1. Open Questions on Consensus Performance
in Well-Behaved Runs

I. Keidar! and S. Rajsbaum?

! Department of Electrical Engineering, The Technion, Haifa 32000, Israel
email: idish@ee.technion.ac.il

2 Instituto de Mateméticas, UNAM, Mexico
email: rajshaum@math.unam.mx

1.1 Consensus in the Partial Synchrony Model

We consider the consensus problem in a message-passing system where pro-
cesses can crash: Each process has an input, and each correct process must
decide on an output, such that all correct processes decide on the same out-
put, and this output is the input of one of the processes. Consensus is an
important building block for fault-tolerant systems.

It is well-known that consensus is not solvable in an asynchronous model
even if only one process can crash [1.13]. However, real systems are not com-
pletely asynchronous. Some partially synchronous models [1.12, 1.10] where
consensus is solvable better approximate real systems. We consider a partial
synchrony model defined as follows [1.12] 1: (1) processes have bounded drift
clocks; (2) there are known bounds on processing times and message delays;
and (3) less than half of the processes can crash. In addition, this model
allows the system to be unstable, where the bounds in (2) do not hold for
an unbounded but finite period, but it must eventually enter a stable period
where the bounds do hold. A consensus algorithm for the partial synchrony
model never violates safety, and guarantees liveness once the system becomes
stable. Algorithms for this model are called indulgent in [1.16].

What can we say about the running time of consensus algorithms in a
partial synchrony model? Unfortunately, even in the absence of failures, any
consensus algorithm in this model is bound to have unbounded running times,
by [1.13]. In this paper we propose a performance metric for algorithms in
the partial synchrony model, and suggest some future research directions and
open problems related to evaluating consensus algorithms using this metric.

In practice there are often extensive periods during which communication
is timely and processes do not experience undue delays. That is, many runs
are actually stable. In such runs, failures can be detected accurately using
time-outs. We are interested in the running time of consensus algorithms for
partially synchronous models under such benign circumstances. We focus on
runs in which, from the very beginning, the network is stable. We will call
such runs well-behaved if they are also failure-free. Since well-behaved runs

! This is very close to the model called timed-asynchronous in [1.10].



2 Keidar and Rajsbaum

are common in practice, algorithm performance under such circumstances is
significant. Note that an algorithm cannot know a priori that a run is going
to be well-behaved, and thus cannot rely upon it.

We will evaluate algorithm running times in terms of the number of com-
munication steps (some other authors call them rounds) an algorithm makes
in the worst case before all processes decide in well-behaved, and sometimes
more generally, stable runs.

1.2 Algorithms and Failure Detectors

There are several algorithms for partially synchronous models that decide
in two steps in well-behaved runs, which as we shall see, is optimal. Most
notably, (an optimized version of) Paxos [1.20], and others such as [1.24, 1.17].

Many of these consensus algorithms use oracle unreliable failure detec-
tors [1.6] that abstract away the specific timing assumptions of the partial
synchrony model, instead of directly using the specific timing bounds of the
underlying system. The unreliable failure detectors, in turn, can be imple-
mented in the partial synchrony model. Our interest in understanding the
performance of consensus algorithms under common scenarios takes us to
questions on the performance of failure detectors in the partial synchrony
model. Notice that such unreliable failure detectors can provide arbitrary
output for an arbitrary period of time (while the system is unstable), but
eventually provide some useful semantics (when the system becomes stable).

Chandra and Toueg [1.6] define several classes of failure detectors whose
output is a list of suspected processes. The natural way of detecting failures
using timeouts in a partial synchrony model yields a failure detector called
eventually perfect, or oP, that satisfies the following two properties. Strong
completeness: there is a time after which every correct process permanently
suspects every crashed process. Fventually strong accuracy: from some point
on, every correct process is not suspected. It is remarkable that although oP is
indeed sufficient to solve consensus, it is not necessary. The so called ¢S failure
detector has been shown to be the weakest for solving consensus [1.5], and it
is strictly weaker than oP. A oS failure detector satisfies strong completeness
and Eventually weak accuracy: there is a correct process p such that there is
a time after which p is not suspected by any correct process.

Another example of a failure detector class is the leader election service
o2 [1.5]%. The output of a failure detector of class of2 is the identifier of
one process, presumed to be the leader. Initially, a failure detector of this
class can name a faulty process as the leader, and can name different leaders
at different processes. However, eventually it must give all the processes the
same output, which must be the identifier of a correct process. In [1.5], it

2 Originally called £2, but we add the o prefix for consistency with the notation of
the other failure detectors.



1. Open Questions on Consensus Performance in Well-Behaved Runs 3

is shown that (2 is equivalent to ¢S, and hence weaker than oP. In a well-
behaved run, a of2 failure detector announces the same correct leader at all
the processes from the beginning of the run. We pose the following open
problems:

— What is the weakest timing model where oS and/or ¢{2 are implementable
but oP is not?
— Is building ¢P more “costly” than ¢S and/or ¢2? Under what cost metric?

1.3 Lower Bound

Distributed systems folklore suggests that every fault tolerant algorithm in a
partial synchrony model must take at least two steps before all the processes
decide, even in well-behaved runs. We formalized and proved this folklore
theorem in [1.19]. Specifically, we showed that any consensus algorithm for a
partial synchrony model where at least two processes can crash will have at
least one well-behaved run in which it takes two steps for all the processes to
decide.

This is in contrast to what happens in a synchronous crash failure model:
in this model there are consensus algorithms that, in failure-free runs, decide
within one step. More generally, early deciding algorithms have all the pro-
cesses decide within f+ 1 steps in every run involving f crash failures. This is
optimal: every consensus algorithm for the synchronous crash failure model
will have runs with f failures that take f + 1 steps before all the processes
decide [1.21].

Why then do consensus algorithms for the partial synchrony model require
two steps in well-behaved runs, that look exactly like runs of a synchronous
system? The need for an additional step stems from the fact that, in the
partial synchrony model, a correct process can be mistaken for a faulty one.
This requires consensus algorithms to avoid disagreement with processes that
seem faulty. In contrast, consensus in the synchronous model requires only
that correct processes agree upon the same value, and allows for disagreement
with faulty ones. The uniform consensus problem strengthens consensus to
require that every two processes (correct or faulty) that decide must decide
on the same value. Interestingly, uniform consensus requires two steps in the
absence of failures in the synchronous model, as long as two or more processes
can crash, as proven in [1.7, 1.19]. The two step lower bound for consensus
in the partial synchrony model stems from the fact that in this model, any
algorithm that solves consensus, also solves uniform consensus [1.15].

The observation above — that an additional step is needed in order to avoid
disagreement with processes that are incorrectly suspected to have failed —
suggests the use of an optimistic approach to relax the requirement that
two correct processes never decide on different values. An algorithm solving
variant of consensus that is allowed to violate agreement in cases of false



4 Keidar and Rajsbaum

suspicions, can always terminate in a single step. Such a service can be useful
for optimistic replication, if false suspicions are rare, and if the inconsistencies
introduced in cases of false suspicions can later be detected and reconciled
(or rolled-back). Group communication systems [1.9] such as Isis [1.4] take
such an optimistic approach: they implement totally ordered multicast in
a single step. If a correct process is suspected, inconsistencies can occur.
Isis resolves such inconsistencies by forcing the suspected process to fail and
re-incarnate itself as a new process, whereby it adopts the state of the other
replicas. Another example is optimistic atomic commitment [1.18], which can
lead to rollback in case of false suspicions. Our observation suggests that the
likelihood of inconsistencies depends on the frequency of false suspicions, and
leads to the following open problem:

— Formalize the notion of likelihood of inconsistencies for an application of
optimistic consensus (or of a group communication system), and quan-
tify its cost. Then, use this measure to analyze the cost-effectiveness of
employing optimism in a particular setting.

1.4 Extensions and Future Directions

As a first extension, it is interesting to look at weaker notions of well-
behavedness. E.g., consider runs where the system is stable but there are
f failures. All the algorithms mentioned above can take as many as 2f + 2
steps in such runs. Dutta and Guerraoui [1.11] present an algorithm that
decides in ¢t + 2 steps in stable runs, where ¢ is the maximum number of
possible failures, and show a corresponding lower bound. It remains an open
problem to devise an algorithm that takes f + 2 steps for every f <= t.
Such an algorithm would be optimal.

Another future direction is to consider runs that are initially unstable
and then become stable, and to find lower and upper bounds on the time it
takes to reach decision once stability is reached. A similar open question
can be posed for asynchronous self-stabilizing algorithms.

So far, we have focused on algorithms and lower bounds stated in message-
passing models. Similar algorithms exist in shared memory models, e.g., a
version of Paxos for a shared memory model with read-write registers [1.14];
and another for a model with infinitely many processes and shared read-
modify-write registers [1.8]. It is interesting to consider the meaning of our
performance metric, namely, number of steps in well-behaved runs, in shared
memory models. A common notion of “well-behavedness” in shared memory
models is the absence of contention [1.1]. At a first glance, this may seem
unrelated to our notion of well-behaved runs being synchronous failure-free
runs. However, a deeper look reveals that the two notions are indeed related:
in shared-memory versions of Paxos, absence of contention occurs when there
is a single leader trying to propose a consensus value. This is akin to having



References 5

a single leader in message-passing versions of Paxos. That is, the failure
detector of2 enforces the absence of contention. Given this observation, we
pose the following open problems:

— Are there formal generic transformations from well-behaved runs as defined
herein to contention-free runs in different shared memory models?

— Are there generic complexity-preserving reductions from message passing
to shared memory models? Do they preserve the communication step met-
ric and some notion of “well-behaved runs”?

We have analyzed performance in terms of the number of steps an algo-
rithm takes. Lower and upper bounds on the actual running time of consensus
were postulated in a variant of the partial synchrony model that is stable from
the outset [1.2]. An open question is to revisit these bounds, perhaps using
layered analysis in the sense of [1.22], and to extend them to well-behaved
runs.

Finally, [1.3] points out limitations of the communication steps perfor-
mance measure in environments like the Internet, where message delays ex-
hibit high variability. The running time of a communication step can depend
heavily on the number of messages sent in the step, and the particular links
over which messages are sent. This is due to the high variability of mes-
sage delays (see, e.g., the analysis in [1.23]). A future direction is finding
performance metrics that better capture algorithm performance in practice.

References

1.1 R. Alur and G. Taubenfeld. Contention-free complexity of shared memory
algorithms. Inform. Comput., 126(1):62-73, 1996.

1.2 H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer. Bounds on the time to
reach agreement in the presence of timing uncertainty. J. ACM, 41(1):122-152,
1994.

1.3 O. Bakr and I. Keidar. Evaluating the running time of a communication round
over the Internet. In ACM Symp. on Prin. of Dist. Comp. (PODC), pp. 243~
252, July 2002.

1.4 K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic
group multicast. ACM Trans. Comp. Sys., 9(3):272-314, 1991.

1.5 T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685-722, 1996.

1.6 T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225-267, March 1996.

1.7 B. Charron-Bost and A. Schiper. Uniform consensus is harder than consensus
(extended abstract). Tech Rep DSC/2000/028, EPFL, Switzerland, May 2000.
Submitted to J. Algorithms.

1.8 G. Chockler and D. Malkhi. Active Disk Paxos with infinitely many processes.
In 21st ACM Symp. on Prin. of Dist. Comp. (PODC), Jul 2002.

1.9 G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifi-
cations: A Comprehensive Study. ACM Comp. Surveys, 33(4):1-43, December
2001.



6 References

1.10 F. Cristian and C. Fetzer. The timed asynchronous distributed system model.
IEEE Trans. Par. Dist. Sys., pages 642-657, June 1999.

1.11 P. Dutta and E. Guerraoui. The inherent price of indulgence. In 21st ACM
Symp. on Prin. of Dist. Comp. (PODC), July 2002.

1.12 C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288-323, Apr 1988.

1.13 M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32:374-382, Apr 1985.

1.14 E. Gafni and L. Lamport. Disk paxos. In Int’l Symp. on DISt. Comp. (DISC),
pp. 330-344, 2000.

1.15 R. Guerraoui. Revisiting the relationship between non-blocking atomic com-
mitment and consensus. In Int’l Wshop on Dist. Alg. (WDAG), pp. 87-100.
Sep 1995. LNCS 972.

1.16 R. Guerraoui. Indulgent Algorithms. In 19th ACM Symp. on Prin. of Dist.
Comp. (PODC), pp. 289-297. 2000.

1.17 M. Hurfin and M. Raynal. A simple and fast asynchronous consensus protocol
based on a weak failure detector. Dist. Comp., 12(4), 1999.

1.18 R. Jimenez-Peris, M. Patino-Martinez, G. Alonso, and S. Arevalo. A low
latency non-blocking commit protocol. In Int’l Symp. on DISt. Comp. (DISC),
Oct 2001.

1.19 I. Keidar and S. Rajsbaum. A simple proof of the uniform consensus syn-
chronous lower bound. Information Processing Letters, 2002. To appear.

1.20 L. Lamport. The part-time parliament. ACM Trans. Comp. Sys., 16(2):133—
169, May 1998.

1.21 L. Lamport and M. Fischer. Byzantine generals and transaction commit pro-
tocols. Tech Rep 62, SRI Int’l, Apr 1982.

1.22 Y. Moses and S. Rajsbaum. A layered analysis of consensus. SIAM J. Comp.,
31(4):989-1021, 2002.

1.23 S. Rajsbaum and M. Sidi. On the performance of synchronized programs in
distributed networks with random processing times and transmission delays.
IEEE Trans. Par. Dist. Sys., 5(9):939-950, 1994.

1.24 A. Schiper. Early consensus in an asynchronous system with a weak failure
detector. Dist. Comp., 10(3):149-157, 1997.

1.25 D. Skeen. Nonblocking commit protocols. In ACM SIGMOD Int’l Symp. on
Management of Data, pp. 133-142, 1981.



