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This paper presents a formal technique for incremental construction of system specifications,

algorithm descriptions, and simulation proofs showing that algorithms meet their specifications.

The technique for building specifications and algorithms incrementally allows a child specifica-

tion or algorithm to inherit from its parent by two forms of incremental modification: (a) signature
extension, where new actions are added to the parent, and (b) specialization (subtyping), where

the child’s behavior is a specialization (restriction) of the parent’s behavior. The combination of

signature extension and specialization provides a powerful and expressive incremental modifica-

tion mechanism for introducing new types of behavior without overriding behavior of the parent;

this mechanism corresponds to the subclassing for extension form of inheritance.

In the case when incremental modifications are applied to both a parent specification S and a

parent algorithm A, the technique allows a simulation proof showing that the child algorithm A′

implements the child specification S′ to be constructed incrementally by extending a simulation

proof that algorithm A implements specification S. The new proof involves reasoning about the

modifications only, without repeating the reasoning done in the original simulation proof.

The paper presents the technique mathematically, in terms of automata. The technique has

been used to model and verify a complex middleware system; the methodology and results of that
experiment are summarized in this paper.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs; D.2.1 [Software Engineering]: Require-
ments/Specifications—Methodologies - object-oriented

General Terms: Verification

Additional Key Words and Phrases: Inheritance by Specialization and Subclassing for Extension,
Simulation Proofs, Refinements, Incremental Proof Techniques, Proof Reuse

1. INTRODUCTION

Formal modeling and validation of software systems is a major challenge, because of
their size and complexity. Among the factors that could increase widespread usage
of formal methods is improved cost-effectiveness and scalability (see [Heimdahl and
Heitmeyer 1998; Heitmeyer 1998]). Current software engineering practice addresses
difficulties of building complex systems by the use of incremental development tech-
niques based on an object-oriented approach. We believe that successful efforts in
system modeling and validation will also require incremental techniques, which will
enable reuse of models and proofs.

In this paper we provide a framework for reuse of proofs analogous and com-
plementary to the reuse provided by object-oriented software engineering method-
ologies. Specifically, we present a formal technique for incrementally constructing
safety specifications (requirements), abstract algorithm descriptions, and simulation
proofs that algorithms meet their specifications. Simulation proofs are one of the
most important techniques for proving properties of complex systems; such proofs
exhibit a simulation relation (also known as abstraction or refinement) between a
formal description of a system (algorithm) and its specification [Abadi and Lamport
1991; Milner 1995; Jonsson 1994; Lynch 1996]. These two formal descriptions are
stated using the same notation. The distinction between the “specification” and
the “algorithm” for a system is based only on the intention of using the former as
the high-level model and the latter as the low-level model of the system. In general,
our technique applies to modeling and verification at any level of abstraction.
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The formalism presented in this paper has evolved with our experience in the con-
text of a large-scale modeling and validation project: we have successfully used this
technique for modeling and validating a complex group communication system [Kei-
dar and Khazan 2000] that is implemented in C++, and that interacts with two
other services developed by different teams. We have modeled both the specifi-
cation and the algorithm of this system incrementally, at each step strengthening
the model with additional constraints. Reuse of models and proofs was essential in
order to make this task feasible. For example, it has allowed us to avoid repeating
the five-page long correctness proof of the algorithm that provides the basic seman-
tics when proving the correctness of the algorithm that extends the first algorithm
with more sophisticated semantics. The correctness proof of the most sophisticated
algorithm, by comparison, was only two and a half pages long. We describe our
experience with that project as well as the methodology that evolved from it in
Section 6.
Our approach to the reuse of specifications and algorithms through inheritance

uses incremental modification to derive a new component (specification or algo-
rithm), called child , from an existing component called parent . Specifically, we
present two constructions for modifying existing components:

(1) We allow the child to specialize the parent by reusing its state in a read-only
fashion, by adding new state components (which are allowed to be modified),
and by constraining the set of behaviors of the parent. This corresponds to the
subtyping view of inheritance [Budd 1996]. We will show that any observable
behavior of the child is subsumed (see [Abadi and Cardelli 1996]) by the possible
behaviors of the parent, making our specialization analogous to substitution
inheritance [Budd 1996]. In particular, the child can be used anywhere the
parent can be used.

(2) A child can also be derived from a parent by means of signature extension. In
this case the state of the parent is unchanged, but the child may include new
actions not found in the parent and new parameters to actions that exist at the
parent. When such new actions and parameters are hidden, then any behavior
of the child is exactly as some behavior of the parent.

The combination of signature extension and specialization provides a powerful
mechanism for incrementally constructing specifications and algorithms; this com-
bination corresponds to the subclassing for extension form of inheritance [Budd
1996].
Consider the following example. The parent defines an unordered point-to-point

messaging service with the send(msg) and recv(msg) interface. Specialization can be
used to extend the parent to preserve fifo ordering, by restricting recv(msg) actions
to deliver messages only according to the sending order. Subclassing for extension
can be used to augment the messaging service with an acknowledgment mechanism:
The parent’s signature can be extended with ack(msg) actions, and then the parent
can be specialized to handle acknowledgments by allowing an ack(msg) action to
occur only after the corresponding message was received by the recipient. The
specialization and subclassing for extension constructs can be applied at both the
specification level and the algorithm level in a way that preserves the relationship
between the specification and the algorithm.
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The main technical challenge addressed in this paper is the provision of a for-
mal framework for the reuse of simulation proofs, especially for the specialization
construct. Consider the example in Figure 1: Let S be a specification, and A an
abstract algorithm description. Assume that we have proven that A implements S
using a simulation relation Rp. Assume further that we specialize the specification
S, yielding a new child specification S ′. At the same time, we specialize the al-
gorithm A to construct an algorithm A′ which supports the additional semantics
required by S′.

S

A

S’

A’

simulation

simulation

Rp

Rc ?

inheritance

inheritance

Fig. 1. Algorithm A simulates specification S with Rp. Can Rp be reused for building a simulation
Rc from a child A′ of A to a child S′ of S?

When proving that A′ implements S′, we would like to rely on the fact that we
have already proven that A implements S, and to avoid the need to repeat the same
reasoning. We would like to reason only about the new features introduced by S ′

and A′. The proof reuse theorem provides the means for incrementally building
simulation proofs in this manner.
Simulation proofs lend themselves naturally to be supported by interactive the-

orem provers. Such proofs typically break down into many simple cases based on
different actions. These can be checked by hand or with the help of interactive the-
orem provers. Our incremental simulation proofs break down in a similar fashion.
The formalism described in this paper is presented in the context of the I/O

automaton model [Lynch 1996; Lynch and Tuttle 1989], but it is more general than
that particular model. We believe that the essence of our approach is applicable to
any state-transition formal model, such as TLA [Lamport 1994], UNITY [Misra and
Chandy 1988], and Process Algebra [Hoare 1985; Milner 1995]. I/O automata have
been widely used to model complex systems and reason about them [Heitmeyer and
Lynch 1994; Fekete et al. 1997; Chockler 1997; Bickford and Hickey 1998; Hickey
et al. 1999]. An important feature of the I/O automaton model is its strong support
of composition, which allows an automaton representing a complex system to be
constructed by composing automata representing individual system components.
For example, Hickey et al. [Hickey et al. 1999] used the compositional approach
for modeling and verification of certain modules in Ensemble [Hayden and van
Renesse 1996], a large-scale, modularly structured, group communication system.
Composition and inheritance are two complementary means for modular system
design.
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Inheritance, as a means for modular system design, has been a subject of ex-
tensive research for decades. Many researchers employed formal methods to define
various inheritance constructs and study their properties [Abadi and Cardelli 1996;
Bickford and Hickey 1998; Cook and Palsberg 1994; Dhara and Leavens 1996;
Hense 1991; Kamin 1988; Liskov and Wing 1993; Liskov and Wing 1994; Reddy
1988; Stata and Guttag 1995; Soundarajan and Fridella 1998a; Soundarajan and
Fridella 1998b; Back et al. 2000; Misra and Chandy 1988; Harel and Kupferman
2000]. Our distinguishing contribution is a provision of a formal framework that al-
lows simulation proofs to be constructed incrementally when inheritance is applied
at two levels: specification and algorithm. Thus, we extend the applicability of in-
heritance from the realm of incremental system design to the realm of incremental
system verification.

Roadmap. The rest of the paper is organized as follows: Section 2 reviews and
exemplifies the I/O automaton model and the simulation proof technique; the ex-
amples of subsequent sections are built upon the ones presented in Section 2. In
Section 3, we formally define the specialization construct and investigate its prop-
erties. Then, in Section 4, we present a general theorem that enables incremen-
tal verification of systems that are modeled and specified incrementally using the
specialization construct. This theorem provides the foundation for incremental
construction of simulation proofs, and is the key contribution of this paper. In
Section 5, we extend the theory of incremental modeling and proof construction to
the subclassing for extension form of inheritance: we give a formal definition of the
signature extension construct and show how it can be used in conjunction with the
specialization construct to achieve subclassing for extension; we then extend the
proof-reuse theory presented in Section 4 to this situation.
The paper employs a simple running example to illustrate the use of the presented

formalism. Section 6 illustrates the utility of this formalism by describing its use
in a large-scale modeling and verification project. In Section 7 we discuss the
modeling methodology that we have used with our formalism in the context of the
same project.
Section 8 compares our results with related work. Section 9 concludes the paper.

2. BACKGROUND: I/O AUTOMATA AND SIMULATION PROOFS

This section presents background on the I/O automaton model, based on [Lynch
1996], Ch. 8. In this model, a system component is described as a state-machine,
called an I/O automaton. The transitions of the automaton are associated with
named actions, classified as input, output and internal. Input and output actions
model the component’s interaction with other components, while internal actions
are externally unobservable. Note that an action can be either an input or an
output, but not both; a function call that returns a value can be modeled using
two actions – an input and an output.
Formally, an I/O automaton A consists of: a signature sig(A), consisting of

input, output, and internal actions; a set of states states(A); a set of start states
start(A); and a state-transition relation trans(A) — a subset of states(A) ×
sig(A) × states(A). An action is external if it is not internal; the part of an
automaton’s signature consisting of its external actions is called the automaton’s
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external signature. Complex automata can be constructed by composing smaller
automata that interact via their input and output actions.
An action π is said to be enabled in a state s if the automaton has a transition of

the form (s, π, s′); input actions are enabled in every state. An execution fragment
of an automaton A is an alternating sequence of states and actions such that every
successive triple of this sequence is an allowable transition; an empty step (s, ε, s)
is also an execution fragment. An execution is an execution fragment that begins
with a start state. The trace of an execution α of A, denoted by trace(α), is a
subsequence of α consisting of all the external actions in α. We denote the set
of executions of A by execs(A), and the set of traces of A by traces(A). When
reasoning about an automaton, we are only interested in its externally-observable
behavior as reflected in its traces.
I/O automata are conveniently presented using the precondition-effect style. In

this style, typed state variables with initial values specify the set of states and the
start states. Transitions are grouped by action name, and are specified using a pre:
block with preconditions (guards) on the states in which the action is enabled and
an eff: block which specifies how the pre-state is modified. The effect is executed
atomically to yield the post-state.

Example 1. Figure 2 presents an I/O automaton, UpSeq, that prints nondecreas-
ing sequences of integers. The automaton is expressed in the precondition-effect
notation. The signature of UpSeq consists of output actions of the type print(x),
where x is an integer. The state of UpSeq consists of a single integer variable,
last, initialized to an arbitrary value. The transitions of UpSeq specify that action
print(x), with a given x, is enabled in every state in which x ≥ last, as enforced
by the pre: statement; once print(x) occurs, the automaton moves into a state
in which last = x, as specified by the eff: statement.

automaton UpSeq

Signature: Output print(x), x ∈ Integer

State: last ∈ Integer, initially arbitrary

Transitions: OUTPUT print(x)

pre: x ≥ last

eff: last ← x

Fig. 2. Automaton UpSeq printing a nondecreasing sequence of integers.

The following is a sample infinite execution of UpSeq, where square brackets
represent states of UpSeq, that is, values of last:

[3], print(5), [5], print(11), [11], print(11), [11], print(14), [14], . . .

The trace of this execution is “print(5), print(11), print(11), print(14), . . ..” In
general, the set of traces of UpSeq is the set of all possible sequences printing
nondecreasing integers, both finite and infinite.
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A common way to specify which traces a system is allowed to exhibit is to define
an abstract, high-level I/O automaton that generates the allowed set of traces. If
every trace of the automaton modeling the system is also a trace of the specification
automaton, then the system always does what is allowed by its specification. In this
case, we say that the system automaton satisfies, or implements, the specification
automaton. By way of an example, regard automaton UpSeq of Example 1 to
be a specification for the sequences of nondecreasing integers. In order for some
automaton to satisfy this specification, any possible trace of this automaton has to
be a trace of UpSeq. In the following example we present such an automaton.

Example 2. Figure 3 contains an automaton, FibSeq, that prints, as its sole
infinite trace, the suffix of the Fibonacci sequence that begins with “1, 2, ...”. The
Fibonacci sequence is an infinite sequence that begins with 0 and 1, and in which
every further element is equal to the sum of the two preceding elements.

automaton FibSeq

Signature: Output print(x), x ∈ Integer

State: n ∈ Integer, initially 0

m ∈ Integer, initially 1

Transitions: OUTPUT print(x)

pre: x = n + m

eff: n ← m

m ← x

Fig. 3. Automaton FibSeq printing the Fibonacci sequence.

The signature of the FibSeq automaton is the same as that of UpSeq. The
state of FibSeq consists of two integer variables, n and m, initialized to 0 and 1,
respectively. The transitions of FibSeq specify that action print(x) is enabled in
every state in which x is equal to the sum of n and m, and that, once print(x)
occurs, the automaton moves into a state in which n has the value that m has in
the pre-state, and m has the value of x. Thus, FibSeq uses n and m to store
the last two elements printed and to compute from them the next element to be
printed. The traces generated by FibSeq are the infinite sequence of Fibonacci
numbers,
“print(1), print(2), print(3), print(5), print(8), print(13), . . . ” and all of its
prefixes.

Every trace of FibSeq is clearly a trace of UpSeq. Therefore, automaton FibSeq
satisfies, or implements, automaton UpSeq. But how can we prove this formally?
A common technique for establishing that the set of traces of one automaton is

included in the set of traces of another is to exhibit a so-called simulation relation
(also known as an abstraction relation) that relates the states of the two automata
and to prove that this relation satisfies certain conditions [Abadi and Lamport 1991;
Milner 1995; Jonsson 1994; Lynch 1996], as defined below:
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Definition 1. Let A and S be two automata with the same external signature.
A relation R ⊆ states(A) × states(S) is a simulation from A to S if it satisfies
the following two conditions:

(1) If t is any initial state of A, then there is an initial state s of S such that
s ∈ R(t), where we use notation R(t) as an abbreviation for {s : (t, s) ∈ R}.

(2) If t and s ∈ R(t) are reachable states of A and S respectively, and if
(t, π, t′) is a step of A, then there exists an execution fragment of S from s to
some s′ ∈ R(t′), having the same trace as step (t, π, t′). The latter condition
means that the only external action in the execution fragment is π.

The two conditions above guarantee that whatever steps A executes, there is
always a way for S to produce the same trace. The following theorem (from [Lynch
1996], Ch. 8) expresses this property formally:

Theorem 1. If A and S are two automata with the same external signature
and if R is a simulation from A to S then traces(A) ⊆ traces(S).

Any finite trace inclusion can be shown by using simulation relations, possibly
after adding a special kind of variables, called “prophecy variables” [Abadi and
Lamport 1991; Sistla 1991].
In some cases, a simulation relation is actually a function from states of the

implementation automaton to the states of the specification automaton. In this case
it is called a simulation mapping (also known as abstraction function or refinement).
If R is a simulation function and t is a state of the implementation automaton,
we use R(t) to denote the corresponding state of the specification automaton.

Example 3. We illustrate the simulation technique by presenting a simulation
function R from FibSeq to UpSeq. R maps a state t of FibSeq to the state s of
UpSeq with s.last = t.m, where s.last denotes an instance of variable last in
state s, and t.m denotes m in state t. We now argue that R satisfies Definition 1:

(1) In the initial state t0 of FibSeq, t0.m = 1; therefore R(t0).last = 1, which
is a valid initial state of UpSeq.

(2) Consider a step (t, print(x), t′) of FibSeq.
We claim that (R(t), print(x), R(t′)) is a legal step of UpSeq.

(a) We show that, in state R(t) of UpSeq, print(x) is enabled, that is, that
its precondition, x ≥ R(t).last, is satisfied. The fact that (t, print(x), t′)
is a step of FibSeq implies that the precondition, x = t.n + t.m, holds
in state t. Since R(t).last is equal to t.m by definition of R, x = t.n

+ R(t).last. Therefore, x ≥ R(t).last, since t.n ≥ 0, as stated in the
following invariant:

Invariant 1. In every reachable state t of FibSeq, t.n ≥ 0 and t.m

≥ 0.

Proof. The proposition is true in the initial state t0, since t0.n = 0 and
t0.m = 1. The proposition is true in state t′, after a step (t, print(x), t′)
of FibSeq, assuming it is true in state t, since t′.n = t.m ≥ 0 and t′.m =
t.n + t.m ≥ 0.
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(b) After print(x) occurs in state R(t), the value of last in the resulting
post-state s′ is x (see Figure 2). In state t′, the value of m is also x (see
Figure 3). Hence, by definition of R, s′ = R(t′).

Therefore, R is a simulation mapping from FibSeq to UpSeq, and, as implied by
Theorem 1, FibSeq satisfies UpSeq.

3. SPECIALIZATION

We now present the specialization construct for creating a child automaton by
specializing the parent automaton. This construct captures the notion of subtyp-
ing [Budd 1996]. In the next section, we present the main technical contribution
of this paper: a theorem that allows one to construct a simulation proof from a
specialization of an algorithm to a specialization of its specification by extending
the original simulation proof from the algorithm to its specification.
The specialization construct defined below operates on a parent automaton, and

accepts three additional parameters: a state extension – the new state components,
an initial state extension – the initial values of the new state components, and a
transition restriction specifying how the child specializes the parent’s transitions.

Definition 2. (Specialization) Let A be an automaton; N be any set of states,
called a state extension; N0 be a non-empty subset of N, called an initial state
extension; and TR ⊆ (states(A)× N) × sig(A) × N be a relation, called a transition
restriction.
Then specialize(A)(N, N0, TR) defines the following automaton A′:

—sig(A′) = sig(A);

—states(A′) = states(A) × N;

—start(A′) = start(A) × N0;

—trans(A′) = {(〈tp, tn〉, π, 〈t
′
p, t

′
n〉) : (tp, π, t

′
p) ∈trans(A) ∧(〈tp, tn〉, π, t

′
n) ∈TR },

where 〈tp, tn〉 denotes a state in states(A′).

Notation 1. If A′ = specialize(A)(N, N0, TR) we use the following notation:
Given t ∈ states(A′), we write t|p to denote its parent component and t|n to
denote its new component. If α is an execution fragment of A′, then α|p and
α|n denote sequences obtained by replacing each state t in α with t|p and t|n,
respectively.

In the precondition-effect notation, a transition restriction (TR) can be specified
for each action π by (a) additional preconditions that a child places on π, and
(b) additional effects that specify how the new state components are modified as a
result of a child taking a step involving π. Note that these additional effects can rely
on but cannot modify the parent’s state components. The additional preconditions
work in conjunction with the preconditions placed on π by the parent automaton,
and the additional effects are executed before the parent’s effects; thus, when the
additional effects read parent state components, they observe their pre-state values.
The transition restriction expressed in this style is the union of the following two
sets:
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—All triples of the form (t, π, t|n) for which π is not mentioned in the code for
A′, that is, for which A′ does not restrict transitions involving π. Note that the
post-state t|n is the same as the new state component of the pre-state t.

—All triples (t, π, t′n) for which state t satisfies the new preconditions on π placed
by A′, and state t′n is the result of applying π’s new effects to t.

Example 4. Figure 4 below illustrates the use of the specialization construct. It
presents precondition-effect code for automaton AccSeq, which specializes automa-
ton UpSeq of Figure 2 on page 6 to print only accelerating sequences, that is,
sequences in which the differences between consecutive elements are nondecreasing
(in addition to the sequence itself being nondecreasing).

automaton AccSeq specializes UpSeq

State Extension: diff ∈ Integer, initially arbitrary

Transitions Restriction:

OUTPUT print(x)

new pre: (x − last) ≥ diff

new eff: diff ← x − last

Fig. 4. Automaton AccSeq printing accelerating sequences of integers.

AccSeq extends the state of UpSeq with a new integer variable diff having an
arbitrary initial value. This variable is used for storing the difference between the
last pair of elements printed. The new precondition placed on print(x) states that
x − last has to be greater than or equal to diff; it works in conjunction with the
precondition, x ≥ last, of print(x) in UpSeq. The new effect updates diff to
be the current difference, x − last; it occurs before the effect that updates last
in UpSeq.
As a result of the new precondition and effect, transitions of UpSeq are restricted

to only those in which diff is non-decreasing. Thus, the sample trace of UpSeq
given in Example 1 is not a trace of AccSeq because (11 − 11) 6≥ (11 − 5), while
that in Example 2 is.

Our specialization construct is defined so that any behavior of a child is allowed
by its parent. Theorem 2 below states this property formally: it says that (1) every
execution α of a specialization A′ of an automaton A is also an execution of A when
the state extension of A′ is projected out from α; and (2) every trace of A′ is a trace
of A.

Theorem 2. If A′ is a specialization of automaton A, then:

(1) α ∈ execs(A′) ⇒ α|p ∈ execs(A).

(2) β ∈ traces(A′) ⇒ β ∈ traces(A).

Proof. (1) Let α be an execution of A′, which, by definition of execution, means
that α begins in some initial state t0 and that every step (ti, π, ti+1) in α is a
transition of A′. By Definition 2, t0|p is an initial state of A and, for every step
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(ti, π, ti+1) in α, the triple (ti|p, π, ti+1|p) is a transition of A. From this it follows
that the sequence obtained by replacing each state t in α with t|p is an execution
of A. Since this sequence is α|p, we conclude that α|p is an execution of A.
(2) Follows from Part 1 and the fact that sig(A′) = sig(A).

As a consequence of part 2 of Theorem 2, we have the following corollary:

Corollary 1. If automaton A satisfies automaton S in terms of trace inclusion,
then a specialization A′ of automaton A also satisfies S in terms of trace inclusion.

Moreover, given a simulation relation Rp from A to S, the same relation is a
simulation from A′ to S, except for the obvious projection of the states of A′ onto
the states of A.

Corollary 2. If relation Rp is a simulation from A to S, and A′ is a special-
ization of A, then relation R′p = {(t, s) : t ∈ states(A′) ∧ (t|p, s) ∈ Rp} is a
simulation from A′ to S.

Many similar inheritance constructs, such as, for example, [Liskov andWing 1993;
Liskov and Wing 1994; Dhara and Leavens 1996; Back et al. 2000] and superposition
of [Misra and Chandy 1988], were defined and proven to satisfy properties similar
to those of Theorem 2 and Corollary 1. However, these properties are not enough to
address the situation illustrated in Figure 1, where we are interested in reusing and
extending a proof that automaton A satisfies automaton S in order to prove that
a specialization A′ of A satisfies a specialization S′ of S. Indeed, from Theorem 2
and Corollary 1, we know only that traces(S′) ⊆ traces(S) and that traces(A′)
⊆ traces(A) ⊆ traces(S); the solid arrows in Figure 1 correspond to these trace
inclusions. But, we do not know whether traces(A′) ⊆ traces(S′); this is what
we would like to be able to show without having to repeat the reasoning used in
showing that traces(A) ⊆ traces(S). In the next section, we address this question
by developing a general theorem that facilitates reuse of simulation proofs at the
parent level for the construction of simulation proofs at the child level. The theorem
pinpoints exactly which parts of the child-level proof follow from the parent-level
proof (these are the parts reused), and which do not, and therefore still need to be
done in order to complete the proof.

4. INCREMENTAL PROOFS

We now present the main technical contribution of this paper — a general theorem
that lays the foundation for incremental proof construction. Consider the situation
illustrated in Figure 1, where A′ and S′ are specializations of automata A and S

respectively. Given a simulation relation Rp from A to S, Theorem 3 below states
conditions for reusing and extending Rp to a simulation relation Rc from A′ to S′.
Relation Rc has to relate every initial state of A

′ to some initial state extension of
S′, and it has to satisfy a step condition similar to the one in Definition 1, but only
involving the transition restriction relation of S′.

Theorem 3. Let automaton A′ be a specialization of automaton A. Let automa-
ton S′ be a specialization of automaton S, such that S′ = specialize(S)(N, N0, TR).
Assume that A and S have the same external signatures and that A implements S

via a simulation relation Rp.
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A relation Rc ⊆ states(A′) × states(S′), defined in terms of relation Rp and a
new relation Rn ⊆ states(A′) × N as {(t, s) : (t|p, s|p) ∈ Rp ∧ (t, s|n) ∈ Rn}, is a
simulation from A′ to S′ if Rc satisfies the following two conditions:

(1) For every t∈ start(A′), there exists a state s|n ∈ Rn(t) such that s|n ∈ N0.

(2) If t is a reachable state of A′, s is a reachable state of S′ such that s|p
∈ Rp(t|p) and s|n ∈ Rn(t), and (t, π, t

′) is a step of A′, then there exists a
finite sequence α of alternating states and actions of S′, beginning from s and
ending at some state s′, and satisfying the following conditions:1

(a) α|p is an execution fragment of S.

(b) For every step (si, σ, si+1) in α, (si, σ, si+1|n) ∈ TR.

(c) s′|p ∈ Rp(t
′|p).

(d) s′|n ∈ Rn(t
′).

(e) α has the same trace as (t, π, t′).

The theorem follows from Corollary 2 and Lemma 1 below. Recall that Corol-
lary 2 defines a simulation relation R′p from A′ to S in terms of the simulation relation
Rp from A to S (see Figure 5). The lemma considers how to construct a simulation

simulation
Rp

A

inheritance

S

S’

A’

simulation
Rc ?

inheritance

simulation

R’p

Fig. 5. Intermediate step: Reusing R′p for building Rc.

relation Rc from A′ to S′ from the simulation relation R′p. This is a special case
of Theorem 3, when A′ is the same as A. The statement of this lemma is almost
identical to that of Theorem 3; the only difference is that, in Theorem 3, state
t of states(A′) is projected onto its parent’s state in order to be used in the
simulation relation Rp. The lemma is stated in terms of A

′ and R′p in order to match
the notation in Theorem 3.

Lemma 1. Let S and A′ be automata with the same external signatures, and let
relation R′p be a simulation from A′ to S. Let S′ = specialize(S)(N, N0, TR). A
relation Rc ⊆ states(A′) × states(S′), defined in terms of relation R′p and a new
relation Rn ⊆ states(A′) × N as {(t, s) : (t, s|p) ∈ R′p ∧ (t, s|n) ∈ Rn}, is a
simulation from A′ to S′ if Rc satisfies the following two conditions:

(1) For every t∈ start(A′), there exists a state s|n ∈ Rn(t) such that s|n ∈ N0.

1Note that we do not require α to be an execution fragment of S′.
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(2) If t is a reachable state of A′, s is a reachable state of S′ such that s|p ∈
R′p(t) and s|n ∈ Rn(t), and (t, π, t

′) is a step of A′, then there exists a finite
sequence α of alternating states and actions of S′, beginning from s and ending
at some state s′, and satisfying the following conditions:
(a) α|p is an execution fragment of S.
(b) For every step (si, σ, si+1) in α, (si, σ, si+1|n) ∈ TR.
(c) s′|p ∈ R′p(t

′).
(d) s′|n ∈ Rn(t

′).
(e) α has the same trace as (t, π, t′).

Proof. We show that Rc satisfies the two conditions of Definition 1:
(1) Consider an initial state t of A′. By the fact that R′p is a simulation, there

must exist a state s|p ∈ R′p(t) such that s|p ∈ start(S). By condition 1 of the
lemma, there must exist a state s|n ∈ Rn(t) such that s|n ∈ N0. Consider state s
= 〈s|p, s|n〉. State s is in Rc(t) by definition. Also, by Definition 2, start(S

′) =
start(S) × N0; therefore, s = 〈s|p, s|n〉 ∈ start(S) × N0 = start(S′).
(2) First, notice that the definitions of state s and relation Rc imply that s ∈

Rc(t); also, notice that conditions 2c and 2d imply that s
′ ∈ Rc(t

′).
Next, we show that α is an execution fragment of S′ with the right trace. Indeed,

every step of α is consistent with trans(S) (by 2a) and is consistent with TR

(by 2b). Therefore, by definition of trans(S′) (Definition 2), every step of α is
consistent with trans(S′). In other words, α is an execution fragment of S′ that
starts with state in Rc(t), ends with state in Rc(t

′), and has the same trace as
(t, π, t′) (by 2e).

We are now ready to prove Theorem 3:

Proof of Theorem 3. Theorem 3 follows immediately from Lemma 1 applied
to automata A′, S, and S′, with a simulation relation R′p from A′ to S being
{(t, s) : t ∈ states(A′) ∧ (t|p, s) ∈ Rp}, as proved in Corollary 2. Each of the
conditions in this theorem implies the corresponding condition in the lemma.

In practice, Theorem 3 (or Lemma 1) would be exploited as follows: The simula-
tion proof between the parent automata already provides a corresponding execution
fragment of the parent specification for every step of the parent algorithm. It is typ-
ically the case that the same execution fragment, padded with new state variables,
corresponds to the same step at the child algorithm. Thus, conditions 2a, 2c, and 2e
of Lemma 1 hold for this fragment. The only conditions that have to be verified
are 2b, and 2d, that is, that every step of this execution fragment is consistent with
the transition restriction TR placed on S by S′ and that the values of the new state
variables of S′ in the final state of this execution are related to the post-state of
the child algorithm. The verification of these two conditions may depend on some
of the invariant assertions that were uncovered during the parent proof.
To exemplify how Theorem 3 and Lemma 1 would be exploited in practice, we

use Lemma 1 to prove that FibSeq satisfies AccSeq, a specialization of UpSeq.
Automata UpSeq, FibSeq, and AccSeq are simple enough to keep the example
tractable, but they are arguably too simple to demonstrate the full utility of in-
cremental proof construction. In Section 6 we describe how this framework was
exploited in the design of a complex group communication service.
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Example 5. Recall that in Example 3 we presented a simulation mapping R from
the states of FibSeq to the states of UpSeq. To construct a simulation mapping R′

from FibSeq to AccSeq, we extend R with the following mapping Rn that maps
each state t of FibSeq to the state extension s of AccSeq such that

s.diff =

{

t.m− t.n if t.n 6= 0
0 otherwise

In order to prove that R′ is a simulation mapping we have to prove that it satisfies
each of the conditions of Lemma 1.
Condition 1 is satisfied because, if t is the initial state of FibSeq, Rn(t).diff = 0

is a valid initial value for the state extension of AccSeq.
For Condition 2, the action correspondence is the same as in the simulation of

UpSeq by FibSeq: a step of AccSeq involving print(x) is simulated whenever
FibSeq takes a step involving print(x). Conditions 2a, 2c, and 2e are implied by
the fact that R is a simulation relation from FibSeq to UpSeq; these were proven
in Example 3. Thus, we only need to prove conditions 2b and 2d. Condition 2b
requires the new precondition, x − last ≥ diff, to be satisfied in state R′(t),
provided the parent’s precondition, x = n + m, holds in state t. Condition 2d
requires the Rn mapping to be preserved in the post-transition states of FibSeq and
AccSeq; namely, the value of the new state variable diff in the post-transition
state of AccSeq has to be the same as that of Rn(t

′).diff. Proving that these
two conditions are satisfied involves reasoning only about how AccSeq specializes
UpSeq.
We now prove that conditions 2b and 2d hold. Consider a step (t, print(x), t′)

of FibSeq; it implies that x = t.n + t.m, and that t′.n = t.m and t′.m = t.n +
t.m.

—Condition 2b: We have to show that the corresponding print(x) step of AccSeq
is enabled in state R′(t), that is, that x − R′(t).last ≥ R′(t).diff. By using
the simulation mapping, we derive: x − R′(t).last = x − R(t).last = x −
t.m = t.n + t.m − t.m = t.n. If t.n = 0 (as in the initial state of FibSeq),
then, by definition of R′ and Rn, R

′(t).diff = Rn(t).diff = 0, and we are
done. Otherwise, if t.n 6= 0, then R′(t).diff = Rn(t).diff = t.m − t.n, and
it remains to show that t.n ≥ t.m − t.n. Invariant 3 below establishes this fact
by relying on the following auxiliary invariant:

Invariant 2. In every reachable state t of FibSeq, t.m ≥ t.n.

Proof. The proposition is true in the initial state t0, since t0.n = 0 and t0.m
= 1. The proposition is true in state t′, after a step (t, print(x), t′) of FibSeq,
since t.n ≥ 0 (Invariant 1), and hence t′.m = t.n + t.m ≥ t.m = t′.n.

Invariant 3. In every reachable state t of FibSeq, t.n ≥ t.m − t.n, if t.n
6= 0.

Proof. The proposition is vacuously true in the initial state t0, since t0.n

= 0. The proposition is true in state t′, after a step (t, print(x), t′) of FibSeq,
since t.m ≥ t.n (Invariant 2), and therefore t′.n = t.m ≥ t.n = t′.m − t.m =
t′.m − t′.n.
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—Condition 2d: According to the code, the post-transition value of diff is x −
R′(t).last = t.n = t′.m − t.m = t′.m − t′.n. If t′.n 6= 0, then t′.m − t′.n

= Rn(t
′).diff, and we are done. Otherwise, if t′.n = 0, Rn(t

′).diff = 0 by
definition, and the post-transition value of diff is also 0, since 0 = t′.n = t.m

≥ t.n ≥ 0 (Invariants 1 and 2).

Notice that, in verifying conditions 2b and 2d in Example 5, we relied on In-
variant 1, which was stated and proven during the simulation proof from FibSeq

to UpSeq. In general, knowing the invariant assertions that have been uncovered
during the parent’s proof can be helpful in extending that proof to the children.

5. SUBCLASSING FOR EXTENSION

In this section, we extend the theory of incremental modeling and proof construc-
tion to a new modification construct, called specialized extension; the construct
is formulated in Definition 4 and the extended proof-reuse theorem appears as
Theorem 5. This construct corresponds to the subclassing for extension form of
inheritance [Budd 1996], which is similar to specialization in that a child cannot
override its parent’s behavior, but it is more powerful than specialization in that a
child can introduce new types of behavior through new actions, nonexistent in the
parent.
We define a specialized extension of an automaton by first extending the parent

automaton with new actions using a new construct, called signature extension, and
then applying specialization of Section 3. The new actions introduced by signature
extension are enabled in every state and do not modify the state; the subsequent
specialization operation gives meaning to these new actions by restricting transi-
tions involving the new actions, and, possibly, those involving parent’s actions as
well. The resulting automaton can interact with its environment through both the
parent’s actions and the new ones. Because new actions (even after being special-
ized) do not affect the parent’s state, any trace of the child is indistinguishable from
a trace of the parent when new actions are projected out from the trace.2

The signature extension construct, formulated in Definition 3, creates a new
automaton by adding new actions to an existing automaton. The new automaton
has an extended signature, but the same states and start states as the original
automaton; the new state-transition relation is the same as the one in the original
automaton, except that it includes additional transitions that relate every state to
itself via new actions (i.e., new actions are enabled in every state, but do not modify
the state); such transitions are called “stuttering” steps by Lamport [Lamport
1994].
In addition, the signature extension construct allows the new automaton to re-

name some or all of the original automaton’s actions. The renaming is specified
by a signature-mapping function that maps actions in the new signature to their
counterparts in the parent signature. The function is allowed to be many-to-one,
which means that the same action of the parent may be renamed into several ac-

2Notice that this is stronger than behavioral subtyping of Liskov and Wing [Liskov and Wing
1994; Liskov and Wing 1993], in which a trace of a child is required to be indistinguishable from

a trace of its parent only when the trace does not contain actions introduced by the child (see

Section 8).
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tions of the child; this is useful because it allows a child to add new parameters
to its parent’s actions, and because instances of the same parent’s action can be
specialized differently under different names. The signature-mapping is onto, that
is, every parent action has at least one corresponding action at the child. The
function is defined only for actions inherited from the parent (renamed or not); it
is undefined for new actions introduced by the signature extension. If π is such a
new action and f is a signature-mapping, we write f(π) = ⊥ to denote the fact
that π is not in the domain of definition of f; ⊥ is a assumed to be different from
any action name.

Definition 3. (Signature Extension) Let A be an automaton, and X be some
signature.
Let f be a partial function, called a signature-mapping, from X to sig(A) such

that f is onto and preserves the classification of actions as “input”, “output”, and
“internal”; the latter means that, if f(π) is defined, it is of the same classification
as π.3

Then, extend(A)(X, f) is defined to be the following automaton A′:

—sig(A′) = X,

—states(A′) = states(A),

—start(A′) = start(A), and

—trans(A′) = {(t, π, t′) ∈ states(A′)× sig(A′)× states(A′) :
((f(π) = ⊥) ∧ (t = t′)) ∨ ((f(π) ∈ sig(A)) ∧ ((t, f(π), t′) ∈ trans(A)))}.

We say that A′ is the signature extension of A with signature-mapping f if A′ is
such that A′ = extend(A)(sig(A′), f) for some signature-mapping f from sig(A′)
to sig(A).
Having defined the signature extension construct, we now combine it with spe-

cialization to yield specialized extensions of automata.

Definition 4. (Specialized Extension) Automaton A′ is called a specialized ex-
tension of an automaton A if A′ is a specialization of a signature extension of
A.

In precondition-effect notation, we express a specialized extension A′ of an au-
tomaton A by writing “A′ modifies A” and then specifying the signature extension
and the specialization parts of A′. The signature extension part contains the new
actions labeled with a keyword new, and the renamed actions labeled with their
original names in sig(A), according to the signature-mapping; for example, if the
signature mapping maps π of A′ to σ of A, we write “π modifies σ”. We omit
specifying the actions of sig(A′) that are inherited from A without renaming.
The specialization part contains the state extension and the transition restriction
specifications, as described in Section 3 on page 9.
We now exemplify how the signature extension construct can be used in conjunc-

tion with the specialization construct to create specialized extensions.

Example 6. Figure 6 presents automaton FibSeq+ that modifies automaton
FibSeq to print each element of the Fibonacci sequence together with its sequence

3Signature-mapping is similar to strong correspondence of [Yates et al. 1999].
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number. The signature-mapping specified by the Signature Extension clause maps
actions print(i, x) where i ∈ Integer to actions print(x) of FibSeq. Thus, for
example, actions print(8, 43) and print(23, 43) of FibSeq+ are among those
actions mapped to the print(43) action of FibSeq. Then, the specialization con-
struct adds a new state variable, last i, that keeps track of the sequence number
of the last Fibonacci element printed; it also adds a new precondition and a new
effect to the print(i, x) action to maintain i and last i properly.

automaton FibSeq+ modifies FibSeq

Signature Extension: Output print(i, x),

i ∈ Integer modifies FibSeq.print(x)

New State: last i ∈ Integer, initially 0

Transition Restriction:

OUTPUT print(i, x)

new pre: i = last i + 1

new eff: last i ← i

Fig. 6. Automaton FibSeq+ specifying enumerated Fibonacci sequences.

Notice that any execution α of FibSeq+ is an execution of FibSeq when the
newly added state variable, last i, is projected out from every state in α and
when every action in α is renamed according to the specified signature-mapping.
Theorem 4 below formalizes this property in general. It follows from Theorem 2,
which is a similar execution-inclusion property of specialization. This is because,
modulo the signature-mapping, a signature extension of an automaton and the
automaton itself have exactly the same executions and traces; we prove this result
in Lemma 2 below.

Notation 2. Let A′ be a signature extension of A with a signature-mapping f.
If α is a sequence of alternating states and actions of A′, then f(α) denotes the

sequence obtained by replacing each action π in α with f(π), and then collapsing
every triple of the form (t,⊥, t) to t. Triples of the form (t,⊥, t′) where t′ 6= t

are not collapsed; such triples are possible because α is not necessarily an execution
sequence of A′.
Likewise, if β is a sequence of external actions of A′, then f(β) denotes a sequence

obtained by replacing each action π in β with f(π), and then removing all the
occurrences of ⊥.

Lemma 2. Let automaton A′ be a signature extension of A with a signature-
mapping f.
Let α be a sequence of alternating states and actions of A′ and let β be a sequence

of external actions of A′. Then:

(1) α ∈ execs(A′) ⇔ f(α) ∈ execs(A).

(2) β ∈ traces(A′) ⇔ f(β) ∈ traces(A).
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Proof. The proof follows from Definition 3 and Notation 2.
(1) ⇒: Let α be an execution of A′. By definition of execution, α begins in some

initial state t0, and every step (ti, π, ti+1) in α is a transition of A′. From this
and Definition 3, t0 is an initial state of A, and, for every step (ti, π, ti+1) in α,
either (ti, f(π), ti+1) is a step of A when f(π) ∈ sig(A), or ti = ti+1 when
f(π) = ⊥.
Therefore, by definition of execution, the sequence obtained by replacing every

step (ti, π, ti+1) in α with either (ti, f(π), ti+1) when f(π) ∈ sig(A), or ti when
f(π) = ⊥ is an execution of A. Since this sequence is f(α), we conclude that f(α)
∈ execs(A).
⇐: Let α be a sequence of alternating states and actions of A′ such that f(α)

∈ execs(A). This means that α begins with some initial state t0 of A, and that,
for every triple (ti, π, ti+1) of elements in α, either (ti, f(π), ti+1) is a step of
A when f(π) ∈ sig(A), or ti = ti+1 when f(π) = ⊥. From this assumption
and Definition 3, it follows that t0 is an initial state of A′ and that every triple
(ti, π, ti+1) of elements in α is a transition of A

′. Thus, α ∈ execs(A′).
(2) Follows from part 1 and the fact that f preserves the classification of actions

as “input”, “output”, and “internal”.

Theorem 4. If A′ is a specialized extension of A with a signature-mapping f,
then

(1) α ∈ execs(A′) ⇒ f(α|p) ∈ execs(A).

(2) β ∈ traces(A′) ⇒ f(β) ∈ traces(A).

Proof. Follows immediately from Theorem 2 and Lemma 2

Since signature extension does not modify the original automata beyond simple
renaming of actions, we would expect it to have minimal effect on the proof-reuse
theorems (Theorem 3 and Lemma 1) of Section 4 when those theorems are used
in verifying specialized extensions of automata. We prove this intuition correct in
Theorem 5 below; this theorem is an adaptation of Theorem 3 for the case when
child automata are specialized extensions of their parents. The theorem follows from
Theorem 3 and the following lemma, which establishes that a simulation relation
between two automata is preserved when these automata are signature-extended:

Lemma 3. Let A′ be the signature extension of A with a signature-mapping f.
Let S′ be the signature extension of S with a signature-mapping g. Assume that
A has the same external signature as S and that there is a simulation relation R

from A to S. Assume further that A′ has the same external signature as S′, and
that, for every external action π ∈ sig(A′), g(π) = f(π). Then, R is a simulation
relation from A′ to S′.

Proof. Follows straightforwardly from Definitions 1 and 3.

The only difference between the statements of Theorem 5 below and Theorem 3
is that here, whenever child’s actions are used in the context of the parent au-
tomaton (as in Condition 2a), they are translated via the signature-mapping to the
corresponding actions of the parent.
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Theorem 5. Let automaton A′ be a specialized extension of A with a signature-
mapping f. Let automaton S′ be a specialized extension of S with a signature-
mapping g, such that S′ = specialize(extend(S)(G, g))(N, N0, TR). Assume that A
and S have the same external signatures and that A implements S via a simulation
relation Rp. Assume further that A

′ and S′ have the same external signatures, and
that, for every external action π ∈ A′, g(π) = f(π).
A relation Rc ⊆ states(A′) × states(S′), defined in terms of relation Rp and a

new relation Rn ⊆ states(A′) × N as {(t, s) : (t|p, s|p) ∈ Rp ∧ (t, s|n) ∈ Rn}, is a
simulation from A′ to S′ if Rc satisfies the following two conditions:

(1) For every t∈ start(A′), there exists a state s|n ∈ Rn(t) such that s|n ∈ N0.

(2) If t is a reachable state of A′, s is a reachable state of S′ such that s|p
∈ Rp(t|p) and s|n ∈ Rn(t), and (t, π, t

′) is a step of A′, then there exists a
finite sequence α of alternating states and actions of S′, beginning from s and
ending at some state s′, and satisfying the following conditions:

(a) g(α|p) is an execution fragment of S.

(b) For every step (si, σ, si+1) in α, (si, σ, si+1|n) ∈ TR.

(c) s′|p ∈ Rp(t
′|p).

(d) s′|n ∈ Rn(t
′).

(e) α has the same trace as (t, π, t′).

Proof. Follows straightforwardly as a corollary from Theorem 3 and Lemma 3.

Theorem 5 can be used in practice in the same way as Theorem 3 and Lemma 1
(see the discussion after the proof of Theorem 3 on page 13): Transitions involving
new actions introduced by signature extension are defined entirely by the special-
ization code and, therefore, involve reasoning about this code alone. Transitions
involving parent’s actions, which are possibly renamed by the child, depend on the
code of both the parent and the child. Even when actions are renamed, the task of
proving that the simulation relation holds for such transitions typically allows one
to rely on the simulation proof of the parent automata to deduce conditions 2a, 2c,
and 2e, and requires verification of conditions 1, 2b, and 2d only.

6. PRACTICAL EXPERIENCE WITH INCREMENTAL MODELING

The technique presented in this paper has evolved as part of our experience de-
signing and modeling a complex group communication service [Keidar and Khazan
2000]. In this section we describe our experience in that project, and how the
framework presented in this paper was exploited. We use the example to illustrate
circumstances under which the inheritance-based technique of this paper can be
useful. In the next section we describe an interesting modeling methodology that
has evolved with our experience in that project.

6.1 Group communication: background

Group communication services [Birman 1996; Chockler et al. 2001] are powerful
middleware systems that facilitate the development of fault-tolerant distributed
applications. These services provide a notion of group abstraction, which allows ap-
plication processes to easily organize themselves into multicast groups. Application
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processes can communicate with the members of a group by addressing messages
to the group.
Group communication systems typically provide reliable multicast and group

membership services. The task of the membership service is to maintain a list-
ing of the currently active and connected processes and to deliver this information
to the application whenever it changes. The output of the membership service is
called a view. The reliable multicast services deliver messages to the current view
members.
Group communication systems are complex software systems, and their behav-

ior descriptions are correspondingly intricate. Such intricate behavior is often de-
scribed as a collection of properties that the service guarantees (for a survey of such
properties, see [Chockler et al. 2001]).

6.2 Incremental modeling of group communication

In [Keidar and Khazan 2000] we presented a formal design for a novel group com-
munication service targeted for wide-area networks. The project included a specifi-
cation of the service semantics, a model of the implementation, and an assertional
correctness proof showing that the model satisfies the specification. The imple-
mentation used two auxiliary services: group membership and reliable multicast.
We gave high-level abstract models of the behavior of these two services as I/O
automata. We gave a low-level I/O automaton modeling the algorithm executed
by the end-points of the service in different locations. The model of the implemen-
tation was then a composition of a collection of end-point automata (one for each
end-point running the service) with the two high-level auxiliary service automata.
The proof exhibited a simulation relation from the implementation model to the
specification, which was also given as an I/O automaton.
The new algorithm run by the end-points of the service has been implemented

in C++, using roughly 9,000 lines of code [Tarashchanskiy 2000], including code
for thread and socket maintenance, auxiliary classes for data structures mainte-
nance, header files, in-program documentation, etc. The auxiliary membership ser-
vice [Keidar et al. 2000] was developed by another development team using roughly
20,000 lines of C++ code, and the reliable multicast service was implemented by
a third team [Anker et al. 2000] using roughly 4,000 lines of C++ code. The I/O
automaton model of the end-point algorithm required a total of approximately 120
lines of I/O automaton code, modeling fifteen different actions and using approxi-
mately ten data structures4.
Modeling and validating a system of this scale and intricacy was a major chal-

lenge. Although formal approaches were previously used to specify group commu-
nication systems and to verify their applications, (see [Chockler 1997; Fekete et al.
1997; Hickey et al. 1999]), algorithms implementing the actual systems were not
previously formally modeled or assertionally verified.
In order to manage the complexity of the project, we found a need to employ an

4I/O automaton code is rather compact and therefore an I/O automaton model of a system is
generally much shorter than the actual C++ code of the system. This is due to the fact that

I/O code is at a higher level of abstraction, it does not include code for scheduling of actions,

maintenance of threads, sockets, or data structures, garbage collection, header files, etc.
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object-oriented approach that would allow for reuse of models and proofs. There-
fore, in [Keidar and Khazan 2000], we used the I/O automaton formalism enriched
with the inheritance-based incremental modification constructs presented in this
paper to specify the safety properties of our service and to model the algorithm.
We then exploited the proof reuse theorem when verifying the algorithm.
We specified, modeled, and verified our service in four steps; each step dealt with

a certain group communication property. These four properties are typically defined
using four separate logic formulas, for example, in [Chockler et al. 2001]. Therefore,
by specifying the properties incrementally, we have made it easier to relate our
abstract specification automaton to existing group communication specifications.
It was also important to model the algorithms implementing each of these properties
one step at a time to reduce the complexity of the design and verification and to
make it clear which algorithm implements which property.
We started with a simple service, fifo, that provides reliable fifo multicast

within group membership views. The specification of the fifo service took about
15 lines of I/O automaton code and consisted of three parameterized actions and
three state variables, some of which were two-dimensional arrays. We modeled the
end-point algorithm using roughly 50 lines of I/O automaton code; the code in-
cluded eleven parameterized actions and seven state variables, some of which were
arrays. The verification part presented a simulation proof showing that the com-
position of all the fifo end-point automata and the high-level automata specifying
the auxiliary services implements the fifo specification. The proof took about
five pages, included seven major invariants, and used the technique of history vari-
ables [Abadi and Lamport 1991].
As a second step, we used specialized extension to modify the fifo specification

and algorithm to include an additional property, called vs. This property synchro-
nizes view delivery and message delivery events in an execution. It requires that
end-points that move together from one view to another (i.e., remain connected)
deliver the same set of messages in the former view.
The extension of the fifo specification introduced a new internal action and

a new array variable to specify the appropriate synchronizations of view delivery
and message delivery events. The extension then constrained the view delivery
actions to occur exactly at the times when the specified synchronizations held; the
constraint was expressed in terms of both parent and new variables. The extension
of the specification took about ten lines of code; it relied on and reused the parent
specification of how messages, views, and common data structures are handled.
The extension of the fifo end-point algorithm introduced a distributed synchro-

nization protocol enforcing the vs property. The protocol involved four new actions
and four new variables, some of which were arrays. It relied on the parent algorithm
handling common events and data structures, such as message buffers and indices.
In addition, the extension of the end-point algorithm modified four of the parent’s
actions. In particular, it constrained the view delivery and message delivery ac-
tions to respect the computed synchronizations. The constraints were expressed
in terms of both parent and new variables. The verification exploited Theorem 5.
The simulation proof focused solely on the vs property and took about two pages;
no arguments from the five page parent-level proof needed to be repeated.
As a third step, we enriched our service with an additional property, called ts,
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which augments each view delivery with special information called a transitional
set [Chockler et al. 2001]. We specified this property using a stand-alone automa-
ton, (i.e., without using inheritance), using about fifteen lines of code, two param-
eterized actions, and two array variables. The vs end-point algorithm was already
computing the transitional set information as a by-product of implementing the vs

property. We used the signature extension construct to modify the signature of the
view delivery action to include the transitional set as an additional parameter. We
then exhibited a simulation proof, showing that the modified algorithm satisfies
the ts specification. This proof focused solely on the ts property, it took two and
a half pages, included three major invariants, and used the technique of prophecy
variables [Abadi and Lamport 1991].
Finally, we used specialized extension to modify the vs specification and algo-

rithm to include the fourth property, called self. This property requires that
application processes receive their own messages before moving to the next view.
self is another example of a synchronization property, which restricts possible
action interleaving. The extension of the specification added a single constraint
to the parent’s view delivery action; the constraint was in terms of the parent’s
variables. The extension of the end-point algorithm was about fifteen lines of code
and involved a synchronization with the end-point’s client. Again, we exploited
Theorem 5 in verifying that the final algorithm satisfies the final specification. The
final step of the simulation proof focused solely on the self property; it took two
and a half pages and included three major invariants.
Group communication systems are particularly amenable to incremental model-

ing and verification using our formalism because such systems involve a number of
separate properties, each constraining or synchronizing the deliveries of messages
and views. Given an algorithm (a specification) for one such property, an algorithm
(a specification) that adds a second property enforces additional synchronization
constraints. The child can reuse the handling of common events and data struc-
tures by the parent and introduce only the machinery required to provide the new
property; the machinery can rely on both new and parent data structures. In order
to provide the property, the child can establish the required synchronization, for
example, using new actions, and then enforce it by adding new preconditions to
the common actions. For example in [Keidar and Khazan 2000], the algorithm that
implemented the vs property established the synchronization by introducing a new
protocol and then enforced the synchronization by requiring the protocol to com-
plete before the view and message delivery events could execute. In summary, we
believe that our inheritance-based formalism is particularly useful for modeling and
verifying systems whose specifications consist of a number of different properties
that constrain the same actions.

6.3 The benefits of incremental modeling and verification

Using the inheritance-based technique, we were able to present a complex algorithm
step by step. This way, it was easy to see which part of the algorithm corresponds
to which property of the specification. Correspondingly, the proof was broken up
into pieces of manageable size. Moreover, each piece of the proof was focused on
proving a specific property. This piece only needed to consider the part of the
code that implements that property; discussing other pieces of the code would have
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distracted attention from what is being proven.
Previous projects that modeled large-scale complex systems using I/O automata

relied on composition; complex algorithms were expressed by multiple manageable
parts that jointly compose the algorithm (see, for example, [Hickey et al. 1999]). In
the context of our project, however, composition could not have been used in lieu of
inheritance, for two reasons: Firstly, composition does not allow different compo-
nents to share the same data structures. In contrast, all the parts of our algorithm
share common data structures such as message buffers. Using composition, we
would have had to duplicate these data structures as well as the book-keeping logic
associated with them. This would make the algorithm models more cumbersome.
The second and more important reason is that composition does not allow for

proof reuse, since it does not guarantee that one component does not violate the
guarantees of the other. Consider our project, for example. Had we composed a
fifo multicast service that meets the fifo specification with a vs service that syn-
chronizes messages with views, we would have had no guarantee that the combined
service preserves the fifo order. In order to prove that the composition indeed sat-
isfies the fifo specification, we would have to prove (1) that the fifo service orders
messages in this order; and (2) that the vs service does not change message order
in a way that would violate the property. When introducing a third component,
(for example, self), we would, once again, have to prove that the new component
does not violate the fifo order. This repetition of reasoning is precisely what our
inheritance-based technique allows us to avoid.

7. DISCUSSION OF MODELING METHODOLOGY

Our notion of inheritance allows a child to see the parent’s internal variables, but
not to write to them. In this respect, the parent’s internal variables and actions
can be seen as protected variables, but with additional restrictions. Specifically,
specialization does not allow children to change state variables of their parents.
In some situations, however, one may see a need for a child to modify a parent’s

variable. We have encountered such situations when we modeled the algorithms
in [Keidar and Khazan 2000], as described in the previous section. We dealt with
this case by introducing a certain level of non-determinism at the parent, thereby
allowing the child to resolve (specialize) this nondeterminism later.
For example, the algorithm that implemented the second specification described

above sometimes needed to forward messages to other processes, although such
forwarding was not needed at the parent. The forwarded messages would have to
be stored at the same buffers as other messages. However, these message buffers
were variables of the parent, so the child was not allowed to modify them. We
solved this difficulty by changing the parent automaton to have a forwarding action
which forwards arbitrary messages to other processes. The parent stores incoming
forwarded messages in the appropriate message buffers, in a manner that preserves
the coherence of its data structures. The child then sets the policy for restricting the
arbitrary message forwarding according to its algorithm. Using this methodology
allowed us to benefit from proof reuse, without complicating the proofs.
We liken this methodology to the use of abstract methods or pure virtual methods

in object-oriented methodology, since the non-determinism is left at the parent as a
“hook” for prospective children to specify any forwarding policy they might need.
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Thus, the parent specifies the policy and the integrity constraints for modifying its
variables. The actual mechanism is implemented by the child while abiding to the
parent’s constraints; the child of course can also refine the policy and the integrity
constraints.

8. RELATED WORK

The works that most closely relate to ours are those of Soundarajan and Fridella
[Soundarajan and Fridella 1998a; Soundarajan and Fridella 1998b] and Stata and
Guttag [Stata and Guttag 1995]. Unlike our formalisms, both of these works are
restricted to the context of sequential programming and do not encompass reactive
components.
Like us, Soundarajan and Fridella [Soundarajan and Fridella 1998a; Soundarajan

and Fridella 1998b] have recognized that incremental reasoning is important in
exploiting the full potential of inheritance. They present a specification notation
and a verification procedure geared towards such incremental reasoning. However,
they consider a more general type of inheritance — one that allows a child to
override behavior of the parent. As a result, the proof-reuse result they obtain is
much weaker and less structured than ours. In particular, reasoning reuse applies
only when the simulation function (abstraction function, in their case) between
child automata is identical to that between parent automata, and only to those
actions that are inherited from the parent without any modification. In contrast,
our framework applies to all types of actions, including those which are modified
by the child.
Stata and Guttag [Stata and Guttag 1995] have also recognized the need for

proof-reuse in a manner similar to that suggested in this paper. They suggest
a framework for defining programming guidelines and supplement this framework
with informal rules that may be used to facilitate reasoning about correctness of
a subclass given the correctness of the superclass is known. However, they only
addressed informal reasoning and did not provide the mathematical foundation for
formal proofs.
Numerous other research projects, for example [Abadi and Cardelli 1996; Bick-

ford and Hickey 1998; Cook and Palsberg 1994; Dhara and Leavens 1996; Hense
1991; Kamin 1988; Liskov and Wing 1993; Liskov and Wing 1994; Reddy 1988;
Back et al. 2000; Misra and Chandy 1988; Harel and Kupferman 2000], have dealt
formally with inheritance and its semantics. In particular, many projects, such
as [Liskov and Wing 1993; Liskov and Wing 1994; Dhara and Leavens 1996; Back
et al. 2000; Misra and Chandy 1988], focus on defining inheritance constructs in
ways that either automatically imply or simplify the task of proving that a child
behaves indistinguishably from its parent, in other words, that the child satisfies its
parent’s specification. However, no other work that we are aware of allows for reuse
of a parent-level simulation proof when showing that a child satisfies (simulates)
its own specification.
To be fair, we note that it is not immediately obvious how to adapt our incremen-

tal verification ideas to the notions of inheritance in object-oriented programming
languages. The denotational semantics of inheritance in these languages is more
complex than what we consider in this paper; for example, it includes recursion.
However, we also feel that the essence of our approach is general enough to be
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applicable to other state-transition formal models, such as TLA [Lamport 1994],
UNITY [Misra and Chandy 1988], and Process Algebra [Hoare 1985; Milner 1995].
We note also that, while our definition of subclassing for extension is similar to

behavioral subtyping of Liskov and Wing [Liskov and Wing 1993; Liskov and Wing
1994], it is not identical: Behavioral subtyping requires only that a child behave
indistinguishably from its parent when the child is used in the context of the parent,
that is, when the execution of the child contains only the parent’s actions, and none
of the actions introduced by the child. Subclassing for extension enforces a stronger
property: any trace (execution) of the child, even one that has actions introduced
by the child, is indistinguishable from a parent’s trace when all such new actions
(and new state variables) are projected out.

9. CONCLUSIONS

In this paper, we have presented an inheritance-based formalism for modeling and
verifying systems incrementally.
The formalism defines two inheritance constructs that can be used to model a

modified version of an abstract model of a system by specifying how the modification
is different from the original. Using these constructs, one can model (specify) a
complex system incrementally, by starting from a basic model (specification) and
then, at each step, adding support for new properties of the system.
For simplicity, the paper has described the formalism in terms of two levels of

abstraction: “specification” and “algorithm”; but in general, the formalism is com-
plementary to the technique of using successive refinement. It can be applied for
modeling systems at any relevant level of abstraction, from the lowest level corre-
sponding to software code, to the highest one corresponding to the most abstract
system specification.
A distinguishing feature of our formalism is its support for incremental verifica-

tion, which compliments incremental modeling. The formalism provides fundamen-
tal theorems (3 and 5) that state formally how a simulation proof of one abstract
model of a system satisfying another can be reused and extended to a simulation
proof for the modified versions of these models. This allows one, not only to model
and specify a complex system incrementally, but also to verify incrementally that
the model satisfies its specification.
The formalism, and in particular its incremental verification component, was

motivated by and refined during a project designing and modeling a complex mid-
dleware system [Keidar and Khazan 2000]. The ability to model and verify the
system incrementally was critical in making the project tractable and in making
it clear which part of the algorithm implemented which property. As Section 6.3
explains, standard compositional techniques would have not been sufficient.
As explained in Section 6 on page 22, the inheritance-based formalism was par-

ticularly useful in the context of that project because the modeled middleware
system involved a number of separate properties, each constraining or synchroniz-
ing common events. We believe that the formalism would be useful for modeling
and verifying other systems that include different properties constraining the same
actions.
The formalism described in this paper has been presented using the I/O au-

tomaton model — the same model that we used to model the complex middleware
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system. The I/O automaton model has been used extensively for modeling and
reasoning about complex distributed systems and has been developed into a pro-
gramming and modeling language, called IOA [Garland and Lynch 2000; Garland
et al. 1997]. As one of our future projects, we plan to facilitate the incorpora-
tion of our inheritance-based approach into the IOA tool-set, thereby enriching its
modeling and reasoning facilities.
The I/O automaton model has been a convenient model in which to express

our formalism. The essence of the approach, however, is general enough to be
applicable to other state-transition formal models, such as TLA [Lamport 1994],
UNITY [Misra and Chandy 1988], and Process Algebra [Hoare 1985; Milner 1995],
or, in other words, to any formal model that supports simulation proofs. One
interesting direction for future research is to enrich the standard formal modeling
languages with a version of our formalism.
The formalism presented in this paper allows modeling of systems using two

standard and important types of inheritance: specialization and subclassing for
extension. In our future work, we are planning to expand the formalism, including
its incremental verification aspect, to support other types of inheritance.
Of particular importance is a construct that would allow modifications that over-

ride a system’s behavior. In general, one would expect little, if any, proof reuse
possible for such a construct, since modifications done to a system may invalidate
whatever reasoning has been done about it. Nevertheless, useful approaches to
circumventing this impasse could rely on limiting the types of the modifications
allowed by the construct and on requiring the modifications to preserve certain
invariants.
The formalism presented here is an important step toward scalable and cost-

effective formal methods and toward practical software design methodologies that,
in addition to facilitating reuse of code, also facilitate reuse of reasoning. In general,
any extensions to the formalism that we make in the future will be motivated
and guided by our work on designing and modeling complex distributed systems.
This approach will ensure that, like the formalism presented in this paper, these
extensions will have important, practical implications.
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