifier Local Monotony) Processes deliver views in a monotonously

increasing order of view identifiers.

In particular, Property 5.5.1 implies that the view identifier is locally unique, i.e., a process cannot
deliver two views with the same view identifier. Note that the pair (V.id, V.M) serves as a globally

unique view identifier.
Property 5.5.2 (Self Inclusion) Processes deliver only views of which they are members.

Property 5.5.3 (Agreement on Views) Let G be a VS group, ty a point in time, and S a set

of clients. Assume that from time ty onwards:
1. All the clients in S are potential members of G.

2. All the clients in S and their servers are in the same connected component C, and the topology

of C does not change.

34 CHAPTER 5. SCALABLE GROUP MEMBERSHIP SERVICES

3. Processes in C' do not suspect each other, and every process which is not in C is suspected by

every process in C?.

Then there is a time t1 > to s.t. all the processes in S incur the same sequence of views in G after
time t1. Furthermore, if the set of potential members of G in C is exactly S after time ty, then all
the clients in S eventually deliver the same view v, s.t. v.M = S and do not deliver any further

views in G.

As explained in Section 3.3, perfectly precise membership services are impossible to implement
in truly asynchronous environments. Therefore, we have formulated Properties 5.4.2 (Eventual
Preciseness) and 5.5.3 (Agreement on Views) to guarantee preciseness of the membership service
only at stable periods in which the external failure detector module does not suspect correct and
connected processes. If the network is highly unstable, or if failure detection is highly unreliable,
then it is possible that the membership algorithm would never be precise. If, however, the failure
detector is an eventual perfect one (cf. Chapter 2), and the communication stabilizes, then the
membership service is guaranteed to eventually be precise, and furthermore, agreed upon.

It is important to note that although our non-triviality properties (Eventual Preciseness and
Agreement on Views) are guaranteed to hold only in certain runs, the conditions on these runs are
external to the algorithm implementation, and therefore a trivial or useless protocol cannot meet
these guarantees.

As noted in Section 5.4, stability does not have to hold forever. Any protocol that fulfills
Property 5.5.3 must begin to precisely reflect the network situation a finite time after the network
stabilizes, even if stability will not last indefinitely. (A similar argument is made w.r.t. partial
synchrony in [DLS88]). In this thesis we do not analyze the actual length of time required until the
membership becomes precise. This can be done, as in [FLS97], by explicitly linking the guarantees
of the membership protocol to pre-determined bounds on process scheduling times and delays at

the underlying network instead of using the failure detector abstraction.

5.5.2 Strong Virtual Synchrony

Virtual synchrony involves synchronizing multicast communication with membership notifications.
In this programming model, group multicast send and receive events occur within the context of
views. We say that a multicast send (receive) event e in group G occurs at process p in view v if v

was the latest view that p received in group G before e.

*This requirement is fulfilled if the failure detector is eventually perfect. Please see [CT96, DFKM96, DFKM97).

5.5. SEMANTICS OF THE VS MEMBERSHIP SERVICES 35

The MOSHE VS membership protocol preserves the following properties of the reliable FIFO
communication service: Message Integrity (Property 2.2.1) and No Duplication (Property 5.2.2).
In addition, the MOSHE VS membership protocol guarantees the set of properties specified below.

The following two properties are liveness properties:

Property 5.5.4 (Self Delivery) A message sent by a process is eventually delivered by that pro-
cess, unless the process suffers a crash failure or leaves the group.

Property 5.5.5 (Termination of Delivery) If a process p sends a message in a view v in G,
and process q is in v.M, then one of the following holds:

e g delivers this message, or
e p eventually delivers a new view in G, or
e p crashes, or

e ¢ leaves the group.
The next property is part of the strong virtual synchrony model.

Property 5.5.6 (Synchronous Delivery) Every message is delivered within the view in which

it was sent.

The synchronous delivery property can be relaxed in various ways, which are not in the scope
of this chapter. Please see [FvR95, SM98, VKCDY8].

In addition, MOSHE provides the Virtual Synchrony property for groups that require it. This
property is perhaps the most well known property of GCSs, to the extent that it engendered the
whole Virtual Synchrony model.

Property 5.5.7 (Virtual Synchrony) Any two processes undergoing the same two consecutive

views in a group G deliver the same set of messages in G within the former view.

The MOSHE VS guarantees are very similar to the semantic of [VKCD98], and to the Eztended
Virtual Synchrony semantic described in [MAMSA94]. We have removed the causal order, total
order, and safe delivery properties from these semantics, in the belief that these are optional
properties that may be built on top of this service (e.g., see [CHD98, Cho97]). There are other
group membership specifications in the literature, such as [FvR95], [BDM97] and [DMS95]. These
differ in various details, but have much in common with the semantic that is used here.

The total ordering protocol in Chapter 6 exploits the MOSHE VS guarantees.

36 CHAPTER 5. SCALABLE GROUP MEMBERSHIP SERVICES

5.6 Implementation of the MOSHE VS Membership Protocol

In this section we describe an overview of the implementation of the MOSHE VS membership proto-
col. The MOSHE membership algorithm maintains the list of members in each group. The algorithm
is invoked in response to requests from clients to join or leave groups, and in response to network
events. MOSHE uses CONGRESS incremental updates to propagate knowledge of network changes

and of membership events.

5.6.1 Message Flow in MOSHE

When a client join/leave request or a client failure report is handled by a MOSHE server, the server
invokes a corresponding join/leave request in CONGRESS for further dissemination among the other
membership servers. Once CONGRESS generates a membership notification reflecting this event,
MOSHE starts a synchronization round, in order to achieve virtual synchrony and agreement on the
view.

The membership server computes a proposed view, as explained in Section 5.6.3 below, and
emits proposals reflecting it to all of its clients which are members of the group. The clients echo the
proposals in flush messages, which acknowledge their participation in this view. The flush messages
are propagated to all the membership servers. The clients also multicast the flush messages to the
other members of the group in order to synchronize view delivery with the multicast message flow,
as explained in Section 5.6.2 below.

After the proposals are emitted, we say that the view is pending until flush messages arrive
from all of its members. If a new incremental membership notification arrives while the view is
pending, then new proposals are sent only to those newly joined clients to whom proposals for this
view were not previously sent.

Once the MOSHE server receives flush messages from all the members of the pending view, it
emits a view message to all of its clients (which are members of the group). The clients synchronize

the view with the flush messages, as explained in Section 5.6.2 below.

Example 2 In Figure 5.2 we illustrate the events that occur in the protocol when process a is
joining group G. Initially, the membership of group G is {b,c}. The protocol is invoked when
process a issues its join request.

The join request (denoted by (1) Join(a, G) in Figure 5.2), is propagated using CONGRESS. All
the MOSHE servers learn of it via the CONGRESS membership notification, denoted by (2) MN(a,
G).

5.6. IMPLEMENTATION OF THE MOSHE VS MEMBERSHIP PROTOCOL 37

(5) View(G: {a, b, ¢}) ——— (5) View(G: {a, b, c})
\Q Join(a, G) |7 (3) propose

(3) propos\e\
\

~_MosHE
vy
4) flush e i (4) flush(c)
(@ fsnt@ A CONGRESS 3
(2) MN(a, G) (4) flush(b)
\ Bge
Join(a, G) (4) flush(a) (4) flush(c)

MMTS / Network

7]

(1) Join(a,) (4) flush(a) (4) flush(c)
; CONGRESS
2 W@, 6) (4) flush(b)
(4) flush(b) y #
. MOSHE

(3) propose

@4_(5) View(G: {a, b, c})

Figure 5.2: Events occurring in MOSHE when process a is joining VS group G.

Upon receiving this event, the MOSHE servers generate proposals for a new membership to their
clients. In Figure 5.2, these are denoted by (3) propose. The clients respond by multicasting
(4) flush messages to the servers and clients.

Once the MOSHE membership server receives flush messages from all the members of the new

view, it issues a view message, (denoted by (5) View(G: {a,b,c})).

5.6.2 Supporting Virtual Synchrony

Virtual synchrony requires synchronization among the clients: In order to fulfill Properties 5.5.6
(Synchronous Delivery) and 5.5.7 (Virtual Synchrony) the clients have to synchronize their multicast
messages with membership events. Such synchronization necessarily incurs a delay period in which

messages may not be transmitted [FvR95].

38 CHAPTER 5. SCALABLE GROUP MEMBERSHIP SERVICES

The synchronization mechanism is based on the flush messages described above. The purpose of
flush messages is to synchronize views with the multicast message flow. Therefore, flush messages
are multicast via the MMTS, and serve as place holders which denote where (in the message flow)
the previous view ends. After sending a flush message, the clients do not send any new messages
until the new view is reported.

Once the MOSHE membership server receives flush messages from all the members of the new
view, it issues a view message. The view also contains a view identifier as explained in Section 5.6.3
below. The clients synchronize the view with the flush messages: Messages that were sent before
the flush are delivered in the previous view. Recall that we assume that the MMTS provides FIFO
multicast services; hence, messages sent before the flush message are delivered before the flush

message. This way, every message is delivered in the view in which it was sent.

5.6.3 Computing the Proposed View

A proposed view (for a group G) consists of the proposed set of members, a proposed view identifier,
and a proposed set of suspects (or leavers).

The membership server computes the initial members and suspects sets of the proposed view
by applying the CONGRESS incremental membership notification to the membership of the current
view. When a CONGRESS incremental membership notification reports that a process is leaving a
group?, the process is removed from the members set and added to the suspects set. In case a join
notification arrives, the joiner is added to the members set and the suspects set is empty.

Consider Example 2 above: There, the membership of group G was {b,c} and the incremental
notification reported that a had joined. The proposed set of members is therefore {a, b, c}, and the
proposed set of suspects is empty.

The proposed view identifier is computed by incrementing the latest known view identifier by
one. For example, if the latest view was (G, {b, c}, 3), then the new proposed view is ({a, b, c}, {},4).
The proposed view is sent in the proposal, and echoed in the corresponding flush message.

If a new incremental notification arrives while the view is pending, then the pending view
is re-computed by aggregating the incremental notification to the pending view. When a join
notification arrives, the joiner is added to the members set unless it is already in the suspects

set*. New proposals are then sent only to those newly joined clients to whom proposals were not

3This can occur either because the process crashed or because it has requested to leave the group.
“If the joiner is in the suspects set, the notification is buffered to be handled after the current pending view will
be delivered.

5.6. IMPLEMENTATION OF THE MOSHE VS MEMBERSHIP PROTOCOL 39

previously sent. This is illustrated by the following example:

Example 3 Consider Example 1 where two processes, ¢ and d, concurrently try to join group G.
Assume that clients a and c are served by the membership server My, and b and d by M>, and
assume that at both servers the current view of group G is (G,{a,b},3). Consider the case in which
membership server My first receives the notification that c is joining, and then issues proposals for
the view (G, {a,b,c},{},4) to a and c. At the same time, server My receives the notification that d
is joining, and then issues proposals for the view (G, {a,b,d},{},4) to b and d.

In the next stage, M1 receives the notification that d is joining, and aggregates it to the pending
view, which now becomes (G, {a,b,c,d},{},4). Server My checks if it has to send new proposals:
Since the only new member (d) is not a client of My, no new proposals have to be emitted. Similarly,
the aggregated pending view at server My becomes (G,{a,b,c,d},{},4), and My does not emit new

proposals.

Similarly, if a leave notification is received during the synchronization round, the server removes
the leaving client from the members set of the pending view, adds it to the suspects set, and no
longer waits for a flush message from this client. In order to prevent blocking, the servers should
eventually either receive a flush message from every member of the view, or receive a notification
that the member has failed. This is guaranteed to happen since we assume that the failure detector
fulfills strong completeness.

Note that it is possible for a flush message that reflects a CONGRESS membership notification

5 In such cases, the incremental

to arrive before (or even without) the membership notification
change reflected in the flush message is also aggregated into the pending view: The suspects set
becomes the union of the suspect sets, and the new members set consists of the members of the
union of the members sets, except for those who are in the suspects set.

Once flush messages arrive from all the members of the pending view, the server sends the new
view to the clients. The view membership is the members set of the pending view, and the view
identifier is chosen to be the maximum of the proposed view identifiers among the collected flush
messages.

Consider Example 3 above: There, the servers wait until they receive flush messages from all
four members before they send the new view to their clients. Since all the proposals contain the

proposed view identifier 4, this is the view identifier for the new view. Thus, two separate CONGRESS

incremental membership notifications are aggregated and reflected in one view: (G, {a,b,c,d},4).

5This can occur, for example, in case of a false suspicion at some of the processes.

40 CHAPTER 5. SCALABLE GROUP MEMBERSHIP SERVICES

In case two previously disconnected servers become connected, it is possible that they may send

proposals for the same view with different view identifiers. This is illustrated in the example below.

Example 4 There are two membership servers, M; and Ms, which are disconnected due to a
network failure. At My the view of group G is ({a,b},3), while at My the view is ({c,d},5). There
1s a difference in the view identifiers due to a couple of membership changes that occurred at My ’s
network component while My and My were disconnected.

Now, the network failure is mended and all the processes in the system reconnect. My receives
a CONGRESS membership notification that reflects the join of ¢ and d, and My receives a CONGRESS
membership notification that reflects the join of a and b. My emits the proposal (G,{a,b,c,d},{},4)
whereas My emits the proposal (G,{a,b,c,d},{},6). These proposed views are echoed in the flush
messages. Once all the flush messages are collected, both servers report of the view (G, {a, b, c,d},6),

since 6 is the mazimum view identifier among the collected flush messages.

5.6.4 Recovery from Server Failures

The MOSHE service is fault tolerant: If a MOSHE server crashes, its clients are transparently migrated
to another MOSHE server, and the application program is unaware of this change.

When a client receives a server failure report, it tries to reconnect to an alternative server®. The
live servers also receive a report of the server’s failure via CONGRESS. When a live MOSHE server
receives such a report, it waits for the failed server’s clients to connect to it during a predefined
time interval, called the reconnection time interval.

After the reconnection time interval is over, the servers exchange among themselves the list
of reconnected clients, and issue a leave event for those clients that did not succeed to reconnect.
Since the system is asynchronous, it is possible that a client will succeed to reconnect to a server
only after the reconnection time interval is over. In this case, when the client reconnects the server
notifies it that the reconnect is too late. The client then re-joins all the groups that it was previously
a member of.

During the migration period, some messages that were in transit between the client and server

may have been lost. We now describe how the protocol recovers from these message losses:

Recovery from a lost proposal or flush message After the reconnection time interval is over,

each server emits proposals for pending views to the reconnected clients. The clients echo

5The alternative server may be located using CORBA services, or using a list of alternative servers that the client
holds. For details please see [Now98].

5.7. COMPARISON WITH OTHER MEMBERSHIP ALGORITHMS 41

these proposals in flush messages as usual. The servers ignore duplicate flush messages, and

ignore flush messages which pertain to views that have already been cleared.

Recovery from a lost view report When a client connects to a new server it emits a join re-
quest for each group that corresponds to a pending view (a pending view is one for which
the client received a proposal and has not received a view report yet). If the server receives
a join request from a client that is included in the group membership, it assumes that the

client had lost the view report, and re-sends it.

Recovery from a lost join or leave The client re-issues join/leave requests for every group that
it tried to join/leave but did not receive a proposal reflecting this request. In order to keep
track of these groups, the client also needs to receive proposals for groups that it is leaving.

Such proposals are not echoed in flush messages.

5.7 Comparison with other membership algorithms

MOSHE is a scalable, one-round membership algorithm for wide area networks. We now compare
MOSHE with related work.

Our design separates the maintenance of membership from the actual group multicast: member-
ship is not maintained by every client but only by dedicated membership servers which are not con-
cerned with the actual communication among clients in the groups. MOSHE extends CONGRESS and
provides an interface for virtually synchronous communication semantics. Unlike Maestro [BFHR98],
MOSHE does not wait for responses from clients asserting that virtual synchrony was achieved before
delivering views.

Existing group communication systems that were designed for use in a WAN evolved from
previous work on group communication systems for use in a LAN [DM96, MMSA*96]. These
systems leverage the idea that all WANs are interconnected LANs. These systems first run the
original algorithm in each LAN, and then run another algorithm among the LANs, merging the
individual memberships into one membership. This merged membership is then disseminated to all
of the group members. Thus, these algorithms overcome the problem of remote failure detection
by having the failure detection done at the LAN level. However, these algorithms are inherently
multi-round, since an additional round is added to the algorithm run on each LAN. For example,

the Totem multiple ring algorithm [MMSA*96] takes two rounds per ring’ plus an extra round for

A ring is the logical representation of a LAN in Totem.

42 CHAPTER 5. SCALABLE GROUP MEMBERSHIP SERVICES

multiple rings [MMSA96].

“Light-weight” group membership algorithms [DM96, GBCvR93, RGS*96, BFHR98] employ a
client-server approach to both virtual synchrony and membership maintenance. In these algorithms,
there are two levels of membership, heavy-weight and light-weight. The servers are part of the
heavy-weight membership, and they use virtually synchronous communication among them. The
clients are part of the light-weight membership. Most light-weight group membership services,
e.g., [DM96, GBCvR93], do not preserve the semantics of the underlying heavy-weight membership

services.

In these systems, when there is a membership change, the servers first compute the heavy-
weight membership, and then map it to several light-weight process groups. As with the approach
taken by us, this approach is scalable in the number of clients, since the membership algorithm
involves reaching agreement among the servers only. However, computing the light-weight group
membership requires additional communication after the heavy-weight membership algorithm is

complete.

Unlike light-weight group membership algorithms, MOSHE only computes the process-level group
membership, hence additional message rounds for computing the light-weight membership are not

necessary. Furthermore, our service provides clients with full virtual synchrony semantics.

Light-weight group membership services have another important advantage: they scale well
in the number of groups maintained, since they maintain the membership for several groups at
the same time. Since in our design the same membership servers maintain the membership of all
of the groups, MOSHE servers can also handle membership changes concerning several groups at
the same time. Indeed, our implementation of the algorithm also possess this feature: if there
are concurrent notifications concerning multiple groups, the membership server handles all of these

groups together, and bundles the messages corresponding to different groups into a single message.

Thus, our algorithm provides the full semantics of heavy-weight group membership along with
the scalability and flexibility of a light-weight group membership, all for the cost of a single com-

munication round in the common case.

The only other single round membership algorithm that we are aware of is the one-round
algorithm in [CS95]. This algorithm terminates within one round in case of a single process crash
or join, but in case of network events that affect multiple processes, the algorithm may take a linear
number of rounds, where in each round a token revolves around a virtual ring consisting of all of the

processes in the system. Thus, the latency until the membership is complete and stable is O(n?6)

5.8. ADVANCED GROUP MEMBERSHIP SERVICES 43

where § is the maximum message delay at stable times. Thus, this membership algorithm is not

suitable for WANSs, where § tends to be big and typical network events are partitions and merges.

5.8 Advanced Group Membership Services

The client-server design of the membership service allows us to support a variety of advanced
services without adding complexity to the clients and hence without paying a performance penalty.
MOSHE provides advanced services such as hierarchical organization of groups, secure groups and
group policies.

An important innovation of our membership service is the support for hierarchical directory
services. MOSHE maintains a hierarchy of groups: a group may be a sub-group of a parent group. A
parent group may contain a number of sub-groups. This concept is useful for applications containing
a number of logically related groups, e.g., a conferencing application with several discussion groups.

MOSHE also supports secure group services: It implements authentication and authorization
mechanisms that determine when a user is authorized to perform actions in a group, (e.g., create a
sub-group for a specified group, query which sub-groups a group has, or join a group). Furthermore,
the membership service may maintain two membership sets for each process group: active members
who may provide input in the group, and passive members who receive messages sent to the group
but cannot send messages to the group.

Thus, the authentication mechanism allows users to determine policies which restrict the ability
of processes to become (active/passive) members of the group. The policies are declared when the
group is created. If no policy is declared, then the policies are inherited from the parent group.

More sophisticated policies may be also imposed, e.g., restricting the number of members in a
group, or even the properties of the members. For example, a cosmopolitan conference over the
Internet may allow only two members from each country to participate in the discussion. If, due
to a membership policy, a user’s join request may not be currently fulfilled but may possibly be

fulfilled later, MOSHE allows the user to block until the join will become possible.

Chapter 6

Totally Ordered Broadcast™®

This chapter presents an algorithm for Totally Ordered Broadcast in the face of
network partitions and process failures, using an underlying group communication
service as a building block. The algorithm always allows a majority (or quorum)
of connected processes in the network to make progress (i.e., to order messages), if
they remain connected for sufficiently long, regardless of past failures. Furthermore,
the algorithm always allows processes to initiate messages, even when they are
not members of a majority component. These messages are disseminated to other
processes using a gossip mechanism. Thus, messages can eventually become totally
ordered even if their initiator is never a member of a majority component. The
algorithm guarantees that when a majority is connected, each message is ordered
within at most two communication rounds, if no failures occur during these rounds.

6.1 Introduction

Totally Ordered Broadcast is a powerful service for the design of fault tolerant applications, e.g.,
consistent cache, distributed shared memory and replication [Sch90, Kei94]. This chapter presents
the COReL (Consistent Object Replication Layer) algorithm for Totally Ordered Broadcast in the
face of network partitions and process failures. The algorithm is most adequate for dynamic net-
works where failures are transient. COReL uses an underlying totally ordered group communication
service (TO-GCS) as a building block.

COReL multicasts messages to all the connected members using the underlying TO-GCS. Once
messages are delivered by the TO-GCS and logged on stable storage (by COReL), they are acknowl-
edged. Acknowledgments are piggybacked on regular messages. When a majority is connected,
messages become totally ordered once they are acknowledged by all the members of the connected
majority. Thus, the COReL algorithm guarantees that when a majority is connected, each message

is ordered within two communication rounds at the most, if no failures occur during these rounds’.

*This chapter is based on a paper by Keidar and Dolev [KD96].
!By “no failures occur” we implicitly mean that the underlying membership service does not report of failures.

44

6.1. INTRODUCTION 45

The algorithm incurs low overhead, no “special” messages are needed, all the information required
by the protocol is piggybacked on regular messages.

Processes using COReL are always allowed to initiate messages, even when they are not members
of a majority component. By carefully combining message ordering within a primary component
and gossiping of messages exchanged in minority components, messages can eventually become
totally ordered even if their initiator is never a member of a majority component.

The protocol presented in this chapter uses a simple majority rule to decide which network
component can become the primary one. Alternatively, one could use a quorum system [PW95],
which is a generalization of the majority concept. A quorum system is collection of sets (quorums)
such that any two sets intersect. Using such a quorum system, a network component can become
the primary one if it contains a quorum. The concept of quorums may be further generalized to
allow dynamic adjustment of the quorum system. In the next chapter, we present a dynamic voting
protocol for maintaining the primary component in the system; we demonstrate how this protocol

may be used in conjunction with COReL.

6.1.1 The Problem

The Atomic Broadcast [HT93] problem deals with consistent message ordering. Informally, Atomic
Broadcast requires that all the correct processes will deliver all the messages to the application in
the same order and that they eventually deliver all messages sent by correct processes, furthermore,
all the correct processes deliver any message that is delivered by a correct processes.

In our model two processes may be detached, and yet both are considered correct. In this
case, obviously, Atomic Broadcast as defined above is unsolvable (even if the communication is
synchronous) [FKM*95]. We define a variant of Atomic Broadcast for partitionable networks: We
guarantee that if a majority of the processes form a connected component then these processes
eventually deliver all messages sent by any of them, in the same order. We call this service Totally
Ordered Broadcast.

It is well-known that in a fully asynchronous failure-prone environment, agreement problems
such as Consensus and Atomic Broadcast are not solvable [FLP85, CT96], and it is impossible to
implement an algorithm with the above guarantee (please see [FKM™95]). Therefore, we augment
the model with an eventual perfect failure detector, as defined in Section 2.3.

The term delivery is usually used for delivery of totally ordered messages by the Atomic Broad-

cast algorithm to its application, but also for delivery of messages by the GCS to its application

46 CHAPTER 6. TOTALLY ORDERED BROADCAST

(which in our case is the Totally Ordered Broadcast algorithm). To avoid confusion, in the rest of
this chapter we will use the term delivery only for messages delivered by the GCS to our algorithm.
When discussing the Totally Ordered Broadcast algorithm, we say that the algorithm totally orders
a message when the algorithm decides that this message is the next message in the total order,

instead of saying that the algorithm “delivers” the message to its application.

6.1.2 Related Work

Group communication systems often provide totally ordered group communication services. Isis [BSS91],
Horus [vRBM96], Totem [AMMS*95, MMSA *96], Transis [DM96, CHD98, DKM93], Amoeba [KT96],
RMP [WMKO95], Delta-4 [Pow91] are only some of the group communication systems that support
totally ordered group communication.

To increase availability, GCSs detect failures and extract faulty members from the membership.
When processes reconnect, the GCS does not recover the states of reconnected processes. This is
where the COReL algorithm comes in: it extends the order achieved by the GCS to a global total
order.

The majority-based Consensus algorithms of [DLS88, Lam89, DPLL97, CT96, DFKM96] are
guaranteed to terminate under conditions similar to those of COReL, i.e., at periods at which the
network is stable and message delivery is timely, or when failure detectors are eventually accurate.
Atomic Broadcast is equivalent to Consensus [CT96]; Atomic Broadcast may be solved by running
a sequence of Consensus decisions [CT96, Lam89, DPLL97].

In [MHS89], the Paxos multiple Consensus algorithm of Lamport [Lam89] is used for a replicated
file system. The replication algorithm suggested in [MHS89] is centralized, and thus highly increases
the load on one server, while our protocol is decentralized and symmetric.

Another advantage of using COReL over running a sequence of Consensus algorithms is that
COReL essentially pipelines the sequence of Consensus decisions. While Consensus algorithms
involve special rounds of communication dedicated to exchanging “voting” messages of the protocol,
in our approach all the information needed for the protocol is piggybacked on regular messages.
Furthermore, COReL does not maintain the state of every Consensus invocation separately, the
information about all the pending messages is summarized in common data structures. This allows
faster recovery from partitions, when COReL reaches agreement on all the recovered messages
simultaneously.

The Atomic Broadcast algorithm of [CT96] conserves special “voting” messages by reaching

6.2. THE SYSTEM ARCHITECTURE 47

agreement on the order of sets of messages instead of running Consensus for every single message.
However, this increases the latency of message ordering and still requires some extra messages.

The total ordering protocol in [Ami95, ADMSM94| resembles COReL; it also exploits a group
communication service to overcome network partitions. Like COReL, it uses a majority-based
scheme for message ordering. It decreases the requirement for end-to-end acknowledgments, at the
price of not always allowing a majority to make progress.

Recently, Fekete et al. [FLS97] have studied the COReL algorithm (following its publication
in [KD96]) using the I/O automata formalism. They have presented both the specifications and
the implementation using I/O automata. They presented the liveness guarantees in terms of timed
automata at periods during which the underlying network is stable and timely, rather than using
the failure detector abstraction as we do here. They made simplifications to the protocol which
make it simpler to present, but also less efficient.

The Total protocol [MMSA93] also totally orders messages in the face of process crashes and
network partitions. However, it incurs a high overhead: The maximum number of communication
rounds required is not bounded, while our algorithm requires two communication rounds to order

a message if no failures occur during these rounds.

6.2 The System Architecture

CORelL is an algorithm for Totally Ordered Broadcast. COReL is designed as a high-level service
atop a totally ordered group communication service (TO-GCS) which provides totally ordered group
multicast and membership services, and is omission fault free within connected network components.

All the copies of COReL are members of one group. Each copy of COReL uses TO-GCS to
send messages to the members of its group; all the members of the group deliver (or receive) the
message.

After a group is created, the group undergoes view changes when processes are added or are
taken out of the group. The membership service reports these changes to COReL through views,
as explained in Section 5.5. Views are delivered among the stream of regular messages. We say
that a send (receive) event e occurs at process p in view v (or in the context of v) if v was the latest
view that p received before e.

COReL uses a group membership service with the guarantees described in Section 5.5, aug-

mented with a total ordering protocol such as [CHD98]|, as depicted in Figure 6.1.

48 CHAPTER 6. TOTALLY ORDERED BROADCAST

Application

Totally Ordered Broadcast

application messages
mlessages

COReL - Totally Ordered Broadcast

COReL messages messagls with TS
% aniFiews

FIFO ordered messages
and views

VS layer

]
Total Ordering Protocol
|
|
|
|
|

‘ multicast messages

Figure 6.1: The layer structure of COReL.

6.2.1 Properties of the TO-GCS

TO-GCS extends the VS service described in Chapter 5 to provide total order of message delivery.
The TO-GCS totally orders messages within each component, using a total ordering protocol such
as ATOP [CHD98, Cho97], or All-Ack [DM95, Mal94].

When using ATOP over the VS service described in Chapter 5, the TO-GCS preserves all
of its membership properties: View Identifier Local Monotony (Property 5.5.1), Self Inclusion
(Property 5.5.2) and Agreement on Views (Property 5.5.3).

The TO-GCS also preserves the following properties of the VS service: Message Integrity
(Property 2.2.1), No Duplication (Property 5.2.2), Self Delivery (Property 5.5.4), Termination
of Delivery? (Property 5.5.5) and Virtual Synchrony (Property 5.5.7).

In addition, the TO-GCS fulfills the following properties:

2The ATOP [CHD98, Cho97] algorithm preserves Self Delivery and Termination of Delivery only if every live
process sends infinitely many messages. This can be achieved by augmenting the service with a liveness mechanism
which periodically sends “I-am-alive” messages when the process is idle.

6.3. PROBLEM DEFINITION: THE GUARANTEES OF COREL 49

Property 6.2.1 A logical timestamp (TS) is attached to every message when it is delivered. Every
message has a unique TS, which is attached to it at all the processes that deliver it. The TS total
order preserves the causal partial order. The TO-GCS delivers messages at each process in the TS

order.

Among processes that do not remain connected we would like to guarantee agreement to some
extent. If two processes become disconnected, we do not expect to achieve full agreement on the
set of messages they delivered in the context of v; before detaching. Instead, we require that they
agree on a subset of the messages that they deliver in vq, as described below.

Let processes p and ¢ be members of v1. Assume that p delivers a message m before m' in
vy, and that ¢ delivers m/, but without delivering m. This can happen only if p and ¢ became
disconnected (from Properties 6.2.1 and 5.5.7, they will not both be members of the same next
view). In Property 6.2.2 we require that if ¢ delivers m’ without m, then no message m” sent by ¢,

after delivering m/, can be delivered by p in the context of v;.

Property 6.2.2 Let p and q be members of view v. If p delivers a message m before m' in v, and
if q delivers m' and later sends a message m”, such that p delivers m" in v, then q delivers m

before m/'.
These properties are fulfilled by the ATOP [CHD98, Cho97] and All-Ack [DM95, Mal94| pro-
tocols when used in conjunction with the VS membership service described in Chapter 5.
6.3 Problem Definition: The Guarantees of COReL
Safety
CORelL fulfills the following two safety properties:

Property 6.3.1 At each process, messages become totally ordered in an order which is a prefiz of
some common global total order. Le., for any two processes p and q, and at any point during the
execution of the protocol, the sequence of messages totally ordered by p is a prefix of the sequence

of messages totally ordered by q, or vice versa.

Property 6.3.2 Messages are totally ordered by each process in an order preserving the causal

partial order.

In addition, COReL preserves the following properties of underlying TO-GCS service: Message
Integrity (Property 2.2.1) and No Duplication (Property 5.2.2).

50 CHAPTER 6. TOTALLY ORDERED BROADCAST

Liveness

COReL guarantees that if a majority of the processes form a permanently connected component,
and the failure detector is an eventual perfect one (cf. Section 2.3), then these processes eventually

totally order all messages sent by any of them.

6.4 The COReL Algorithm

We present the COReL algorithm for reliable multicast and total ordering of messages. The COReL
algorithm is used to implement long-term replication services using a TO-GCS service as described
above. COReL guarantees that all messages will reach all processes in the same order. It always
allows members of a connected primary component to order messages. The algorithm is resilient

to both process failures and network partitions.

6.4.1 Reliable Multicast

When the network partitions, messages are disseminated in the restricted context of a smaller
view, and are not received at processes which are members of other components. The participating
processes keep these messages for as long as they might be needed for retransmission. Each process
logs (on stable storage) every message that it receives from the TO-GCS. A process acknowledges
a message after it is written to stable storage. The acknowledgments (A CKs) may be piggybacked
on regular messages. Note that it is important to use application level ACKs in order to guarantee
that the message is logged on stable storage. If the message is only ACKed at the TO-GCS level,

it may be lost if the process crashes.

When network failures are mended and previously disconnected network components remerge,
a Recovery Procedure is invoked; the members of the new view exchange messages containing infor-
mation about messages in previous components and their order. They determine which messages

should be retransmitted and by whom.

When a process crashes, a message that it sent prior to crashing may be lost. When a process
recovers from such a crash, it needs to recover such messages. Therefore, messages are stored (on
stable storage) when they are received by the application (before the application send event is

complete).

6.4. THE COREL ALGORITHM 51

6.4.2 Message Ordering

Within each component messages are ordered by the TO-GCS layer, which supplies a unique
timestamp (7T'S) for each message when it delivers the message to COReL. When COReL receives
the message, it writes the message on stable storage along with its T'S. Within a majority component
COReL orders messages according to their TS. The TS is globally unique, even in the face of
partitions, and yet COReL sometimes orders messages in a different total order: it orders messages
from majority component before (causally concurrent) messages with a possibly higher TS from
minority components (otherwise it wouldn’t always allow a majority to make progress). Note that
both the TS order and the order provided by COReL preserve the causal partial order.

When a message is retransmitted, the TS that was given when the original transmission of the
message was received is attached to the retransmitted message, and is the only timestamp used for
this message (the new TS generated by the TO-GCS during retransmission is ignored).

We use the notion of a primary component to allow members of one network component to
continue ordering messages when a partition occurs. For each process, the primary component bit
is set iff this process is currently a member of a primary component. In Section 6.4.5 we describe
how a majority of the processes may become a primary component. Messages that are received
in the context of a primary component (i.e., when the primary component bit is set) may become

totally ordered according to the following rule:

Order Rule 1 Members of the current primary component PM are allowed to totally order a

message (in the global order) once the message was acknowledged by all the members of PM.

If a message is totally ordered at some process p according to this rule, then p knows that
all the other members of the primary component received the message, and have written it on
stable storage. Furthermore, the algorithm guarantees that all the other members already have an
obligation to enforce this decision in any future component, using the yellow message mechanism
explained below.

COReL maintains a local message queue MQ, that is an ordered list of all the messages that
this process received from the application or TO-GCS. After message m was received by COReL at
process p, and p wrote it on stable storage (in its M Q) we say that p has the message m. Messages
are uniquely identified through a pair < sender, counter >. This pair is the message id.

Incoming messages within each component are inserted at the end of the local MQ, thus MQ

reflects the order of the messages local to this component. Messages are also inserted to the MQ

52 CHAPTER 6. TOTALLY ORDERED BROADCAST

(without a TS) when they are received from the application. Once Self Delivery occurs, these
messages are tagged with the T'S and moved to their proper place in the M Q. When components
merge, retransmitted messages from other components are inserted into the queue in an order that

may interleave with local messages (but never preceding messages that were ordered already).

The Colors Model

COReL builds its knowledge about the order of messages at other processes. We use the colors

model defined in [AAD93] to indicate the knowledge level associated with each message, as follows:

green: Knowledge about the message’s global total order. A process marks a message as green
when it knows that all the other members of the primary component know that the message
is yellow. Note that this is when the message is totally ordered according to Order Rule 1.
The set of green messages at each process at a given time is a prefix of M Q. The last green

message in MQ marks the green line.

yellow: Each process marks as yellow messages that it received and acknowledged in the context
of a primary component, and as a result, might have become green at other members of the
primary component. The yellow messages are the next candidates to become green. The last

yellow message in M Q marks the yellow line.

red: No knowledge about the message’s global total order. A message in MQ is red if there is no
knowledge that it has a different color. Yellow messages precede all the red messages in M Q.

Thus, MQ is divided into three zones: a green prefix, then a yellow zone and a red suffix.

As explained in [AAD93, Kei94], it is possible to provide the application with red messages if
weak consistency guarantees are required. For example, eventually serializable data services [PL91,
FGL'96, AAD93] deliver messages to the application before they are totally ordered. Later, the
application is notified when the message becomes stable (green in our terminology). Messages be-
come stable at the same order at all processes. The advantage of using COReL for such applications
is that with COReL messages become stable even whenever a majority is connected, while with the
implementations presented in [PL91, FGL196, AAD93], messages may become stable only after
they are received by all the processes in the system.

When a message is marked as green it is totally ordered. If a member of a primary component
PM marks a message m as green according to Order Rule 1 then for all the other members of PM,

m is yellow or green. Since two majorities always intersect, and every primary component contains

6.4. THE COREL ALGORITHM 53

a majority, in the next primary component that will be formed at least one member will have m
as yellow or green. When components merge, members of the last primary component enforce all
the green and the yellow messages that they have before any concurrent red messages. Concurrent

red messages from distinct components are interleaved according to the TS order.

6.4.3 Notation
We use the following notation:

e MQP is the MQ of process p.

e Prefit(MQP,m) is the prefix of M QP ending at message m.

e Green(MQ@QP) is the green prefix of MQP.

e We define process p knows of a primary component PM recursively as follows:

1. If a process p was a member of PM then p knows of PM.
2. If a process ¢ knows of PM, and p recovers the state of ¢3, then p knows of PM.

6.4.4 Invariants of the Algorithm

The order of messages in M Q of each process always preserves the causal partial order. Messages
that are totally ordered are marked as green. Once a message is marked as green, its place in the
total order may not change, and no new message may be ordered before it. Therefore, at each
process, the order of green messages in MQ is never altered. Furthermore, the algorithm totally
orders messages in the same order at all processes, therefore the different processes must agree on
their green prefixes.

The following properties are invariants maintained by each step of the algorithm:

Causal e If a process p has in its MQ a message m that was originally sent by process g, then

for every message m' that g sent before m, M QP contains m' before m.
e If a process p has in its M Q a message m that was originally sent by process ¢, then for

every message m' that ¢ had in its M Q before sending m, M QP contains m' before m.

No Changes in Green New green messages are appended to the end of Green(MQP), and this
is the only way that Green(MQP) may change.

3p recovers the state of ¢ when p completes running the Recovery Procedure for a view that contains gq.

54 CHAPTER 6. TOTALLY ORDERED BROADCAST

Agreed Green The processes have compatible green prefixes: for every pair of processes p and
g running the algorithm, and for every Green(MQP), (at every point in the course of the
algorithm), and every Green(MQ?), one of Green(MQP) and Green(MQ?) is a prefix of the

other.

Yellow If a process p marked a message m as green in the context of a primary component PM,

and if a process q knows of PM, then:
1. Process g has m marked as yellow or green.

2. Prefix(MQ9,m) = Prefic(MQP,m).

In Appendix A.1 we formally prove that these invariants hold in COReL, and thus prove the
correctness of COReL.

6.4.5 Handling View Changes

View Change Handler for View uv:
e Unset the primary component bit.

e Stop handling regular messages, and stop sending regular messages.

If v contains new members, run the Recovery Procedure described in Section 6.4.5.

e If v is a majority, run the algorithm for establishing a new primary component, described in
Section 6.4.5.

Continue handling and sending regular messages.

Figure 6.2: View change handler.

The main subtleties of the algorithm are in handling view changes. Faults can occur at any
point in the course of the protocol, and the algorithm ensures that even in the face of cascading
faults, no inconsistencies are introduced. To this end, every step taken by the handler for view
changes must maintain the invariants described in Section 6.4.4.

When merging components, messages that were passed in the more restricted context of previous
components need to be disseminated to all members of the new view. Green and yellow messages
from a primary component should precede messages that were concurrently passed in other com-
ponents. All the members of the new view must agree upon the order of all past messages. To this

end, the processes run the Recovery Procedure.

6.4. THE COREL ALGORITHM 55

If the new view v introduces new members, the Recovery Procedure is invoked in order to bring
all the members of the new view to a common state. New messages that are delivered in the
context of v are not inserted into M Q before the Recovery Procedure ends, and thus the Causal
invariant is not violated. The members of v exchange state messages, containing information about
messages in previous components and their order. In addition, each process reports of the last
primary component that it knows of, and of its green and yellow lines. Every process that receives
all the state messages knows exactly which messages every other member has, and the messages
that not all the members have are retransmitted.

In the course of the Recovery Procedure, the members agree on the green and yellow lines. The
new green line is the mazimum of the green lines of all the members: Every message that one of
the members of v had marked as green, becomes green for all the members. The members that
know of the latest primary component, PM, determine the new yellow line. The new yellow line is
the minimum of the yellow lines of the members that know of PM. If some message m is red for
a member that knows of PM, then by the Yellow invariant, it was not marked as green by any
member of PM. In this case if any member had marked m as yellow, it changes m back to red. A
detailed description of the Recovery Procedure is presented in Section 6.4.5.

After reaching an agreed state, the members of a majority component in the network may
practice their right to totally order new messages. They must order all the yellow messages first,
before new messages, and before red messages form other components, in order to be consistent
with decisions made in previous primary components.

If the new view is a majority, the members of v will try to establish a new primary component.
The algorithm for establishing a new primary component is described in Section 6.4.5. All com-
mitted primary components are sequentially numbered. We refer to the primary component with
sequential number ¢ as PM;.

When a view change is delivered, the handler described in Figure 6.2 is invoked. In the course
of the run of the handler, the primary component bit is unset, regular messages are blocked, and

no new regular messages are initiated.

Establishing a Primary Component

A new view, v, is established as the new primary component, if v is a majority, after the retrans-
mission phase described in Section 6.4.5. The primary component is established in a three-phase

agreement protocol, similar to Three Phase Commit protocols [Ske82, KD98|. The three phases

56 CHAPTER 6. TOTALLY ORDERED BROADCAST

are required in order to allow for recovery in case failures occur in the course of the establishing

process. The three phases correlate to the three levels of colors in M Q.

In the first phase all the processes multicast a message to notify the other members that they
attempt to establish the new primary component. In the second phase, the members commit to
establish the new primary component, and mark all the messages in their M Q as yellow. In the
establish phase, all the processes mark all the messages in their M Q as green and set the primary
component bit to TRUE. A process marks the messages in its MQ as green only when it knows
that all the other members marked them as yellow. Thus, if a failure occurs in the course of the
protocol, the Yellow invariant is not violated. If the TO-GCS reports of a view change before the
process is over — the establishing is aborted, but none of its effects need to be undone. The primary

component bit remains unset until the next successful establish process.

Establishing a New Primary Component
If v contains new members, the Recovery Procedure is run first. If v is a majority, all members of
a view v try to establish it as the new primary component:

e Compute: New_Primary =
max;cc(Last_Attempted_Primary;) + 1.
The members of v now try to establish it as PM ey _primary-

e Attempt to establish PMyew_primary:
Set Last_Attempted_Primary to New_Primary on stable storage, and send an attempt mes-
sage, to notify the other members of the attempt.

e Wait for attempt messages from all members of v. When these messages arrive, do the
following in one atomic step:

1. Commit to the view by setting
Last_Committed_Primary to New_Primary on stable storage.

2. Mark all the messages in the M Q that are not green as yellow.
Send a commit message, to notify the other members of the commitment.

e Wait for commit messages from all members of v, and then establish v, by setting to TRUE
the primary component bit. Mark as green all the messages in M Q.

e [f the transport layer reports of a view change before the process is over — the establishing is
aborted, but its effects are not undone.

Figure 6.3: Establishing a new primary component.

Each process maintains the following variables:

6.4. THE COREL ALGORITHM 57
Last_Committed _Primary is the number of the last primary component that this process has
committed to establish.

Last_Attempted Primary is the number of the last primary component that this process has
attempted to establish. This number may be higher than the number of the last component

actually committed to, in the case of failures.
The algorithm for establishing a new primary component is described in Figure 6.3.

Recovery Procedure

Retransmission Rule If process p has messages m and m' such that m’' is ordered after m in
p’s messages queue, then during Step 7 of the Recovery Procedure:

e If p has to retransmit both messages then it will retransmit m before m'.

e If p has to retransmit m' and another process q has to retransmit m then p does not retransmit
m' before receiving the retransmission of m.

Figure 6.4: Retransmission rule.

If the new view, v, introduces new members, then each process that delivers the view change

runs the following protocol:

Recovery Procedure for process p and view v

1. Send state message including the following information:

o Last_Committed_Primary.

Last_Attempted_Primary.
e For every process ¢, the id of the last message that p received from ¢*.

e The id of the latest green message (green line).

The id of the latest yellow message (yellow line).
2. Wait for state messages from all the other processes in v.M.

3. Let: Mazx_Committed = maxycy.set Last_-Committed_Primary,.

Let Representatives be the members that have:
Last_Committed_Primary = Maz_Committed.

The Representatives advance their green lines to include all messages that any member of
v had marked as green, and retreat their yellow lines to include only messages that all

“Note that this is sufficient to represent the set of messages that p has, because the order of messages in MQ?
always preserves the causal order.

58 CHAPTER 6. TOTALLY ORDERED BROADCAST

of them had marked as yellow, and in the same order. For example, if process p has a
message m marked as yellow, while another member with Last_ Committed_Primary =
Mazx_Committed has m marked as red, or does not have m at all, then p changes to red
m along with any messages that follow m in MQP.

4. If all the members have the same last committed primary component, (i.e., all are Represen-
tatives), go directly to Step 7.
A unique representative from the group of Representatives is chosen deterministically.

Determine (from the state messages) the following sets of messages:

component_stable is the set of messages that all the members of v have.
component_ordered is the set of messages that are green for all the members of v.

priority are yellow and green messages that the representative has.

5. Retransmission of priority messages:

The chosen representative computes the maximal prefix of its MQ that contains compo-
nent_ordered messages only. It sends the set of priority messages in its MQ that follow
this prefix. For component_stable messages, it sends only the header (including the original
ACKs), and the other messages are sent with their data and original piggybacked ACKs.

Members from other view insert these messages into their M Qs, in the order of the retrans-
mission, following the green prefix, and ahead of any non_priority messages®.
6. If Last_Committed_Primary, < Maxz_Committed; do the following in one atomic step:
o If p has yellow messages that were not retransmitted by the representative, change these
messages to red, and reorder them in the red part of M Q according to the TS order.
e Set Last_Committed_Primary to Max_Committed (on stable storage).
e Set the green and yellow lines according to the representative; the yellow line is the last
retransmitted message.
7. Retransmission of red messages:

Messages that not all the members have, are retransmitted. Each message is retransmitted by
at most one process. The processes that need to retransmit messages send them, with their
original ACKs, in an order maintaining the Retransmission Rule described in Figure 6.4.

Concurrent retransmitted messages from different processes are interleaved in M Q according
to the TS order of their original transmissions.

Note: If the TO-GCS reports of a view change before the protocol is over, the protocol is
immediately restarted for the new view. The effects of the non-completed run of the protocol do

not need to be undone.

®Note that it is possible for members to already have some of these messages, and even in a contradicting order
(but in this case, not as green messages). In this case they adopt the order enforced by the representative.

6.4. THE COREL ALGORITHM 59

After receiving all of the retransmitted messages, if v is a majority then the members try to
establish a new view. (The algorithm is described Section 6.4.5).

If the view change reports only of process faults, and no new members are introduced, the
processes need only establish the new view and no retransmissions are needed. This is due to the
fact that, from Property 5.5.7 of the TO-GCS, all the members received the same set of messages

until the view change.

Chapter 7

Dynamic Voting for Primary
Components*

Fault tolerant distributed systems often use quorum systems in order to guar-
antee consistency; a quorum system is collection of sets (quorums) such that any
two sets intersect. Traditionally, the same quorum system is used throughout the
system’s life time, and when new processes join, the system is re-started with a
new quorum system. Many new applications, e.g., conferencing applications and
interactive games, wish to allow users to freely join and leave, without restarting
the entire system. The dynamic voting paradigm allows such systems to change the
quorum system on the fly and define quorums adaptively, accounting for the changes
in the set of participants. Furthermore, dynamic voting was shown to lead to more
available services than any other paradigm for maintaining a primary component
in unreliable networks.

Nonetheless, implementing dynamic voting bears subtleties. In fact, many of
the suggested dynamic voting protocols may lead to inconsistencies which stem
from concurrent existence of two disjoint supposedly primary components. Other
protocols severely limit the availability in case failures occur while the protocol is
trying to form a new quorum system.

This chapter presents a robust and efficient dynamic voting protocol for unreli-
able asynchronous networks. The protocol consistently maintains the primary com-
ponent in a distributed system. The protocol allows the system to make progress
in cases of repetitive failures in which previously suggested protocols block. The
protocol is simple to implement.

7.1 Introduction

Many fault tolerant distributed systems (e.g., ISIS [BvR94], Phoenix [MS94], Consul [MPS91b,

MPS93] and xAMp [RV92]) use the primary component paradigm to allow a subset of the processes

to function when failures occur. A majority (or quorum) of the processes is often chosen to be the

primary component. In unreliable networks this is problematic: Repeated failures may cause

majorities to further split up, leaving the system without a primary component. To overcome this

*This chapter is based on a paper by Yeger Lotem, Keidar and Dolev [YLKD97].

60

7.1. INTRODUCTION 61

problem, the dynamic voting paradigm was introduced; dynamic voting was exploited in the ISIS

system as early as 1985 [Bir].

A “classical” (static) quorum system is a collection of sets (quorums) such that any two sets
intersect. The dynamic voting paradigm, on the other hand, defines quorums adaptively: When a
partition occurs, a new and possibly smaller quorum may be chosen such that each newly formed
quorum contains a majority of the previous one, but does not necessarily intersect all the previous
quorums. Stochastic models analysis [JM90], simulations [PL88], and empirical results [AW96] show
that dynamic voting leads to more available services than any other paradigm for maintaining a

primary component.

Another important benefit of the dynamic voting paradigm is its flexibility to support a dy-
namically changing set of processes. With emerging world-wide communication technology, new
applications wish to allow users to freely join and leave. Using dynamic voting, such systems can

dynamically adapt to the changes in the set of participants.

In this chapter we present a robust and efficient protocol for maintaining a primary component
using dynamic voting in an asynchronous environment, where processes and communication links
may fail. By recording historical information, our protocol allows the system to make progress in
certain cases in which previously suggested protocols either block, require a cold start of the entire

system, or lead to inconsistencies. Furthermore, our protocol is simple to implement.

Previously suggested dynamic voting protocols were presented as part of replication and trans-
action management algorithms [DB85, PL88, EAD91, JM90, Her86, Jaj87, Ami95] or as part of
group communication systems [RB91, MS94]. We decouple the primary component maintenance
from both the group communication mechanism and the application, and focus solely on maintain-
ing the primary component. Our algorithm may be incorporated in any distributed application that
makes progress in a primary component, e.g., replication algorithms [Kei94, EAD91], transaction
management [KD98], and infrastructure systems like the ISIS toolkit [BvR94]. In Section 7.7 I
demonstrate how it may be incorporated within the COReL algorithm presented in Chapter 6.

If a failure occurs during an execution of the protocol while a new primary component is being
formed, some previously suggested dynamic voting protocols (e.g., [JM90, Ami95]) block until all
the members of the last primary component become reconnected. Blocking until all the members
reconnect significantly reduces the availability, especially in failure-prone environments (for which
dynamic voting is most suitable) and in applications with a dynamic set of participants, where

a waited upon process might have voluntarily left the system. In contrast, our protocol requires

62 CHAPTER 7. DYNAMIC VOTING FOR PRIMARY COMPONENTS

only a majority of the members that attempted to form the last primary component to become
reconnected in order to make progress in such cases. Note that the analyses of the availability of
dynamic voting do not take the possibility of blocking into consideration, and therefore the actual
availability of protocols prone to blocking is lower than expected.

Unlike the dynamic voting protocol of ISIS [RB91], our protocol recovers from situations in
which the primary component was transiently lost (e.g., when the primary component partitions
into three minority groups which later reconnect) without requiring a cold start of the entire
system. In ISIS only members of the primary component are considered alive; members of minority
components must “commit suicide” and restart under a new identity. Therefore, the primary
component cannot be reconstructed after it is lost, and a cold start is required. In approach,
processes may be active even when they are not members of a primary component. This feature is
exploited in the algorithm presented in Chapter 6, where processes may issue updates even when
they are members of non-primary components.

The challenge in designing consistent dynamic voting protocols is in coping with failures that
occur while the processes are trying to form a new primary component. Careless handling of
such cases may lead to concurrent existence of two disjoint primary components: Once a process
detaches, it is impossible for other processes to know whether it received a specific message before
its detachment, or not. Some past protocols (e.g., [DB85, PL88, EAD91]) lead to inconsistent

results in such cases, as demonstrated by the following typical scenario:

Scenario 1 e The system consists of five processes: a,b,c,d and e. The system partitions into
two components: a,b,c and d,e.

e a,b and c try to form a new primary component. To this end, they exchange messages.

e a and b form the primary component {a,b,c}, assuming that process ¢ does so too. How-
ever, ¢ detaches before receiving the last message, and therefore is not aware of this primary
component. a and b remain connected, while ¢ connects with d and e.

e a and b notice that ¢ detached, therefore form a new primary component {a,b} (a majority

of {a,b,c}).
e Concurrently, c, d and e form the primary component {c,d,e} (a majority of {a,b,c,d,e}).

o The system now contains two live primary components, which may lead to inconsistencies.

Our protocol overcomes the difficulty demonstrated in the scenario above by maintaining an-
other level of knowledge. The protocol guarantees that if a and b succeed in forming {a, b, ¢}, then
c is aware of this possibility. From ¢’s point of view, the primary components {a, b, ¢} is ambiguous:

It might have or might have not been formed by a and b. In general, every process records, along

7.1. INTRODUCTION 63

with the last primary component it formed, later primary components that it attempted to form
but detached before actually forming them. These ambiguous attempts are taken into account in
later attempts to form a primary component.

Some previously suggested protocols avoid inconsistencies by running two phase commit ([JM90,
Her86]), or similar mechanisms ([Ami95]) that cause processes to block when their latest primary
component is ambiguous. This imposes limitations on the system’s progress, as demonstrated in
the following typical scenario:

Scenario 2 e The system consists of five processes: a,b,c,d and e. The system partitions into
two components: a,b,c and d,e.

e a,b and c try to form a new primary component. To this end, they run a two phase commit
protocol of which a is the coordinator.

e a crashes. b and c detach before the two phase commit ends. They remain blocked.

e b and c re-connect with d and e, but they cannot form a primary component.

The problem is especially severe in environments with a dynamic set of participants: If a has
permanently left, the system remains blocked forever. With our protocol, the system may remain
blocked only if a majority of the members that attempted to form the quorum leave the system.
Specifically, when running our protocol in the scenario above, b and ¢ do not block. Instead,
they “remember” that they made an ambiguous attempt with a, namely {a, b, c}. Since the group
{b,¢,d, e} contains a majority of {a,b,c}, it is an eligible new primary component.

In [MS94], a three phase Consensus protocol [CT96] is employed in order to allow a majority to
resolve ambiguous attempts. This induces a high overhead that makes the protocol infeasible for
use in practice: When a majority of the previous primary component reconnects, [MS94] requires at
least five communication rounds in order to resolve the previous attempt and form a new primary
component. Our protocol avoids such excessive communication by using pipelining: The status
of past ambiguous attempts is resolved while new primary components are being formed. Thus,
when a majority of the previous primary component reconnects, only two communication rounds
are required in order to form a new one. Qur protocol is required to record several ambiguous
attempts in case failures cascade.

Unfortunately, recording all ambiguous attempts is not feasible: The number of ambiguous at-
tempts a process might need to record may be exponential in the number of participating processes.
In [YLKD97], we consider a simple mechanism that records only the latest ambiguous attempt,
and show that it does not work; we demonstrate that in order to preserve consistency it may be

necessary to consider an ambiguous attempt even if it is followed by an exponential number of

64 CHAPTER 7. DYNAMIC VOTING FOR PRIMARY COMPONENTS

ambiguous attempts. Taking a huge number of attempts into consideration limits the possibility
of progress in the system, and may cause the system to block. An important contribution of our
work is in providing a simple “garbage collection” mechanism for reducing the number of attempts
that a process needs to record to at most n, where n is the number of processes in the system.
Practically, the number of attempts a process may need to consider is expected to be small. Thus,
our protocol achieves a good balance between the historical data it stores, the restrictions on the
ability to make progress in the system and the number of communication rounds.

The main criticism of the dynamic voting paradigm is that there can be situations where almost
all of the processes in the system are connected but cannot form a new quorum because of the
potential existence of a past surviving quorum held by a single process. To prevent such situations,
our protocol allows users to set a lower bound, Min_Quorum, on the size of quorums. This way,
every component containing more than n — Min_Quorum members (where n is the number of
processes in the system, and Min_Quorum < n/2) can always form a quorum, regardless of past
events in the system. We developed a novel mechanism for providing this feature in environments

that allow new processes to join on the fly.

7.2 The Model

The processes are connected by an asynchronous communication network as described in Chapter 2.

The initial primary component in the system consists of a core group of processes, W, that is
known to all the processes in Wy. The core group is typically the initial configuration on which the
system manager runs a protocol (e.g., the sites running a distributed database). The set of all the
processes that may run the protocol is unknown to any of the processes in advance, and thus the
configuration may change dynamically. Processes that do not belong to Wy are aware of the fact

that they are not members of the core group.

7.2.1 The Membership Service

Maintaining the primary component is typically decoupled into two separate problems: first, de-
termining the set of connected processes, and second, deciding whether a set of processes is the
primary component. Like other dynamic voting protocols, we focus on solving the latter problem,
assuming a separate mechanism that solves the former.

Our dynamic voting protocol assumes a membership mechanism no stronger than those assumed

in [DB85, Jaj87, PL88, JM90, EAD91, Ami95]. Each process is equipped with an underlying

7.3. PROBLEM DEFINITION 65

membership module, e.g., [ADKM92a, AMMS*93, EMS95, CS95]. When the membership module
senses failures or recoveries, it reports to the process of the new membership, i.e., the set of processes
that are currently assumed to be connected.

Our only requirement of the membership service is that every message is received in the view in
which it was sent (cf. Property 5.5.6 of the membership service in Chapter 5). This can be achieved
either by refraining from sending messages while a membership change takes place or by discarding
old messages that arrive after a membership change. In order to discard messages from previous
memberships, the protocol needs to provide a locally unique view identifier (cf. Property 5.5.1 of
the membership service in Chapter 5), with which all the messages sent in this membership will
be tagged. These requirements are fulfilled by simple and efficient membership protocols, e.g., the
protocol in Chapter 5 or the one round membership protocol of [CS95], which terminate after one
communication round.

As shown in [CHTCBY96], it is impossible to reach agreement upon the current membership
in an asynchronous system. Hence, we do not assume that the membership reports accurately
reflect the network situation, nor is the membership reported atomically to all the processes. The
dynamic voting protocol we present is correct (i.e., guarantees a total order on primary components)
regardless of whether the membership mechanism is live and accurate or not. The liveness of the
protocol (its ability to form new primary components when the network situation changes) depends

on the accuracy and liveness of this membership mechanism.

7.3 Problem Definition

In this chapter we present a primary component maintenance service, that allows a group of pro-
cesses to form a primary component in a consistent way. Such a service is required to impose a
total order on all the primary components formed in the system. When using a static quorum
system, the order is easily provided using the following property: “every two primary components
intersect”. Unfortunately, dynamic quorum systems do not possess this property. Instead, a total
order on primary components is defined by extending the causal order on components that do
intersect.

Let P and P’ be two primary components. If j € PN P’, and j participates in both of these
primary components, i.e., attempts to form both, then j participates in one of P and P’ before the
other. A process does not participate in two quorums concurrently. If j participates in P first, we

denote the transitive closure of this relation by: P < P'. The requirement from a dynamic paradigm

66 CHAPTER 7. DYNAMIC VOTING FOR PRIMARY COMPONENTS

for maintaining primary components is that < is a total order. Since a process is a member of at
most one component at any given time, the total order on primary components implies that at any

given time there is at most one live and connected primary component in the system.

7.4 The Primary Component Protocol

We present a protocol for maintaining the primary component in an asynchronous system. Initially,
the primary component in the system is the core group, Wy. Whenever a membership change is
reported, the notified members invoke a new session of the protocol, trying to form a new primary
component. If they succeed, then at the end of the session they form a new primary component P,
which persists until the next membership change. Each process independently invokes the protocol
once it receives the membership message.

In this section, we present a simplified version of the protocol in which the members of the core
group, Wy, have a special status: every quorum in the system must contain a threshold of members

from Wy. In Section 7.6 we modify the protocol to eliminate this special status.

7.4.1 Dynamic Quorums

Our protocol uses dynamic voting to determine when a group of processes is eligible to be the
next primary component in the system. Originally, dynamic voting was implemented by allowing
a majority of the previous primary component to become the new primary component [DBS85].
Dynamic linear voting [Jaj87], optimizes this scheme by breaking ties between groups of equal size
using a linear order, £, imposed on all the potential processes in the system. We extend dynamic
linear voting with another parameter: Min_Quorum, the minimum quorum size allowed in the
system.

We define a predicate Nezt_Quorum(S,T), that is TRUE iff T' can become the new primary com-
ponent in the system, given that the previous primary component was S. Formally, Nezt_Quorum(S,T)

is TRUE iff:
1. [T NWy| > Min_Quorum, and

2. (a) |TNS|>|S|/2, or
(b) ITNS|=1S5|/2 and Ip € T N S such that Vg € S\ T L(p) > L(q), or

(c) [T NWy| > Wo| — Min_Quorum.

7.4. THE PRIMARY COMPONENT PROTOCOL 67

Requirements 2(a) and 2(b) describe dynamic linear voting. Requirement 1 sets a threshold
on the minimum quorum size allowed in the system. The complementing requirement, 2(c), allows
a large group of processes to become a primary component regardless of the system’s history.
However, it still requires every quorum in the system to contain at least Min_Quorum members
of Wy. In Section 7.6 we relax this restriction, and require, instead, that a quorum will contain
Min_Quorum processes.

It is easy to see that the Next Quorum predicate has the following properties:
1. If Next_Quorum(S,T) then SNT # (.
2. If Next_Quorum(S,T) and Next_Quorum(S,T') then T N'T" # (.

We extend the definition of the Next_Quorum predicate so that Next_Quorum(oo,T') is FALSE

for every set T.

7.4.2 Variables and Notation

The protocol is conducted in sessions, and the sessions are numbered. A session S of the protocol
is identified by its membership, S.M, and session number, S.N. Each process p maintains the

following variables:

Is_Primary, is a boolean variable that is TRUE iff the current membership is the primary compo-

nent in the system. If p € W), then it is initialized to TRUE, and otherwise to FALSE.
Session_Number,, is the current session number. This variable is initialized to 0.

Last_Primary,, is the last primary component that process p formed (i.e., the membership and
Session_Number of the session in which the last primary component was formed). If p € W

then it is initialized to (W, 0) and otherwise to (oo, —1).

Ambiguous_Sessions,, is the set of ambiguous sessions that process p attempted to form after p

P
participated in Last_Primary,. For each ambiguous session (or attempt) S in this set, p
maintains an associative array (which acts like a function) S.A. For every ¢ € S.M: if p
knows that ¢ formed S then S.A(q) = 1; if p knows that ¢ did not form S then S.A(q) = —1

and otherwise S.A(q) = 0. The set of ambiguous sessions is initially empty.

Last_Formed, is an associative array. For each process g that p participated in a session with,
Last_Formed,(q) is the last session (membership and number) that p formed and g was a

member of. Initially, if p,q € Wy then Last_Formedy(q) is (W, 0). Otherwise, it is (co, —1).

68 CHAPTER 7. DYNAMIC VOTING FOR PRIMARY COMPONENTS

We use the following notation:

e M is the membership as reported in the membership message that invoked the current session

of the protocol. The membership is a set of processes.
o Maz_Session is: maxpyeaq(Session_Number).
e Maz_Primary is: Last_Primary, s.t. Last_Primary, N = maxqu(Last_Primaryq.N).
o All_Ambiguous_Sessions is: Upep(A € Ambiguous_Sessions, s.t. AN > Maz_Primary.N).

In order to simplify notations, we extend the definition of the Nezt_Quorum predicate to sessions.

For a pair of sessions S1, 52, we define Nezt_Quorum(S1,S2) as: Next_Quorum(S1.M,S2.M).

7.4.3 The Protocol

Whenever a membership change is reported, the notified members invoke a new session of the
protocol. Each session of the protocol is conducted in three steps: In the first step the connected
processes exchange information about past sessions.! The second step is the attempt step. Each
process uses the information it received in the first step to make an independent decision whether the
current membership is eligible to be a primary component. If it is, the member attempts to form
the session: it computes the session number, records the session and sends an attempt message
to the rest of the members. In the last step, the processes form the new primary component:
They declare the session as a primary component, and no longer record preceding sessions. The
primary component formed in this step remains the primary component in the system until another
membership change occurs.

If a process receives a membership message in the course of a session, it aborts the session
and invokes a new session. Once the membership stabilizes, sessions are no longer aborted. If the
expected messages fail to arrive from some of the members, then the primary component protocol
is blocked until a membership change is reported.

Intuitively, the purpose of the attempt step is to guarantee that if a process p forms a session
F,? then all the other members of F recorded F as an ambiguous session. Thus, if some members
of F detach before the last step, they will take F into account in future attempts to form a primary

component.

'Tn case the membership protocol involves message exchange among the members, this information can be piggy-
backed onto the membership protocol messages, thus no extra communication round is needed.
2As a convention, we use the notation F to denote formed sessions.

7.4. THE PRIMARY COMPONENT PROTOCOL 69

1. Set Is_Primary to FALSE.
Send your Session_Number, Ambiguous_Sessions, Last_Primary and Last_Formed to all the
members of M.

2. Attempt step: Upon receiving this information from all members of M:

e Update Ambiguous_Sessions according to the learning rules described in Figure 7.3.
e Apply the resolution rules described in Figure 7.2.
e Compute Maz_Session, Maz_Primary, and All_ Ambiguous_Sessions.

e if (Next_Quorum(Maz _Primary.M, M) and
(VS € All_Ambiguous_Sessions) Next_Quorum(S.M, M)))
then “attempt the session:”

— Set Session_Number to Maxz_Session+1.

— Append to Ambiguous_Sessions the session S = (M, Session_Number), with
S.A(q) =0 for every g € S.M s.t. ¢ # p, and S.A(p) = —1.

— Send an attempt message to every member of M.
else terminate this session with Is_Primary=FALSE.

3. Form step: Upon receiving an attempt message from all members of M set:

e Last_Primary = (M, Session_Number), and
o Ambiguous_Sessions = (), and

e Is_Primary=TRUE, and

e Vg€ M Last_Formedy(q) = Last_Primary.

Figure 7.1: A session of the protocol executed by process p.

In order to avoid recording an exponential number of ambiguous sessions, our protocol employs
a “garbage collection” mechanism that reduces the number of ambiguous sessions recorded concur-
rently to be at most the number of processes in the system. A process deletes ambiguous sessions
when it resolves their status, i.e., discovers whether they were formed by any member or not. In
order to resolve a session, a process needs to learn about the session status at other members. The
rules for learning and resolving ambiguous sessions are described in Section 7.4.4. These rules are

employed during the attempt step. The protocol is formally described in Figure 7.1.

In each step of the protocol, when a process changes any of its private variables, it must write the
change to a stable storage before responding to the message that caused the change. If the storage
is destroyed because of a disk crash, the process may recover with its Last_Primary = (oo, —1).

This may limit the availability, but does not affect the correctness.

70 CHAPTER 7. DYNAMIC VOTING FOR PRIMARY COMPONENTS

The Resolution Rules:

Adoption Ifp € F.M and Last_Primary,.N < F.N, and p learns that session F was formed by
at least one of its members then:
Process p sets Last_Primary, to F and Vg € F.M p sets Last_Formed,(q) = F.

Deletion If p learns that an ambiguous session S was not formed by any of its members, or if p
learns that a session F, where F.N > S.N and p € F.M, was formed by at least one of its
members, then:

Process p deletes S from Ambiguous_Sessions

P

Figure 7.2: The resolution rules.

7.4.4 Resolving Ambiguous Sessions

A process can either adopt or delete ambiguous sessions upon resolving their status. The resolution
is based on determining whether an ambiguous session was formed by any of its members. If an
ambiguous session was formed by some member, then the other members adopt this session: They
declare the session as a primary component. On the other hand, if an ambiguous session was not
formed by any of its members, then it is safe to delete it from Ambiguous_Sessions. Furthermore,
if a process adopts a session S, (as described above), then it no longer records ambiguous sessions

that precede S. The resolution rules are formally summarized in Figure 7.2.

Process p learns the status of process ¢ w.r.t. session S during a later session S’, where
p,q € S.M NS".M, if during S’ p executes the attempt step. Process p learns accordingly:

o If Last_Formedy(p).N = S.N then p learns that process ¢ formed session S.
o If Last_Formedq(p).N < S.N then p learns that process ¢ did not form session S.

Process p learns that session S was not formed by any of its members if:

e p doesn’t form S, and learns from all the other session members that they did not form
session S either, or

e There exist a later session S’ and a process g, where p,q € S.M N S'.M, such that
during S’, ¢ does not consider S to be ambiguous or formed. Formally:

— Last_Primary,.N < S.N or (Last_Primary,.N = S.N and Last_Primary, M #
S.M), and

— § & Ambiguous_Sessions,, and

— p executes the attempt step of the protocol during S’.

Figure 7.3: Learning rules.

The resolution rules require a process p to learn whether an ambiguous session that p records

7.5. EVALUATING THE EFFICIENCY 71

was formed by any of its members. This is achieved by collecting the session status from other
session members during the first step of future sessions of the protocol. Process p applies the
information it gathered to its Ambiguous_Sessions set during the attempt step.

A process p learns that a session S was formed by at least one of its members upon discovering
that such a member exists. A process p learns that a session S was not formed by any of its
members in one of two ways: First, by discovering that every member of S did not form S. Second,
by discovering that another session member, g, does not consider S to be ambiguous, although ¢
did not form S or any other session with a session number greater than S. This implies that either
g did not even attempt to form S, or g already learned that none of the members of S formed S.

The formal rules of learning are described in Figure 7.3.

7.5 Evaluating the Efficiency

Our protocol assumes a simple underlying membership protocol, which may be conducted in one
communication round (e.g., [CS95]). Each session of our protocol is conducted in two communi-
cation rounds, one of which may be conducted by piggybacking information on the messages sent
by the membership protocol. Thus, in each session of the protocol, a total of 2n messages are
multicast by all the processes, where n is the number of processes participating in this session.

The protocol presented in Section 7.4 is symmetric: Processes multicast messages to all other
processes. Such a protocol is efficient assuming a hardware broadcast/multicast mechanism. For
networks in which efficient multicast is not available, it is straightforward to convert our protocol to
work in a centralized fashion by appointing a coordinator for each session. The coordinator may be
chosen deterministically, for example, the first member of the current membership in lexicographical
order. In the centralized protocol, each process sends two messages to the coordinator, and the
coordinator multicasts two messages to the other processes. Hence, a total of 4n point to point
messages are sent. Once the membership stabilizes, our protocol terminates within one session, in
which it resolves past ambiguous attempts and also forms a new primary component (if possible).
As in the symmetric version of the protocol, the first round of messages may be piggybacked on
membership protocol messages.

Below, we prove that a process records concurrently at most n ambiguous sessions in the worst
case. In practice, the number of ambiguous sessions is expected to be small, since whenever a new
primary component is successfully formed, all the ambiguous sessions are discarded.

In Lemma 7.5.4 we prove that if a process p attempts to form two ambiguous sessions with a

72 CHAPTER 7. DYNAMIC VOTING FOR PRIMARY COMPONENTS

process ¢, then during the later session p can learn ¢’s status w.r.t. the former session. Note that
after p learns a session’s status as recorded by every session member, p can resolve the status of a
session. Therefore, in case p cannot resolve a session’s status, there is at least one session member
with which p does not share a later attempt. This property linearly bounds the number of unresolved

ambiguous sessions a process records concurrently, as we formally prove in Theorem 7.5.1.

Lemma 7.5.1 At each process, the wvalue of Session_Number is increased whenever the process

attempts to form a session. Session_Number does not change at any other time.

Proof: Immediate from the protocol. O

Lemma 7.5.2 If a member p of a session F sets Last_Primary, to F during session F, then all

members q of F appended F to Ambiguous_Sessions, during this session.

Proof: Process p sets Last_Primary, to F during session F in Step 3 of the protocol, only if
p received attempt messages from all members ¢ of F indicating that they successfully executed
Step 2 of the protocol during this session, i.e., appended F to Ambiguous_Sessions,. O

Lemma 7.5.3 Process p sets Last_Primary, to a session F during a session S, if either F = S,

or there exists a process q such that q set Last_Primary, to F during F.
Proof: According to the protocol, a process p sets Last_Primary, to F in one of two cases:

1. During session F in Step 3 of the protocol.

2. During a later session than F, upon learning that another member g of .M set Last_Formed 4(p)
to F before p. Let r be the first member of F.M who set Last_Formed,(p) to F, then r set
Last_Formed,(p) to F by the first case, hence, during F. O

Lemma 7.5.4 Let p be a process and A1, Ay two ambiguous sessions, such that A1.N < As.N and
both A1 and Az are in Ambiguous_Sessions,,. If there exists a process q such that g € A1.MNA2.M,

then p learned whether q formed session Ay before p attempted to form session As.

Proof: By induction on the difference A3.N — A;.N.

7.5. EVALUATING THE EFFICIENCY 73

e Base case: A3.N —A;.N = 1. According to the protocol, a process attempts to form a session
in Step 2 of the protocol, after the process received the Last_Formed arrays from all session

members and applied the learning rules as follows:

1. If Last_Formed,(p).N < A;.N then p learned that ¢ did not form A;.

2. If Last_Formedy(p).N = A;.N then p learned that g formed A;.

Notice that Last_Formedq(p).N > A;.N is impossible; Otherwise, ¢ formed Last_Formed4(p),
and therefore by Lemmas 7.5.3 and 7.5.2 process p attempted to form Last_Formedy(p).
Hence, by Lemma 7.5.1, A;.N < Last_Formedq(p).N < A3.N, in contradiction with Ses-

sion_Number being an integer.

e General case: We assume the induction hypothesis holds for Ao.N — A1.N < k, and prove
for A2.N — A1.N = k. Since Ay € Ambiguous_Sessions,, p received Last_Formed,(p) during

session As, and learned as follows:

1. If Last_Formed,(p).N < A;.N then, as in the base case, p learned whether ¢ formed A;.

2. Otherwise, Last_Formedq(p).N > A;.N. Hence, there exists a formed session F; such
that:

— A1.N < F;.N < Ay.N, and
- p,q € F;.M, and
— g formed F;.

Since q formed F;, then by Lemmas 7.5.3 and 7.5.2 F; € Ambiguous_Sessions, upon
ending F;. Moreover, F;.N — A;.N < k. Hence, from the induction hypothesis, p
learned whether ¢ formed A; before attempting to form F;, hence before attempting to

form Ay. O

Theorem 7.5.1 Process p records concurrently at most n — Min_Quorum + 1 ambiguous sessions,
where n is the number of processes that participate in an execution of the protocol.

Proof: Assume to the contrary that p records in Ambiguous_Sessions, n — Min_Quorum + 2

P
ambiguous sessions concurrently, A1,. .., An— Min_Quorum+2, such that (V1 < i < n— Min_Quorum+

2) A;.N < A;;1.N3. Since A; is still ambiguous, p did not learn whether some member of A; formed

3By Lemma, 7.5.1, the order requirement is always fulfilled.

74 CHAPTER 7. DYNAMIC VOTING FOR PRIMARY COMPONENTS

it or not. Hence, by Lemma 7.5.4, there is at least one member of A; that is not a member of any
session A; € Ambiguous_Sessions,, for j > i. Consequently, for each 7, there are at least i processes
that do not participate in any session A; where j > 4. In particular, after recording sessions
Av, ... Ay Min_Quorum+1, there are at least n — Min_Quorum + 1 members that are not members
of Ap— Min_Quorum+2. Therefore A, _ pin_Quorum+2-M consists of less than Min_Quorum members,

and Ay, _ Min_Quorum+2 18 not a legal session, a contradiction. O

7.6 Dynamically Changing Quorum Requirements

The definition of Next_Quorum presented in Section 7.4.1 requires every quorum to contain at least
Min_Quorum members of Wy in order to always allow a group of more than |Wy| — Min_Quorum
members of Wy to make progress (provided that Min_Quorum > |Wp|/2). This requirement
restricts the availability if some members of Wy leave the system. In this section we eliminate
the special status of the members of Wy: we always allow a group of more than n — Min_Quorum
processes to make progress, where 7 is the “current” number of processes in the system. We present
a novel mechanism for providing this feature, in environments which allow new processes to join
on the fly.

Allowing n to change dynamically is subtle because the truth value of Nezt_Quorum changes
with time. For example, Nezt_Quorum(S,T) may be initially TRUE because T' contains more than
[Wo| — Min_Quorum members of W), but later, as the set of participants increases, the truth value
of Nezt_Quorum(S,T) may become FALSE. Therefore, n must be increased with care, and new
processes may not immediately be taken into account. New processes are inserted into the “set of

participants” using the two new variables described below:

W is the set of processes taken into account in the new Min_Quorum requirement. For members
of Wy, W is initialized to Wy. For other processes, W is initially empty. New processes are

inserted into this group when they participate in a formed session.

A 1is the set of processes that have not been admitted into W yet. A is initialized to the empty set
if p € Wy, and otherwise to contain p itself.

These variables are used to evaluate the Next_Quorum predicate. Below we describe how these
variables are maintained in the course of the primary component protocol (cf. Section 7.4). At
the beginning of each step in a session S of the protocol, every process p executes the following

operations:

7.7. USING DYNAMIC VOTING IN CONJUNCTION WITH COREL 75

1. In the first step, p sends W, and A, to every member of S.

2. The Attempt Step: Upon receiving responses from every member of S, p updates W, and A,
as follows:

(a) Set Wy to Uges.m We-
(b) Set A, to (UqES.M A \ Wy

The Min_Quorum requirement in the definition of the Next Quorum predicate is evaluated
as follows:

e S is eligible to be a new primary component only if |S.M NW,| > Min_Quorum.

o If [SMN(W,UAp)| > IW,UAp| — Min_Quorum, then for every session S’ that p records,
the truth value of Next_Quorum(S’,S) is TRUE, regardless of the system history.

The first item replaces Requirement 1 in the definition of the Nezt_Quorum predicate in
Section 7.4.1. The second item replaces Requirement 2(c) in the same definition.

3. The Form Step: Upon receiving an attempt message from every member of S:

(a) Set W, to W, U (Ap N S.M).
(b) Set A, to A, \ S.M.

This mechanism allows the system to adjust the quorum requirements in the protocol to the
dynamically changing set of processes. We prove the correctness of the resulting protocol in the
next section.

Jajodia and Mutchler [JM89] suggest a similar idea in their hybrid algorithm. The hybrid
approach combines dynamic voting in large quorums with static voting in quorums of size three,
ruling out quorums consisting of a single process. The resulting hybrid algorithm works as follows:
Dynamic voting is employed in quorums that consist of at least four members. In a quorum @ of
size three, static voting is employed: subsequent quorums contain at least two members of). The
protocol returns to the dynamic voting scheme once a quorum containing at least four processes is
formed.

The hybrid approach of [JM89] is comparable with the mechanism presented above when
Min_Quorum is chosen to be two. In this case, neither approach is strictly better than the other.
Note that the hybrid algorithm of [JM89] applies the hybrid approach to the algorithm of [JM90]

which uses two phase commit to avoid inconsistencies.

7.7 Using Dynamic Voting in Conjunction with COReL

Our dynamic voting protocol may be used in conjunction with a variety of applications and services
that make progress in primary components. The COReL protocol is an example of such a service.

We now explain how our dynamic voting protocol may be exploited in conjunction with COReL.

76 CHAPTER 7. DYNAMIC VOTING FOR PRIMARY COMPONENTS

The steps of the dynamic voting protocol should be performed together with steps of COReL,

as follows:

1. The first step (information exchange) can be either piggybacked on membership messages or

on messages sent by the Recovery Procedure of COReL described in Section 6.4.5.

2. The Attempt Step of the dynamic voting protocol should be performed as part of the At-
tempt Step of COReL’s algorithm for establishing a new primary component, described in

Section 6.4.5.

3. The Form Step of the dynamic voting protocol should be performed as part of the Commit
Step of COReL’s algorithm for establishing a new primary component, described in Sec-

tion 6.4.5.

Part 111

Theoretical Foundations

7

Chapter 8

Majority-Resilient Atomic Commit*

This chapter presents a new atomic commitment protocol, enhanced three phase
commit (E3PC), that always allows a quorum in the system to make progress.
Previously suggested quorum-based protocols (e.g., the quorum-based three phase
commit (3PC) [Ske82]) allow a quorum to make progress in case of one failure. If
failures cascade, however, and the quorum in the system is “lost” (i.e., at a given
time no quorum component exists), a quorum can later become connected and still
remain blocked. With E3PC, a connected quorum never blocks. E3PC is based on
the quorum-based 3PC [Ske82], and it does not require more time or communication
than 3PC. This protocol can be exploited in a replicated database setting, making
the database always available to a majority of the sites.

8.1 Introduction

Reliability and availability of loosely coupled distributed database systems are becoming require-
ments for many installations, and fault tolerance is becoming an important aspect of distributed
systems design. When sites crash, or when communication failures occur, it is desirable to allow
as many sites as possible to make progress. A common way to increase the availability of data and
services is replication. If data are replicated in several sites, they can still be available despite site
and communication-link failures. Protocols for transaction management in distributed and repli-
cated database systems need to be carefully designed in order to guarantee database consistency.
This chapter presents a novel atomic commitment protocol (ACP) that always allows a majority
(or quorum) to make progress. This protocol can be exploited in a replicated database setting,
making the database always available to a majority of the sites.

In distributed and replicated database systems, when a transaction spans several sites, the
database servers at all sites have to reach a common decision regarding whether the transaction

should be committed or not. A mixed decision results in an inconsistent database, while a unani-

*This chapter is based on a paper by Keidar and Dolev [KD98].

79

80 CHAPTER 8. MAJORITY-RESILIENT ATOMIC COMMIT

mous decision guarantees the atomicity of the transaction (provided that the local server at each
site can guarantee local atomicity of transactions). To this end an atomic commitment protocol,
such as two phase commit (2PC) [Gra78] is invoked. The atomic commit problem and the two
phase commit protocol are described in Section 8.3. Two phase commit is a blocking protocol: if

the coordinator fails, all the sites may remain blocked indefinitely, unable to resolve the transaction.

To reduce the extent of blocking, Skeen suggested the quorum-based three phase commit (3PC)
protocol, which maintains consistency in spite of network partitions [Ske82]. In case of failures, the
algorithm uses a quorum (or majority)-based recovery procedure that allows a quorum to resolve the
transaction. If failures cascade, however, and the quorum in the system is “lost” (i.e., at a certain
time no quorum component exists), a quorum of sites can become connected and still remain blocked.
Other previously suggested quorum-based protocols (e.g., [CR83, CK85]) also allow a quorum to
make progress in case of one failure, while if failures cascade, a quorum can later become connected
and still remain blocked. To our knowledge, the only previously suggested ACP that always allows
a quorum to make progress is the ACP that we construct in [Kei94]. The protocol in [Kei94] is
not straightforward; it uses a replication service as a building block, while the protocol presented

in this chapter is easy to follow and self-contained.

This chapter presents the enhanced three phase commit (E3PC) protocol, which is an enhance-
ment of the quorum-based 3PC [Ske82]. E3PC maintains consistency in the face of site failures
and network partitions: sites may crash and recover, and the network may partition into several
components and remerge. E3PC always allows a quorum to make progress: At any point in the ex-
ecution of the protocol, if a group G of sites becomes connected, and this group contains a quorum
and no subsequent failures occur for sufficiently long, then all the members of G eventually reach
a decision. Furthermore, every site that can communicate with a site that has already reached a
decision will also, eventually, reach a decision. An operational site that is not a member of a con-
nected quorum may be blocked, i.e., may have to wait until a failure is repaired in order to resolve
the transaction. This is undesirable but cannot be avoided; Skeen proved that every protocol that

tolerates network partitions is bound to be blocking in certain scenarios [SS83].

E3PC achieves higher availability than 3PC simply by carefully maintaining two additional
counters and with no additional communication. The principles demonstrated in this chapter can
be used to increase the resilience of a variety of distributed services, e.g., replicated database
systems, by ensuring that a quorum will always be able to make progress. Other protocols that

use two counters in order to allow a majority to make progress are given in Chapters 6 and 7 and

8.2. THE MODEL 81

in [MHS89, CT96, Lam89, DLS88].

Numerous database replication schemes that are based on quorums have been suggested [Gif79,
Her86, Her87, EASC85, EAT89]. These algorithms use quorum systems to determine when data
objects are accessible. In order to guarantee the atomicity of transactions, these algorithms use
an ACP and therefore are bound to block when the ACP they use blocks. Thus, with previ-
ously suggested ACPs, these approaches do not always allow a connected majority to update the
database. Using E3PC these protocols can be made more resilient. Section 8.6 describes in detail
how E3PC may be incorporated into accessible copies protocols [EASC85, EAT89], in order to make
the database always available to a quorum.

E3PC uses a perfect failure detector (cf. Section 2.3): Every site has accurate information regard-
ing which sites are connected to it. Section 8.7 discusses the ability of E3PC to work with unreliable
failure detectors. In this case, the protocol solves the weak atomic commit problem [Gue95].

The rest of this chapter is organized as follows: Section 8.2 presents the computation model.
Section 8.3 provides general background on the atomic commitment problem. The quorum-based
three phase commit protocol [Ske82] is described in Section 8.4, and enhanced three phase commit
is described in Section 8.5. Section 8.6 describes how E3PC can be exploited in replicated database
systems. Section 8.7 describes the protocol’s behavior with an unreliable failure detector. The
discussion in Section 8.8 concludes this chapter. In Appendix A.4 the correctness of E3PC is

formally proven.

8.2 The Model

Our protocol is applicable in an asynchronous message-passing environment, as described in Chap-
ter 2. The set of sites running the protocol is fixed and is known to all the sites. Failures are
detected using a perfect fault detector, defined in Section 2.3. This assumption is weakened in

Section 8.7.

8.3 Background — Distributed Transaction Management

This section provides general background on the atomic commit problem and protocols.

8.3.1 Problem Definition

A distributed transaction is composed of several subtransactions, each running on a different site.

The database manager at each site can unilaterally decide to ABORT the local subtransaction, in

82 CHAPTER 8. MAJORITY-RESILIENT ATOMIC COMMIT

which case the entire transaction must be aborted. If all the participating sites agree to COMMIT
their subtransaction (vote Yes on the transaction) and no failures occur, the transaction should
be committed. It is assumed that the local database server at each site can atomically execute the
subtransaction once it has agreed to COMMIT it.

In order to ensure that all the subtransactions are consistently committed or aborted, the
sites run an atomic commitment protocol such as two phase commit. The requirements of atomic

commitment (as defined in Chapter 7 of [BHG87]) are as follows:

AC1l: Uniform Agreement: All the sites that reach a decision reach the same one.
AC2: A site cannot reverse its decision after it has reached one.

AC3: Validity: The coMMIT decision can be reached only if all sites voted Yes.

AC4: Non-triviality: If there are no failures and all sites voted Yes, then the decision

will be to COMMIT.

AC5: Termination: At any point in the execution of the protocol, if all existing failures
are repaired and no new failures occur for sufficiently long, then all sites will eventually

reach a decision.

8.3.2 Two Phase Commit

The simplest and most renowned ACP is two phase commit [Gra78]. Several variations of 2PC
have been suggested (e.g., presume abort and presume commit [MLO86]), the simplest version is
centralized — one of the sites is designated as the coordinator. The coordinator sends a transaction
(or request to prepare to commit) to all the participants. Each site answers by a Yes (“ready to
commit”) or by a No (“abort”) message. If any site votes No, all the sites abort. The coordinator
collects all the responses and informs all the sites of the decision. In absence of failures, this protocol
preserves atomicity. Between the two phases, each site blocks, i.e., keeps the local database locked,
waiting for the final word from the coordinator. If a site fails before its vote reaches the coordinator,
it is usually assumed that it had voted No. If the coordinator fails in the first phase, all the sites
remain blocked indefinitely, unable to resolve the last transaction. The centralized version of 2PC
is depicted in Figure 8.1.

Commit protocols may also be described using state diagrams [SS83]. The state diagram for

2PC is shown in Figure 8.1. The circles denote states; final states are double-circled. The arcs

8.3. BACKGROUND - DISTRIBUTED TRANSACTION MANAGEMENT 83

Coordinator Participant
Transaction is received:

Send sub-transactions. vote \7 w;te "NO"
Sub-transaction is received:

Send reply — Yes or No.

COMMIT or ABORT is received:
Process accordingly.

Figure 8.1: The centralized two phase commit protocol.

If all sites respond Yes:
Send COMMIT.

If some site voted No:
Send ABORT.

represent state transitions, and the action taken (e.g., message sent) by the site is indicated next
to each arc. In this protocol, each site (either coordinator or participant) can be in one of four

possible states:

q : INITIAL state — A site is in the initial state until it decides whether to unilaterally abort or to

agree to commit the transaction.

w : WAIT state — In this state the coordinator waits for votes from all of the participants, and each

[

participant waits for the final word from the coordinator. This is the “uncertainty period”

for each site, when it does not know whether the transaction will be committed or not.
¢ : COMMIT state — The site knows that a decision to commit was made.
a : ABORT state — The site knows that a decision to abort was made.

The states of a commit protocol may be classified along two orthogonal lines. In the first
dimension, the states are divided into two disjoint subsets: The committable states and the non-
committable states. A site is in a committable state only if it knows that all the sites have agreed
to proceed with the transaction. The rest of the states are non-committable. The only committable
state in 2PC is the coMMIT state. The second dimension distinguishes between final and non-final
states. The final states are the ones in which a decision has been made and no more state transitions

are possible. The final states in 2PC are COMMIT and ABORT.

8.3.3 Quorums

In order to reduce the extent of blocking in replication and atomic commit protocols, majority votes

or quorums are often used. A quorum system is a generalization of the majority concept. E3PC,

84 CHAPTER 8. MAJORITY-RESILIENT ATOMIC COMMIT

like Skeen’s quorum-based three phase commit protocol [Ske82], uses a quorum system to decide
when a group of connected sites may resolve the transaction. To enable maximum flexibility the
quorum system may be elected in a variety of ways (e.g., weighted voting [Gif79]). The quorum
system is static; it does not change in the course of the protocol.

The predicate Q(S) is TRUE for a given subset S of the sites iff S is a quorum. The requirement
from this predicate is that for any two sets of sites S and S’ such that S NS’ = (), at most one of
Q(S) and Q(S’) holds, i.e., every pair of quorums intersect. For example, in the simple majority
quorum system (Q(S) is TRUE iff |S| > n/2, where n is the total number of sites running the
protocol. Numerous quorum systems that fulfill these criteria were suggested. An analysis of the
availability of different quorum systems may be found in [PW95].

For further flexibility, it is possible to set different quorums for commit and abort (this idea
was presented in [Ske82]). In this case, a commit quorum of connected sites is required in order
to commit a transaction, and an abort quorum is required to abort. For example, to increase the
probability of commit in the system, one can assign smaller quorums for commit and larger ones
for abort.

In this case, the quorum system consists of two predicates: Q¢(G) is TRUE for a given group of
sites G iff G is a commit quorum, and Q4(G) is TRUE iff G is an abort quorum. The requirement
from these predicates is that for any two groups of sites G and G’ such that G NG’ = (), at most

one of Q¢(G) and Q4(G") holds, i.e., every commit quorum intersects every abort quorum.

8.3.4 The Extent of Blocking in Commit Protocols

The 2PC protocol is an example of a blocking protocol: operational sites sometimes wait on the
recovery of failed sites. Locks must be held in the database while the transaction is blocked.
Even though blocking preserves consistency, it is highly undesirable because the locks acquired by
the blocked transaction cannot be relinquished, rendering the data inaccessible by other requests.
Consequently, the availability of data stored in reliable sites can be limited by the availability of
the weakest component in the distributed system.

Skeen et al. [SS83] proved that there exists no non-blocking protocol resilient to network par-
titioning. When a partition occurs, the best protocols allow no more than one group of sites to
continue while the remaining groups block. Skeen suggested the quorum-based three phase com-
mit protocol, which maintains consistency in spite of network partitions [Ske82]. This protocol is

blocking in case of partitions; it is possible for an operational site to be blocked until a failure is

8.4. QUORUM-BASED THREE PHASE COMMIT 85

mended. In case of failures, the algorithm uses a gquorum (or majority)-based recovery procedure
that allows a quorum to resolve the transaction. If failures cascade, however, a quorum of sites can
become connected and still remain blocked. Skeen’s quorum-based commit protocol is described in
Section 8.4.

Since completely non-blocking recovery is impossible to achieve, further research in this area
concentrated on minimizing the number of blocked sites when partitions occur. Chin et al. [CR83]
define optimal termination protocols (recovery procedures) in terms of the average number of sites
that are blocked when a partition occurs. The average is over all the possible partitions, and all the
possible states in the protocol in which the partitions occurs. The analysis deals only with states
in the basic commit protocol and ignores the possibility for cascading failures (failures that occur
during the recovery procedure). It is proved that any ACP with optimal recovery procedures takes
at least three phases and that the quorum-based recovery procedures are optimal.

In [Kei94] we construct an ACP that always allows a connected majority to proceed, regardless
of past failures. To our knowledge, no other ACP with this feature was suggested. The ACP
suggested in [Kei94] uses a reliable replication service as a building block and is mainly suitable for
replicated database systems. This chapter presents a novel commitment protocol, enhanced three
phase commit, which always allows a connected majority to resolve the transaction (if it remains
connected for sufficiently long). E3PC does not require complex building blocks, such as the one
in [Kei%4], and is more adequate for partially replicated or non-replicated distributed database

systems; it is based on the quorum-based three phase commit [Ske82].

8.4 Quorum-Based Three Phase Commit

This section describes Skeen’s quorum-based commit protocol [Ske82]. E3PC is a refinement of
3PC, and therefore we elaborate on 3PC before presenting E3PC. The basic three phase commit is
described in Section 8.4.1, and the recovery procedure is described in Section 8.4.2. In Section 8.4.3
it is shown that with 3PC a connected majority of the sites can be blocked. A simplified version

of 3PC that uses the same quorums for commit and abort is presented.

8.4.1 Basic Three Phase Commit

The 3PC protocol is similar to two phase commit, but in order to achieve resilience, another non-

final “buffer state” is added in 3PC, between the WAIT and the COMMIT states:

86 CHAPTER 8. MAJORITY-RESILIENT ATOMIC COMMIT

Coordinator Participant
Transaction is received:
Send sub-transactions to participants.

Sub-transaction is received:
Send reply — Yes or No.

If all sites respond Yes: Send PRE-COMMIT.
If any site voted No: Send ABORT.

PRE-COMMIT received:
Send ACK to coordinator.

Upon receiving a quorum of ACKs:
Send cOMMIT.
Otherwise:
Block (wait for more votes or until recovery)

COMMIT or ABORT is received:
Process the transaction accordingly.

Figure 8.2: The quorum-based three phase commit protocol.

Pc : PRE-COMMIT state — this is an intermediate state before the commit state and is needed to

allow for recovery. In this state the site is still in its “uncertainty period.”

The quorum-based 3PC is described in Figure 8.2, and a corresponding state diagram is depicted
in Figure 8.3(a). The cCOMMIT and PRE-COMMIT states of 3PC are committable states; a site may be
in one of these states only if it knows that all the sites have agreed to proceed with the transaction.
The rest of the states are non-committable. In each step of the protocol, when the sites change
their state, they must write the new state to stable storage before replying to the message that

caused the state change.

8.4.2 Recovery Procedure for Three Phase Commit

When a group of sites detect a failure (a site crash or a network partition) or a failure repair (site
recovery or merge of previously disconnected network components), they run the recovery procedure
in order to try to resolve the transaction (i.e., commit or abort it). The recovery procedure consists
of two phases: first elect a new coordinator, and next attempt to form a quorum that can resolve
the transaction.

A new coordinator may be elected in different ways (e.g., [GM82]). In the course of the election,
the coordinator hears from all the other participating sites. If there are failures (or recoveries) in
the course of the election, the election can be restarted.

The new coordinator tries to reach a decision whether the transaction should be committed or

8.4. QUORUM-BASED THREE PHASE COMMIT 87

vote 7 : vote "NO" (P:roem m% '

Pre
Commit

Commit

(a) The Basic Three Phase Commit (b) The Recovery Procedure

Figure 8.3: Three phase commit and the recovery procedure.
q: INITIAL state; w: WAIT; pc: PRE-COMMIT; ¢: COMMIT; pa: PRE-ABORT; a: ABORT.

not and tries to form a quorum for its decision. The protocol must take the possibility of failures
and failure repairs into account and, furthermore, must take into account the possibility of two
(or more) different coordinators existing concurrently in disjoint network components. In order to
ensure that the decision will be consistent, a coordinator must explicitly establish a quorum for a

COMMIT or an ABORT decision. To this end, in the recovery procedure, another state is added:
Pa : PRE-ABORT state. Dual state to PRE-COMMIT.

The recovery procedure is described in Figure 8.4. The state diagram for the recovery procedure
is shown in Figure 8.3(b). The dashed lines represent transitions in which this site’s state was not
used in the decision made by the coordinator. Consider for example the following scenario: site pq
reaches the PRE-ABORT state during an unsuccessful attempt to abort. The network then partitions,
and p; remains blocked in the PRE-ABORT state. Later, a quorum (that does not include py) is
formed, and another site, p2, decides to COMMIT the transaction (this does not violate consistency,
since the attempt to abort has failed). If now p; and ps become connected, the coordinator must
decide to coMMIT the transaction, because py is COMMITTED already. Therefore, p; makes a
transition from PRE-ABORT to COMMIT.

After collecting the states from all the sites, the coordinator tries to decide how to resolve the

transaction. If any site has previously committed or aborted, then the transaction is immediately

88 CHAPTER 8. MAJORITY-RESILIENT ATOMIC COMMIT

1. Elect a new coordinator, 7.
2. The coordinator, 7, collects the states from all the connected sites.

3. The coordinator tries to reach a decision, as described in Figure 8.5. The decision is computed
using the states collected so far. The coordinator multicasts a message reflecting the decision.

4. Upon receiving a PRE-COMMIT or PRE-ABORT each participant sends an ACK to r.

5. Upon receiving a quorum of ACKs for PRE-COMMIT or PRE-ABORT, r multicasts the corre-
sponding decision: COMMIT or ABORT.

6. Upon receiving a COMMIT or an ABORT message: Process the transaction accordingly.

Figure 8.4: The quorum-based recovery procedure for three phase commit.

Collected States Decision

3 ABORTED ABORT

3 COMMITTED COMMIT

3 PRE-COMMITTED A ()(sites in WAIT and PRE-COMMIT states) | PRE-COMMIT
Q(sites in WAIT and PRE-ABORT states) PRE-ABORT
Otherwise BLOCK

Figure 8.5: The decision rule for the quorum-based recovery procedure.

committed or aborted accordingly. Otherwise, the coordinator attempts to establish a quorum. A
COMMIT is possible if at least one site is in the PRE-COMMIT state and the group of sites in the WAIT
state together with the sites in the PRE-COMMIT state form a quorum. An ABORT is possible if the
group of sites in the WAIT state together with the sites in the PRE-ABORT state form a quorum.

The decision rule is summarized in Figure 8.5.

8.4.3 Three Phase Commit Blocks a Quorum

In this section it is shown that in the algorithm described above, it is possible for a quorum to
become connected and still remain blocked. In our example, there are three sites executing the
transaction: pi, pe, and p3. The quorum system used is a simple majority: every two sites form a
quorum. Consider following the scenario depicted in Figure 8.6:

p1 is the coordinator. All the sites vote Yes on the transaction. p; receives and processes the
votes, but ps and p3 detach from p; before receiving the PRE-COMMIT message sent by ps.

po is elected as the new coordinator. It sees that both p, and p3 are in the WAIT state and
therefore sends a PRE-ABORT message, according to the decision rule. ps receives the PRE-ABORT

message, acknowledges it, and then detaches from ps.

8.4. QUORUM-BASED THREE PHASE COMMIT 89

| =smren|
P2

N4
w

pl decides pre-commit

P3

p2 decides pre-abort

time

pl and p3 are blocked

——Z—— Comm. Link

IX Comm. Link Failure

~

Figure 8.6: Three phase commit blocks a quorum.

Now, ps3 is in the PRE-ABORT state, while p; is in the PRE-COMMIT state. If now p; and p3
become connected, then according to the decision rule, they remain BLOCKED, even though they

form a quorum.

Analysis

In this example, it is actually safe for p; and p3 to decide PRE-ABORT, because none of the sites
could have committed, but it is not safe for them to decide PRE-COMMIT, because p3 cannot know
whether ps has aborted or not.

Observe that ps decided PRE-ABORT “after” p; decided PRE-COMMIT, and therefore the PRE-
COMMIT decision made by p; is “stale”, and no site has actually reached a COMMIT decision following

it, because otherwise, it would have been impossible for ps to reach a PRE-ABORT decision.

90 CHAPTER 8. MAJORITY-RESILIENT ATOMIC COMMIT

The 3PC protocol does not allow a decision in this case, because the sites have no way of
knowing which decision was made “later.” Had the sites known that the a PRE-ABORT decision
was made “later,” they could have decided PRE-ABORT again and would have eventually ABORTED

the transaction. E3PC provides the mechanism for doing exactly this.

8.5 The E3PC Protocol

This section presents a three phase atomic commitment protocol, enhanced three phase commit,
with a novel quorum-based recovery procedure that always allows a quorum of sites to resolve the
transaction, even in the face of cascading failures. The protocol is based on the quorum-based three
phase commit protocol [Ske82]. E3PC does not require more communication or time than 3PC;
the improved resilience is achieved simply by maintaining two additional counters, which impose a
linear order on quorums formed in the system.

Initially, the basic E3PC is invoked. If failures occur, the sites invoke the recovery procedure
and elect a new coordinator. The new coordinator carries on the protocol to reach a decision. If
failures cascade, the recovery procedure may be reinvoked an arbitrary number of times. Thus, one
ezecution of the protocol (for one transaction) consists of one invocation of the basic E3PC and of
zero or more invocations of the recovery procedure.

Section 8.5.1 describes how E3PC enhances 3PC. The recovery procedure for E3PC is described
in Section 8.5.2. In Section 8.5.3 it is shown that E3PC does not block a quorum in the example
of Section 8.4.3. Section 8.5.4 outlines the correctness proof for E3PC. First, a simplified version
of E3PC that uses the same quorums for commit and abort is presented. In Section 8.5.5 a more

general version of E3PC, which uses different quorums for commit and abort is described.

8.5.1 E3PC: Enhancing Three Phase Commit

The basic E3PC is similar to the basic 3PC, the only difference being that E3PC maintains two
additional counters, as follows: In each invocation of the recovery procedure, the sites try to
elect a new coordinator. The coordinators elected in the course of an execution of the protocol
are sequentially numbered: A new “election number” is assigned in each invocation of the recovery
procedure. Note that there is no need to elect a new coordinator in each invocation of the basic 3PC
or E3PC; the re-election is needed only in case failures occur. The coordinator of the basic E3PC
is assigned “election number” one, even though no elections actually take place. The following two

counters are maintained by the basic E3PC and by the recovery procedure:

8.5. THE E3PC PROTOCOL 91

Last_Elected - The number of the last election that this site took part in. This variable is updated
when a new coordinator is elected. This value is initialized to one when the basic E3PC is

invoked.

Last_Attempt - The election number in the last attempt this site made to commit or abort. The
coordinator changes this variable’s value to the value of Last_Elected whenever it makes a
decision. Every other participant sets its Last_Attempt to Last_FElected when it moves to the
PRE-COMMIT or to the PRE-ABORT state, following a PRE-COMMIT or a PRE-ABORT message

from the coordinator. This value is initialized to zero when the basic E3PC is invoked.

These variables are logged on stable storage. The second counter, Last_Attempt, provides a linear
order on PRE-COMMIT and PRE-ABORT decisions; e.g., if some site is in the PRE-COMMIT state with
its Last_Attempt = 7, and another site is in the PRE-ABORT state with its Last_Attempt = 8, then
the PRE-COMMIT decision is “earlier” and therefore “stale,” and the PRE-ABORT decision is safe.
The first counter, Last_Elected, is needed to guarantee the uniqueness of the Last_Attempt, ! i.e.,
that two different attempts will not be made with the same value of Last_Attempt (cf. Lemma A.4.3
in Appendix A.4).

Notation

The following notation is used:

e P is the group of sites that are live and connected, and which take part in the election of the
new coordinator.

e Maz_Elected is maxpep(Last_Elected of p).
o Maxz_Attempt is maxpcp(Last_Attempt of p).

o Is_Max_Attempt_Committable is a predicate that is TRUE iff all the members that are in
non-final states and whose Last_Attempt is equal to Maz_Attempt are in a committable
state (i.e., in the PRE-COMMIT state). Formally, Is_Maz_Attempt_Committable is TRUE iff
Vpep(Last_Attempt of p = Maz_Attempt Ap is in a non-final state — p is in a committable
state)

8.5.2 Quorum-Based Recovery Procedure

As in 3PC, the recovery procedure is invoked when failures are detected and when failures are
repaired. Sites cannot “join” the recovery procedure in the middle, instead, the recovery procedure

must be reinvoked to let them take part.

!The value of Last_Elected is not guaranteed to be unique, two elections may be made with the same value of
Last_Elected, in case the first election with this number did not terminate successfully at all the members. Also note
that the same coordinator can not be chosen with the same election number twice.

92 CHAPTER 8. MAJORITY-RESILIENT ATOMIC COMMIT

1. Elect a new coordinator r. The election is non-blocking, it is restarted in case of failure.
In the course of the election, r hears from all the other sites their values of Last_FElected
and Last_Attempt and determines Max_Elected and Maz_Attempt. r sets Last_Elected to
Mazx_Elected+1 and notifies the sites in P of its election, and of the value of Maz_Flected.

2. Upon hearing Maz_FElected from r, set Last_Elected to Maz_FElected+1 and send local state to
the coordinator r.

3. The coordinator, r collects states from the other sites in P, and tries to reach a decision as
described in Figure 8.8. The decision is computed using the states collected so far; the subset
of sites from which r received the state so far is denoted by S. Upon reaching a decision other
than BLOCK, r sets Last_Attempt to Last_Elected, and multicasts the decision to all the sites
in P.

4. Upon receiving a PRE-COMMIT or PRE-ABORT each participant sets its Last_Attempt to
Last_FElected and sends an ACK to r.

5. Upon receiving a quorum of ACKs for PRE-COMMIT (PRE-ABORT), r multicasts the decision:
COMMIT (ABORT).

6. Upon receiving a COMMIT (ABORT) message from 7: process the transaction accordingly.

Figure 8.7: The recovery procedure for E3PC.

All the messages sent by the protocol carry the election number (Last_FElected) and process id of
the coordinator. Thus, it is possible to know in which invocation of the protocol each message was
sent. A site that hears from a new coordinator ceases to take part in the previous invocation that it
took part in and no longer responds to its previous coordinator. Messages from previous invocations
are ignored. Thus, a site cannot concurrently take part in two invocations of the recovery procedure.
Furthermore, if a site responds to messages from the coordinator in some invocation, it necessarily
took part in the election of that coordinator.

The recovery procedure for E3PC is similar to the quorum-based recovery procedure described
in Section 8.4.2. As in 3PC, in each step of the recovery procedure, when the sites change their
state, they must write the new state to stable storage before replying to the message that caused
the state change. The recovery procedure is described in Figure 8.7. The possible state transitions
in E3PC and its recovery procedure are the same as those of 3PC, depicted in Figure 8.3; the
improved performance in E3PC results from the decision rule, which allows state transitions in
more cases.

In Step 3 of the recovery procedure, r collects the states from the other sites in P and tries

to reach a decision. The sites are blocked until r receives enough states to allow a decision. It is

8.5. THE E3PC PROTOCOL 93

possible to reach a decision before collecting the states from all the sites in P; e.g., when a final state
is received, a decision can be made. It is also possible to reach a decision once states are collected
from a quorum, if one of the quorum members has Last_Attempt=Maz_Attempt. The subset of P
from which r received the state so far is denoted by S; r constantly tries to compute the decision
using the states in S, whenever new states arrive and until a decision is reached. The decision
rule is described below. If the decision is not BLOCK, r changes Last_Attempt to Last_FElected, and

multicasts the decision to all the sites in P.

Decision Rule

Collected States Decision
3 ABORTED ABORT
3 COMMITTED COMMIT

Is_Maz_Attempt_Committable NQ(S) | PRE-COMMIT
—Is_Maz_Attempt_Committable AQ(S) | PRE-ABORT
Otherwise BLOCK

Figure 8.8: The decision rule for E3PC.

The coordinator collects the states from the live members of P and applies the following decision

rule to the subset S of sites from which it received the state.

e If there exists a site (in §) that is in the ABORTED state — ABORT.

If there exists a site in the COMMITTED state — COMMIT.

If Is_Maz_Attempt_Committable is TRUE, and S is a quorum — PRE-COMMIT.

If Is_Maz_Attempt_Committable is FALSE and S is a quorum — PRE-ABORT.

Otherwise — BLOCK.

The decision rule is summarized in Figure 8.8. It is easy to see that with the new decision rule,

if a group of sites is a quorum, it will never be blocked.

8.5.3 E3PC does not Block a Quorum

In E3PC, if a group of sites forms a quorum, it will never be blocked. This is obvious from the de-
cision rule: if some site has previously committed (aborted), then the decision is COMMIT (ABORT).

Otherwise, a decision can always be made according to the value of Is_Maz_Attempt_Committable.

94 CHAPTER 8. MAJORITY-RESILIENT ATOMIC COMMIT

A
w

[F=rmn
P1

e pl decides pre-commit
P2 with Last Attempt =1

b=rrar]
P3

p2 decides pre-abort
with Last Attempt =2

time

pl decides pre-abort
with Last Attempt =3

——Z—— Comm. Link

IX Comm. Link Failure

~

Figure 8.9: E3PC does not block a quorum.

We now demonstrate that E3PC does not block with the scenario of Section 8.4.3 (in which
Skeen’s quorum-based 3PC does block). In this example, there are three sites executing the trans-
action - p1, po, and p3 - and the quorum system is a simple majority: every two sites form a quorum.

The following scenario, depicted in Figure 8.9, was considered:

e Initially, p; is the coordinator. All the sites vote Yes on the transaction. p; receives and
processes the votes, but py and p3 detach from p; before receiving the PRE-COMMIT message
sent by p;. Now Last_Attempt,, is 1 while Last_Attempt,, = Last_Attempt,, = 0, and the

value of Last_FElected is one for all the sites.

e py is elected as the new coordinator, and the new Last_Elected is two. It sees that both po

and p3 are in the WAIT state and therefore sends a PRE-ABORT message, according to the

8.5. THE E3PC PROTOCOL 95

decision rule, and moves to the PRE-ABORT state while changing its Last_Attempt to two.
p3 receives the PRE-ABORT message, sets its Last_Attempt to two, sends an acknowledgment,

and detaches from ps.

e Now, p3 is in the PRE-ABORT state with its value of Last_Attempt = 2, while p; is in the
PRE-COMMIT state with its Last_Attempt = 1. If now p; and p3 become connected, then,
according to the decision rule, they decide to PRE-ABORT the transaction, and they do not

remain blocked.

8.5.4 Correctness of E3PC

In Appendix A.4 it is formally proven that E3PC fulfills the requirements of atomic commitment
described in Section 8.3.1. This section outlines the proof.

First it is proven that two contradicting attempts (i.e., PRE-COMMIT and PRE-ABORT) cannot be
made with the same value of Last_Attempt (Lemma A.4.3). This is true due to the fact that every
two quorums intersect and that a quorum of sites must increase Last_FElected before a PRE-COMMIT
or a PRE-ABORT decision. Moreover, Last_Attempt is set to the value of Last_Elected, which is higher
than the previous value of Last_FElected of all the participants of the recovery procedure. Next, it is
proven that the value of Last_Attempt at each site increases every time the site changes state from
a committable state to a non-final non-committable state, and vice versa (Lemma A.4.5).

Using the two lemmas above the following is proven (Lemmas A.4.6 and A.4.8): If the coor-
dinator reaches a COMMIT (ABORT) decision upon receiving a quorum of ACKs for PRE-COMMIT
(PRE-ABORT) when setting its Last_Attempt to i, then for every j > i no coordinator will decide
PRE-ABORT (PRE-COMMIT) when setting its Last_Attempt to j. These lemmas are proven by in-
duction on 7 > 4; it is shown, by induction on j, that if some coordinator r sets its Last_Attempt to
J in Step 3 of the recovery procedure, then Is_Maxz_Attempt_Committable is TRUE (FALSE) in this
invocation of the recovery procedure, and therefore, the decision is PRE-COMMIT (PRE-ABORT).

One concludes that if some site running the protocol COMMITS the transaction, then no other

site ABORTS the transaction.

8.5.5 Using Different Quorums for Commit and Abort

This section describes how to generalize E3PC to work with different quorums for commit and
abort. Commit and abort quorums are described in Section 8.3.3. The following changes need to

be made in the protocol:

96 CHAPTER 8. MAJORITY-RESILIENT ATOMIC COMMIT

Collected States Decision
3 ABORTED ABORT
3 COMMITTED COMMIT

Is_Maz_Attempt_Committable AQc(S) | PRE-COMMIT
—Is_Maz_Attempt_Committable AQ4(S) | PRE-ABORT
Otherwise BLOCK

Figure 8.10: The decision rule for E3PC with commit and abort quorums.

1. In the second phase of the basic E3PC, the coordinator waits for a commit quorum of ACKs

before sending PRE-COMMIT.

2. In Step 5 of the recovery procedure, the coordinator needs to wait for a commit quorum of

ACKs in order to PRE-COMMIT, and for ACKs from an abort quorum in order to PRE-ABORT.

3. Likewise, the decision rule is slightly changed to require a commit quorum in order to PRE-
COMMIT (in case Is_Maz_Attempt_Committable is TRUE) and an abort quorum in order to
PRE-ABORT (if Is_Maz_Attempt_Committable is FALSE). The resulting decision rule is shown

in Figure 8.10.

It is easy to see from the new decision rule that if a group of processes is both a commit quorum
and an abort quorum, it does not remain blocked.

The correctness proof of the general version of E3PC is similar to the correctness proof of E3PC
presented in this chapter; it uses the property that every commit quorum intersects every abort
quorum in order to prove that two contradicting attempts (i.e., PRE-COMMIT and PRE-ABORT)

cannot be made with the same value of Last_Attempt. The formal proof may be found in [KD94].

8.6 Replicated Database Systems

In replicated database systems, the sites continuously execute transactions. When the network
partitions, it is often desirable to allow a quorum of the sites to access the database, but it is usually
undesirable to allow sites in two disjoint network components to concurrently update the same data.
Numerous replication schemes that are based on quorums have been suggested [Gif79, Her86, Her87,
EASC85, EAT89]. In order to guarantee the atomicity of transactions, these algorithms use an
ACP and therefore are bound to block when the ACP they use blocks. We propose to use E3PC

in conjunction with these protocols in order to make the database always available to a quorum.

8.6. REPLICATED DATABASE SYSTEMS 97

The same quorum system should be used to determine when the data are accessible to a group
of sites as for the atomic commitment protocol. In a fully replicated database, a group of sites
needs to be a quorum of the total number of sites in order to access the database. Hence, in order
to resolve a transaction using the E3PC recovery procedure, a group of sites needs to be a quorum
of the total number of sites and not just of the sites that invoked E3PC for the specific transaction.

If the data are partially replicated, then for each item accessed by this transaction, a quorum
of the sites it resides on is required. In order to resolve a transaction using the E3PC recovery
procedure, a group of sites needs to contain a quorum for each item accessed by this transaction.

There is a subtle point to consider with this solution: sites that did not take part in the
basic E3PC for this transaction may take part in the recovery procedure. The local databases
at such sites are not up-to-date, since they do not necessarily reflect the updates performed by
the current transaction. Therefore, these sites need to recover the database state from other
sites during the merge and before taking part in the recovery procedure. In the accessible copies
protocols [EASC85, EAT8Y], this is done every time the view changes. In this case, we suggest
using the view change as the failure detector for E3PC; thus, the recovery procedure is always
invoked following a view change, after all the participating sites have reached an up-to-date state.

Below, we describe in detail how E3PC may be incorporated into accessible copies protocols.

8.6.1 Using E3PC with Accessible Copies Protocols

Accessible copies protocols [EASC85, EAT89] maintain a view of the system to determine when data
are accessible: A data item can be read/written within a view (component) only if a majority of
its read /write votes are assigned to copies that reside on sites that are members of this view. This
majority of votes is the “accessibility threshold for the item,” not to be confused with read and write
quorums used within the current view. In order to guarantee the atomicity of each transaction,
these protocols use an ACP. I propose to use E3PC as this ACP using these accessibility thresholds
as its quorum system. This way the sites that succeed in resolving the previous transaction are
also allowed to access the database in new transactions.

A group of sites is considered a quorum (in E3PC) if and only if it contains a majority of
the votes of each item accessed by this transaction. A connected quorum of the sites may invoke
a transaction and access the data. When the sites running the transaction wish to commit it,
they run E3PC for the transaction. The basic E3PC may be invoked by a subset of the sites, the

members of the current view. The views maintained by the accessible copies protocol are used as

98 CHAPTER 8. MAJORITY-RESILIENT ATOMIC COMMIT

failure detectors for E3PC; when the view changes, the recovery procedure is invoked.

In the course of the view change protocol, each site executes an update_transaction in order to
recover the most up-to-date values of each data item. If the update_transaction is aborted, the view
change is aborted; a successful view change implies that the “newly joined” sites have successfully
performed the updates and thus have given up their right to unilaterally abort the transaction.
When the recovery procedure is invoked with sites that did not take part in the basic E3PC for the
current transaction, these sites are considered to be in the wait state with their Last_Flected= 1

and Last_Attempt= 0, as if they had voted Yes on the transaction, and detached.

e The basic E3PC may be invoked by a subset of the sites, the members of the current
view.

e E3PC uses view changes as its failure detector, i.e., every time the view changes, the
recovery procedure is invoked.

e When the recovery procedure is invoked with “newly joined” sites that did not take
part in the basic E3PC, the “newly joined” sites are considered to be in the wait state
with their Last_Flected= 1 and Last_Attempt= 0.

Figure 8.11: E3PC adjusted to the accessible copies protocol.

Figure 8.11 summarizes the adjustments made in E3PC to make it suitable for the accessible
copies protocol. With this protocol, the database is always available to a quorum of connected

sites. We know of no previous database replica control protocol with this feature.

8.7 Failure Detectors and Weak Atomic Commit

The E3PC protocol presented above uses a perfect failure detector: Every site has accurate informa-
tion regarding which sites are connected to it. This assumption is not practical: in asynchronous
systems, it is not always possible to tell failed sites from very slow ones. In practice, systems
use unreliable mechanisms, e.g., timeout, in order to detect failures. Such mechanisms may make
mistakes and suspect that a correct (connected) site is faulty (disconnected).

Can the perfect failure detection assumption be relaxed? Guerraoui [Gue95] proves that the
Atomic Commit Problem, as defined in Section 8.3.1, cannot be solved without a perfect failure
detector; the non-triviality requirement (AC4) is too strong. He defines the weak atomic commit

problem by changing the non-triviality requirement of atomic commit as follows:

Non-Triviality: If all sites voted Yes, and no site is ever suspected, then the decision will be to

8.8. DISCUSSION 99

COMMIT.

The other requirements of atomic commit are unchanged. The weak atomic commit problem
can be solved with non-perfect failure detectors.

Can the weak atomic commit problem be solved in a fully asynchronous environment that is
not augmented with any failure detector? Unfortunately, the answer to this question is no. In a
fully asynchronous environment, reaching Consensus? is impossible [FLP85], in the sense that every
protocol that reaches agreement is bound to have an infinite run. In particular, using any failure
detector that can be implemented in such an environment, e.g., a time-out mechanism, E3PC does
not fulfill the termination (AC5) requirement. However, when the protocol does terminate, the rest
of the requirements of weak atomic commit are preserved.

We have seen that in order to solve weak atomic commit, the model must be augmented with
some failure detector. An eventual perfect failure detector (formally defined in Section 2.3) may
suspect correct sites, but there is a time after which correct sites are no longer suspected. Using
such a failure detector, E3PC solves the weak atomic commit problem. E3PC terminates once a
quorum of sites becomes connected and no failures or suspicions occur for sufficiently long. In a
practical system, this assumption is likely to be fulfilled.

However, eventual perfect failure detectors are not the weakest ones which may be used; [CT96]
and [DFKM96] define weaker classes of failure detectors. Chandra et al. [CHT92] prove that the
weakest possible failure detector to solve Consensus in a crash failure model is the eventual weak
failure detector. Intuitively, an eventual weak failure detector may make mistakes and suspect
correct sites, but there is a time after which there is some correct site that is not suspected by
any other site that is connected to it. Guerraoui and Schiper [GS95] present a solution to the
weak atomic commit problem in an environment without network partitions, using an eventual
weak failure detector. Their protocol may be adapted to work in an environment with network
partitions, using the technique presented in [DFKM96]. This technique yields a protocol that is

less efficient (requiring more communication) than E3PC.

8.8 Discussion

In this chapter, we demonstrate a general technique for constructing resilient algorithms that always

allow progress in a majority component, using a simple and well-known protocol (namely, 3PC). The

2Guerraoui [Gue95] proves that the weak atomic commit problem is reducible to Consensus.

100 CHAPTER 8. MAJORITY-RESILIENT ATOMIC COMMIT

underlying concept of E3PC is the use of two counters to convey information among a sequence of
majority components. This technique is exploited in the COReL algorithm presented in Chapter 6
and in the dynamic voting protocol in Chapter 7.

We demonstrate how the three phase commit [Ske82] protocol can be made more resilient simply
by maintaining two additional counters and by changing the decision rule. The new protocol, E3PC,
always allows a quorum of connected sites to resolve a transaction: At any point in the execution
of the protocol, if a group G of sites becomes connected and this group contains a quorum of the
sites, and no subsequent failures occur for sufficiently long, then all the members of G eventually
reach a decision. Furthermore, every site that can communicate with a site that already reached
a decision will also, eventually, reach a decision. We have shown that 3PC does not possess this
feature: if the quorum in the system is “lost” (i.e., at a certain time no quorum component exists),
a quorum can later become connected and still remain blocked.

E3PC does not require more communication or time than 3PC; the improved resilience is
achieved simply by maintaining two additional counters. The information needed to maintain
the counters is piggybacked on messages that are sent in 3PC as well as in E3PC: the values of
Last_Flected and Last_Attempt are attached to messages used to elect a new coordinator.

We discuss how E3PC can be extended to work in an environment with unreliable failure
detectors. In this case, the protocol solves the weak atomic commitment problem.

E3PC may be used in conjunction with quorum-based replication protocols, such as [Gif79,
Her86, Her87, EASC85, EAT8Y], in order to make the database always available to a quorum. I
demonstrate how E3PC may be incorporated in accessible copies protocols [EASC85, EAT89]; with

the new protocol, the database is always available to a quorum of connected sites.

Appendix

101

Appendix A

Correctness Proofs

A.1 Correctness Proof of COReL

We now prove the correctness of the COReL algorithm. In Section A.1.1 we prove that the order
of messages in M Q of each process always preserves the causal partial order, and thus, the total
order determined by the algorithm at each process preserves the causal partial order. We conclude
that at each process messages become both red and green in causal order, and Property 6.3.2 holds.

In Section A.1.2 we prove that messages are totally ordered in the same order at all the processes,
and hence, Property 6.3.1 holds. The proof is based on the order imposed on committed primary
components. We prove that if a message m is marked as green by some process p in the context
of some primary component, then in all the later primary components, all the members will agree
with p on m’s order. In other words, every primary component preserves the order determined by
previous primary components.

Finally, in Section A.1.3 we prove the liveness of COReL.

Notation

We denote by p commits j the event that p, as a member of PM;, commits to PM; when trying
to establish it as the new primary component. We denote by p adopts j the event that in Step 6 of
the Recovery Procedure p sets its Last_Committed_Primary to j according to the representative’s
Last_Committed_Primary.

We denote by v,(v) the event that process p receives the view v.

The Epochs Model
The processes running the protocol may be viewed as state machines; they react to messages

that they receive by the TO-GCS. The event e(m,p) is the reaction of process p when it receives

103

104 APPENDIX A. CORRECTNESS PROOFS

the message m. The event may include internal state changes as well as transmission of messages
by p.

A history of the protocol is a set of events, partially ordered by the causal partial order. In
Chapter 2 we define the causal order of messages motivated by Lamport’s [Lam78] definition of the
order of events in a distributed system. We generalize the definition of causal order to events and

views as follows:

e The causal order of events is defined as follows:

cause cause !

e(m,p) = e(m',q) if m == m
e The causal order of views is defined as follows: View v causally precedes view v' if (3p)(Jq)
vp(v) =5 vy (v').
A history is divided into epochs:
Definition:

e An event e(m,p) happens in epoch;(p) if e occurs when Last_Committed_Primary, = i and

e does not change Last_Committed_Primary,.

e The event in which Last_Committed_Primary, is changed to i is the first event in epoch;(p).
Note that Last_Committed_Primary, may change in two types of events, when p commits

1, or when p adopts 1.
We say that epoch;(p) is empty if in the history of p, Last_Committed_Primary, was never i.

A.1.1 Causal Order

We first prove that the order determined by the algorithm at each process preserves the causal

partial order.

Claim A.1.1 Messages are received at each process in an order preserving the causal partial order,

and the order of the messages in MQ of each process always preserves the causal partial order.

Proof: Messages are ordered at each process’ M Q when they are first delivered to it. This order
may be altered only in the course of a view change protocol when a representative of a primary
component enforces its order over the TS order. The proof is by induction on the steps of the

protocol in which a message is transmitted or reordered in M Q.

A.1. CORRECTNESS PROOF OF COREL 105

When a regular message is first transmitted to the members of the current view we assume
that the TO-GCS delivers it in TS order, (which preserves the causal order), and without missing
causally preceding messages (in the context of the same view). The messages are inserted into each
MQ in this order.

In a new view, v, regular messages are sent only after the Recovery Procedure ends, and therefore
are received by each process after all the messages that were sent in views that causally precede v.

We now show that during a view change the order in which retransmitted messages are delivered
at each process, and placed in MQ preserves causality.

We assume (by induction) that for each member p of a view v that receives the view v, the
order of messages in M QP preserves the causal partial order when the view change occurs, and we
show that this property still holds throughout the Recovery Procedure.

By the Retransmission Rule the retransmission order preserves the order of the messages in MQ
of the retransmitting process. From our assumption, this order preserves the causal partial order.
Therefore, from the assumption on the TO-GCS, the delivery order of retransmitted messages
preserves the causal partial order.

Retransmitted messages are inserted into M Q according to the TS order with the exception of
one special case: messages that are retransmitted by the chosen representative, r, in Step 5 of the
Recovery Procedure are inserted into M@ at the receiving end ahead of non_priority messages, i.e.,
before any messages that r didn’t have marked as yellow or green. This does not violate causality,
since, from the inductive assumption on MQ", the non_priority messages do not causally precede
any priority message in MQ". Thus, in all cases, retransmitted messages are inserted into MQ in
causal order.

If m' precedes m in M QP and p reorders m to follow m’ in Step 5 of the Recovery Procedure
then the representative, r, either had m' and not m, or m’ before m. Therefore, by the inductive

assumption on MQ", m' does not causally follow m. O

Corollary A.1.2 Red messages are delivered to the application in an order that preserves the

causal partial order.

Proof: Follows from Claim A.1.1 and the fact that messages become red in the order that they

are inserted into MQ. O

Theorem A.1.1 The total order of messages computed at each process extends the causal order.

106 APPENDIX A. CORRECTNESS PROOFS

Proof: Follows from Claim A.1.1 and the fact that the ordered messages are a prefix of MQ. O

A.1.2 Total Order

We now prove that messages are totally ordered in the same order at all the processes. The proof
is based on the order imposed on committed primary components. We prove that if a message m
is marked as green by some process p in the context of some primary component, then in all the
later primary components, all the members will agree with p on m’s order. In other words, every
primary component preserves the order determined by previous primary components. The proof is

by induction on the committed primary components.

Claim A.1.3 Ifp and q committed to primary components with number i, PM? and PM} respec-
tively, then PM? and PM} are the same.

Proof: Assume the contrary. Since every two primary components intersect there is a process r
that is a member of both PM? and PM}. Since both views were committed to, r attempted to
establish both. W.Lo.g. r attempted to establish PM? before attempting to establish PM/, then
when trying to establish PMY, r had at least i as the number of the Last_Attempted_Primary,
and therefore the New_Primary suggested for the new view is greater than ¢, which contradicts
the assumption. O

Henceforth we will refer to primary component number ¢ as PM;.

Claim A.1.4 If p adopts j then there exists a process q s.t. g commits j.

Proof: A process sets its Last_Committed_Primary to j either when committing to j, or when
adopting from another process that has its Last_Committed_Primary set to j. Therefore, there

must be one process that commits to j, in order to start the chain. O

Claim A.1.5 For each process p, the value of Last_Committed_Primary, does not decrease.

Proof: In the protocol, a process may change its Last_Commitied_Primary in two cases:

e In Step 6 of the Recovery Procedure, when adopting the value of the representative’s Last_Committed_Prima
In this case the Last_Committed_Primary of p does not decrease, otherwise p would have

been chosen as the representative.

A.1. CORRECTNESS PROOF OF COREL 107

e When committing to a new primary component PM;. Assume that immediately before

committing to PM; Last_Committed_Primary, = i. We consider two cases:

— If p committed to 7, then before committing to PM;, p attempted 7, therefore, Last_Attempted_Primary,

i when v,(PMj) occurs.

— Otherwise, p adopted 4, and from Claim A.1.4, some member g of PM; has committed
to PM;. Since g committed to PM; all the members of PM; have attempted to to estab-
lish it, and, furthermore, all the members of PM; set their Last_Attempted_Primary
to 4 causally before any process committed to 7. Since every two primary components
intersect, there exists a process r that is a member of both PM; and PMj; r’s attempt
to establish PM; causally precedes the event that p sets its Last_Committed_Primary
to 4. Therefore, when r starts to run the Recovery Procedure in which p commits to
PM;, Last_Attempted_Primary, > 4, and this is the value that r sends in the state

message.
In both cases, the number j, of the new primary that the members try to establish > 3.

a

Corollary A.1.6 If events e and €' happen at p in epochs i and i’ respectively, and if i < i’ then e

happens before €'. Note: the order on e and €' is well defined since they both happen at process p.

Proof: Immediate from Claim A.1.5. O

Claim A.1.7 If process p totally orders a message m according to Order Rule 1 in the context of
PM; then all the members of PM; have committed to PM;. Therefore, epoch i is not empty for

these processes.

Proof: In order to totally order m according to Order Rule 1 in the context of PM;, p has to
establish PM; (and set to TRUE the primary component bit). Before establishing PM;, p waits
for all the members of PM; to send a commit message, therefore all the members of PM; have

committed to PM;. O

We now proceed to the main part of the proof. In Claims A.1.9 through A.1.13 we prove, by

induction, that the following proposition holds in epoch;(q) for each process g and for all j:

108 APPENDIX A. CORRECTNESS PROOFS

Proposition A.1.8 for process ¢ in epoch j:
Assume that a message m was marked as green by some process py, in the context of PM;, , according
to Order Rule 1, and that i, is the first primary component in which some process marked m as

green according to Order Rule 1. Then:

o Ifj > iy, and if epoch;(q) is non-empty: q has m marked as yellow or green, and Prefix(MQ?,m)

Prefix(M QP™,m) in epoch;.

o If j =im, and if epoch;(q) is non-empty then starting at a certain point in epoch;(q), q has

m marked as yellow or green and Prefix(MQ?,m) = Prefix(MQP™ m).

Definition:

We say that there are no contradictions in the green zone when view v is received if :
e For each member p of view v, vy(v) occurs.

o Let Representatives be the set of members of v with the highest Last_Committed_Primary
(as denoted in Step 3 of the Recovery Procedure). For each member p of v, and for each

message m that p has marked as green in M QP before v,(v) occurs:

— All the Representatives have m marked as yellow or green.

— Process p agrees with all the Representatives on the ordered prefix of its M Q that ends

at m.

Claim A.1.9 Assume that there are no contradictions in the green zone when the view v is received.
Let m be a message that all the Representatives have as yellow or green and agree on Prefix(MQ, m)
when they receive the view v.

Then, at the end of Step 7 of the Recovery Procedure all the members of v that execute Step 7
have identical MQs, and the message order in their Prefix(MQ,m) is the same as the order in
Prefix(MQ,m) of the Representatives when vy(v) occurred. The message order in the M Qs is not

altered until the end of this instance of the Recovery Procedure.

Proof: We first show that all the members agree on a prefix of their M Qs that contains all the
messages that were marked as green by at least one of the members before this instance of the

Recovery Procedure.

A.1. CORRECTNESS PROOF OF COREL 109

Let m be a message that all the Representatives have as yellow or green and agree on Prefiz(MQ, m)
when they receive the view v.

In Step 3 of the Recovery Procedure all the Representatives mark m as yellow or green, and
the order of messages in their M Qs is not altered. At the end of this step, all the Representatives
agree on the prefix of green and yellow messages in their M Qs. From the assumption, this prefix
is consistent with the order in the green prefixes of all the other members of v.

In Step 5 of the Recovery Procedure there are two cases to consider:

e Ifm is component_ordered, i.e., m is green for all the members of v, then, from the assumption,
all the members have identical prefixes ending at m. In this case, m is not retransmitted, m

remains green and its order isn’t altered.

e Otherwise, m (or its header) is retransmitted by the representative. Since no member had
green messages in an order that contradicts Prefiz(MQ,m) of the Representatives, all the

members adopt the order of the representatives on a prefix of their M Qs that contains m.

In Step 6 all the members of v mark m as green or yellow, (according to the representative’s
color) At the end of this step, all the members have the same set of green and yellow messages in
their M Qs, and in the same order.

We have shown that at the end of Step 6 all the members of v that execute this step agree
on a prefix of their M Qs that contains all the messages that were marked as green by one of the
members before this instance of the Recovery Procedure. Furthermore, they agree on the prefix of
green and yellow messages in their M Qs. We now show that at the end of Step 7 all the members
of v that execute Step 7 have identical M Qs. And indeed, before this step they agree on the order
of all green and yellow messages. During this step, all the members retransmit all the red messages,
and insert them into their M Qs. Thus, all the processes have the same set of red messages in their
M Qs. The red messages in each M Q are ordered according to the timestamp order of their original
transmissions. Therefore, at the end of this step, all the members of v have identical M Qs, and
the message order is consistent with the order in the Prefiz(MQ,m) of the Representatives when
vp(v) occurred.

No new messages arrive until the end of the Recovery Procedure, and the message order in each

MQ@ is not altered until the end of this instance of the Recovery Procedure. O

Claim A.1.10 Assume that for each member p of the view v, vy(v) occurs (i.e., p receives the view

v), and let j be the highest value of Last_Committed_Primary, among members of v at the time

110 APPENDIX A. CORRECTNESS PROOFS

vp(v) occurs. If Proposition A.1.8 holds for each member p of v for every epoch i < j when v,(v)
occurs, then throughout this execution of the Recovery Procedure, Proposition A.1.8 holds for all

the members of v for every epoch i < j.

Proof: Let m be a message that was first marked as green according to Order Rule 1 in the
context of PM; (by some process pn,) , and assume that j > 4,,. From the assumption, all
the Representatives (members with Last_Committed_Primary= j) have m as yellow or green
when they start to run the protocol, and their Prefiz (M Q,m) are identical to Prefiz(MQP™ m).
Therefore, in Step 3 of the Recovery Procedure, none of the members changes m to red, and all
the messages in their Prefiz(MQ,m) are yellow or green.

Furthermore, if any other member p of v has m marked as green, then Prefit(MQP, m) =
Prefiz (M QP™ m)

In Step 5 of the Recovery Procedure there are two cases to consider:

e If m is component_ordered, i.e., m is green for all the members of v, and all the members
have identical prefixes ending at m, then m is not retransmitted, m remains green and its

order isn’t altered.

e Otherwise, m (or its header) is retransmitted by the representative in Step 5, and marked as
green or yellow (according to the representative’s color) in Step 6 of the protocol, by every
member that sets its Last_Committed_Primary to j. No member changes it to red at this
step, and no member had it marked as green in contradicting order. Thus, at the end of
this step of the Recovery Procedure all the members have m as yellow or green and their

Prefiz(MQ,m) are identical.

We have shown that m is not changed to red by any of the members of v in the course of
the Recovery Procedure. Therefore, if for a process p, Last_Committed_Primary, > i,, when p
started to run the protocol, Proposition A.1.8 still holds for p at any point in the course of the
protocol.

It is now left to show for the case that Last_Committed_Primary, is initially smaller than 4,,,
but is changed in the course of the protocol. In this case, p adopts j in Step 6 of the Recovery
Procedure.

And indeed, if p sets its Last_Committed_Primary to j on stable storage in Step 6 of the
protocol, then, from the discussion above p had already received m before Step 6 of the proto-

col, and in Step 6, p marks it as green or yellow, according to its color at the representative,

A.1. CORRECTNESS PROOF OF COREL 111

and adopts the order of messages in Prefizr(MQ,m) of the representative, when changing its
Last_Committed_Primary to j.

Every process that reaches the end of Step 6 of the Recovery Procedure, has its Last_Committed_Primary> iy,
and has m marked as yellow or green, and its Prefix(MQ,m) is identical to Prefiz(MQP™ m).

This is not altered in later steps of the protocol. O

Claim A.1.11 If at a certain point in epoch;(q), ¢ has m marked as yellow or green and Prefix(MQ?,m) =
Prefix(MQP™ m), then Proposition A.1.8 holds for q in epoch;, i.e., this property is not altered in
later steps of the protocol.

Proof: The color of messages may change from yellow to red only in the course of the Recovery
Procedure, and the order of messages in M Q may only be altered in the course of the Recovery
Procedure. Therefore, it is sufficient to show that Proposition A.1.8 is invariant under the Recovery
Procedure, i.e., that if it holds for all the members when they start to run the Recovery Procedure,
then it also holds for all the members throughout the execution of the Recovery Procedure.

If not all the members of v receive the view v, then not all the members of v run the Recovery
Procedure, therefore the other members of v receive another view without going past Step 2 of this
instance of the protocol. In this case, no messages are changed to red and the M Qs are not altered.

Therefore, we may restrict our discussion to instances of the Recovery Procedure for views v s.t.
all the members of v receive the view v. The conclusion in this case is derived from Claim A.1.10.

a

Claim A.1.12 If Proposition A.1.8 holds for all the processes in every epoch k s.t. k < j, and if
q commits j, then Proposition A.1.8 holds for q in epoch j.

Proof: If ¢ commits j then g is a member of PM;, and all the members of PM; have attempted
to establish it, therefore all of them received the view PM;, and all of them reached the end of
Step 7 of this instance of the Recovery Procedure.

Let k be maxyepy; Last_Committed_Primary, when v,(PM;) occurs. For every message m
that one of the members p has green, there exists a first primary component PM; in the context
of which m was marked as green according to Order Rule 1, and i, < k. From the assumption,
all the Representatives (members with Last_Committed_Primary = k) have m marked as yellow
or green, and agree with p on Prefiz(MQ,m). Therefore, there are no contradictions in the green

zone when PM; is received.

112 APPENDIX A. CORRECTNESS PROOFS

Let m be a message that was first marked as green (according to Order Rule 1) in the context
of PM;,, by some process p’. We first show that at a certain point in epoch;(q), ¢ has m marked
as yellow or green and Prefizr(MQ?,m) = Prefix(MQP™ m). We consider three cases:

e If j > i, since every two primary components intersect, there exists at least one process
that is a member of both PM; and PM;,, and from Claim A.1.7, this process committed to

PM; ., therefore, k > i,,.

m?

Let Representatives be the following set:

{p € PM; : Last_Committed_Primary, = k when v,(PM;) occurs }.

From the assumption Proposition A.1.8 holds for all the representatives in k, thus, Propo-
sition A.1.8 holds for them when v,(PM;) occurs. Therefore, all the representatives have
m marked as yellow or green and the prefixes of their M Qs that end at m are identical
when v,(PM;) occurs. Furthermore, none of the other members have green messages in

contradicting order.

Therefore, from Claim A.1.9, at the end of Step 7 of the Recovery Procedure all the mem-
bers of PM; have identical MQs, and the message order is consistent with the order in
Prefiz(MQP',m) when vy (PMj) occurred. The MQs are not altered until the end of this

instance of the Recovery Procedure.

o If j =i, and some member, p, of PM; had m in its MQ when v,(PM;) occurred, then m
is marked as green by the members of PM; that establish it.

Every process that completes the execution of this instance of the Recovery Procedureand
establishes PM; marks as green all the messages in its M Q. If some process establishes PM;
then all the other members committed to 7, and marked all these messages as yellow. From

the above discussion, their M Qs are identical at this point.

e We have shown that for every process that runs this instance of the Recovery Procedure,

Proposition A.1.8 holds in the course of the run of the protocol, and when the protocol ends.

It is left to show that if m is marked as green according to Order Rule 1 in the context of PM;
by some process pp,, and py, first received m in the context of PM}, then ¢ has m marked
as yellow or green at some point in epoch j and Prefix(MQP™ m) = Prefixs(MQ?,m). And
indeed, if p,,, marked m as green then it received acknowledgments for it from all the members

of PMj, all of them received m in the context of PM;, and therefore, marked it as yellow

A.1. CORRECTNESS PROOF OF COREL 113

when receiving it. From Property 6.2.2 of the TO-GCS, all the members of PM; received the
same set of messages following the view change and before m, and in the same order. These

messages are ordered in the M Q of each process in the order they are received.

We have shown that in all cases, at a certain point in epoch;(q), ¢ has m marked as yellow or
green and Prefix(MQ? m) = Prefic(MQP™, m), it is left to show that this property persists, i.e.,
that it is not altered in later steps of the protocol. Claim A.1.11 concludes the proof. O

Claim A.1.13 Proposition A.1.8 holds for every process q in every epoch j.

Proof: The proof is by induction on j:

For 5 = 0, the epochg at each process precedes committing to any primary component, therefore
for all m, 4, > j and Property 6.2.1 trivially holds.

We now assume that Property 6.2.1 holds for all the process in every epoch & s.t. k£ < j, and
prove that it holds for all the processes in epoch;. If no process has committed to PMj, then for all
the processes epoch; is empty and Proposition A.1.8 trivially holds. Otherwise, let g be a process

s.t. epoch;(q) is non-empty. There are two cases to consider:
e If ¢ commits j - then from Claim A.1.12, Proposition A.1.8 holds for ¢ in epoch j.

e If epoch;(q) is non-empty and ¢ does not commit to j, then ¢ adopts j in the course of a run of
the Recovery Procedurefor some view v. In this case, j = maxpe, Last_Committed_Primary,
at the time vy,(v) occurs, and g adopts j in Step 6 of the Recovery Procedure. Since g passed
Step 2 of this instance of the protocol, we conclude that for each member p of the view v,

vp(v) occurred (i.e., p received the view v).

Therefore, from Claim A.1.10, Proposition A.1.8 holds for all the members of v for every epoch
1 < j, throughout this execution of the Recovery Procedure. In particular, Proposition A.1.8

holds at some point in epoch;(g). Claim A.1.11 concludes the proof.

a

Theorem A.1.2 At each process, messages become totally ordered in an order which is a prefix
of some common global total order. ILe., for any two processes p and q, and at any point during
the execution of the protocol, the sequence of messages delivered by p is a prefiz of the sequence of

messages delivered by q, or vice versa.

114 APPENDIX A. CORRECTNESS PROOFS

Proof: From the protocol, the order of green messages in MQ is never altered. The proof

immediately follows from Claim A.1.13. O

A.1.3 Liveness of COReL
In this section we prove that COReL fulfills the liveness guarantee stated in Section 6.3.

Claim A.1.14 If a majority of the processes form a permanently connected component, and the
failure detector is an eventual perfect one, then these processes eventually receive any message
previously sent by any of them and establish a primary component, following which the view change

handler is not invoked.

Proof:

Let S be a majority set of processes which form a permanently connected component. From
Property 5.5.3 (which is preserved by the TO-GCS) all the members of S eventually deliver the
same view v, s.t. v.M = S and do not deliver any further views. From Property 5.5.5 (which is also
preserved by the TO-GCS), since the members of S do not crash, do not leave the group, and do
not deliver any further views, all the messages they send in the Recovery Procedure are received by
all of them. In the course of the Recovery Procedure, every process retransmits messages from its
MQ which not all the other members of S have received. Since every message a process sends is in
MQ, all the processes receive any message previously sent by any of them. Therefore, the Recovery
Procedure terminates successfully and the members successfully establish a primary component.

Since no further views are delivered, the view change handler is not invoked. O

Claim A.1.15 If a majority of the processes establish a primary component, following which the
view change handler is not invoked then every message sent by any of them in this primary com-

ponent is eventually totally ordered by all of them.

Proof: From Property 5.5.5, since no further view changes occur, every message sent in the new
primary component is eventually delivered at every member of this component. Every process which
delivers the message acknowledges it, and all the acknowledgments are also eventually delivered.

Therefore, the messages become totally ordered according to Order Rule 1. O

Theorem A.1.3 If a majority of the processes form a permanently connected component, and the
failure detector is an eventual perfect one, then these processes eventually totally order all messages

sent by any of them.

A.1. CORRECTNESS PROOF OF COREL 115

Proof: From Claim A.1.14, these processes eventually receive any message previously sent by
any of them and establish a primary component, following which the view change handler is not
invoked. When the new primary component is established, all the previous messages become totally
ordered. From Claim A.1.15, every message sent by any of them in the new primary component is

also eventually totally ordered by all of them. O

116 APPENDIX A. CORRECTNESS PROOFS

A.2. CORRECTNESS PROOF OF THE DYNAMIC VOTING PROTOCOL 117

A.2 Correctness Proof of the Dynamic Voting Protocol

The basic requirement from a dynamic paradigm for maintaining a primary component is to impose
a total order on all the primary components formed in the system. The total order on primary
components is defined by extending the causal order on components that intersect. This requirement
is formally postulated in Section 7.3. We now prove the correctness of our protocol, i.e., that the
total order requirement is fulfilled.

Throughout the proof we use the following notations and definitions:

The variables: Session_Number, Maz_Session, All_Ambiguous_Sessions, and Maz_Primary
computed during a session S, are denoted: Session_Number(S), Maz_Session(S),

All_Ambiguous_Sessions(S) and Maz_Primary(S), respectively.

Sessions_List(S) is defined as: All_Ambiguous_Sessions(S) U { Maz_Primary(S)}.

The initial primary component (Wj, 0) is denoted: Fy. It is considered a formed session.

In general, we shall denote a session by S, and a formed session by F.

Lemma A.2.1 If two members p and q of a session S attempt to form S, then p and q increment
their Session_Number during session S, and Session_Number, = Session_Number, upon ending

the session.

Proof: A process p attempts to form session S in Step 2 of the protocol, only if p received
Session_Number, from all members r of S during Step 1 of the protocol. During Step 2 of session
S p increments Session_Number, to Maz_Session(S) + 1. Since Maz_Session(S) is computed
over the same set of values at all processes g that also attempt to form S, Session_Number, =

Session_Number, upon ending the session. O

Corollary A.2.1 During every formed session F every member p of F increments Session_Numbery,

to F.N.

Lemma A.2.2 [f two formed sessions, F1,Fo, intersect then F1.N # Fa.N.

Proof: Let process p € (F1.M N F,.M). By Corollary A.2.1, p increments Session_Number, in
both Fi, Fa, w.l.g., p participates in F; first. Hence F1.N < Fo.N. O

118 APPENDIX A. CORRECTNESS PROOFS

Lemma A.2.3 Let A be an attempt, such that there is no formed session F fulfilling Fo.N <
F.N < A.N, then Fy = Maz_Primary(A).

Proof: For every process p in the system, Session_Number, is initialized to zero. By Lemma 7.5.1
AN > 0, ie., AN > Fyp.N. Since A is an attempt, there exists a formed session F s.t.
F = Maz_Primary(A), and Next_Quorum(F,A) is TRUE. Since we extended the definition of the
Next_Quorum predicate so that Next_Quorum(oo,T) is FALSE for every set T', then F # (o0, —1).

Assume for the sake of contradiction that F # Fjy. Since F is in particular an attempt, F.N >
Fy.N. Moreover, there exists a process ps.t. p € F.MNA.M. By Corollary A.2.1 and Lemma 7.5.1,
in Step 1 of session A Session_Number, > F.N. Thus Session_Number(A) > F.N > Fy.N, in
contradiction to the definition of A. Hence F = Fy. O

Lemma A.2.4 If Last_Primary, = F then for every member q of F either

o F is in Ambiguous_Sessions,, or

q’

e Last_Primary, = F, or

e Last_Primary, N > F.N.

Proof: By Lemmas 7.5.2 and 7.5.3 all members g of 7 appended F to Ambiguous_Sessions,.
Process g deletes F from Ambiguous_Sessions, upon forming a session F', in one of the following

ways:

e g deletes F in step 3 of the protocol during session F'. If 7' = F, then Last_Primary, = F.
Otherwise, g participated in F” after it ended session F. By Corollary A.2.1, Session_Number,

is incremented during session F’, hence F'.N > F.N.

e ¢ deletes F in Step 2 of the protocol. Since F was formed by one of its members, ¢ may
delete it only when g adopts F’ according to the resolution rules during a later session than
F'. Hence g € F'.M and F'.N > F.N. If ' = F, then Last_Primary, = F. Otherwise, by
Lemma A.2.2, F'.N > F.N.

Note that 7' can later be deleted from Last_Primary,, when ¢ forms a new session, but in this
case the newly formed session always has a session number greater than the previous formed session

held in Last_Primary,. O

A.2. CORRECTNESS PROOF OF THE DYNAMIC VOTING PROTOCOL 119

Lemma A.2.5 For every sequence of formed sessions Fi,...,Fr and a formed session F, such

that
e Vi<k Fi.N<Fi1.N, and
e Vi <k Next_Quorum(F;, Fi1+1) is TRUE, and
o« F.N > F.N

if F1 € Sessions_List(F) then Nezxt_Quorum(Fy,F) is TRUE.

Proof : By induction on k.

e Base case k = 1.
Since F is a formed session and F; € Sessions_List(F) then, according to the protocol,
Nezxt_Quorum(Fi,F) is TRUE.

e General case k£ > 1.

By the induction hypothesis, Nezt_Quorum(Fy_1,F) is TRUE. Since Next_Quorum (Fi_1,Fr)
is also TRUE then, by the properties of Next_Quorum, Fy.M N F.M # (.

Let p € Fr.M NF.M. Since F.N > F;.N and F is a formed session, p participated in Fj

before participating in F. By Lemma A.2.4, when F begins, there are two possibilities:

1. Fj is in Ambiguous_Sessions,. Hence Next_Quorum(Fy,F) is TRUE.

2. p has Last_Primary,.N > Fi.N. This case is not possible since F; € Sessions_List(F),
therefore when session F begins, p has Last_Primary,.N < F;.N < F;.N.

a

Lemma A.2.6 Let G be a formed session other than Fy. Let F be a formed session such that
F.N = maz(F.N|F is a formed session and F.N < G.N). Then the value of F.N is unique among

formed sessions, and Next_Quorum(F,G) is TRUE.

Proof: The proof is by induction on F.N.

e Base case F.N = 0.

By Lemma 7.5.1, and since for every process p Session_Number,, is initialized to zero, F = Fj.

By Lemma A.2.3 Fy = Maz_Primary(G) therefore Next_Quorum(Fy,G) is TRUE.

120 APPENDIX A. CORRECTNESS PROOFS

e General case F.N > 0.

Let F* be a formed session such that F*.N = maz(F.N|F is a formed session and F.N <
F.N). Then, by the induction hypothesis, the value of F*.N is unique among formed sessions,
and Next_Quorum(F*,F) is TRUE. Assume, for the sake of contradiction, that F.N is not
unique among formed sessions, then there exists a formed session F’ such that F'.N =
F.N. By the induction hypothesis Next_Quorum(F*, F') is also TRUE. By the properties
of Next_Quorum, F and F' intersect, hence by Lemma A.2.2 F'.N # F.N, a contradiction.

Therefore F.N is unique among formed sessions.

Let Maz_Primary(G) = F'. If F' = F then Nest_Quorum(F,G) is TRUE and we are done.
Otherwise, by the definition of F and the uniqueness of F.N among formed sessions, F'.N <

F.N. By applying the induction hypothesis multiple times we construct a unique sequence

of formed sessions, F1, ..., Fk, such that:
- .7:1 = .7:1, and
— Fr=F, and

~ Vi <k FiN < Fir1.N, and
— Vi <k Nezt_Quorum(F;, Fi+1) is TRUE, and

- G.N > Fp.N

Furthermore, F' € Sessions_List(G), hence by Lemma A.2.5 Nexzt_Quorum(F,G) is TRUE.

Theorem A.2.1 The transitive closure of the causal order between intersecting formed sessions,

denoted <, is a total order.

Proof: By Lemma A.2.6, each formed session has a unique session number, hence we can define
a total order on formed sessions as follows: F < F' if F.N < F'.N. We now show that F < F' iff

F < F', implying that < is a total order on formed sessions.

< : If F < F', then there is a sequence of intersecting formed sessions starting at F and ending at
F'. Therefore, by Corollary A.2.1 all the members of each such formed session incremented their

session number to the same value. Together with Lemma, 7.5.1 it implies that F.N < F'.N.

A.3. CORRECTNESS OF THE DYNAMICALLY CHANGING QUORUM SYSTEM 121

= : If F.N < F'.N, then by Lemma A.2.6 and the properties of Next_Quorum, every formed
session intersects with the formed session that precedes it w.r.t. the session number. Therefore,

F<F.O

A.3 Correctness of the Dynamically Changing Quorum System

We now prove that the mechanism introduced in Section 7.6 is correct, i.e., that the resulting
protocol fulfills the total order requirement. We note that the only difference between this protocol
and the protocol presented in Section 7.4 is in the way the Next_Quorum predicate is evaluated.
In proving Lemmas A.2.5 and A.2.6, we relied on the property that if Nexzt_Quorum(S,T)
and Nezt_Quorum(S,T") then T NT" # (. With the dynamically changing quorum system, the
correctness of this property is subtle: it depends on the times at which these expressions are
evaluated. Therefore, the proofs of these lemmas no longer hold with the new mechanism. In
this section we prove Lemma A.3.8, which is equivalent to Lemma A.2.5, and Lemma A.3.9 — the
equivalent of Lemma A.2.6. From the latter we deduce Theorem A.3.1. In the proof, we use other
lemmas that were proven in Sections 7.5 and A.2. These lemmas remain valid since their proofs do

not refer to the properties of the Next_Quorum predicate.

Lemma A.3.1 At each process p, W, and W, U A, are monotonically increasing.

Proof: According to the protocol, processes are never removed from W,. Processes are removed

from A, only after they were added to W,. O

Lemma A.3.2 All the members that attempt to form a session S, set their W and A variables to

the same value in the Attempt Step.

Proof: Processes attempt to form a session after receiving information messages from all other
members of the session. They compute W and A using only the information in these messages. All
the members receive the same set of messages, and therefore the result of the computation is the
same. O

Henceforth we denote by W(S) and A(S) the values of W and A computed in the Attempt
Step during session S. We denote by W.A(S) the union W(S) U A(S).

Lemma A.3.3 If a process p formed a session F, then at the end of session F W,UA, = WA(F).

122 APPENDIX A. CORRECTNESS PROOFS

Proof: Since F is a formed session, by Lemmas 7.5.2 and 7.5.3 all the members of F, including p,
attempted to form session F. If p formed session F during F, then the only change process p could
make to A, and W, after attempting the session was to move members from A, to W,. Hence,
after p attempted to form session F, the value of W, U A, does not change until the end of session

F, and, by Lemma A.3.2, is equal to WA(S). O

Lemma A.3.4 If for two formed sessions F; and F;, F; € Sessions_List(F;), then F; and F;

intersect.

Proof: Since F; in Sessions_List(F;), there is a member p of F; s.t. during F;, F; is in

{Last_Primary,} U Ambiguous_Sessions,. Since a process records only sessions in which it par-

P
ticipated, process p participated in session F;, and therefore F; and F; intersect.O

Lemma A.3.5 If two formed sessions F;, Fj intersect and F;.N < F;.N, then WA(F;) C WA(F;).

Proof: There exists a process p s.t. p € ;.M N F;.M. From Lemmas 7.5.2 and 7.5.3 process p
attempted to form both sessions. Therefore, by Lemmas A.3.2 and A.3.3, at the end of session F;,
Wy, U A, = WA(F;), while at the end of session F;, W, U A, = WA(F;). From Lemma A.3.1,
WA(F;) CWA(F)). O

Lemma A.3.6 For every formed session F and for every process ¢ € W(F)NF.M, q is a member
of some formed session F' s.t. F'.N < F.N.

Proof: Recall that W(F) is Uper.r Wp. For every process p € F.M, W, is initialized to be
either Wy = Fy.M or an empty set. If ¢ € W, then ¢ is a member of Fy, which is the formed
session with the smallest number. Otherwise, process ¢ € W, could have been added to W, in one

of two cases:

e during the Form Step of a session F', if ¢ € F'.M. In this case, g is a member of the formed
session F' and p participated in F’ before participating in F. Therefore, from Corollary A.2.1,
F'.N < F.N.

e during the Attempt Step of a session S, if there exists a member r of S.M such that ¢ € W,.
Let s be the first process that added g to W, then s added q to W; by the first case, i.e.,

A.3. CORRECTNESS OF THE DYNAMICALLY CHANGING QUORUM SYSTEM 123

during a formed session F’, of which ¢ is a member. If ¢ € F.M then since the Attempt
Step of F causally follows the Form Step of F', ¢ participated in F' before participating in
F. Therefore, from Corollary A.2.1, F'.N < F.N. O

Definition A.3.1 Formed Sequence is a set of formed sessions {Fi,...,Fy}, such that
o F1 =Fy, and
o Vi<k F,.N<Fiy1.N, and
e Vi< k F;€ Sessions_List(Fiy1), and

e for every formed session F', such that F'.N < F,.N, F' is in the formed sequence.

Lemma A.3.7 Let FS be a formed sequence of length k. For every formed session F; € FS,

where © < k, the following is TRUE:
e WA(F;) CWA(Fit1), and

e W(Fiy1) N Fiz1-M CWA(F).

Proof: By the definition of S, F; € Sessions_List(F;y1). From Lemma A.3.4 F; and F;y;
intersect. Therefore, from Lemma A.3.5, WA(F;) C WA(Fit1). From Lemma A.3.6 W(Fi11) N
Fir1-M C Uy, ers,j<i Fj-M. Since for every formed session F, F.M C W(F) U A(F), then by the
first part of this lemma, W(F;11) N Fip1. M CWA(F;). O

Lemma A.3.8 Let F be a formed session. Let FS be a formed sequence s.t.:
e FS contains every formed session F', where F'.N < F.N, and
e FS§ is of length k, and
o F.N <F.N.
o FEFS.

Then Fi.N < F.N and Fy, € Sessions_List(F).

124 APPENDIX A. CORRECTNESS PROOFS

Proof : From Lemma A.3.6, W(F) N F.M C Ug,ers F;j-M. Let F; be a formed session with
the minimal index in 7S, such that W(F) N F.M C Ug,ers,j<i Fj-M. By Lemma A.3.7, (Vj <
IWA(F;) C WA(F;), and for every formed session F;, F;.M C WA(F;), together we have:

W(F) N F.M C WA(F) (A.1)

The minimality of F; implies that there exists a process p € F.M N F;.M. If i = k then by
Lemma A.2.2 Fi,.N < F.N. Therefore, in any case F;.N < F.N. By Lemma A.2.4, during F
there exists a formed session F* in Ambiguous_Sessions, U { Last_Primary,} s.t. F*.N > F;.N.
Since Session_Number, is monotonically increasing, F*.N < F.N, and hence F* € FS. Either
F* € Sessions_List(F), or else F* is not in Sessions_List(F) because Sessions_List(F) contains
another formed session F' such that F'.N > F*.N. Note that F' is also in S and F'.N < F.N.
In both cases, there exists a formed session, Fj, in Sessions_List(F) N FS s.t. j > i.

If j = k then we are done. Otherwise, we show below that F; ;.N < F.N and Fj;1 €
Sessions_List(F). The argument below may be repeated by induction, hence we conclude that
Fx.-N < F.N and Fy, € Sessions_List(F).

Since F; € Sessions_List(F), Next_Quorum(F;,F) is TRUE during F. Similarly, during Fj1,

Neat_Quorum(F;, Fj41) is TRUE. There are three cases to consider:
1. If both F;;1 and F contain a majority of F; then F; 1 and F intersect.

2. F does not contain a majority of F;. In this case,

|F-MOWA(F)| > [WA(F)| — Min_Quorum (A.2)
|Fjt1-M NW(Fj11)| > Min_Quorum (A.3)

By Lemma A.3.7, W(Fj41) N Fj41.M C WA(F;) and by Lemma A.3.5, WA(F;) C WA(F).
Therefore, we can replace W(F;;1) in Equation (3) above with WA(F). By summing the
resulting equation with Equation (2), we get: |F.M N WA(F)| + |Fj41.M N WA(F)| >
IWA(F)|. Hence, Fj;1 and F intersect.

3. Fj41 does not contain a majority of F;. In this case,

|\Fjt1-M NWA(Fj41)| > [WA(Fjt1)| — Min_Quorum (A.4)
|F.MNOW(F)| > Min_Quorum (A.5)

A.3. CORRECTNESS OF THE DYNAMICALLY CHANGING QUORUM SYSTEM 125

By Lemma A.3.7, WA(F;) C WA(Fj11). Together with Equation (1) above, we get: W(F)N
F.M CWA(Fj+1). As above, we can replace W(F) in Equation (5) with WA(Fj41), and by

summing the resulting equation with Equation (4), we conclude that F;; and F intersect.
g g J+

In all cases, Fj+1 and F intersect, and by Lemma A.2.2 F;{1.N < F.N. Let process ¢ be in
Fjt1-M NF.M. By Lemma A.2.4, during F one of the following cases exists:

o Fj11 € Ambiguous_Sessions, U { Last_Primary,}, and therefore F;,1 € Sessions_List(F).

e Last_Primary, = F' where F'.N > F;1.N. This is impossible since F; € Sessions_List(F),
and therefore when F begins Last_Primary,.N < F;.N < F'.N, a contradiction.

a

Lemma A.3.9 Let G be a formed session other than Fy. Let F be a formed session such that
F.N =max(F.N|F is a formed session and F.N < G.N). Then the value of F.N is unique among

formed sessions, and F € Sessions_List(G).

Proof: The proof is by induction on F.N.

e Base case F.N = 0.

Immediate from Lemma A.2.3.

e General case F.N > 0.

Let F* be a formed session such that F*.N = maz(F.N|F is a formed session and F.N <
F.N). Then, by the induction hypothesis, the value of F*.N is unique among formed sessions,
and F* € Sessions_List(F). Moreover, by applying the induction hypothesis multiple times
we construct a formed sequence, FS, of length &k such that Fp, = F and Fj_1 = F*.

Assume, for the sake of contradiction, that F.N is not unique among formed sessions. There-
fore, there exists another formed session F' such that F'.N = F.N. Note that FS con-
structed above contains every formed session with a smaller number than F'.N. Therefore,

from Lemma A.3.8, F.N < F'.N, a contradiction.

The existence of FS implies, by Lemma A.3.8, that F € Sessions_List(G).

126 APPENDIX A. CORRECTNESS PROOFS
Theorem A.3.1 The transitive closure of < on formed sessions is a total order.

Proof: By Lemma A.3.9, each formed session has a unique session number, hence we can define
a total order on formed sessions as follows: F < F' if F.N < F'.N. We now show that F < F' iff

F < F', implying that < is a total order on formed sessions.
< : If F < F', then as in the proof of Theorem A.2.1, it can be shown that F.N < F'.N.

= : If F.N < F'.N, then by Lemma A.3.9 it is possible to build a formed sequence that contains
both F and F'. For every two succeeding sessions F;, F;i11 € FS, F; € Sessions_List(Fii1)-
Therefore, by Lemma A.3.4, F; and F;; intersect. Consequently, F < F'. O

A.4. CORRECTNESS PROOF OF E3PC

A.4 Correctness Proof of E3PC

127

This section proves the correctness of E3PC; it is shown that E3PC and its recovery procedure

fulfill the requirements of atomic commitment (as defined in Chapter 7 of [BHG87]) described in

Section 8.3.1. The proof follows:

ACl: Uniform Agreement: Theorem A.4.1 below proves that all the sites that reach a

decision reach the same one.

AC2: In our protocol, a site cannot reverse its decision after it has reached one. When a
site in a final state (COMMIT or ABORT) participates in some invocation of the recovery
procedure, the decision in this invocation of the recovery procedure will correspond with

its state.

AC3: Validity: The coMMIT decision can be reached only if all sites voted Yes: In the
basic E3PC, a committable decision can be made only if all the sites vote Yes. If the
recovery procedure is invoked with no site in a committable state, then according to

the decision rule, a committable decision cannot be reached.

AC4: Non-triviality: If there are no suspicions during the execution of basic E3PC, then
the basic E3PC succeeds in reaching a decision. If all sites voted Yes, then the decision
is COMMIT. Since a perfect failure detector is assumed, if there are no failures, there are

no suspicions.

Without a perfect failure detector, the weak non-triviality requirement (defined in [Gue95]

and Section 8.7) is fulfilled.

AC5: Termination: At any point in the execution of the protocol, if all existing failures
are repaired and no new failures occur for sufficiently long, then all sites will eventually

reach a decision. Our protocol guarantees a much stronger property:

At any point in the execution of the protocol, if a group G of sites becomes connected
and this group contains a quorum of the sites, and no subsequent failures occur for
sufficiently long, then all the members of G eventually reach a decision. Furthermore,
every site that can communicate with a site that already reached a decision will also,

eventually, reach a decision.

128 APPENDIX A. CORRECTNESS PROOFS

This property is immediate from the decision rule and from our assumption that the
failure detector is perfect. This property is also fulfilled with an eventual perfect failure
detector, since with such a failure detector, there is a time after which correct sites are

no longer suspected.

We now prove that the decision made is unanimous, i.e., that if one site decides to COMMIT,

then no site can decide to ABORT and vice versa.

Lemma A.4.1 If a coordinator r sets its local value of Last_Attempt to i and sends ¢ PRE-COMMIT
(PRE-ABORT) message to the participants in Step 3 of the recovery procedure, then a quorum of

sites have set their value of Last_Elected to i during the same invocation of the recovery procedure.

Proof. It is immediate from the protocol and from the fact that sites cannot “join” the recovery

procedure in the middle, but rather the protocol must be reinvoked to let them take part. O

Lemma A.4.2 At each site, the value of Last_Elected never decreases.

Proof. The value of Last_Elected is modified only in Step 2 of the recovery procedure, when it
is changed to Maz_Flected+1. A site may execute Step 2 only if it took part in the election of the
coordinator in that invocation of the recovery procedure and its value of Last_FElected was used to

compute Maz_Flected, and therefore Maz_FElected> Last_Elected, and Last_Elected increases. O

Lemma A.4.3 If two sites, p and g, both set their Last_Attempt to the number ¢ without changing
to a final state, then either both of them set their Last_Attempt to ¢ as a response to a PRE-COMMIT

decision or both of them set their Last_Attempt to ¢ as a response to a PRE-ABORT decision.

Proof. A coordinator changes the value of Last_Attempt when it reaches a decision (in Step 3
of the recovery procedure or in the basic E3PC), and it remains in a non-final state if the decision
is PRE-COMMIT or PRE-ABORT. Other sites change the value of Last_Attempt only in response to
a PRE-COMMIT or a PRE-ABORT decision, in Step 4 of the recovery procedure, or in response to
PRE-COMMIT in the basic E3PC.

Assume the contrary; then w.l.o.g., p set its Last_Attempt to i in response to a PRE-COMMIT

decision in the course of some invocation, Iy, of the recovery procedure (or of the basic E3PC), and

A.4. CORRECTNESS PROOF OF E3PC 129

g, in response to a PRE-ABORT decision, in an invocation I;. From Lemma A.4.1, a quorum of sites
set their Last_Elected to ¢ in invocation Iy and another quorum of sites set their Last_Flected to % in
invocation I;. Since the coordinator in invocation I decided to PRE-COMMIT and the coordinator
in I; decided to PRE-ABORT, Iy and I; were different invocations of recovery procedure or of the
basic E3PC.

Since every two quorums intersect, there exists a site, s, that set its Last_FElected to ¢ in both
invocations. W.l.o.g., s set its Last_Flected to i in Iy before setting it to ¢ in I;. From the protocol,
a site cannot concurrently take part in two invocations of the recovery procedure, furthermore, if a
site responds to messages from the coordinator in some invocation, it necessarily took part in the
election of that coordinator. Therefore, s took part in the election of the coordinator in I, after
it set its Last_Elected to i, and from Lemma A.4.2, in the course of the election, the coordinator
heard from s that its value of Last_Elected> i and determined that Maz_FElected> i. The new value
of Last_Elected for this invocation was Max_Elected+1, which is greater than 4, which contradicts

our assumption. O

Lemma A.4.4 At each site, at any given time, Last_Elected>Last_Attempt.

Proof. From Lemma A.4.2, the value of Last_FElected never decreases, so it is sufficient to show
that Last_Attempt is never increased to exceed it. This is proven by induction on the steps of the
protocol in which Last_Attempt changes. Base: When E3PC is initiated, Last_Elected is set to one,
and Last_Attempt, to zero. Step: Whenever Last_Attempt is changed in the course of the protocol,
it takes the value of Last_FElected. O

Lemma A.4.5 The value of Last_Attempt at each site increases every time the site changes
state from a committable state to a non-final, non-committable state and vice versa. The value

of Last_Attempt never decreases.

Proof. The only non-final committable state is PRE-COMMIT, and the only way to switch to a PRE-
COMMIT state is in response to a PRE-COMMIT decision, when setting Last_Attempt to Last_Elected.
Likewise, the only way to switch from a committable state to a non-final non-committable state is
in Step 3 or in Step 4 of the recovery procedure, in response to a PRE-ABORT decision, when setting
Last_Attempt to Last_FElected.

It is sufficient to prove that Last Attempt increases when it is set to Last_Elected in Step 3
or 4 of the recovery procedure, i.e., that Last_Attempt<Last_Elected before Step 3. And indeed, in

130 APPENDIX A. CORRECTNESS PROOFS

Step 2, Last_Elected is set to Maxz_FElected+1, which is greater than the value of Last_FElected was
when the recovery procedure was initialized. From Lemma A.4.4, Last_Elected> Last_Attempt at

all times, therefore, before Step 3, Last_Elected is greater than Last_Attempt. O

Lemma A.4.6 If the coordinator reaches a COMMIT decision upon receiving a quorum of ACKs
for PRE-COMMIT when setting its Last_Attempt to %, then for every j > i no coordinator will decide

PRE-ABORT when setting its Last_Attempt to j.

Proof. The proof is by induction on j. Base (j = i): This is immediate from Lemma A.4.3. Step:
Now, assume that no coordinator decides PRE-ABORT with Last_Attempt= k for every j > k > i,
and prove for j. From the assumption, no site can be in a non-final non-committable state with
its 7 > Last_Attempt> i. Now, assume some coordinator r sets its Last_Attempt to 7 in Step 3 of
the recovery procedure, it is left to show that r did not decide PRE-ABORT during this invocation
of the recovery procedure. Assume the contrary, then r collected states, from a quorum of sites
with Last_Attempt< j, and therefore, in this invocation Maz_Attempt< j. Since every two quorums
intersect, at least one member of G, p took part in this invocation of the recovery procedure and
sent its state to 7. Since j > 4, from Lemma A.4.5, p set its Last_Attempt to i (and switched to
a committable state) before this invocation. But, no site can be in a non-final non-committable
state with its j > Last_Attempt> i, and therefore Is_Max_Attempt_Committable is TRUE in this

invocation, which contradicts the assumption that r decides PRE-ABORT. O

Lemma A.4.7 If the coordinator reaches a COMMIT decision when setting its Last_Attempt to 7,

then for every j > 1 no coordinator will decide PRE-ABORT when setting its Last_Attempt o j.

Proof. There are two cases to consider:

o If the coordinator reaches a COMMIT decision upon receiving a quorum of ACKs for PRE-
COMMIT when setting its Last_Attempt to i, then from Lemma A.4.6 for every j > ¢ no

coordinator will decide PRE-ABORT when setting its Last_Attempt to j.

o If the coordinator reaches a COMMIT decision during the recovery procedure upon receiving
a COMMIT state, then some coordinator has reached a COMMIT decision before, when its
Last_Attempt was < i. Go back, by induction, to the first coordinator that reached a coMMIT

decision. This coordinator must have reached a commit decision according to the previous

A.4. CORRECTNESS PROOF OF E3PC 131

case. Thus, it can be concluded that for every j > ¢ no coordinator will decide PRE-ABORT

when setting its Last_ Attempt to j. O

Lemma A.4.8 If the coordinator reaches an ABORT decision upon receiving a quorum of ACKs
for PRE-ABORT when setting its Last_Attempt to i, then for every j > i no coordinator will decide

PRE-COMMIT when setting its Last_Attempt to j.

Proof. This lemma is dual to Lemma A.4.6 and can be proven the same way. O

Lemma A.4.9 If the coordinator reaches an ABORT decision when setting its Last_Attempt to 4,

then for every j > i no coordinator will decide PRE-COMMIT when setting its Last_Attempt to j.

Proof. There are three cases to consider:

e [f the coordinator reaches an ABORT decision during the basic E3PC, this decision is reached
because some site voted No on the transaction. In this case, the coordinator does not PRE-
COMMIT, and no site reaches a committable state in the course of the protocol. Note: If
the recovery procedure is invoked with no site in a committable state, then according to the

decision rule, a committable decision cannot be reached.

e If the coordinator reaches an ABORT decision during the recovery procedure upon receiving a
quorum of ACKs for PRE-ABORT when setting its Last_Attempt to 4, then from Lemma A.4.8

for every j > ¢ no coordinator will decide PRE-COMMIT when setting its Last_ Attempt to j.

e If the coordinator reaches an ABORT decision during the recovery procedure upon receiving
an ABORT state, then some coordinator has reached an ABORT decision before, when its
Last_Attempt was < i. Go back, by induction, to the first coordinator that reached an ABORT
decision, according to one of the previous two cases, and conclude that for every j > ¢ no

coordinator will decide PRE-COMMIT when setting its Last_Attempt to j. O

Theorem A.4.1 If some site running the protocol COMMITS the transaction, then no other site

ABORTS the transaction and vice versa.

Proof. A site may COMMIT (ABORT) only upon hearing a COMMIT (ABORT) decision from its

coordinator. Assume that a COMMIT or ABORT decision was reached for some transaction 7. Note:

132 APPENDIX A. CORRECTNESS PROOFS

It is possible for more than one coordinator to reach a decision for the same transaction. Let 2
be the lowest value of Last_Attempt that a coordinator had when reaching a COMMIT or ABORT

decision. There are two cases to consider:

1. Some coordinator reached an ABORT decision when setting its Last_Attempt to i:

Assume for the sake of contradiction that some coordinator also reached a COMMIT decision,
and let j be the lowest value of Last_Attempt of a coordinator reaching a COMMIT decision.
From the assumption, 7 > 4. Furthermore, since j is the lowest value of Last_Attempt of
a coordinator reaching a COMMIT decision, no site could have started this invocation of
the recovery procedure in the COMMITTED state, and the COMMIT decision must have been
preceded by a PRE-COMMIT. But from Lemma A.4.9 no coordinator can decide PRE-COMMIT

when setting its Last_Attempt to j, a contradiction.

2. Some coordinator reached a COMMIT decision when setting its Last_Attempt to i:

The proof is similar to the proof of Case 1 above, but there is one more case to consider:
An ABORT decision reached in the course of the basic E3PC (not in the recovery procedure)
is not preceded by a PRE-ABORT decision. In this case, Last_Attempt is set to 1, and the
CcOMMIT decision could not have been reached with a lower value of Last_Attempt; therefore

1 = 1. This case reduces to Case 1 proved above. O

Bibliography

[AADY3]

[ABCDY6]

[ABDLY6]

[ABDL97]

[ACBMTY5]

[ACDK97]

[ACDK93]

[ACDV97]

O. Amir, Y. Amir, and D. Dolev. A highly available application in the Transis environ-
ment. In Proceedings of the Hardware and Software Architectures for Fault Tolerance
Workshop, at Le Mont Saint-Michel, France, June 1993. LNCS 774.

Y. Amir, D. Breitgand, G. Chockler, and D. Dolev. Group communication as an
infrastructure for distributed system management. In 8rd International Workshop on
Services in Distributed and Networked Environment (SDNE), pages 84-91, June 1996.

T. Anker, D. Breitgand, D. Dolev, and Z. Levy. CONGRESS: CONnection-oriented
Group-address RESolution Service. Tech. Report CS96-23, Institute of Computer Sci-
ence, The Hebrew University of Jerusalem, Jerusalem, Israel, December 1996. Avail-
able from: http://wwuw.cs.huji.ac.il/~transis/.

T. Anker, D. Breitgand, D. Dolev, and Z. Levy. CONGRESS: Connection-oriented
group-address resolution service. In Proceedings of SPIE on Broadband Networking
Technologies, November 2-3 1997.

E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg. On the formal specifica-
tion of group membership services. TR 95-1534, dept. of Computer Science, Cornell
University, August 1995.

T. Anker, G. V. Chockler, D. Dolev, and I. Keidar. The Caelum toolkit for CSCW:
The sky is the limit. In The Third International Workshop on Next Generation
Information Technologies and Systems(NGITS 97), pages 69-76, June 1997.

T. Anker, G. Chockler, D. Dolev, and 1. Keidar. Scalable group membership services
for novel applications. In Marios Mavronicolas, Michael Merritt, and Nir Shavit,
editors, Networks in Distributed Computing (DIMACS workshop), volume 45 of DI-
MACS, pages 23-42. American Mathematical Society, 1998.

Y. Amir, G. V. Chokler, D. Dolev, and R. Vitenberg. Efficient state transfer in parti-
tionable environments. In 2nd European Research Seminar on Advances in Distributed
Systems (ERSADS’97), pages 183-192. BROADCAST (ESPRIT WG 22455), Oper-
ating Systems Laboratory, Swiss Federal Institute of Technology, Lausanne, March
1997. Full version available as Technical Report CS98-12, Institute of Computer Sci-
ence, The Hebrew University, Jerusalem, Israel.

133

134

[ACM96]

[ADKMY92a]

[ADKM92b]

[ADMSM94]

[Ami95]

[AMMS+93]

[AMMS+95]

[Ank97]

[AW96]

[BDGBY4]

[BDMY5]

[BDMY7]

BIBLIOGRAPHY

ACM. Communications of the ACM 39(4), special issue on Group Communications
Systems, April 1996.

Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership algorithms for multicast
communication groups. In 6th International Workshop on Distributed Algorithms
(WDAG), pages 292-312. Springer Verlag, November 1992.

Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication sub-system
for high availability. In 22nd IEEE Fault-Tolerant Computing Symposium (FTCS),
July 1992.

Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. E. Moser. Robust and Efficient
Replication using Group Communication. Technical Report CS94-20, Institute of
Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel, 1994.

Y. Amir. Replication Using Group Communication Qver a Partitioned Network. PhD
thesis, Institute of Computer Science, The Hebrew University of Jerusalem, Jerusalem,
Israel, 1995.

Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. Fast
message ordering and membership using a logical token-passing ring. In 13th Interna-
tional Conference on Distributed Computing Systems (ICDCS), pages 551-560, May
1993.

Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. The
totem single-ring ordering and membership protocol. ACM Transactions on Computer
Systems, 13(4), November 1995.

T. Anker. CONGRESS: CONnection-oriented Group-address RESolution Service. Mas-
ter’s thesis, Institute of Computer Science, The Hebrew University of Jerusalem,
Jerusalem, Israel, 1997.

Y. Amir and A. Wool. Evaluating quorum systems over the internet. In IEEE Fault-
Tolerant Computing Symposium (FTCS), pages 26-35, June 1996.

O. Babaoglu, R. Davoli, L. Giachini, and M. Baker. RELACS: A Communication
Infrastructure for Constructing Reliable Applications in Large-Scale Distributed Sys-
tems. TR UBLCS94-15, Laboratory of Computer Science, University of Bologna,
1994.

O. Babaoglu, R. Davoli, and A. Montresor. Failure Detectors, Group Membership
and View-Synchronous Communication in Partitionable Asynchronous Systems. TR
UBLCS-95-18, Department of Conmputer Science, University of Bologna, November
1995.

O. Babaoglu, R. Davoli, and A. Montresor. Partitionalbe Group Membership: Spec-
ification and Algorithms. TR UBLCS97-1, Department of Conmputer Science, Uni-
versity of Bologna, January 1997.

BIBLIOGRAPHY 135

[BFH97]

[BFHRYS]

[BHG87]

[Bir]
[Bir96]

[BJS7]

[BMR6]

[BSS91]

[BvRY4]

[Car94]

[CHDYS]

[CHKDY6]

[Cho97]

[CHT92]

K. Birman, R. Friedman, and M. Hayden. The Maestro Group Manager: A Struc-
turing Tool For Applications With Multiple Quality of Service Requirements. Tech-
nical report, Dept. of Computer Science, Cornell University, Ithaca, NY 14850, USA,
February 1997.

K. Birman, R. Friedman, M. Hayden, and I. Rhee. Middleware support for distributed
multimedia and collaborative computing. In Multimedia Computing and Networking
(MMCNY98), 1998. To appear.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading, MA, 1987.

K. Birman. Personal Communication.

K. Birman. Building Secure and Reliable Network Applications, chapter 18. Manning,
1996.

K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. In 11th
ACM SIGOPS Symposium on Operating Systems Principles (SOSP), pages 123-138.
ACM, Nov 1987.

R. Baldoni, A. Mostefaoui, and M. Raynal. Causal delivery of messages with real-time
data in unreliable networks. Real-Time Systems, 10, 1996.

K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group
multicast. ACM Transactions on Computer Systems, 9(3):272-314, 1991.

K. Birman and R. van Renesse. Reliable Distributed Computing with the Isis Toolkit.
IEEE Computer Society Press, 1994.

Georg Carle. Reliable group communication in ATM networks. In Proceedings of the
Twelve Annual Conference on European Fibre Optic Communications and Networks
EFOCEN’94, June 21-24 1994.

G. Chockler, N. Huleihel, and D. Dolev. An adaptive totally ordered multicast pro-
tocol that tolerates partitions. In 17th ACM Symposium on Principles of Distributed
Computing (PODC), pages 237-246, June 1998.

G. Chockler, N. Huleihel, I. Keidar, and D. Dolev. Multimedia multicast transport
service for groupware. In TINA Conference on the Convergence of Telecommunica-
tions and Distributed Computing Technologies, September 1996. Full version available
as Technical Report CS96-3, The Hebrew University, Jerusalem, Israel.

G. V. Chockler. An Adaptive Totally Ordered Multicast Protocol that Tolerates
Partitions. Master’s thesis, Institute of Computer Science, The Hebrew University of
Jerusalem, Jerusalem, Israel, 1997.

T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
consensus. In ACM Symposium on Principles of Distributed Computing (PODC),
pages 147-158, 1992.

136

BIBLIOGRAPHY

[CHTCBY96] T.D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility of

[CKS85]

[CL85]

[CRS3]

[CS95]

[CT96]

[DB85]

[DFKMJY6]

[DFKMY7]

[DKM93]

[DLS8S]

[DM95]

[DM96]

group membership. In 15th ACM Symposium on Principles of Distributed Computing
(PODC), pages 322-330, May 1996.

D. Cheung and T. Kameda. Site optimal termination protocols for a distributed
database under network partitioning. In 4th ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 111-121, August 1985.

K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63-75, February
1985.

F. Chin and K. V. S. Ramarao. Optimal termination protocols for network parti-
tioning. In ACM SIGACT-SIGMOD Symposium on Principles of Database Systems
(PODS), pages 25-35, March 1983.

F. Cristian and F. Schmuck. Agreeing on Process Group Membership in Asynchronous
Distributed Systems. Technical Report CSE95-428, Department of Conmputer Science
and Engineering, University of California, San Diego, 1995.

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225-267, March 1996.

D. Davcev and W. Burkhard. Consistency and recovery control for replicated files.
In 10th ACM SIGOPS Symposium on Operating Systems Principles (SOSP), pages
87-96, 1985.

D. Dolev, R. Friedman, I. Keidar, and D. Malki. Failure Detectors in Omission Failure
Environments. TR 96-13, Institute of Computer Science, The Hebrew University
of Jerusalem, Jerusalem, Israel, September 1996. Also Technical Report 96-1608,
Department of Computer Science, Cornell University.

D. Dolev, R. Friedman, I. Keidar, and D. Malki. Failure detectors in omission fail-
ure environments. In 16th ACM Symposium on Principles of Distributed Computing
(PODC), page 286, August 1997. Brief announcement.

D. Dolev, S. Kramer, and D. Malki. Early delivery totally ordered broadcast in asyn-
chronous environments. In 28rd IEEE Fault-Tolerant Computing Symposium (FTCS),
pages 544-553, June 1993.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM, 35(2):288-323, April 1988.

D. Dolev and D. Malki. The design of the transis system. In K. P. Birman, F. Mattern,
and A. Schipper, editors, Theory and Practice in Distributed Systems: International
Workshop, pages 83-98. Springer Verlag, 1995. LNCS 938.

D. Dolev and D. Malkhi. The Transis approach to high availability cluster communi-
cation. Communications of the ACM, 39(4), April 1996.

BIBLIOGRAPHY 137

[DMS94]

[DMS95]

[DPFLS98]

[DPLLY7]

[EADY1]

[EASCS85]

[EAT89)]

[EMS95]

[FGL*96]

[FIM*95]

[FKM*95]

[FLP85]

D. Dolev, D. Malki, and H. R. Strong. An Asynchronous Membership Protocol that
Tolerates Partitions. Technical Report CS94-6, Institute of Computer Science, The
Hebrew University of Jerusalem, Jerusalem, Israel, 1994.

D. Dolev, D. Malki, and H. R. Strong. A Framework for Partitionable Membership
Service. TR 95-4, Institute of Computer Science, The Hebrew University of Jerusalem,
March 1995.

R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman. A dynamic view-oriented
group communication service. In 17th ACM Symposium on Principles of Distributed
Computing (PODC), pages 227-236, June 1998.

R. De Prisco, B. Lampson, and Lynch. Revisiting the Paxos algorithm. In Marios
Mavronicolas and Philippas Tsigas, editors, 11th International Workshop on Dis-
tributed Algorithms (WDAG), pages 111-125, Saarbrucken, Germany, September
1997. Springer Verlag. LNCS 1320.

A. El Abbadi and S.N. Dani. A dynamic accessibility protocol for replicated databases.
Data and Knowledge Engineering, 6:319-332, 1991.

A. El Abbadi, D. Skeen, and F. Christian. An efficient fault-tolerant algorithm for
replicated data management. In ACM SIGACT-SIGMOD Symposium on Principles
of Database Systems (PODS), pages 215-229, March 1985.

A. Fl Abbadi and S. Toueg. Maintaining availability in partitioned replicated
databases. ACM Transactions on Database Systems, 14(2):264-290, June 1989.

P. D. Ezhilchelvan, A. Macedo, and S. K. Shrivastava. Newtop: a fault tolerant group
communication protocol. In 15th International Conference on Distributed Computing
Systems (ICDCS), June 1995.

A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman. Eventually-
serializable data services. In 15th ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 300-309, May 1996.

Sally Floyd, Van Jacobson, Steven McCanne, Ching-Gung Liu, and Lixia Zhang. A
reliable multicast framework for light-weight sessions and application level framing.
In Proceedings of the IEEE/ACM Transactions on Networking., November 1995. An
earlier version of this paper appeared in ACM SIGCOMM 95, August 1995, pp. 342—
356.

R. Friedman, I. Keidar, D. Malki, K. Birman, and D. Dolev. Deciding in Partition-
able Networks. TR 95-16, Institute of Computer Science, The Hebrew University of
Jerusalem, Jerusalem, Israel, November 1995. Also Cornell TR95-1554. Available via
anonymous ftp at cs.huji.ac.il (132.65.16.10) in users/transis/TR95-16.ps.gz.

M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32:374-382, April 1985.

138

[FLS97]

[FvR95]

[GBCvRI3]

[Gif79]

[GM82]

[Gra78|

[GS95]

[Gue95]

[Her86]

[Her87]

[HT93]

[HvR96]

[Jaj87]

[TM89]

BIBLIOGRAPHY

A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partionable group
communication service. In 16th ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 53-62, August 1997.

Roy Friedman and Robbert van Renesse. Strong and Weak Virtual Synchrony in
Horus. TR 95-1537, dept. of Computer Science, Cornell University, August 1995.

B. Glade, K. Birman, R. Cooper, and R. van Renesse. Lightweight process groups in
the Isis system. Distributed Systems Engineering, 1:29-36, 1993.

D.K Gifford. Weighted voting for replicated data. In ACM SIGOPS Symposium on
Operating Systems Principles (SOSP), December 1979.

H. Garcia-Molina. Elections in a distributed computing system. IEEE Transactions
on Computers, C-31, NO.1:48-59, Jan. 1982.

J.N. Gray. Notes on database operating systems. In Operating Systems: An Advanced
Course, Lecture Notes in Computer Science, volume 60, pages 393-481. Springer Ver-
lag, Berlin, 1978.

R. Guerraoui and A. Schiper. The decentralized non-blocking atomic commitment
protocol. In IFEEE International Symposium on Parallel and Distributed Processing
(SPDP), October 1995.

R. Guerraoui. Revisiting the relationship between non-blocking atomic commitment
and consensus. In Jean-Michel Hélary and Michel Raynal, editors, 9th Interna-
tional Workshop on Distributed Algorithms (WDAG), pages 87-100. Springer Verlag,
September 1995. LNCS 972.

M. Herlihy. A quorum-consensus replication method for abstract data types. ACM
Transactions on Computer Systems, 4(1):32-53, February 1986.

M. Herlihy. Concurrency versus availability: Atomicity mechanisms for replicated
data. ACM Transactions on Computer Systems, 5(3):249-274, August 1987.

V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In Sape
Mullender, editor, chapter in: Distributed Systems. ACM Press, 1993.

M. Hayden and R. van Renesse. Optimizing Layered Communication Protocols. Tech-
nical Report TR96-1613, Dept. of Computer Science, Cornell University, Ithaca, NY
14850, USA, November 1996.

S. Jajodia. Managing replicated files in partitioned distributed database systems. In
3rd IEEE International Conference on Data Engineering, pages 412-418, 1987.

S. Jajodia and D. Mutchler. A hybrid replica control algorithm combining static and
dynamic voting. IEEE Trans. Knowledge and Data Eng., 1(4), Dec. 1989.

BIBLIOGRAPHY 139

[IM90]

[KDY4]

[KD96]

[KD98]

[Kei94]

[KSDM]

[KT96]

[Lam89)]

[Lam78]

[Mal94]

[MAMSA94]

[MFSW95]

[MHS89]

S. Jajodia and D. Mutchler. Dynamic voting algorithms for maintaining the consis-
tency of a replicated database. ACM Transactions on Database Systems, 15(2):230-
280, 1990.

I. Keidar and D. Dolev. Increasing the Resilience of Atomic Commit, at No Addi-
tional Cost. Technical Report CS94-18, Institute of Computer Science, The Hebrew
University of Jerusalem, Jerusalem, Israel, 1994.

I. Keidar and D. Dolev. Efficient message ordering in dynamic networks. In 15th ACM
Symposium on Principles of Distributed Computing (PODC), pages 68-76, May 1996.

I. Keidar and D. Dolev. Increasing the resilience of distributed and replicated database
systems. Journal of Computer and System Sciences special issue with selected papers
from PODS 1995, Dec. 1998. To Appear. Previous version in ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems (PODS), May 1995, pp. 245-254.

I. Keidar. A Highly Available Paradigm for Consistent Object Replication. Master’s
thesis, Institute of Computer Science, The Hebrew University of Jerusalem, Jerusalem,
Israel, 1994. Also available as Technical Report CS95-5, and via anonymous ftp at
cs.huji.ac.il (132.65.16.10) in users/transis/thesis/keidar-msc.ps.gz.

I. Keidar, J. Sussman, D. Dolev, and K. Marzullo. A Client-Server Oriented Algorithm
for Virtually Synchronous Group Membership. In preparation.

M. F. Kaashoek and A. S. Tanenbaum. An evaluation of the amoeba group commu-
nication system. In 16th International Conference on Distributed Computing Systems
(ICDCS), pages 436—447, May 1996.

L. Lamport. The part-time parliament. TR 49, Systems Research Center, DEC, Palo
Alto, September 1989.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558-565, July 78.

D. Malki. Multicast Communication for High Awvalaibility. PhD thesis, Institute of
Computer Science, The Hebrew University of Jerusalem, 1994.

L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended virtual syn-
chrony. In 14th International Conference on Distributed Computing Systems (ICDCS),
pages 5665, June 1994. Full version: technical report ECE93-22, Department of Elec-
trical and Computer Engineering, University of California, Santa Barbara, CA.

C. P. Malloth, P. Felber, A. Schiper, and U. Wilhelm. Phoenix: A toolkit for building
fault-tolerant, distributed applications in large scale. In Workshop on Parallel and
Distributed Platforms in Industrial Products, October 1995.

Tim Mann, Andy Hisgen, and Garret Swart. An Algorithm for Data Replication.
Technical Report 46, DEC Systems Research Center, June 1989.

140

[MJ95]

[MLOS6]

[MMSA93]

[MMSA +96]

[MPS91a]

[MPS91b)]

[MPS93]

[MS94]

[MSMAY1]

[Now98]

[OMGYS]

[PL88]

[PLY1]

BIBLIOGRAPHY

S. McCanne and V. Jacobson. Vic: A flexible framework for packet video. In Pro-
ceedings of ACM Multimedia, pages 511-522, November 1995.

C. Mohan, B. Lindsay, and R. Obermark. Transaction management in the r* dis-
tributed database management system. ACM Transactions on Database Systems,
11(4), February 1986.

L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. Asynchronous fault-tolerant total
ordering algorithms. SIAM Journal on Computing, 22(4):727-750, August 1993.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-
Papadopoulos. Totem: A fault-tolerant multicast group communication system. Com-
munications of the ACM, 39(4), April 1996.

S. Mishra, L. L. Peterson, and R. D. Schlichting. A Membership Protocol based
on Partial Order. In Proc. of the intl. working conf. on Dependable Computing for
Critical Applications, Feb 1991.

S. Mishra, L. L. Peterson, and R. L. Schlichting. Consul: A Communication Substrate
for Fault-Tolerant Distributed Programs. TR 91-32, dept. of Computer Science, Uni-
versity of Arizona, 1991.

S. Mishra, L. L. Peterson, and R. L. Schlichting. Experience with modularity in
consul. Software Practice and Ezperience, 23(10):1059-1076, October 1993.

C. Malloth and A. Schiper. View synchronous communication in large scale networks.
In 2nd Open Workshop of the ESPRIT project BROADCAST (Number 6360), July
1995 (also available as a Technical Report Nr. 94/84 at Ecole Polytechnique Fédérale
de Lausanne (Switzerland), October 1994).

P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Membership algorithms for asyn-
chronous distributed systems. In International Conference on Distributed Computing
Systems (ICDCS), May 1991.

A. Nowersztern. MOSHE: Membership Object-oriented Service for Hetero-
geneous Environments. Lab project, High Availability lab, The Hebrew
University of Jerusalem, Jerusalem, Israel, January 1998. Available from:
http://www.cs.huji.ac.il/labs/transis/.

OMG (Object Management Group). CORBA/IIOP 2.2 Specification, 1998.
http://www.omg.org.

J.F. Paris and D.D.E. Long. Efficient dynamic voting algorithms. In 13th International
Conference on Very Large Data Bases (VLDB), pages 268-275, 1988.

C. Puand A. Leff. Replica control in distributed systems: An asynchronous approach.
In ACM SIGMOD International Symposium on Management of Data, May 1991.

BIBLIOGRAPHY 141

[Pos81]

[Pow91]

[PSK94]

[PSLBY7]

[PW95]

[RBY1]

[RCHS97]

[RD97]

[RGS*96]

[RHDBYS]

[RKBvR94|

[Rod91]

[RR96]

J. Postel. Internet Protocol. RFC 0791, USC/Information Science Institute, Septem-
ber 1981.

D. Powell. Delta-4: A Generic Architecture for Dependable Distributed Computing.
Springer Verlag, 1991.

Sanjoy Paul, Krishan K. Sabnani, and David M. Kristol. Multicast transport protocols
for high speed networks. In Proceedings of the International Conference on Network
Protocols, pages 4-14, 1994.

Sanjoy Paul, K. Sabnani, J.C. Lin, and S. Bhattacharyya. Reliable multicast transport
protocol (RMTP). IEEE Journal on Selected Areas in Communications, April 1997.

D. Peleg and A. Wool. Availability of quorum systems. Inform. Comput., 123(2):210—
223, 1995.

A. M. Ricciardi and K. P. Birman. Using process groups to implement failure detec-
tion in asynchronous environments. In ACM Symposium on Principles of Distributed
Computing (PODC), pages 341-352, August 1991.

I. Rhee, S. Cheung, P. Hutto, and V. Sunderam. Group communication support for
distributed multimedia and cscw systems. In International Conference on Distributed
Computing Systems (ICDCS), 1997.

A. Rowley and J. Dollimore. Secure group communication for groupware applica-
tions. In Proceedings of European Research Seminar in Advanced Distributed Systems
(ERSADS’97), pages 222-227. Laboratoire de Systemes d’Exploitation Ecole Poly-
technique Federale de Lausanne, March 1997.

Luis Rodrigues, Katherine Guo, Antonio Sargento, Robbert van Renesse, Brad Glade,
Paulo Verissimo, and Ken Birman. A dynamic light-weight group service. In 15th
IEEE International Symposium on Reliable Distributed Systems (SRDS), pages 23-25,
October 1996. also Cornell University Technical Report, TR96-1611, August, 1996.

O. Rodeh, M. Hayden, D. Dolev, and K. Birman. Secure Ensemble. Technical report,
Institute of Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel,
1998. In preparation.

M.K. Reiter, K.P., Birman, and R. van Renesse. A security architecture for fault-
tolerant systems. ACM Transactions on Computer Systems, 4(12), November 1994.

Tom Rodden. A survey of CSCW systems. Interacting with Computers, 3(3):319-353,
1991.

M. Rautenberg and H. Rzehak. A control system for an interactive video on demand
server handling variable data rates. In Interactive Distributed Multimedia Systems
and Services (IDMS), pages 265-276, March 1996. LNCS 1045.

142

[RV92]

[Sch90]

[Ske82]

[SM98]

[Smi94]

[SS83]

[Top90]

[VKCDYS]

[Vog96]

[VRBMY6]

[VRHBY4]

[VvR94]

[WMK95]

BIBLIOGRAPHY

L. Rodrigues and P. Verissimo. z AMp, a protocol suite for group communication. RT
/43-92, INESC, January 1992.

F. B. Schneider. Implementing fault tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys, 22(4):299-319, December 1990.

D. Skeen. A quorum-based commit protocol. In 6th Berkeley Workshop on Distributed
Data Management and Computer Networks, pages 69-80, Feb. 1982.

J. Sussman and K. Marzullo. The bancomat problem: An example of resource al-
location in a partitionable asynchronous system. In 12th International Symposium
on DIStributed Computing (DISC), September 1998. To appear. Full version: Tech
Report 98-570 University of California, San Diego Department of Computer Science
and Engineering.

B. C. Smith. Implementation Techniques for Continous Media Systems and Applica-
tions. PhD thesis, University of California at Berkeley, 1994.

D. Skeen and M. Stonebraker. A formal model of crash recovery in a distributed
system. IEEE Transactions on Software Engineering, SE-9 NO.3, May 1983.

C. Topolcic. Ezperimental Internet Stream Protocol: Version 2 (ST-II), October 1990.
Internet RFC 1190.

R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev. Group Communication System
Specifications: A Comprehensive Study. Technical report, Institute of Computer
Science, The Hebrew University of Jerusalem, 1998. In preparation.

Werner Vogels. World wide failures. In Proceedings of the ACM SIGOPS 1996 Euro-
pean Workshop, September 1996.

R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible group communication
system. Communications of the ACM, 39(4), April 1996.

R. van Renesse, T. M. Hickey, and K. P. Birman. Design and Performance of Horus: A
Lightweight Group Communications System. TR, 94-1442, dept. of Computer Science,
Cornell University, August 1994.

Werner Vogels and Robbert van Renesse. Support for Complex Multi-Media Applica-
tions using the
Horus system. Ithaca, NY 14850, USA, December 1994. On-line html document:
http://www.cs.cornell.edu/Info/People/rvr/papers/rt/novsdav.html.

B. Whetten, T. Montgomery, and S. Kaplan. A high perfomance totally ordered
multicast protocol. In K. P. Birman, F. Mattern, and A. Schipper, editors, Theory
and Practice in Distributed Systems: International Workshop, pages 33—-57. Springer
Verlag, 1995. LNCS 938.

BIBLIOGRAPHY 143

[Yav92] R. Yavatkar. MCP: a protocol for coordination and temporal synchronization in mul-
timedia collaborative applications. In 12th International Conference on Distributed
Computing Systems (ICDCS), pages 606-613, 1992. IEEE press.

[YLKD97] E. Yeger Lotem, I. Keidar, and D. Dolev. Dynamic voting for consistent primary com-
ponents. In 16th ACM Symposium on Principles of Distributed Computing (PODC),
pages 63-71, August 1997.

[ZDE*93] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A new resource
reservation protocol. In IEEE Network, September 1993. The RSVP Project home
page: http://www.isi.edu/div7/rsvp/rsvp.html.

