
Moshe: A Group Membership Service for WANs

Idit Keidar

The Technion and MIT,

Jeremy Sussman

IBM T. J. Watson Research Center,

Keith Marzullo

University of California, San Diego,

Danny Dolev

The Hebrew University of Jerusalem.

We present Moshe, a novel scalable group membership algorithm built specifically for use in wide
area networks (WANs), which can suffer partitions. Moshe is designed with three new significant
features that are important in this setting: it avoids delivering views that reflect out-of-date
memberships; it requires a single round of messages in the common case; and it employs a client-
server design for scalability. Furthermore, Moshe’s interface supplies the hooks needed to provide
clients with full virtual synchrony semantics. We have implemented Moshe on top of a network

event mechanism also designed specifically for use in a WAN.
In addition to specifying the properties of the algorithm and proving that this specification is

met, we provide empirical results of an implementation of Moshe running over the Internet. The
empirical results justify the assumptions made by our design and exhibit good performance. In
particular, Moshe terminates within a single communication round over 98% of the time. The
experimental results also lead to interesting observations regarding the performance of membership
algorithms over the Internet.

Categories and Subject Descriptors: C.2.4 [Computer-communication networks]: Distributed

Systems; D.4.7 [Operating systems]: Organization and Design—Distributed Systems; C.2.1

Preprint of an article to appear in ACM Transactions on Computer Systems (TOCS), 2002. A
preliminary version of this paper appeared in the Proceedings of the 20th International Conference

on Distributed Computing Systems (ICDCS), April 2000, pp. 356–365.
This work was supported by Air Force Aerospace Research (OSR) grants F49620-00-1-0097 and

F49620-00-1-0327, Nippon Telegraph and Telephone (NTT) grant MIT9904-12, NSF grants CCR-
9909114 and EIA-9901592, and by UT Austin grant 97-0039 (subcontract to DARPA).

Name: Idit Keidar
Affiliation: The Technion Department of Electrical Engineering and MIT Lab for Computer Sci-

ence.
Address: Technion - Israel Institute of Technology, Department of Electrical Engineering, Tech-

nion City, Haifa, 32000 Israel. E-mail: idish@ee.technion.ac.il.
Name: Jeremy Sussman

Affiliation: IBM T. J. Watson Research Center.

Address: 30 Saw Mill River Road, Hawthorne, NY 10532, USA. E-mail: jsussman@us.ibm.com.

Name: Keith Marzullo

Affiliation: University of California, San Diego, Department of Computer Science and Engineer-

ing.
Address: 9500 Gilman Drive, La Jolla, CA 92093, USA. E-mail: marzullo@cs.ucsd.edu.

Name: Danny Dolev
Affiliation: The Hebrew University of Jerusalem, School of Engineering and Computer Science.

Address: Givat Ram, Jerusalem, 91904 Israel. E-mail: dolev@cs.huji.ac.il.

2 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

[Computer-communication networks]: Network Architecture and Design—Network commu-

nications

General Terms: Reliability, Algorithms

Additional Key Words and Phrases: Group communication systems, group membership, wide

area networks, partitionable group membership, virtual synchrony, view synchrony.

1. INTRODUCTION

Group communication is a means of providing multi-point to multi-point communi-
cation by organizing processes into groups. A group is a set of processes which are
said to be members of the group. For example, a group can arise from users editing
a shared file. Another group can arise from users playing an on-line game with
each other, and another, from participants in a multi-media conference. A process
becomes a group member by requesting to join the group; it can cease being a
member by requesting to leave the group or by failing. Each group is associated
with a logical name. Processes communicate with group members by sending a
message targeted to the group name; the group communication service delivers the
message to the group members.
View-oriented group communication systems [ACM 1996; Chockler et al. 2001;

Birman 1996] provide membership and reliable multicast services. The membership
of a group is a list of the currently active and connected processes in a group. The
task of a group membership service is to track the membership of the group, as it
evolves over time. When the membership changes, it is delivered to the application
at an appropriate point in the delivery sequence. The output of the membership
service is called a view, consisting of the list of the current members in the group
and a unique identifier. The membership service strives to deliver the same views
to mutually connected group members. Reliable multicast services that deliver
messages to the current view members complement the membership service.

View-oriented group communication systems are especially useful for constructing
fault-tolerant applications that consistently maintain replicated state of some sort
(examples include [Amir et al. 1994; Keidar and Dolev 1996; Fekete et al. 2001;
Sussman and Marzullo 1998; Anker et al. 1999; Khazan et al. 1998; Friedman and
Vaysburg 1997; Guerraoui and Schiper 1997b]). Such applications greatly benefit
from virtually synchronous communication semantics (for example, [Moser et al.
1994; Friedman and van Renesse 1995; Chockler et al. 2001; Babaoğlu et al. 2001;
Schiper and Ricciardi 1993]), that synchronize views with regular messages and
thus simulate a “benign” world in which message delivery is reliable within the set
of connected processes. (See [ACM 1996; Birman 1996; Chockler et al. 2001] for
discussion of the utility of group communication systems and virtually synchronous
semantics). A vital part of any virtually synchronous communication service is the
membership service, since agreement on uniquely identified views is necessary for
synchronizing communication in such views.

The design of a membership service for a wide area network (WAN) is a chal-
lenging task. Issues that need to be addressed include:

—High latency: Message latency tends to be large and highly unpredictable in a

Moshe: A Group Membership Service for WANs · 3

WAN, as compared to the relative consistency of message latency in a local-area
network (LAN). In addition, message loss, which is very rare in LANs, is quite
common in WANs. Message loss leads to retransmissions, which delay messages
even further. The high latency works against algorithms in which processes
repeatedly exchange messages in order to reach a decision.

—Frequent changes: Connectivity changes are more likely in a WAN than in a
LAN. In addition, failure detection in a WAN is usually less accurate than failure
detection in a LAN. Connectivity changes and inaccurate failure detection may
cause a membership algorithm to change views frequently. This is costly as it can
cause applications to engage in additional communication for re-synchronizing
their shared state.

—Instability: The status of communication paths in a WAN often fluctuates
frequently due to link failures or congestion. Lack of transitivity is also not
uncommon over the Internet: in our experiments we observed periods of up to
half an hour during which communication was not transitive. We refer to periods
with non-transitive communication or frequent connectivity changes as unstable.
A group membership algorithm for WANs should be designed taking into account
that unstable periods can occur and endure for significant periods.

In this paper, we present Moshe, a group membership algorithm to support vir-
tually synchronous group communication in WANs. We designed Moshe with a
fresh approach: in contrast to previously suggested WAN-oriented group member-
ship services, Moshe does not evolve from LAN-oriented membership algorithms.
Rather, it is designed explicitly for WAN environments.

We designed Moshe to address the challenges listed above. Moshe has three
important novel features, each reflecting a design principle:

(1) Moshe avoids the delivery of obsolete views, which are views that reflect a
membership that is already known to be out of date. Doing so reduces the
network load during unstable periods. Furthermore, since installing a view can
generate significant application overhead, avoiding the installation of obsolete
views can also reduce the load generated by the application.

(2) Moshe is optimized for the common case of the underlying failure detector being
relatively consistent, running a single communication round in this case.

(3) Moshe is built with a client-server design in which the membership is not main-
tained by every process, but only by dedicated membership servers. Such an
architecture makes Moshe scalable and allows Moshe to avoid flooding the net-
work by propagating membership updates only to where they are needed.

Each principle stands on its own and can be applied to other distributed services.
The three features are further explained in Section 2.

Group membership services respond to network events (for example, process
crashes, communication link failures and recoveries) and to requests by a process
to join or leave a certain multicast group. To this end, group membership al-
gorithms use a network event notification (or failure detection) mechanism that
informs them of network events. Moshe is built to be portable across different
event notification mechanisms; the algorithm is presented in terms of an abstract
notification service. The interface between Moshe and the notification service is

4 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

simple, and the requirements from the notification service are very weak (see Sec-
tion 3). Therefore, Moshe should be easy to build on top of most such services,
including failure detectors that have each process explicitly time-out on every other
process or gossip-based failure detectors [van Renesse et al. 1998].

Separating the membership service from the network event notification service
greatly simplifies the design of Moshe. Furthermore, this separation allows one to
configure the notification service in different ways without modifying the Moshe
algorithm. Other WAN membership algorithms that do not have such a separa-
tion, like Totem [Agarwal et al. 1998] and Spread [Amir and Stanton 1998], are
significantly more complex than Moshe. Such separation does exist, however, in
several membership algorithms designed for LANs, for example, [Babaoğlu et al.
2001; van Renesse et al. 1994; Dolev et al. 1994; Hayden and van Renesse 1996;
Malloth et al. 1995; Mishra et al. 1993; Hiltunen and Schlichting 1998].

In order to evaluate Moshe’s performance over a WAN, we have implemented
Moshe using congress [Anker et al. 1997], which is a distributed network event
notification service suited for WANs. congress servers use an overlay network
to propagate information about network events among them. congress’ overlay
network can be configured in different ways, and can be tuned to work better for a
given WAN topology. Indeed, we were able to boost system performance by tuning
congress to better suit the topology of our experiment, as shown in Section 7.

We have ran Moshe a over the Internet. Our experimental setup spanned five
locations: The Hebrew University of Jerusalem, Israel; National Taiwan University;
University of California, San Diego; MIT; and Cornell University. We periodically
invoked the algorithm by having processes request to join or leave groups. The
experiment results validate the benefits of Moshe’s design principles. Specifically,
we observe that Moshe terminates within one communication round in an over-
whelming majority of the runs. During unstable periods, Moshe does not generate
excessive traffic, and it terminates quickly after the failures are mended; we observe
such unstable periods to be rare. Furthermore, we illustrate how configuring the
underlying notification service to work better for a given WAN topology can boost
Moshe’s performance. The experiment also yields general observations regarding
the performance of membership algorithms over the Internet.

Moshe is implemented as part of a novel group membership service for com-
puter supported cooperative work (CSCW) applications in WANs [Anker et al. 1998].
Moshe is complemented by a virtually synchronous communication service [Keidar
and Khazan 2000], and it is partitionable [Dolev et al. 1994; Chockler et al. 2001;
Babaoğlu et al. 2001], that is, several disjoint views can exist concurrently.

Our specification of a membership service for use in a WAN preceded the design
of the Moshe algorithm. In this paper, we show that Moshe implements this spec-
ification. Moshe is quite a subtle algorithm, and therefore, proving its correctness
was important. In fact, in the process of proving Moshe’s correctness we uncovered
a case in which Moshe could deadlock; we subsequently handled this case.

The rest of this paper is organized as follows: In Section 2 we discuss the key
features of Moshe. In Section 3 we describe the environment and computation
model. In Section 4 we specify the guarantees of Moshe. In Section 5 we give an
overview of Moshe, and in Section 6 we describe it using pseudo-code. In Section 7
we present observations and measurements from our experiments. In Section 8 we

Moshe: A Group Membership Service for WANs · 5

briefly describe how clients can implement virtual synchrony in conjunction with
Moshe. Section 9 contains comparison with related work, and Section 10 concludes
our paper. The appendix contains a proof that Moshe satisfies its specification.

2. FEATURES

The three new key features of Moshe are discussed here.

2.1 Avoiding delivery of obsolete views

Previous membership service specifications (e.g., [Dolev et al. 1994; Friedman and
van Renesse 1995; Babaoğlu et al. 2001]) had included a termination property, that
is, they required that every instance of the membership algorithm terminate even
if the network is unstable forever. Previous membership algorithms (e.g., [Agarwal
et al. 1998; Friedman and van Renesse 1995; Schiper and Ricciardi 1993; Babaoğlu
et al. 2001]) satisfy the termination property, and therefore terminate even in un-
stable situations.

In contrast, Moshe does not deliver to an application a view that it knows to be
obsolete. This means that Moshe may be non-terminating as long as the network
situation remains non-transitive or constantly changes. An unstable network forces
a membership service to either continuously deliver new views or else deliver none;
we believe that in such situations it is better not to deliver any view. Doing so avoids
network congestion due to extra view change notifications. When the network does
stabilize, Moshe terminates and does not initiate new membership changes unless
new network events occur. We make this property formal in Section 4.

When running Moshe over the Internet, we have occasionally observed instabil-
ity periods lasting several minutes. During a two-week long experiment, we once
observed a non-transitive situation that lasted half an hour (see Section 7). During
this period, no changes in network connectivity occurred, and Moshe generated no
messages at all. In contrast, previously suggested membership algorithms would
behave as follows in this situation: They would terminate quickly (usually within
seconds), delivering a view that does not correctly reflect the network situation.
Shortly thereafter, they would detect the fact that the view does not reflect the
network situation (e.g., by receiving an “I-am-alive” message from a process not in
the view), and would then re-run the algorithm. This would be repeated over and
over again for the entire non-transitive period.

It is possible to overcome lack of transitivity using relays and dynamic routing,
as done, for example, in Phoenix [Malloth et al. 1995], or using a dynamic relay
service like RON [Andersen et al. 2001]. Relaying can greatly reduce the risk of
non-transitivity, but it cannot eliminate it entirely, as dynamic routing also takes
some time to adapt (we observe this phenomenon in the experiments presented in
Section 7).

In addition to the cost of running the membership algorithm multiple times,
obsolete views cause extra overhead for applications that rely on virtual synchrony.
For such applications, a view change may lead to sending of special messages to re-
synchronize shared state (e.g., the applications in [Keidar and Dolev 1996; Fekete
et al. 2001; Sussman and Marzullo 1998; Khazan et al. 1998; Amir et al. 1994;
Friedman and Vaysburg 1997]). Such additional communication is especially costly
in WANs. Primary-backup applications also suffer expensive penalties from view

6 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

changes — a view change can initiate a lengthy recovery process in order to fail-over
to a new primary. In addition, messages sent in an obsolete view will in general
not be delivered by all members of the view. A message is said to be stable or
safe at a group member when that member knows the message has been delivered
by all view members. Many applications (examples include [Keidar and Dolev
1996; Fekete et al. 2001; Amir et al. 1994; Khazan et al. 1998]) wait for messages to
become stable before they act upon them. Thus, delivering obsolete views increases
network congestion by withholding information from applications that might allow
them to otherwise avoid sending messages that will be discarded.

Moshe provides its applications with information about changes in network con-
nectivity and group membership, even at times when network instability causes
Moshe not to deliver a view. This information is conveyed using startChange

events, as described in Section 4.

One consequence of Moshe is that at unstable times, there can be long periods
during which the application is aware that a membership change is occurring. Typ-
ically, virtually synchronous communication services require applications to block
during such periods [Friedman and van Renesse 1995]. However, there are variants
of virtual synchrony that do not require such blocking, namely Weak Virtual Syn-
chrony [Friedman and van Renesse 1995] and Optimistic Virtual Synchrony [Suss-
man et al. 2000]. Avoiding obsolete views is especially beneficial if processes are
allowed to send messages while a view change is under way. Unlike the messages
sent in obsolete views, these messages can become stable since they are not delivered
until a “non-obsolete” view is delivered. Although Moshe may be useful in con-
junction with any variant of virtual synchrony, we have designed it with Optimistic
Virtual Synchrony in mind.

2.2 Low Message Overhead

Since message latency in WANs can be large, we have designed our membership
algorithm to minimize the number of messages exchanged among the servers. In
most cases, once a change in network connectivity is detected, each server multicasts
a single message to the other servers, and the algorithm terminates. Thus, if the
maximum message latency in the network is δ, then Moshe usually terminates
within δ time after all of the servers detect the change in connectivity.

However, if temporary lack of symmetry or transitivity in the network causes sur-
viving members to differ too much in their detections of failures and reconnections,
then it may be necessary to run a re-synchronization round among the servers.
In this case, Moshe can be delayed either by additional δ time or by additional
2δ time. Thus, in the worst case, Moshe terminates within 3δ time once network
stabilization occurs and all of the servers correctly detect the network connectivity.

Typical group membership algorithm instead terminate in all runs 2δ time after
network stabilization occurs and all of the servers correctly detect the network
connectivity (for example, [Dolev et al. 1994; Agarwal et al. 1998; Ricciardi and
Birman 1991; Babaoğlu et al. 2001; Hiltunen and Schlichting 1998; Schiper and
Ricciardi 1993; Malloth et al. 1995]). As discussed in Section 7, our algorithm
terminated in one round in almost 99% of the cases, and seldom exceeded 2δ.

Moshe: A Group Membership Service for WANs · 7

2.3 A client-server design

Moshe is part of a novel architecture for group membership services designed for
CSCW applications in WANs [Anker et al. 1998]. This architecture employs a
client-server approach: group membership services are provided by dedicated mem-
bership servers, which themselves are not members of any multicast group. The
membership servers are concerned solely with membership maintenance, and not
with message transmission among group members in the different multicast groups.
The processes who wish to participate as members in multicast groups act as clients
of the membership servers. Each client is served by exactly one server at a given
time; preferably, a server that is proximate to it (in the same LAN). A client sends
to its server requests to join or leave particular multicast groups (these requests are
handled by the notification service part of the membership server), and the mem-
bership server sends membership views to its clients. This architecture allows a
Moshe server to be scalable in the number of groups and in the number of members
in a group.

The membership service interface provides the hooks for clients to efficiently im-
plement virtually synchronous communication semantics, but it does not impose
such semantics. Thus, Moshe does not delay delivery of views to clients until such
semantics are achieved. Clients can enforce virtual synchrony by exchanging syn-
chronization messages among themselves; this can be done in parallel with Moshe’s
agreement on the membership view (see Section 8).

3. THE ENVIRONMENT MODEL

Moshe is implemented in an asynchronous message-passing environment: processes
communicate solely by exchanging messages. There is no bound on message delivery
time. Processes fail by crashing, and may later recover. Communication links may
fail and recover.

Moshe exploits two underlying services: It learns about the status of processes
and links via the network event notification service, described in Section 3.1; and
it exploits a reliable fifo communication layer that operates in conjunction with
the notification service, so that if a message is sent from one process to another
then either this message eventually arrives or else the notification service reports
the link to be faulty. This guarantee is made formal in Section 3.2.

3.1 Network event notification service

Clients use the notification service to request to join or leave groups. The noti-
fication service accumulates and disseminates failure detection information along
with information about these requests. The services are provided to clients by an
interface that consists of the following basic functions:

join(G) is a request to make the client a member of group G.

leave(G) is a request to remove the member from the membership of G.

Each membership server has a local notification service component that reports
the client status to the membership servers via notification events (NEs), with the
following interface:

NE(Group G, Set joining, Set leaving) is a notification that the processes in the

8 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

set joining are joining group G, and those in the set leaving are either leaving
the group or are suspected of having crashed or detached.

Note that the notification service does not distinguish between processes leaving
the group due to failures and processes leaving the group voluntarily. Both are
reported via the same interface.

Our membership servers keep track of the membership according to the notifica-
tion service in a variable called the NSView. The NSView of a group G is computed
by aggregating all of the NEs that correspond to G as follows:

—the NSView is initially empty;

—every time a NE arrives, the NSView is set to NSView ∪ NE.joining \ NE.leaving.

Note that the NSView is not a membership view, since it has no unique identifier
that can be agreed upon. The NSView is simply the list of group members that the
server currently does not suspect.

As a failure detector in an asynchronous environment, the notification service
is bound to be unreliable in some runs [Chandra and Toueg 1996]: it may be
inaccurate in that it may suspect correct processes. Since we wish to specify a
service that can be implemented in an asynchronous environment, we do not require
that the notification service be accurate. However, we assume that the notification
service is always complete, in the sense that if a process fails to receive a message sent
to it, then the process is eventually suspected. This is made formal in the Reliable
Links property below. The liveness of Moshe depends on the notification service
providing eventually consistent sets. We discuss this further in Section 4.1.

3.2 Communication guarantees

The reliable fifo communication layer guarantees that messages from a single
source are not received out of order. Formally:

fifo Order If process p first sends message m1 to process q and later
sends m2 to q, and if q delivers both m1 and m2, then q delivers m1

before m2.

In addition, the underlying reliable fifo communication layer guarantees liveness
in conjunction with the notification service as follows:

Reliable Links If server S1 sends a message m to server S2 at time
t1, then there is a time t2 > t1 by which either S2 has received m, or
the NSView of S1 does not contain any clients of S2, or S2 has failed.

4. MEMBERSHIP ALGORITHM GUARANTEES

We now describe the interface between Moshe and its clients, and the service guar-
antees that it provides. The primary function of Moshe is to provide clients with
views that contain a membership and a unique identifier. Each membership server
communicates with its clients using reliable fifo links. The client-server interaction
is summarized in Figure 1, which also includes the interface between the clients and
the notification service.

The server sends two types of events to its clients:

Moshe: A Group Membership Service for WANs · 9

Client

st
ar

tC
ha

ng
e

 V
ie

w

Jo
in

/ L
ea

ve

Membership ServerNS NE

Fig. 1. The membership service client-server interface.

startChange(G, startChangeNum, suggestedMemb) indicates to the client that
the server is now engaging in a membership change for group G. The view
is expected to consist of the members listed in the set suggestedMemb.

view(G,V) notifies the client that the new view of group G is V . The view V is a
triple: <id, members, startChangeNums>, where the id is an integer, members
is a set of processes and startChangeNums is a function from the servers of
members to identifiers that were sent to the clients in startChange messages.

The interface is illustrated by the following example. Two members, A and B, of
group a G become connected to each other. Moshe first delivers startChange(G,
7, {A,B}) to A and startChange(G, 13, {A,B}) to B. Then Moshe delivers to
both A and B view(G, 〈14, {A,B}, {A → 7, B → 13}〉). The startChangeNums

mapping in the view maps A to the latest startChangeNum it received before the
view, namely 7. Likewise, it maps B to 13.

The startChange event and the startChangeNums value of a view V are used in
the implementation of virtual synchrony, as described in Section 8.

4.1 Membership guarantees

We say that two processes deliver the same view in a groupG if they deliver identical
triples. Views are partially ordered according to their id. Moshe guarantees that
the ids of views delivered to each client are monotonically increasing:

View Identifier Local Monotonicity If a process delivers a view V 1
and later delivers a view V 2, then V 2.id > V 1.id.

One of the tasks of a membership service is to reach agreement on views that cor-
rectly reflect the network connectivity. Unfortunately, such a desirable membership
service is impossible to implement in asynchronous environments [Chockler et al.
2001; Chandra et al. 1996]. An unstable communication layer can force every de-
terministic membership algorithm to either block or to constantly deliver changing
views. Therefore, we formulate the Agreement on Views property to guarantee
only that agreement be reached in runs in which the network stabilizes and the
notification service (failure detector) consistently reflects the network situation.

We first formally define what it means for the notification service to stabilize for
a set of members S in a group G, and then specify property Agreement on Views,
which requires Moshe to deliver the same correct view to all the members of such
a stable set.

10 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

Definition 4.1. We say that the notification service stabilizes for a set of mem-
bers S in a group G if there is a time t0 such that from time t0 onwards, the NSView
of G at all of the servers serving clients in S is exactly S.

Agreement on Views If the notification service stabilizes for a set of
members S in a group G, then eventually, all of the clients in S receive
the same view V from their servers in group G such that V.members =
S, and do not receive new view or startChange messages in group G

henceforward.

Note that Agreement on Views defines a partitionable membership service: in
case of partitions, the notification service can stabilize for two disjoint sets in the
same group. For example, there can be two disjoint sets S1 and S2, so that no
Moshe server serves clients both in S1 and S2, and from some point onward, the
NSView of G at all of the servers serving clients in S1 is S1, and for servers serving
clients in S2, it is S2. In this case, Agreement on Views requires that a view with
membership S1 be delivered to the processes in S1, and a view with membership
S2 be delivered to the processes in S2.

Let us now look more closely into the specification of property Agreement on
Views. The property classifies runs in which all of the connected members of G

agree on the same view forever. Since our algorithm runs in asynchronous systems,
it is impossible to guarantee that such agreement be reached in every run. However,
such agreement is reached if the following two conditions hold:

(1) The set of members of G in a certain connected network component1 eventually
stabilizes.

(2) The notification service behaves like an eventually perfect failure detector (see [Chock-
ler et al. 2001; Babaoğlu et al. 2001]), that is, it eventually stops making mis-
takes. A similar guarantee is formally defined in terms of network stability and
failure detector properties in [Anker et al. 1998; Chockler et al. 2001].

For the sake of simplicity, in specifying property Agreement on Views, we have
summarized both conditions into one requirement, namely that the servers eventu-
ally have the same NSView, and that this NSView does not change henceforward.

Note that although the Agreement on Views property is guaranteed to hold
only in certain runs, the conditions on these runs are external to the implementation
and therefore cannot be met trivially.

Note also that we define stability to last forever. In practice, however, it only has
to hold long enough for the membership algorithm to execute and for the failure
detector module to stabilize, as explained in [Dwork et al. 1988; Guerraoui and
Schiper 1997a]. This time period depends on external conditions: message latency,
process scheduling and processing time. In practice (as shown in our empirical
studies) stability need not last long.

1A connected network component is a set of processes among which all of the links are operational

and all of the links to processes outside the component are not operational. The existence of such

a component implies that communication is transitive and symmetric.

Moshe: A Group Membership Service for WANs · 11

4.2 Client Interface Guarantees

The startChange messages and startChangeNums are used by the clients for im-
plementing virtual synchrony. As discussed in Section 8, to be useful they have to
satisfy the following two properties:

Monotonicity of startChange Identifiers The startChange iden-
tifiers received by each client are monotonically increasing.

Integrity of startChange Identifiers Each view message V sent
to a client c by a server s is preceded by a startChange message SM

such that no messages are sent from s to c between SM and V , and
V.startChangeNums[s]= SM.startChangeNum, and
V.members= SM.suggestedMembers.

Note that a view message may be preceded by multiple startChange messages.
The members and startChangeNums[s] of the view match the suggestedMembers
and startChangeNum of the latest startChange sent before the view.

Note that the above properties correspond to messages sent out by the Moshe
service. If the links from Moshe servers to their clients are reliable, then the same
properties are viewed by the clients at their side of the link.

5. THE MEMBERSHIP ALGORITHM OVERVIEW

In this section we give an overview of Moshe. We begin in Section 5.1 by presenting
the typical one-round flow. In Section 5.2 we illustrate cases in which the one-round
algorithm can fail to terminate. We refer to such failure to terminate as blocking.
The examples in Section 5.2 provide the intuition as to what mechanisms we needed
to implement in Moshe in order to detect and overcome such blocking.

Moshe is composed of a fast agreement algorithm that terminates in one round
in the best case, a mechanism for detecting if the fast agreement algorithm is
blocked, and a slow agreement algorithm that terminates in all cases. The slow
agreement algorithm is run if and only if the fast agreement algorithm is blocked.
The complete algorithm is presented in pseudo-code in the next section. In the
Appendix, we prove that the blocking detection mechanism detects all the cases in
which the fast agreement algorithm blocks, and that the slow agreement algorithm
always terminates in such cases.

5.1 The typical one-round flow of the membership algorithm

Moshe is invoked whenever it receives a NE. The typical message flow is as follows:
Once a server receives a NE from the notification service, the server notifies its
clients that the membership is undergoing a change via startChange messages. At
the same time, the server multicasts a proposal message to all of the other servers.
The proposal contains the sender’s NSView, which is the proposed membership for
the next view. It also contains a startChangeNum, which is used by the servers to
agree on the unique identifier of the view to be delivered in a manner consistent
with the View Identifier Local Monotonicity property.

The server then waits to receive proposals with the same NSView from each of
the servers. When all of these messages are received, the server computes the new
view identifier and sends a view message to its clients; the membership of the new

12 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

view is the NSView included in the proposals. Once a proposal is used for forming
a view, it is discarded. An example of this message flow, resulting from a client B
joining group of which client A is the sole member, is illustrated in Figure 2. The
example proceeds in the following steps:

(1) Client B issues a join message to its local notification server (NS).

(2) B’s notification server communicates with other notification servers via means
external to Moshe (shown as a dashed line in Figure 2). This leads to a NE

being generated at both A and B’s Moshe servers.

(3) The Moshe servers send startChange notifications to A and B.

(4) The Moshe servers send each other proposals.

(5) Upon getting each other’s proposals, the Moshe servers deliver the new view

to A and B.

(1
) J

oin

Client B

Membership ServerNS (2) NE (B,{})

(5
)

vi
ew

 (
A

,B
)

(3
)

st
ar

tC
ha

ng
e

Client A

Membership Server NS(2) NE (B,{})

(5
)

vi
ew

 (
A

,B
)

(3
)

st
ar

tC
ha

ng
e

(4) proposal {A,B}

Fig. 2. The membership service typical message flow.

A one round algorithm such as this may reach agreement in a failure-free case,
but cannot successfully reach agreement under all conditions. Below, we illustrate
some cases in which such a one-round algorithm would lead to blocking.

5.2 Example scenarios in which the one-round algorithm would block

Example 5.1. Initially, servers s1, s2, and s3 are connected. Then, due to
transient congestion in the link between s1 and s3, s1 and s3 suspect each other
(i.e., they receive NEs suspecting each other’s clients). When the congestion passes,
the suspicion is refuted and s1 and s3 both send proposals to each other and to
s2. However, since s2 did not receive a NE, it does not send a proposal. In this
case, s1 and s3 have begun the algorithm and sent startChange messages to their
clients, but s2 is not running the algorithm. Thus, s1 and s3 will block waiting for
a proposal from s2 that will never be sent, and the algorithm will never terminate,
violating the Agreement on Views property.

In this example, the blocking may be detected by some server receiving an unex-
pected proposal message when it did not receive a NE. Indeed, we detect blocking
of the algorithm in such a manner. However, not all blocking cases can be detected
in this simple manner, as illustrated in Example 5.2 and Figure 3.

Moshe: A Group Membership Service for WANs · 13

s1 s2

NE(-s3)

s3
NE(+s1,s2)NE(+s3)

NE(+s3)

NE(+s3)

View V

View V' View V'

Fig. 3. A case of blocking that cannot be detected by arrival of extra messages.

Example 5.2. Consider three servers s1, s2, and s3. Assume that initially s1
and s2 (and their clients) are in one network component while s3 (and its clients)
are in another. The two network components merge, so that s1 and s2 are both
notified of the connection with s3, and s3 is notified of the connection with s1 and
s2. s1 completes the one round algorithm forming a view V before s2 and s3,
which are slow at receiving each other’s messages. In the meantime, s1 suspects s3,
but this suspicion is refuted quickly. s1 re-invokes the membership algorithm and
sends proposals to the servers. Let these new proposals from s1 reach s2 before s3’s
original proposal and reach s3 before s2’s original proposal.
Once s2 and s3 receive each other’s proposals they use the latest proposal of s1

to form a new view, V ′, which is different than V , and do not detect the need to
start a new round. Meanwhile, s1 is blocked waiting for new proposals from s2 and
s3, violating the Agreement on Views property.

In Section 6.2 below we explain how the detection mechanism detects such cases
of blocking. When blocking is detected, the slow agreement algorithm is invoked.

6. THE MEMBERSHIP ALGORITHM PSEUDO-CODE

The Moshe algorithm is symmetric in that all of the servers run the same code.
Therefore, we present the algorithm running at a single server. When there are
changes spanning multiple groups, the same algorithm is run independently for
each group. Therefore, for simplicity, we present the membership algorithm for a
single group and omit the group name.

Moshe is composed of a fast agreement algorithm, a blocking detection mecha-
nism, and a slow agreement algorithm. Both the fast and slow agreement algorithms
exchange proposals, tagged with the type FA or SA, respectively. The combined algo-
rithm works as follows: The server initially is not running either algorithm. When
a NE is received from the notification service, the server begins running the fast

14 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

agreement algorithm. It sends a proposal message of type FA to the other servers,
and waits to receive similar proposal messages from them.

When the server receives a proposal message that matches its NSView, if it is
a proposal message with type SA it joins the slow agreement algorithm. If it is a
proposal message with type FA, it runs the detection mechanism to check if the
slow agreement algorithm needs to be started. In either of these cases, if the slow
agreement algorithm is begun, the server sends a proposal message of type SA.

While the server is running either agreement algorithm, it waits to collect proposal
messages from the other servers, until it has the necessary set to send a view as
per the current (fast or slow) agreement algorithm. When a view is sent, the server
returns to not running either algorithm.

If the server receives a new NE while running either algorithm, it begins the fast
agreement algorithm anew to avoid sending an obsolete view to the clients.

The combined algorithm can be represented as a state machine with three states:
a state FA in which the server is running the fast agreement algorithm, a state
SA in which the server is running the slow agreement algorithm, and a state None
in which the server is running neither algorithm. This state machine is shown in
Figure 4.

None

FASA

NE

SA proposal \
 block detection

NE
pr

op
os

al

agreem
entag

re
em

en
t

pr
op

os
al

FA

 proposal \

N
E

Fig. 4. The membership algorithm state diagram.

We now present Moshe in pseudo-code in three steps. We begin in Section 6.1 by
presenting the fast agreement algorithm. In Section 6.2 we describe the mechanism
for detecting when this algorithm blocks, and in Section 6.3 we describe the slow
agreement algorithm.

6.1 The Fast Agreement Algorithm

Variables and types. Moshe uses three message types: servers send each other
proposal messages, and send clients startChange and view messages. The types
and variables used by Moshe are shown in Figure 5. The variables that are not
used in the fast agreement algorithm are shown in gray.

The variable running is used to track which algorithm is currently being run:
its value can be FA for the fast agreement algorithm, SA for slow agreement, or
none if no algorithm is being run. NSView contains the aggregation of the NEs

Moshe: A Group Membership Service for WANs · 15

Type CSet SetOf(clients)

Type NE 〈Set joining, Set leaving〉
Type algType {none, FA, SA}

Message types:

S→C view
∆

= 〈int id, CSet members,

startChangeNums[serversOf(members) 7→ int]〉

S→C startChange
∆

= 〈int startChangeNum, CSet suggestedMembers〉

S→S proposal
∆

= 〈ServerId sender, CSet members, int startChangeNum,

algType type, usedProps[servers 7→ int], int propNum〉

Variables and Data Structures:

serverId me // My server name

algType running = none // Initially not running

CSet NSView = { } // aggregation of all NEs

function props [servers 7→ proposal] = null // server’ last proposal

view curView = 〈0, { }, [* 7→ 0]〉 // last view delivered

int startChangeNum = 0

int propNum = 0

function usedProps [servers 7→ int] = 0 // proposals used for view

Assumed external functions:

serversOf[clients 7→ servers]

local[CSet 7→ local clients] // returns local clients

Variables shown in gray are not part of the fast agreement algorithm.

Fig. 5. Types and variables for the membership algorithm.

received from the notification service. The buffer props is used to store the most
recent proposal message received from every server. curView contains the most
recent view sent to the clients. The variable startChangeNum ensures that the
startChange messages sent to a client have monotonically increasing identifiers.
propNum is a logical timestamp used to ensure that every proposal message sent
by a server has a unique monotonically increasing identifier, and usedProps is used
to detect if the fast agreement algorithm is blocked, as described in Section 6.2
below. These last two variables are not used by the fast agreement algorithm.

We assume the existence of two external functions: serversOf that maps a set
of clients to the set of servers serving those clients, and local that maps a set of
clients to the subset of those clients being served by this server. These functions
can be implemented by using a naming convention that associates clients with their
local servers. Alternatively, a client can be assigned to a server the first time the
client issues a join request, and this information can be disseminated to maintain
a registry of the clients.

Note that the algorithm does not allow a client to be served by more than one
server. This implies that when a server crashes, all its local clients are per force
removed from their groups. To continue participating, the clients can connect to
a new server and re-join all of the groups of which they were previously members.
A simple library routine can make such a fail-over transparent. Although a client
that loses connection with its server cannot know whether the server has crashed or

16 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

not, we assume that the server eventually also loses the connection with the client
in this case2, so having the client connect to another server is safe.

On receive NE n:

NSView = NSView ∪ n.joining \ n.leaving // Update NSView

if (local(NSView) 6= { }) then // We only consider groups with local clients

startChangeNum = max(curView.id, startChangeNum + 1)

send startChange 〈startChangeNum, NSView〉 to local(NSView)

running = FA

propNum = max(propNum, props[serversOf(NSView)].propNum) + 1

proposal p = 〈me, NSView, startChangeNum,

FA, usedProps[serversOf(NSView)], propNum〉
send p to serversOf(NSView) \ {me}

deliver p immediately to myself // Invoke proposal handler

endif

On receive proposal inProp:

props[inProp.sender] = inProp // Overwrite to use latest proposal

if (inProp.members = NSView) then // Proposal matches the NSView

if (TestIfSAProposalNeeded(inProp)) then

SendSAProposal(inProp)

endif

if (TestIfAgreementReached()) then

curView = 〈max(props[serversOf(NSView)].startChangeNum) + 1,

NSView, props[serversOf(NSView)].startChangeNum〉
for all s ∈ serversOf(NSView)

usedProps[s] = props[s].propNum

props[s] = null

end for all

running = none

send curView to local(NSView)

endif

endif

// In the fast agreement algorithm:

TestIfAgreementReached()
∆

=

∀s ∈ serversOf(NSView) : props[s].members = NSView

Code shown in gray is not part of the fast agreement algorithm.

Fig. 6. Event handlers for the membership algorithm.

Event handlers. The membership algorithm is event-driven, and responds to
events as they occur. We assume that event handlers are atomic, that is, an event
handler cannot be preempted once invoked. The algorithm responds to two types
of events: the reception of NEs from the notification service, and the reception of
proposal messages that were sent by other servers. The event handlers are pre-
sented in Figure 6. Code shown in gray is not part of the fast agreement algorithm.

2In our implementation of Moshe we use TCP, which has this symmetric failure detection property.

Moshe: A Group Membership Service for WANs · 17

The fast agreement algorithm follows the message flow described in Figure 2
above. Upon receiving a NE, every server sends a startChange message to its clients
and sends a proposal message to all of the servers in the group. The proposal

message has three fields used by the fast agreement algorithm:

(1) sender is the server that sent the proposal message;

(2) members indicates the NSView that this message is proposing for the new view;

(3) startChangeNum is used to compute the identifier of the new view.

To satisfy the View Identifier Local Monotonicity property, the identifier of
the new view must be greater than the identifier of the last view for every client in
the new view. The servers use startChangeNums to calculate such an identifier —
The startChangeNum at a server is always greater than or equal to the identifier
of the last view sent to the clients, and it is included in the proposal message.
When a server has collected proposal messages from all of the servers, it uses the
startChangeNum values to calculate a new view number greater than all of the
previous view numbers. The startChangeNum values are also included in the view
message, in order to allow clients to correlate startChange events with the view.

Reaching agreement on a view is determined via proposal messages sent by all
of the servers of clients in the NSView. The props buffer collects these proposal

messages. Whenever a proposal message is received, it is placed in the props

buffer regardless of the membership it proposes. Due to the fifo nature of the
communication, this proposal message is guaranteed to have been sent after the
proposal message it replaces. By using the most recent proposal message sent by
the servers, the algorithm avoids delivering obsolete views.

Let s be a server. Once s receives a proposal message proposing its own NSView

from every server s′ that has clients in the NSView, s sends a new view V to its
clients. For every such server s′ that has clients in the new view V , we say that s

uses the proposal props[s’] for V , or that the proposal props[s’] is used for V .
Once s sends view V to its clients, for each server s′ of a client in V.members, s sets
props[s] to null in order to avoid using the same proposal in future invocations
of the membership algorithm. Thus, a particular proposal cannot be used for more
than one view.

6.2 The detection mechanism

We now present a mechanism for detecting cases in which the fast agreement al-
gorithm blocks. Note that we are only interested in detecting non-termination of
the fast agreement algorithm in case the notification service eventually does stabi-
lize. If an invocation of the membership algorithm is followed by another NE, then
the membership algorithm is re-started and we are no longer concerned with the
termination of the former invocation.

Thus, for the remainder of this section we assume the following: Let CS be
a set of clients and SS be the set of servers which serve the clients in CS. We
assume that the notification service stabilizes for the set CS, that is, that there
exists a time t0 after which the NSView of every server in SS is and remains CS

(see Definition 4.1). Under this assumption, our detection mechanism will detect
the need to invoke the slow agreement algorithm if and only if the fast agreement
algorithm will block.

18 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

We denote by lasts the last proposal message of type FA sent by a server s.
Since the final NSView of every server in SS is CS, lasts.members= CS. By the
Reliable Links property, for every pair of servers s, s′ ∈ SS, s′ receives lasts. If
every server s′ ∈ SS uses all the lasts proposals (from every s ∈ SS) for the same
view, then the fast agreement algorithm terminates successfully: all of the servers
in SS agree on the view, and all of the clients receive the exact same view message.
Thus, the only way the fast agreement algorithm can block is if there is some pair
of servers s, s′ ∈ SS, such that s does not use lasts and lasts′ for the same view.

Let s be a server that does not use lasts and lasts′ for the same view. As explained
above, s receives lasts′ . Moreover, by the TestIfAgreementReached condition, if s
uses lasts for a view, it uses some proposal from s′ for the same view. Thus, there
are only two possible cases:

(1) s uses lasts before it receives lasts′ . In this case, s uses some earlier proposal
message from s′ for the same view as lasts. This case occurs in Example 5.1
above where lasts2 is used (by all of the servers, and in particular, s2) along
with proposals that were sent by s1 and s3 earlier than lasts1 and lasts3,
respectively.

(2) s uses lasts′ before it sends lasts. In this case, s uses lasts′ for a view with an
earlier proposal message of its own. This case occurs in Example 5.2 above
where s1 uses lasts2 for a view, along with an earlier proposal of its own.

We now explain how our detection mechanism detects both of these cases.
The detection mechanism is implemented in the function TestIfSAProposalNeeded,

which is invoked whenever a proposal message inProp is received by some server s,
as shown in gray in the event handler of Figure 6. The TestIfSAProposalNeeded

function is presented in Figure 7 below. This function detects blocking if a proposal
arrives when running = none. It also detects blocking if for the incoming proposal
the entry of usedProps corresponding to the local server is the same as the current
value of propNum; the code for maintaining usedProps is shown in gray in Figure 6.

The detection mechanism detects the two cases described above:

(1) Case 1 is detected because lasts′ arrives after s already sent a view using lasts.
Therefore when lasts′ arrives, the running variable at s is none, and s detects
the blocking. This case occurs in Example 5.1, where s2 receives lasts1 and
lasts3 while s2 is not running the algorithm.

(2) Case 2 is detected by s′ using the usedProps in lasts. If s uses lasts′ for a
view before sending lasts, then lasts.usedProps[s’] is equal to lasts′ .propNum.
Thus, when s′ receives lasts, the condition inProp.usedProps[me] = propNum

is true (see Figure 7), and it detects the block.

Consider Example 5.2 above. When s1 sends lasts1, s1 had already used lasts2
for a view. Therefore, lasts1.usedProps[s2] is equal to lasts2.propNum, and s2
detects the blocking upon receipt of lasts1.

We give a proof in the Appendix that whenever the fast agreement algorithm
blocks, it is detected by the detection mechanism at some server. Furthermore, in
Lemma A.5 we prove that the detection mechanism only detects blocking when the
fast agreement does indeed block.

Moshe: A Group Membership Service for WANs · 19

6.3 The slow agreement algorithm

As with the fast agreement algorithm, in the slow agreement algorithm servers send
proposalmessages to each other and collect these proposalmessages to agree upon
a new view. However, in contrast to the fast agreement algorithm, the invocations of
the slow agreement algorithm are synchronized: the set of proposal messages used
for a view must all carry the same propNum. Since each server sends no more than
one SA proposal with the same propNum, if two servers use a proposal message
p for a view V , then the same set of proposal messages are used for V by both
servers.

TestIfSAProposalNeeded(proposal inProp)

if (running 6= SA) then // detect if FA round blocked

return (running = none ∨ inProp.usedProps[me] = propNum ∨
inProp.type = SA)

else // detect if later SA round in progress

return (propNum < inProp.propNum)

endif

TestIfAgreementReached()
if (running = FA) then // FA: all FA proposals received

return (∀s ∈ serversOf(NSView) : props[s].members = NSView ∧
props[s].type = FA)

else // SA: all same round SA proposals received

return (∀s ∈ serversOf(NSView) : props[s].members = NSView ∧
props[s].type = SA ∧
props[s].propNum = propNum)

endif

SendSAProposal(proposal inProp)

// Notify the clients that a membership change is starting

startChangeNum = max(curView.id, startChangeNum + 1)

send startChange 〈startChangeNum, NSView〉 to local(NSView)

running = SA

if (inProp.type = FA) then // detected FA problem – initiate SA (new round)

propNum = max(propNum + 1, props[serversOf(NSView)].propNum)

else // received SA proposal – join SA (same round)

propNum = max(propNum, props[serversOf(NSView)].propNum)

endif

proposal outProp = 〈me, NSView, startChangeNum, SA,

usedProps[serversOf(NSView)], propNum〉
send outProp to serversOf(NSView) \ {me}

deliver outProp immediately to myself // Invoke proposal handler

Code shown in gray is not part of the slow agreement algorithm.

Fig. 7. Function definitions for the membership algorithm.

A server that detects blocking of the fast agreement algorithm initiates the slow
agreement algorithm by multicasting a proposal message to all of the other servers
with the type field set to SA. The propNum of this proposal is chosen to be greater
than the maximal value of propNum of any proposal message (of any type) this

20 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

server has previously sent, and at least as large as any proposal message (of any
type) this server has previously received. This is the round number associated with
this invocation of the slow agreement algorithm.

Every server that receives a proposal of type SA while it is not running the slow
agreement algorithm joins it by also sending a proposal message of type SA and a
propNum value equal to the maximal value of propNum in any proposal message this
server previously sent or received. Ideally, this value will be equal to the propNum

in the proposal from the initiating process (hereafter the initiator)3, and all the
servers’ proposal messages will have identical propNum values.

However, if the joining server sends a SA proposal with a greater propNum than
the initiator, the rest of the servers (including the initiator) will also have to send
proposal messages with the higher propNum so that the algorithm will be able to
terminate. To this end, if a server that has already started (or joined) a round
of the slow agreement algorithm receives a proposal with a higher propNum value
than its local one, it joins the higher round by sending a new SA proposal with
the value, and storing this value in its local propNum.

Note that there may be several initiators. The difference between initiating a
round of the slow agreement algorithm and joining a round is that servers joining a
round do not increase the propNum to be larger than the highest value they received.
Thus, once all the servers are running the slow agreement algorithm and no further
NEs occur, the maximum propNum of all of the servers will not increase. This way,
all of the servers eventually send proposal messages with the same propNum. Once
such proposal messages are collected from all of the servers, the slow agreement
algorithm terminates.

In Figure 7, we complete the pseudo-code shown in Figure 6 by adding the
functions that implement the slow agreement algorithm. Recall that if the fast
agreement algorithm is detected as blocking, then the slow agreement algorithm
is initiated by call of the function SendSAProposal at the initiator (see Figure 6).
The function SendSAProposal is also used by the slow agreement algorithm to join
a round in progress.

The slow agreement algorithm terminates once there is agreement not only on
the NSView, but also on the propNum. This change in the termination condition is
reflected in the function TestIfAgreementReached. In Figure 7 we show the com-
plete pseudo-code for these functions as implemented in the combined algorithm.
Code that is not part of the slow agreement algorithm is shown in gray.

7. EXPERIMENTAL RESULTS OVER THE INTERNET

In the previous sections we have presented the Moshe algorithm; the Moshe algo-
rithm uses an abstract notification service and a reliable fifo communications layer.
An implementation of Moshe has to instantiate the abstract notification service with
an actual one, and has to employ some form of reliable communication. We imple-
mented Moshe using the congress WAN-oriented notification service [Anker et al.
1997], so that congress served both as the notification service and as the reliable

3If the initiator receives the last proposal sent by each of the other servers before invoking the

slow agreement algorithm, then the propNum of its SA proposal is greater than the local values of

propNum at all of the other servers.

Moshe: A Group Membership Service for WANs · 21

fifo communications layer for Moshe.

congress internally implements a reliable communications service, which it uses
to detect communications failures and to propagate network events. The commu-
nications service is built using an overlay of TCP/IP streams between congress

servers, with the exact interconnection topology determined by an initial configu-
ration description. A congress server suspects its neighboring server when the
TCP link between them goes down. Since TCP is fine-tuned to have few false
suspicions, congress provides a similar quality of service. When implementing
Moshe on top of congress, we exploited the congress communications service to
reliably send messages among Moshe servers: Moshe servers communicate among
themselves using the sockets used by the congress servers, so that congress and
Moshe messages are sent on the same links.

In this section we present performance measurements from running the system
consisting of both congress and Moshe over the Internet.

Our goal was to evaluate, in a realistic setting, three important design decisions
employed by Moshe: first, Moshe optimizes for situations in which the fast algo-
rithm terminates successfully; second, Moshe does not deliver obsolete views; and
third, Moshe benefits from being built on top of a notification service.

The first design decision, optimizing for the fast case, is justified if the number of
cases in which the fast agreement algorithm is run significantly exceeds the number
of cases in which the slow agreement algorithm is run. We therefore measured the
number of times each of the two algorithms is run during a long-term experiment
in a realistic setting. Our design decision to refrain for delivering obsolete views
at unstable periods can cause Moshe to wait a long period after a notification
event before delivering a view. Therefore, in order to evaluate our policy of not
delivering obsolete views, we measured how often Moshe waits a long period (more
than 4 seconds) after a notification event before delivering a view. To evaluate
the utility of building Moshe atop a notification service, we measured how the
performance of Moshe benefits from configuring the notification service to specific
network conditions.

We ran the service over the Internet in five locations: MIT, UCSD, Cornell
University (CU), the Hebrew University of Jerusalem, Israel (HUJI), and National
Taiwan University (NTU) in Taipei, Taiwan. We ran the service for a total of almost
two weeks – ten days in one configuration, and two and a half days in another. We
now report on our observations during this experiment.

In Section 7.1 we study the nature of the network the experiments ran on. Then,
in Section 7.2 we describe the experiment we ran. In Section 7.3, we describe the
events that occurred during the experiment – machine failures, network partitions,
etc. In Section 7.4, we report on the number of times the fast and slow agreement
algorithms were run. In Section 7.5 we examine the frequency of cases in which
it takes Moshe more than 4 seconds to deliver a view. Finally, in Section 7.6, we
discuss the running time of Moshe.

22 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

7.1 The network situation

In order to understand the nature of the network we were running on, we used ‘ping’
to measure the round-trip times and loss rates among pairs of processes4. We had
‘ping’ send a message once every minute. We ran ‘ping’ for 68 hours from CU and
UCSD, for 57 hours from MIT, and for 30 hours from NTU. Since HUJI is behind
a firewall that does not let ‘ping’ messages pass through, we instead measured the
loss rate and round-trip times to a gateway machine at HUJI that is not behind
the firewall. We could not run ‘ping’ from HUJI.

From MIT UCSD CU NTU

To no bursts all no bursts all no bursts all no bursts all

MIT – – 0.6% 0.7% 0.3% 0.5% 1.0% 1.3%

UCSD 1.3% 1.5% – – 0.5% 0.8% 1.3% 1.3%
CU 1.8% 2% 0.7% 1.0% – – 0.7% 0.7%

NTU 1.7% 1.8% 1.4% 1.7% 1.3% 1.9% – –
HUJI 1.5% 1.9% 0.7% 0.8% 0.3% 0.6% 1.4% 1.7%

Table 1. Loss rates measured by ‘ping’.

On occasion, two machines would become disconnected for several minutes, lead-
ing to a sequence of three or more messages being lost. We want to distinguish
such long-term disconnections from single packet losses. Therefore, in addition to
computing the total percentage of messages that were lost, we also computed a
no bursts loss rate, excluding bursts of three or more consecutive losses. That is,
messages lost in bursts of three or more are not counted as lost in the no burst loss
rate. In Table 1 we show the measured loss rates – both the normal count, and the
no bursts loss rate. The difference between the total loss rate and the no bursts
loss rate gives the percentage of messages that were lost in bursts of three or more
– that is, messages lost during disconnections.

The observed loss rates varied greatly with time. For example, in Figure 8 we
show the cumulative number of losses from MIT to CU observed over a 57 hour
period. In this experiment, there were three bursts of three losses and no longer
loss bursts. Thus, only 9 of the 73 losses were a part of a burst. During the first
19.5 hours that ‘ping’ was running, only one message (out of 1161) was lost. Then,
during the next half hour, 10 of 34 messages were lost for a loss rate of 29%. The
loss rate then plunged to zero again, for seven hours. Starting at the 27th hour
of the experiment, the link became lossy again. For the following 5.5 hours, the
loss rate (computed over the entire 5.5 hours) was 12.9%. This illustrates how
unpredictable loss rates over the Internet can be.

We assume that the loss rate observed during the second day is unusual, and
usually the link between MIT and CU is more reliable than the links to NTU and
HUJI from these sites, as reflected by the first day of the measurement from MIT
to CU and by the measurements from CU to MIT.

We measured the median, average, minimum, and maximum round trip times
encountered by ‘ping’. The results appear in Table 2. The round trip times were

4These measurements were not done at the same time as our experiments with Moshe.

Moshe: A Group Membership Service for WANs · 23

Cumulative number of losses observed by 'ping'
from MIT to Cornell

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

Hours

C
um

ul
at

iv
e

lo
ss

es

Fig. 8. Cumulative losses observed by ‘ping’ from MIT to Cornell.

fairly stable. Occasionally, a message takes much longer than the average, but such
messages are rare. Hence, the average time is usually very close to the median. The
minimum time was also usually close to the median. An exception was the time
from CU to HUJI, which was usually around 582 ms., but went down to around
170 – 200 ms. for roughly one hour of the 68-hour measurement period.

From MIT UCSD CU NTU
To med/avg/min/max med/avg/min/max med/avg/min/max med/avg/min/max

MIT — 91/98/87/2803 19/24 /16/2214 235/239/231/1327
UCSD 90/96/87/653 — 85/89/80 /1778 272/275/266/1272

CU 19/23/16/1225 85/90/80/3711 — 236/237/235/266

NTU 234/239/231/1737 272/277/228/3114 236/237/235/348 —
HUJI 584/587/580/1384 619/618/235/3471 586/582/170/609 763/758/412/842

Table 2. Round-trip times in milliseconds measured by ‘ping’, median, average, minimum, and

maximum values.

As seen in Table 2, the measured round-trip times between MIT and the other
locations were as follows: to CU, around 20 ms.; to UCSD, around 90 ms.; to
NTU, around 235 ms.; and to HUJI, around 585 ms. HUJI had the longest round-
trip times to all destinations. The longest measured average round-trip time was
between NTU and HUJI, which was around 750 ms.

7.2 The experiment setup

At each of the five locations, we ran a membership server and a program simulating
ten clients. The clients generated activity in ten groups.

24 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

MIT

UCSD

CU

NTU

HUJI

Configuration 1: Fully connected.

MIT

UCSD

CU

NTU

HUJI

Configuration 2: Nexus at Cornell.

Fig. 9. Two congress configurations we experimented with.

When using congress, one has to configure a logical topology, such that servers
communicate only with their neighboring servers in this topology. We experimented
with two different configurations. First, we configured congress so that all of the
servers would communicate with each other directly, that is, all would be neighbors
in the logical topology. This configuration is illustrated in Figure 9(a). We ran
Moshe in this configuration for 10 days. We then configured congress so that
CU serves as a nexus for HUJI and NTU, as illustrated in Figure 9(b): the three
servers in the US communicate with each other directly, and the servers at NTU
and HUJI communicate directly only with CU.

The first configuration maximizes the chance for non-transitive communication,
which may lead to the slow agreement algorithm being invoked. Moreover, lengthy
non-transitivity may lead to unstable periods. With the second configuration, non-
transitivity is very rare. The second configuration also eliminates the least reliable
links (please see Table 1), minimizing the probability that Moshe will be delayed
due to message loss.

We periodically invoked Moshe by having a client request to join or leave one of
the ten groups. The pseudo-code of the client simulation program is presented in
Figure 10. It has two phases, an initialization phase and a running phase. During
the initialization phase ten clients are started. The time that elapses between two
client beginning is at most three minutes. This simulates clients starting roughly at
the same time. Each client joins each group with probability 0.2. Thus, following
the initialization phase, there is an average of two members per location in each
group.

During the running phase, events occur in batches of one to five at a time, with
up to a half hour between batches. This ensured that the overhead would be low; we
had to be friendly to the machines that hosted our experiment. Batches modeled
what we believed would be the common case: users often perform a number of
actions at the same time. This also allowed us to study the effect on other groups
of a server handling another group’s events.

Most of the time, each of the groups had members at all locations. That is, in
most of the invocations of the algorithm, all the servers participated because each

Moshe: A Group Membership Service for WANs · 25

function groups [process 7→ groups] // maps process to groups it is in

// Initialization phase
for all c ∈ { 1 .. 10 }

create client c

for all g ∈ { 1 .. 10 }
choose f ∈ { 1 .. 5 }
if (f = 1)

have c join g

endif

choose t ∈ { 1 .. 180 }
sleep t seconds

end for

// Running phase
do forever:

choose loops ∈ { 1 .. 5 }
for all loop ∈ { 1 .. loops }

choose act ∈ { join, leave }
if (act = join ∧ { 1 .. 10 } - groups[c] 6= { })

choose g ∈ { 1 .. 10 } - groups[c]

have c join g

else if (act = leave ∧ groups[c] 6= { })

choose g ∈ groups[c]

have c leave g

endif

end for

choose t ∈ { 1 .. 1800 }
sleep t seconds

end do

Fig. 10. The client simulation program pseudo-code.

of them had at least one client which was a member of the group in which the
membership change was taking place. On occasion, a group did not have members
at all of the locations.

7.3 The events

We now describe the network events that occurred during the experiments.

7.3.1 Configuration 1. During the ten days of the experiment with the first con-
figuration, the server at MIT delivered 10,786 views to its clients. We observed
several temporary communication failures. Most of the observed failures were non-
transitive, for example, the link between NTU and HUJI would be down, but both
NTU and HUJI could communicate with MIT. The longest transient communica-
tion failure lasted 26 minutes. On one occasion, we observed a full partition, where
NTU was isolated from the other four locations for roughly an hour and a half. The
partition was not detected at the same time at all of the members; the first server
detected that NTU was disconnected roughly a half hour before the other servers
had all detected it. On two occasions, two of the membership servers failed due

26 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

to software errors or due to the crashing of the terminal from which the programs
were run. They were soon restarted, along with the respective client simulation
programs. In both cases, the three surviving servers ran uninterrupted.

During periods with non-transitive communication, Moshe does not generate ad-
ditional traffic, and by design, does not terminate until the non-transitivity passes.
During the full partition, Moshe servers at both network components continued
delivering views: the server at NTU installed views with local members only, and
the other four servers delivered common views without NTU members.

7.3.2 Configuration 2. After one day of the second experiment, the machine we
ran on at CU crashed for several hours due to a hardware problem. During these
hours, the NTU and HUJI servers each operated by itself, and MIT communi-
cated only with UCSD, although nothing was wrong with the Internet connection
among all four sites. The partition occurred because the overlay network used by
congress is static, and we configured it to route all messages from NTU and HUJI
to other sites via CU. When the machine at CU recovered, the partition merged.

This illustrates a drawback of using congress with such a configuration: it
makes the system susceptible to a single point of failure. There are plans to make
congress more robust by making the overlay dynamic, and thus allowing fail-over
in such cases: upon detecting that the nexus is down, servers will try to connect via
a surrogate nexus. Had this change been made in congress, the NTU and HUJI
servers would have connected via MIT or UCSD, and the partition would have been
avoided. This is a simple change to make. However, it is not in the scope of our
project, which focuses on Moshe.

During the partition, invocations of Moshe involved only one or two servers,
and thus were not representative. Therefore, for the sake of studying Moshe’s
performance below, we ignore them. Excluding views delivered during the partition,
the MIT server delivered 2,559 views in the second configuration.

7.4 The number of slow agreement cases

Of the 10,786 views the MIT server delivered to its clients in the first experiment,
only 125 were resolved by the slow agreement algorithm. Thus, 98.84% of the
invocations were resolved using the fast agreement algorithm. The percentage of
slow agreement cases was quite stable throughout the execution. The numbers
at the other servers were similar, as shown in Table 3. Recall that these results
were obtained when congress was configured to maximize the chance of the slow
agreement algorithm being invoked. We see these results as overwhelming evidence
of the benefit of our design, which optimizes for situations that can be resolved
using the fast agreement algorithm.

In the second experiment, the number of invocations of the slow agreement al-
gorithm drops by an order of magnitude: only 4 of the 2,559 views at MIT were
resolved using the slow agreement algorithm, while 99.84% of the cases were re-
solved using the fast agreement algorithm. Similar numbers were observed at the
other servers, as shown in Table 4. Recall that in this experiment, only the three
US locations are connected with each other directly, and non-transitivity can occur
only among these three servers. Since the slow agreement algorithm is only invoked
if non-transitivity occurs, it is seldom invoked in this configuration.

Moshe: A Group Membership Service for WANs · 27

Server Total Number Number of Slow % Slow Number of Fast % Fast

Location of Views Algorithm Cases Algorithm Algorithm Cases Algorithm

MIT 10,786 125 1.16% 10,661 98.84%

UCSD 9,701 116 1.20% 9,585 98.80%
CU 9,484 104 1.10% 9,380 98.90%

NTU 10,392 107 1.03% 10,285 98.97%

HUJI 8,802 101 1.15% 8,701 98.85%

Table 3. Views resolved by the fast and slow agreement algorithms, first configuration.

Server Total Number Number of Slow % Slow Number of Fast % Fast

Location of Views Algorithm Cases Algorithm Algorithm Cases Algorithm

MIT 2,559 4 0.16% 2,555 99.84%

UCSD 2,281 4 0.18% 2,277 99.82%
CU 2,338 5 0.21% 2,333 99.79%

NTU 2,642 5 0.19% 2,637 99.81%

HUJI 2,542 4 0.16% 2,538 99.84%

Table 4. Views resolved by the fast and slow agreement algorithms, second configuration.

Although the tests were run at only five locations, we believe that the results
generalize to a larger number of locations. Even with many locations, one would
typically configure congress with no more than five locations directly connected to
each other. As illustrated by the difference between the two experiments, reducing
the number of servers directly connected to each other significantly reduces the
slow agreement cases, even if the number of participating servers remains constant.
Therefore, we believe that with a large number of locations configured so that only
a handful are directly connected, similar results would be obtained. We are unable
to verify this hypothesis, however, due to lack of resources.

7.5 Long delays in view delivery

Moshe, by design, does not terminate while the network conditions are unstable.
There are two situations that we classify as unstable: (1) when the network situation
is constantly changing; and (2) when the failure detector outputs of connected
processes differ. The latter occurs if the underlying communication is not transitive,
for example if MIT is connected to NTU and UCSD, while UCSD and NTU are
not connected. Non-transitivity can be overcome using relays; however, it is up
to the communication layer to detect non-transitive cases and relay traffic through
active links. Moshe runs atop a communication layer, and reflects its status. Thus,
Moshe waits for the communication layer to establish relays that would overcome
the non-transitivity. In the interim, Moshe does not deliver new views.

In order to study the length of unstable periods, we examine the total running
time of Moshe at each server. We define the total running time as the time from
the first NE that occurs at this server after a view until the next view is sent by
this server to its clients. Note that multiple NEs can occur while the algorithm is
in progress, before a view is actually sent to the clients. Thus, this measurement
does not capture the time Moshe takes to resolve one network event; this latter
time is studied in the next section. Rather, the total running time is the length of
the period during which clients are aware that a view change is in progress. Given
Moshe’s policy not to deliver obsolete views, an unstable period of a certain length

28 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

will be reflected in a total running time of similar length. We now discuss cases in
which the total running time exceeded 4 seconds.

In the first configuration, only 379 of the 10,786 views at MIT, (3.5%), were
delivered 4 seconds or more after the first NE. Only 167, (roughly 1.5%), lasted
20 seconds or longer. The median total running time was 1129 ms., which was
the same as the average excluding cases over 4 seconds. The total running times
over 4 seconds were very sparsely distributed. The maximum running time of 32
minutes was observed when NTU disconnected from all the servers except MIT,
and continued to communicate with MIT for 32 more minutes before disconnecting
from it too. The second longest total running time was 26 minutes.

In the second configuration there were fewer unstable periods: for only 14 of the
2,559 views at MIT, (0.5%), the total running time was 4 seconds or longer, and the
longest total running time was 31 seconds. The median total running time was 680
ms., and the average excluding cases over 4 seconds was 814 ms. Unstable periods
are less frequent in this configuration since non-transitivity is less likely.

7.6 Performance measurements

In this section we study the duration of Moshe executions, the time from the last NE
received from congress before the view delivery until the Moshe server sends the
view out to its clients. This is the time Moshe takes to resolve the last notification
event before the view. We only consider executions of up to 4 seconds; we assume
that longer executions pertain to unstable periods, as discussed above.

At MIT, 97% of the executions had durations up to 4 seconds. When comparing
this figure with the results presented in Section 7.5 above, we see that in most cases
when the total running time of Moshe exceeded 4 seconds, the duration from the
last NE to the view also exceeded 4 seconds. This is typical in unstable situations
where the network is slow to adapt. Consider the following example: the site at
Taiwan is disconnected from the other sites for a while, and then, when it comes
up, its link with MIT is re-established more than 4 seconds before its link with
UCSD is re-established. MIT gets exactly one NE, when its link with Taiwan is re-
established, and so its duration and total running time are both the same, and are
both over 4 seconds as the view cannot be delivered before UCSD also re-establishes
connectivity with Taiwan. This behavior is typical on the Internet, where routing
tables do not simultaneously adapt to reflect the correct network situation.

Before we present our measurements, let us first examine what we would expect
the typical duration to be, for example, at MIT. Let a join or leave event occur
at some site, which we call the origin. The congress server at the origin sends a
notification about the join to all of the other servers. Once this notification reaches
MIT, a NE occurs. In order for Moshe to complete at MIT, the join notification
has to first reach all of the servers, causing them to send proposals, and then the
proposals have to be received at MIT. Thus, in the absence of message loss, the
duration of Moshe should be roughly the one-way time from the origin to the most
remote server plus the one-way time from the most remote server to MIT, minus
the one-way time from the origin to MIT. For example, if the origin is CU, this
figure would be around 560 ms. If the origin is MIT, it would be around 585 ms.
Message loss can, of course, cause further delays.

In Section 7.6.1 we present measurements of Moshe’s duration at MIT; these

Moshe: A Group Membership Service for WANs · 29

were similar to measurements collected at the other two US sites. In Section 7.6.2
we compare the duration of invocations resolved by the fast and slow agreement
algorithms, also at MIT. Section 7.6.3 presents measurements collected at HUJI,
and explains how and why they differ from those collected in the US.

7.6.1 Moshe duration at MIT. In the first configuration, the duration of Moshe
was not longer than 4 seconds for 97% of the views delivered. The median duration
of Moshe at MIT in this configuration was 1112 ms., and the average duration,
computed for cases up to 4 seconds, was 1118 ms. In the second configuration, the
duration was closer to the expected value computed above: the median duration
was 670 ms., and the average, excluding the 8 cases over 4 seconds was 797 ms. We
now elaborate on our observations in the two configurations.

7.6.1.1 Moshe duration distribution – configuration 1. A histogram of Moshe
duration (values up to 4 seconds) is shown in Figure 11. Notably, the duration
is distributed around diminishing peaks. The first large peak centered at around
650 ms., the second, around 1250 ms., the third, around 1800 ms., and the fourth,
around 2300 ms. There is also a small peak around 250 ms., which is due to events
initiated at HUJI, as explained in Section 7.6.3 below.

Histogram of membership algorithm duration
MIT server, configuration 1,

runs up to 4 seconds (97% of runs)

0

200

400

600

800

1000

1200

1400

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

milliseconds

nu
m

be
r

of
 r

un
s

Fig. 11. A histogram of Moshe duration at MIT, first configuration.

The first and highest peak, around 650 ms. is somewhat larger than our expecta-
tion for the loss-free case, but taking into account processing and scheduling time,
it is quite reasonable. The subsequent peaks are due to message loss and TCP
retransmissions. Recall that in this experiment messages were sent over TCP/IP
connections between each pair of servers. If a message sent over a TCP link is

30 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

lost, the message is retransmitted after a timeout which is typically the estimated
round-trip time on the link plus twice the standard deviation of the round-trip
time. Considering the round-trip times in Table 2, 500 – 600 ms. are reasonable
retransmission timeouts in our environment.

To analyze the probability of delay due to message loss, let us examine the
message flow involved in an invocation of Moshe. Moshe is usually invoked when
a process is joining or leaving a group. The join or leave request is issued at some
server. congress uses TCP/IP links to propagate the information about the join
or leave to all servers. Thus, congress sends four messages over TCP/IP links.
When these messages are received, a NE occurs at all of the servers. Upon receiving
the NE, each Moshe server sends proposal messages to the other servers, again over
TCP/IP links. For Moshe to complete at the MIT server, proposal messages from
the other four servers have to arrive at MIT. The completion of Moshe may be
delayed when any of these eight messages – a congress notification or a proposal

– is delayed due to loss.

Scatter of membership algorithm duration over 10 days,
MIT server, configuration 1, runs up to 3 seconds

0

500

1000

1500

2000

2500

3000

0 10

Experiment days

m
ill

is
ec

on
ds

Fig. 12. Distribution of Moshe duration at MIT over time, first configuration.

As observed in Section 7.1 above, loss rates on the Internet greatly vary with
time. This causes the duration of Moshe to also vary with time. In Figure 12 we
show how the duration of Moshe was distributed over the 10 days of the experiment.
We observe that in the last two days there was an increase of cases in which Moshe
took longer to complete. We assume that this is caused by the network conditions
deteriorating during these days.

Approximately 50% of the runs in the first configuration lasted over 1100 ms.
In order to approximate the percentage of cases that were delayed due to message
loss, we excluded runs due to first join events (cf. 7.6.1.4 below) and runs resolved
by the slow agreement algorithm, since such runs lasted longer regardless of loss.
We also excluded runs exceeding three seconds, assuming that such delays were

Moshe: A Group Membership Service for WANs · 31

caused due to instability, for example, lack of transitivity in the network. Of the
remaining runs, roughly 46% lasted over 1100 ms. If we exclude the last two days
of the experiment, during which the network was highly unstable, this number goes
down to 40%.

Still, this is a very high percentage. If Moshe is delayed only due to the loss of one
of eight messages, as explained above, then the 40% figure would imply that each
message is lost with a probability of approximately 6.3%, assuming independence
of message loss on different links. Although we have observed in Section 7.1 that
loss rates vary greatly, this still seemed to be too high: it is more than double the
highest loss rate we observed over two or three days by running ‘ping’. We therefore
hypothesized that there were more than eight messages actually being sent, that
is, that messages were being broken up by TCP into more than one packet.

In order to verify this hypothesis, we tracked the packets actually being sent using
’tcpdump’. As expected, we observed that messages were usually being split into
two packets. This is because the internal congress mechanism for sending mes-
sages executes two ’write’ calls in order to send a single message over the TCP/IP
socket: first, it writes the length of the packet (four bytes), and next, it writes the
data. Since the TCP/IP links were relatively idle, the first four bytes would be sent
by TCP immediately in a separate IP packet, and the rest of the message would be
sent in a second packet. We believe that changing congress to execute a single
’write’ would improve the performance. However, making changes to congress

are outside our scope, we merely used congress to implement Moshe; we hope
that such a change to congress will soon be made.

7.6.1.2 The combined duration of Moshe and congress. The duration of Moshe
depicted in Figure 11 above is measured from the time the MIT server gets a NE,
until the server gets the corresponding view change. Therefore, it does not capture
the time it takes congress to generate a NE from the time an actual event, such
as a process join or leave occurs.

Let us examine the time it takes congress to generate a NE. When a client
wants to join or leave a group, it sends a message to its local server. Since clients
are served by servers in their LAN, the time it takes for this message to reach
the congress server is negligible (typically less than one millisecond). When the
server receives such a message, it immediately generates a NE at the local Moshe
server, and sends a multicast message through the congress overlay to the other
servers. In general, the time it takes congress, or any other notification service,
to generate a NE directly depends on the time it takes the pertinent information to
propagate through the network.

Specifically, the combined duration of Moshe and congress at MIT for events
originated at MIT, is practically the same as the duration of Moshe measured for
these events at MIT. The histogram in Figure 13 shows the duration of Moshe in
a subset of the runs of Figure 11, consisting of runs originated at MIT. We observe
that it exhibits a similar pattern to the histogram of Figure 11.

7.6.1.3 Moshe duration distribution – configuration 2. In the second configura-
tion, the most lossy links to HUJI and NTU are eliminated. This causes messages
to and from these locations to traverse two more reliable links instead of a single less
reliable link. Eliminating lossy links reduced to a half the number of times Moshe

32 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

Histogram of membership algorithm duration
MIT server, configuration 1, events initiated at MIT

runs up to 4 seconds (97% of runs)

0

50

100

150

200

250

0
20

0
40

0
60

0
80

0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

milliseconds

nu
m

be
r

of
 r

un
s

Fig. 13. A histogram of Moshe duration at MIT for events originated at MIT, first configuration.

was delayed due to loss: in this experiment, the running time of Moshe exceeded
1100 ms. for only 629 of the 2,559 views, under 25%. The histogram of the duration
of Moshe at MIT during the experiment with the second configuration is shown in
Figure 14. Notably, the peaks for this configuration are still centered around the
same values as in the first configuration; they differ in their relative sizes.

Histogram of membership algorithm duration
MIT server, configuration 2,

runs up to 3 seconds (99.7% of runs)

0

50

100

150

200

250

300

350

400

450

0

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

19
50

21
00

22
50

24
00

25
50

27
00

28
50

30
00

milliseconds

nu
m

be
r

of
 r

un
s

Fig. 14. A histogram of Moshe duration at MIT, second configuration.

Moshe: A Group Membership Service for WANs · 33

This again illustrates the importance of better configuring the notification and
communication services in order to boost Moshe’s performance.

7.6.1.4 First join events. Moshe was invoked due to different events - join, leave,
server failure, etc. We call a first join the case where a client joins a group for which
no other client of its server is a member. The measured duration distributions
for most of the event types were similar, with the exception of first join events.
The duration of Moshe for first join events of local members (i.e., at MIT), was
three orders of magnitude smaller than for other events – it averaged less than
one millisecond. In contrast, the duration of Moshe for first join events of remote
members (i.e., the joining member is not at MIT) was higher than for other events,
by about 50%: In the first experiment, 242 of 10,786 runs of Moshe were due to
a remote first join. For these runs, the median duration was 1765 ms., and the
average excluding cases over 4 seconds was 1756 ms.

First join events are special, since in these cases, the local congress server does
not have information about group membership5. Therefore, congress cannot
locally issue a NE immediately upon receiving the join, but instead has to query the
other congress servers to learn of the current group membership. The query is
sent to the other servers together with the report about the join. When this report
is received by the remote servers, it leads to a NE, and the servers send each other
proposal messages. The proposals are transmitted roughly at the same time as the
query response. Finally, when the query response arrives at the local server, a NE is
generated locally, and a proposal is sent by the local server. At this time proposals
from remote servers have already arrived and the view is ready to be immediately
delivered (within less than a millisecond). The remote servers, on the other hand,
cannot deliver the view until the proposal from the local server arrives.

7.6.2 Comparing the duration of the fast and slow algorithms. Recall that the
slow agreement algorithm is invoked when it is detected that the fast agreement
algorithm is blocked. We distinguish between the following two cases:

(1) the slow agreement algorithm is invoked at a site where there was a preced-
ing NE. At this site, the fast agreement algorithm is first invoked, executing a
message round. Then, the slow agreement algorithm is run as well, executing
another round or two, depending on whether the propNum values of the partic-
ipants are initially the same. The measured duration for this case spans both
the fast and slow agreement algorithms.

(2) the slow agreement algorithm is invoked when an unexpected proposal is re-
ceived while the algorithm is not locally running. In this case the fast algorithm
is not run at this site at all. For this case, we measure the duration from the
time it is detected that the algorithm should run (by receipt of an unexpected
proposal), and until a view is sent. This spans only the slow algorithm.

In Figure 15 we show a histogram of the running times of the slow agreement
algorithm at MIT, for the first configuration. We distinguish between the two cases
described above. For cases in which the algorithm was preceded by a NE, the median

5congress only disseminates information about a group to servers that have members in this

group.

34 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

MIT server, configuration 1,
runs up to 4 seconds (89.6% of runs)

0

1

2

3

4

5

6

7

8

9
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

milliseconds

nu
m

be
r o

f r
un

s

Case (1): Time from last NE
Case (2): Time from detection (no NE)

Histogram of slow algorithm duration

Fig. 15. A histogram of the slow agreement algorithm duration at MIT, first configuration.

duration was 1865 ms., and the average excluding cases over 4 seconds was 1776 ms.
This is about 60% longer than the median and average duration of Moshe for all
runs, dominantly fast agreement cases. The first peak in the distribution of these
running times appears to be centered at approximately 900 ms., which is 250 ms.,
or 40% more than the peak for all runs. For cases in which there was no preceding
NE, the median algorithm duration was 871 ms. and the average excluding cases
over 4 seconds was 922 ms. This is about 80% of the usual duration.

Based on these numbers we hypothesize that in most cases, the slow agreement
algorithm involves one message round (in addition to the one round of the fast
agreement algorithm) and not two. Note that two rounds should not last twice as
much as one, since the time for propagating event notifications to remote sites is
also part of the running time. A two round algorithm should be longer than the
one-round algorithm by roughly the one-way time to the most remote site. This is
close to our observations.

7.6.3 Moshe duration at HUJI. The measurements gathered at MIT were typical
for the US sites. At HUJI and NTU, however, the duration of Moshe was, on
average, shorter. In Figures 16 and 17 we show the distribution of Moshe’s duration
at HUJI for the two configurations. The median duration for the first configuration
was only 750 ms., and the average excluding cases over 4 seconds was 906 ms. This
difference stems from the fact that HUJI is the farthest location – the round-trip
times between it and other locations are the longest (please see Table 2). Therefore,
membership events other than those initiated at HUJI are reported at HUJI later
than at other locations. This is illustrated by the following example:

Example 7.1. Consider Moshe being run by three servers: MIT, CU, and HUJI.
Assume that messages from CU reach MIT in 10ms., and messages from both CU

Moshe: A Group Membership Service for WANs · 35

Histogram of membership algorithm duration
HUJI server, configuration 1,

runs up to 4 seconds (96.5% of runs)

0

200

400

600

800

1000

1200

1400
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

milliseconds

nu
m

be
r

of
 r

un
s

Fig. 16. A histogram of Moshe duration at HUJI, first configuration.

Histogram of membership algorithm duration
HUJI server, configuration 2,

runs up to 3 seconds (99.6% of runs)

0

50

100

150

200

250

300

350

400

450

0

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

19
50

21
00

22
50

24
00

25
50

27
00

28
50

30
00

milliseconds

nu
m

be
r

of
 r

un
s

Fig. 17. A histogram of Moshe duration at HUJI, second configuration.

and MIT reach HUJI in 300 ms. Also ignore local computation time. If a client at
CU joins a group, a NE reflecting this join is reported to the MIT server as fast as
10 ms. later, whereas at HUJI, it is reported only 300 ms. after the join. Thus, the
server at MIT invokes Moshe 290 ms. before the HUJI server. A proposal from MIT
reaches HUJI 10 ms. after the NE, and at this point the HUJI server can deliver
the view. The proposal from HUJI, on the other hand, is only sent to MIT after

36 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

the NE at HUJI, and reaches MIT 300 ms. later, which is 590 ms. after Moshe is
invoked by the MIT server. In this example, the duration of Moshe at HUJI is 10
ms. whereas at MIT it is 590 ms.

This example is representative for invocations of Moshe due to an event at one of
the US sites, when the NTU server is not involved in the view. This accounts for
only some of the cases in the first peak in Figures 16 and 17. When the NTU server
is involved, the typical duration at HUJI for views initiated in the US goes up to
around 300 ms., due to the time it takes the join report to reach NTU, plus the
time it takes the proposal from NTU to reach HUJI. If the join report to HUJI is
delayed (due to loss), then the duration of Moshe at HUJI becomes even shorter
while at the other locations it becomes longer. We believe that such loss accounts
for most of the cases in the first peak. In the second configuration, when the loss
rate was lower, the first peak was smaller.

About one fifth of the join and leave events were generated at HUJI. These behave
conversely to the cases in the example. At MIT, cases initiated at HUJI and NTU
often terminate quickly, especially if not all of the servers are involved in the view.
This accounts for the small peak around 250 ms. in Figures 11 and 14 above.

It is worth noting that the difference in the starting times of Moshe in different
locations is an artifact of running on a WAN, where latencies among different
processes are disperse. This does not stem from any design decisions made in our
algorithm; no algorithm can be initiated at a remote site before that site learns
that the algorithm should be initiated, and a remote site cannot learn that the
algorithm should be initiated before it receives a message that causally follows the
initiating event at the origin.

8. PROVIDING VIRTUAL SYNCHRONY

Moshe is designed to be used in conjunction with a group multicast service as
part of a group communication system. Group communication systems generally
provide some variant of virtual synchrony semantics; many such variants have been
suggested, for a survey, see [Chockler et al. 2001]. While detailed discussion of all of
these variants is beyond the scope of this paper, we describe here the most common
properties of virtual synchrony and how clients can implement them in conjunction
with Moshe. A deeper discussion can be found in [Keidar and Khazan 2000].

The key aspect of virtual synchrony semantics is the interleaving of send and
delivery events with views. In this model, send and delivery events of messages
occur in views. We say that a multicast event e in group G occurs at process p in
view V if V was the latest view that p delivered in group G before e, or it was the
default initial view V0 if no view had yet been delivered.

All of the variants of virtual synchrony ensure that a message m is delivered in
the same view V by all processes that deliver m, and that m is not delivered in a
view that is ordered before the view in which the message was sent. Some of these
semantics (for example, strong virtual synchrony [Friedman and van Renesse 1995],
and the specifications of [Fekete et al. 2001; Moser et al. 1994; Keidar and Khazan
2000]) support a stronger property called Sending View Delivery, which ensures
that the view in which a message is delivered is the same view in which it was
sent. Another useful property provided by nearly all variants of virtual synchrony

Moshe: A Group Membership Service for WANs · 37

is that processes moving together from view V 1 to view V 2 deliver the same set of
messages in V 1. In order to exploit this property, a process moving from view V 1
to view V 2 needs to know who are the other member that also continue directly
from V 1 to V 2. This information is conveyed to the client along with the view, it
is often called the transitional set [Moser et al. 1994; Chockler et al. 2001].

Virtual synchrony properties are implemented by synchronizing participating
processes while view changes are taking place (for examples, see [Friedman and
van Renesse 1995; Guo et al. 1996; Agarwal et al. 1998; Keidar and Khazan 2000]).
During long periods of time in which a view does not change, the messages sent
can be delivered with minimal interference from the virtual synchrony algorithm.
When view changes are taking place, clients send each other special synchronization
messages in order to agree upon the set of messages they will deliver in the old view
before moving to the next one.

Moshe provides hooks that the clients can use to implement virtual synchrony
while the servers are agreeing upon the view. Upon receiving a startChange mes-
sage from the server, each client sends a synchronization message to the other
clients, tagged with the startChangeNum of the startChange message. The syn-
chronization message also carries the information required to agree on the set of
the messages to be delivered in the view that is now ending, as well as the identifier
of the view that is now ending. If Sending View Delivery is desired, then the client
blocks the sending of messages after sending a synchronization message until the
next view is delivered.

When a client receives a viewmessage V from its server, the client needs to ensure
that it delivers the same set of messages as other clients before delivering V to its
application. To this end, the client collects synchronization messages from all of the
clients that continue with it from the current view to V . Clients use the information
in the synchronization messages to determine the set of messages to be delivered
in the current view. Clients delay the delivery of V to the application until these
messages are delivered. The startChangeNums mapping in the view message serves
to make sure that the same set of synchronization messages are used for the same
view at all of the clients: for each client c, V.startChangeNums[serverOf(c)] is
the identifier of the synchronization message to be used from c. The clients use the
identifier of the previous view included in the synchronization messages to compute
the transitional set.

9. RELATED WORK

We have described Moshe, a one-round membership algorithm and service for wide-
area networks. We now compare our service with related work.

9.1 One round membership

Nearly all previous virtually synchronous group membership algorithms are two-
round algorithms. For example, the algorithms employed in Isis [Ricciardi and
Birman 1991], Horus [van Renesse et al. 1994], Ensemble [Hayden and van Renesse
1996], Relacs [Babaoğlu et al. 2001], Transis [Dolev et al. 1994], Totem [Agarwal
et al. 1998], and Phoenix [Malloth et al. 1995], all perform two communication
rounds after the network stabilizes and all of the participates know the correct
network situation.

38 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

Some algorithms, e.g., those of [Hiltunen and Schlichting 1998; Cristian and
Schmuck 1995], organize process in a logical ring structure, and can have the mem-
bership algorithm terminate after the token circulates the ring twice. The first iter-
ation is used to propagate information about locally detected connectivity changes,
and the second, to agree on the membership. Each iteration takes as many commu-
nication steps as the number of processes in the system. Therefore, this approach
cannot work effectively in a WAN where communication steps are costly. As a
consequence of using a ring structure to propagate information about connectivity
changes, the information is already ordered once it has propagated, that is, pro-
cesses cannot differ in the order in which they perceive connectivity changes. This
eliminates the types of scenarios that lead to running the slow agreement algorithm
in Moshe. In other words, the first iteration does more than the notification service
used by Moshe; it orders the information in addition to propagating it.

The only other single round membership algorithm that we are aware of is the
one-round membership algorithm in [Cristian and Schmuck 1995]. This algorithm
terminates within one round in case of a single process crash or join, but in case
of network events that affect multiple processes, the algorithm may take a linear
number of rounds, where in each round a token revolves around a virtual ring con-
sisting of all of the processes in the system. Thus, the latency until the membership
is complete and stable is O(n2δ) where δ is the maximum message delay at stable
times. This membership algorithm is not suitable for WANs, where δ tends to be
big and typical network events are partitions and merges. In contrast, once the
network stabilizes and all of the information about network events has been prop-
agated by the notification service to all of the servers, our algorithm terminates
within at most 3δ time. In our experiments, the algorithm terminated within one
round, (i.e., δ time) in almost 99% of the cases.

The Optimistic Atomic Broadcast algorithm of [Pedone and Schiper 1998] has
a structure very much like the single-round/three-round structure of Moshe. In
both cases, the algorithms are optimized to perform quickly when events are well
ordered (for Moshe when a network event arrives at the appropriate servers, and for
Optimistic Atomic Broadcast when the messages already arrive in a total order).

9.2 Separating membership maintenance from multicast services

Following the approach taken by congress [Anker et al. 1997] and Maestro [Bir-
man et al. 1998], our design separates the maintenance of membership from the
group multicast: membership is not maintained by every group member but only
by dedicated membership servers that are not concerned with the actual communi-
cation among clients in the groups. Our membership algorithm extends congress

and provides an interface for virtually synchronous communication semantics [Kei-
dar and Khazan 2000]. Unlike Maestro, our membership service does not wait for
responses from clients asserting that virtual synchrony was achieved before deliv-
ering views. Instead, we provide a novel interface that allows clients to implement
virtual synchrony in parallel with the membership’s agreement on views, and yet
does not slow the agreement on views until responses from clients are received.

Moshe: A Group Membership Service for WANs · 39

9.3 Group communication services for WANs

Other group communication systems that were designed for use in a WAN evolved
from previous work on group communication systems for use in a LAN [Dolev and
Malkhi 1996; Agarwal et al. 1998; Amir and Stanton 1998; Rodrigues and Verissimo
2000]. These systems leverage off of the fact that WANs are interconnected LANs.
The membership algorithms implemented in such systems usually first run the
original membership algorithm in each LAN, and then run another algorithm among
the LANs, merging the individual LAN memberships into one membership which
is then disseminated to all of the group members. Thus, these algorithms overcome
the problem of remote failure detection by having the failure detection done at
the LAN level. However, these algorithms are inherently multi-round, since an
additional round is added to the algorithm run on each LAN. For example, the
Totem multiple ring algorithm [Agarwal et al. 1998] takes two rounds per ring6

plus an extra round for multiple rings [Agarwal et al. 1998].
Our algorithm is the only membership algorithm that we are aware of that never

delivers views which it knows to be obsolete. As explained in Section 2.1, this
feature is important in WANs.

9.4 Light-weight group membership services

Light-weight group membership services (for example, [Dolev and Malkhi 1996;
Amir and Stanton 1998; Powell 1991; Glade et al. 1993; Rodrigues et al. 1996;
Birman et al. 1998]) employ a client-server approach to both virtual synchrony and
membership maintenance. In these algorithms, there are two levels of membership,
heavy-weight and light-weight. The servers are typically part of the heavy-weight
membership, and they use virtually synchronous communication among them. The
clients are typically part of the light-weight membership. Most light-weight group
membership services, for example, those of [Dolev and Malkhi 1996; Amir and
Stanton 1998; Powell 1991; Glade et al. 1993], do not preserve the semantics of the
underlying heavy-weight membership services. Unlike light-weight group member-
ship algorithms, which compute both heavy-weight and light-weight membership,
Moshe only computes the process-level group membership, hence additional mes-
sage rounds for computing both memberships are not necessary. Furthermore,
Moshe provides clients with full virtual synchrony semantics.

Light-weight group membership services scale well in the number of groups main-
tained, since they maintain the membership for several groups at the same time,
and can therefore bundle together messages pertaining to membership changes in
different groups. It is possible to implement a similar optimization in Moshe, since
in our design, the same membership servers maintain the membership of all of the
groups. Thus, it should not be difficult to modify Moshe servers to also handle
membership changes concerning several groups at the same time, and to bundle
messages corresponding to different groups into a single message.

Thus, Moshe provides the full semantics of heavy-weight group membership along
with the scalability and flexibility of a light-weight group membership, all for the
cost of a single communication round in the common case.

6A ring is the logical representation of a LAN in Totem.

40 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

10. CONCLUSIONS

We have described Moshe, a group membership algorithm for wide-area networks.
We have proven that Moshe provides properties that are useful and attainable in
an asynchronous system that may suffer communication failures and partitions, but
eventually stabilize.

We have ran Moshe over the Internet for almost two weeks, during which the algo-
rithm delivered over 12,250 membership views. We experimented with two different
configurations. Our experiments led to interesting general observations regarding
the behavior of membership algorithms over the Internet. The experiments also
illustrated the utility of Moshe’s features:

(1) Moshe does not deliver obsolete views to its clients. Obsolete views arise from
instability in the network. By not delivering obsolete views, Moshe reduces
the overhead of virtual synchrony: applications need not handle view changes
to views that no longer exist. Moreover, during periods of instability in the
network, Moshe does not generate additional traffic which could exacerbate
the instability. In our experiments, instability lasted over 20 seconds in only
1.5% of the cases in one configuration and in merely 0.35% of the cases in the
other configuration.

(2) Moshe optimizes for the common case of the failure detection being relatively
consistent. This occurred in nearly 99% of the view changes in one configuration
and in 99.8% in the other configuration.

(3) Moshe is built on top of a network event notification service. One can configure
the underlying service to optimize for different network conditions. We have
seen that the configuration of the notification service has a major effect on the
performance of Moshe. By abstracting the notification service out we could
design a simple algorithm that works the same way in all configurations.

(4) Moshe is built with a client-server design in which the membership is not main-
tained by every process, but only by dedicated membership servers.

We have validated the utility of the fourth feature with a set of experiments
presented elsewhere [Keidar et al. 2000]. The experiments were run using a proto-
type notification service before congress was available. They indicate that Moshe
should easily scale to systems containing hundreds of clients. These experiments
were quite straightforward and the results were not surprising; introducing a hi-
erarchy is a well-known technique for achieving scalability (see, for example, [Guo
et al. 1996]). Therefore, we did not reproduce these results here.

Acknowledgments

We are thankful to Tal Anker, Gregory Chockler, Alan Fekete, Roger Khazan, and
Ohad Rodeh for many interesting discussions and helpful suggestions. We thank
Omri Barel and Tal Anker for providing us with the congress implementation
used in our tests. We thank Yuh-Jzer Joung and Robbert van Renesse for hosting
our experiments on their machines in Taiwan and Cornell University, respectively.
Finally, we thank the anonymous referees for their helpful comments which helped
us improve the quality of the presentation.

Moshe: A Group Membership Service for WANs · 41

REFERENCES

ACM. 1996. Commun. ACM 39(4), special issue on Group Communications Systems (April

1996). ACM.

Agarwal, D. A., Moser, L. E., Melliar-Smith, P. M., and Budhia, R. K. 1998. The

Totem multiple-ring ordering and topology maintenance protocol. ACM Transactions on

Computer Systems 16, 2 (May), 93–132.

Amir, Y., Dolev, D., Melliar-Smith, P. M., and Moser, L. E. 1994. Robust and efficient

replication using group communication. Technical Report CS94-20, Institute of Computer

Science, Hebrew University, Jerusalem, Israel.

Amir, Y. and Stanton, J. 1998. The Spread wide area group communication system.

TR CNDS-98-4, The Center for Networking and Distributed Systems, The Johns Hopkins

University.

Andersen, D. G., Balakrishnan, H., Kaashoek, F., and Morris, R. 2001. Resilient

overlay networks. In SOSP (Oct. 2001).

Anker, T., Breitgand, D., Dolev, D., and Levy, Z. 1997. Congress: Connection-
oriented group-address resolution service. In Proceedings of SPIE on Broadband Networking
Technologies (November 2-3 1997).

Anker, T., Chockler, G., Dolev, D., and Keidar, I. 1998. Scalable group membership
services for novel applications. In M. Mavronicolas, M. Merritt, and N. Shavit Eds.,
Networks in Distributed Computing (DIMACS workshop), Volume 45 of DIMACS (1998),
pp. 23–42. American Mathematical Society.

Anker, T., Dolev, D., and Keidar, I. 1999. Fault tolerant video-on-demand services. In
19th International Conference on Distributed Computing Systems (ICDCS) (June 1999),
pp. 244–252.

Babaoğlu, Ö., Davoli, R., and Montresor, A. 2001. Group communication in partition-
able systems: Specification and algorithms. IEEE Trans. Softw. Eng. 27, 4 (April), 308–336.

Previous version: University of Bologna Department of Computer Science Technical Report
UBLCS98-1.

Birman, K. 1996. Building Secure and Reliable Network Applications. Manning.

Birman, K., Friedman, R., Hayden, M., and Rhee, I. 1998. Middleware support for

distributed multimedia and collaborative computing. In Multimedia Computing and Net-
working (MMCN98) (1998).

Chandra, T., Hadzilacos, V., Toueg, S., and Charron-Bost, B. 1996. On the im-

possibility of group membership. In 15th ACM Symposium on Principles of Distributed
Computing (PODC) (May 1996), pp. 322–330.

Chandra, T. D. and Toueg, S. 1996. Unreliable failure detectors for reliable distributed

systems. Journal of the ACM 43, 2 (March), 225–267.

Chockler, G. V., Keidar, I., and Vitenberg, R. 2001. Group Communication Specifica-

tions: A Comprehensive Study. ACM Computing Surveys 33, 4 (December), 1–43. Previous

version: MIT Technical Report MIT-LCS-TR-790, September 1999.

Cristian, F. and Schmuck, F. 1995. Agreeing on process group membership in asyn-

chronous distributed systems. Technical Report CSE95-428, Department of Computer Sci-
ence and Engineering, University of California, San Diego.

Dolev, D. and Malkhi, D. 1996. The Transis approach to high availability cluster com-

munication. Commun. ACM 39, 4 (April), 64–70.

Dolev, D., Malki, D., and Strong, H. R. 1994. An asynchronous membership protocol

that tolerates partitions. Technical Report CS94-6, Institute of Computer Science, Hebrew
University, Jerusalem, Israel.

Dwork, C., Lynch, N., and Stockmeyer, L. 1988. Consensus in the presence of partial

synchrony. Journal of the ACM 35, 2 (April), 288–323.

Fekete, A., Lynch, N., and Shvartsman, A. 2001. Specifying and using a partitionable

group communication service. ACM Transactions on Computer Systems 19, 2 (May), 171–

216. Previous version appeared in PODC 1997.

42 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

Friedman, R. and van Renesse, R. 1995. Strong and Weak Virtual Synchrony in Horus.

TR 95-1537 (August), dept. of Computer Science, Cornell University.

Friedman, R. and Vaysburg, A. 1997. Fast replicated state machines over partitionable

networks. In 16th IEEE International Symposium on Reliable Distributed Systems (SRDS)

(October 1997).

Glade, B., Birman, K., Cooper, R., and van Renesse, R. 1993. Lightweight process

groups in the Isis system. Distributed Systems Engineering 1, 29–36.

Guerraoui, R. and Schiper, A. 1997a. Consensus: the big misunderstanding. In Pro-

ceedings of the 6th IEEE Computer Society Workshop on Future Trends in Distributed

Computing Systems (FTDCS-6) (Tunis, Tunisia, Oct. 1997), pp. 183–188. IEEE Computer

Society Press.

Guerraoui, R. and Schiper, A. 1997b. Software-based replication for fault tolerance.

IEEE Computer 30, 4 (April), 68–74.

Guo, K., Vogels, W., and van Renesse, R. 1996. Structured virtual synchrony: Exploring

the bounds of virtual synchronous group communication. In 7th ACM SIGOPS European
Workshop (September 1996).

Hayden, M. and van Renesse, R. 1996. Optimizing layered communication protocols.
Technical Report TR96-1613 (November), Dept. of Computer Science, Cornell University,

Ithaca, NY 14850, USA.

Hiltunen, M. A. and Schlichting, R. D. 1998. A configurable membership service. IEEE

Transactions on Computers 47, 5 (May), 573–586.

Keidar, I. and Dolev, D. 1996. Efficient message ordering in dynamic networks. In 15th
ACM Symposium on Principles of Distributed Computing (PODC) (May 1996), pp. 68–76.

Keidar, I. and Khazan, R. 2000. A client-server approach to virtually synchronous group
multicast: Specifications and algorithms. In 20th International Conference on Distributed

Computing Systems (ICDCS) (April 2000), pp. 344–355. IEEE Computer Society Press.
Full version: MIT Lab. for Computer Science Tech. Report MIT-LCS-TR-794.

Keidar, I., Sussman, J., Marzullo, K., and Dolev, D. 2000. A client-server oriented
algorithm for virtually synchronous group membership in WANs. In 20th International

Conference on Distributed Computing Systems (ICDCS) (April 2000), pp. 356–365. Full
version: MIT Technical Memorandum MIT-LCS-TM-593a, June 1999, revised September

2000.

Khazan, R., Fekete, A., and Lynch, N. 1998. Multicast group communication as a base
for a load-balancing replicated data service. In 12th International Symposium on DIS-

tributed Computing (DISC) (Andros, Greece, September 1998), pp. 258–272.

Malloth, C. P., Felber, P., Schiper, A., and Wilhelm, U. 1995. Phoenix: A toolkit

for building fault-tolerant, distributed applications in large scale. In Workshop on Parallel
and Distributed Platforms in Industrial Products (October 1995).

Mishra, S., Peterson, L. L., and Schlichting, R. L. 1993. Consul: A communication

substrate for fault-tolerant distributed programs. Distributed Systems Engineering Jour-
nal 1, 2 (December), 87–103.

Moser, L. E., Amir, Y., Melliar-Smith, P. M., and Agarwal, D. A. 1994. Extended
virtual synchrony. In 14th International Conference on Distributed Computing Systems

(ICDCS) (June 1994), pp. 56–65. Full version: technical report ECE93-22, Department of

Electrical and Computer Engineering, University of California, Santa Barbara, CA.

Pedone, F. and Schiper, A. 1998. Optimistic atomic broadcast. In 12th International

Symposium on DIStributed Computing (DISC) (September 1998), pp. 318–332.

Powell, D. 1991. Delta-4: A Generic Architecture for Dependable Distributed Computing.

Springer Verlag.

Ricciardi, A. M. and Birman, K. P. 1991. Using process groups to implement failure

detection in asynchronous environments. In ACM Symposium on Principles of Distributed

Computing (PODC) (August 1991), pp. 341–352.

Rodrigues, L., Guo, K., Sargento, A., van Renesse, R., Glade, B., Verissimo, P., and

Birman, K. 1996. A dynamic light-weight group service. In 15th IEEE International

Moshe: A Group Membership Service for WANs · 43

Symposium on Reliable Distributed Systems (SRDS) (Oct. 1996), pp. 23–25. also Cornell

University Technical Report, TR96-1611, August, 1996.

Rodrigues, L. and Verissimo, P. 2000. Topology-aware algorithms for large-scale com-

munication. In S. Krakowiak and S. Shrivastava Eds., Advances in Distributed Systems,

Volume 1752 of LNCS (2000). Springer Verlag.

Schiper, A. and Ricciardi, A. 1993. Virtually synchronous communication based on a

weak failure suspector. In 23rd IEEE Fault-Tolerant Computing Symposium (FTCS) (June

1993), pp. 534–543.

Sussman, J., Keidar, I., and Marzullo, K. 2000. Optimistic virtual synchrony. In 19th

IEEE International Symposium on Reliable Distributed Systems (SRDS) (October 2000),

pp. 42–51.

Sussman, J. and Marzullo, K. 1998. The Bancomat problem: An example of resource

allocation in a partitionable asynchronous system. In 12th International Symposium on

DIStributed Computing (DISC) (September 1998). Full version: Tech Report 98-570 Uni-

versity of California, San Diego Department of Computer Science and Engineering.

van Renesse, R., Hickey, T. M., and Birman, K. P. 1994. Design and performance
of Horus: A lightweight group communications system. TR 94-1442 (August), dept. of
Computer Science, Cornell University.

van Renesse, R., Minsky, Y., and Hayden, M. 1998. A gossip-style failure detection
service. TR TR98-1687 (May), Cornell University, Computer Science.

APPENDIX

A. CORRECTNESS OF THE MEMBERSHIP ALGORITHM

We prove here that the algorithm fulfills the properties specified in Section 4. In
Section A.1 we prove that it fulfills the client interface properties: Monotonicity

of startChange Identifiers and Integrity of startChange Identifiers. In
Section A.2, we prove that the algorithm satisfies the membership properties: View
Identifier Local Monotonicity and Agreement on Views.

A.1 Client interface properties

Proposition A.1. (Monotonicity of startChange Identifiers) startChange iden-
tifiers sent to each client are monotonically increasing.

Proof. Whenever a startChange message is sent to the clients, (Figure 6, NE
event handler), startChangeNum is first increased and then sent in the message.

Proposition A.2. (Integrity of startChange Identifiers) Each view message
V sent to a client c by a membership server s is preceded by a startChange

message SM such that no messages are sent from s to c between SM and V ,
and V.startChangeNums[s]= SM.startChangeNum and V.members is equal to
SM.suggestedMembers.

Proof. A server s sends its clients two types of messages: view and startChange.
Whenever a startChange message is sent, (Figure 6, NE event handler), the server
also sends a proposal which includes the latest startChange.startChangeNum

sent to its clients, and invokes the proposal handler which stores this proposal in
props[s]. Before sending a view message, (Figure 6, proposal event handler) the
server checks that props contains proposalmessages from all of the servers of mem-
bers of the view, including itself. The new view to be sent is stored in curView, and
curView.startChangeNums[s] is selected to be props[s].startChangeNum, which
contains the latest value of startChange.startChangeNum sent to local members of

44 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

the view. Furthermore, every time a NE occurs, the server sends a new startChange

message to the client with suggestedMembers equal to the up-to-date NSView. Since
a server only delivers views that match its NSView, V.members is always equal to
the suggestedMembers sent in the latest startChange message.

Upon sending a view, the server removes this proposal messages from props

by setting props[s] to null. Therefore, each view must be preceded by a sending
of a proposal message which follows the previous view. Moreover, every time
a proposal is sent, startChange messages are sent to all of the clients who are
members of the proposed view.

A.2 Membership properties

Proposition A.3. (View Identifier Local Monotonicity) If a client receives a
view V 1 and later receives a view V 2, then V 2.id > V 1.id.

Proof. Whenever a view V is sent (Figure 6, proposal event handler), V.id is
chosen to be greater than the startChangeNum of the last startChange sent to
local clients. Whenever a startChange message is sent to local clients, (Figure 6,
NE event handler), startChangeNum is chosen to be greater than curView.id.
By Proposition A.2, at least one startChange event is sent to clients between V 1
and V 2. The proof follows.

Let CS be a set of clients, and SS the set of servers serving clients in CS. For
the rest of this section we assume that there is a time t0 such that from time t0
onwards, the NSView at all of the servers in SS contains exactly the clients in CS.

Lemma A.4. (Fast Agreement Blocking Detection) If the fast agreement algo-
rithm does not terminate successfully, then the detection mechanism (described in
Figure 7) detects the blocking after time t0.

Proof. As above, we denote by lasts the last proposal message of type FA sent
by a server s ∈ SS. Since these proposals are sent in response to the last NE at
each server, for every s ∈ SS, lasts.members is exactly CS.

If every server s ∈ SS uses exactly the proposals in the set {lasts′ |s′ ∈ SS} for a
view, then all the servers in SS send the same view to their clients, this view is sent
after the last startChange, and it correctly reflects the network situation. That
is, in this case, the fast agreement algorithm terminates successfully. Therefore,
if the fast agreement algorithm does not terminate at some server in SS, it must
be the case that not all the servers in SS use exactly the proposals in the set
{last′s|s

′ ∈ SS} for a view. By the Reliable Links property, s receives all the
proposals in this set. Moreover, as noted above, all the proposals in this set propose
the same membership. Therefore, if s does not use them together for a view, it
must be the case that s already used at least one of these proposals for an earlier
view before receiving all of them. We distinguish between two cases:

(1) There exists a server s′ ∈ SS such that for some view V , s uses lasts but
not lasts′ . Since lasts contains clients of s′ (by definition of SS), s uses some
earlier proposal message from s′ for V .

(2) There exists a server s′ ∈ SS such that for some view V , s uses lasts′ but
not lasts. In this case, s uses an earlier proposal message of its own for V .

Moshe: A Group Membership Service for WANs · 45

We now prove that both of these cases will result in detections, in other words,
the function TestIfSAProposalNeeded (Figure 7) at one of the servers will return
true. If running is already SA at one of the servers, then the block has been
detected and we are done. Assume for the rest of this lemma that running is not
SA at any of the servers.

In the first case, for view V , s uses lasts and a proposal message ps′ from s′ that
precedes lasts′ . After using lasts, s receives no further NEs from the notification
service. Thus, s does not run the fast agreement algorithm again so running at s

will remain none after it sends V . Due to the fifo nature of the links (Property
fifo Order), all proposal messages from s′ received by s are received in the order
they are sent. Thus, lasts′ is received by s after ps′ . Since s uses ps′ for view V ,
lasts′ is received by s after it sends V . Thus, when s receives lasts′ , running is
none, and this results detection at s.

In the second case, for view V , s uses lasts′ and a proposal message ps that s

sent before sending lasts. If s′ also uses lasts′ with some proposal message that
s sent before sending lasts for some view V ′, then s′ will detect the failure, as
described in the first case above. So the case we are examining is reduced to s

using lasts′ and ps for view V while s′ does not send a view using lasts′ and any
earlier proposal message from s.

When s uses lasts′ and ps for view V , s sets usedProps[s’] to the propNum of
lasts′ (Figure 6, proposal event handler). s always uses its most recent proposal
message for a view. Therefore, s cannot have sent lasts before it used lasts′ . Thus,
when s sends lasts, the value of usedProps[s’] is the propNum of lasts′ . Further-
more, s′ must receive lasts after it has already sent lasts′ . Since, by assumption,
s′ will not use lasts′ with any earlier proposal message from s, lasts′ must still be
in the props buffer of s′ when s′ receives lasts. Thus, the value usedProps[s’]

in lasts will be equal to the propNum at s′ when lasts is received by s′. This will
result in detection at s′ (Figure 7, TestIfSAProposalNeeded).

Lemma A.5. (No False Blocking Detection) The detection mechanism described
in Figure 7 detects blocking after time t0 only if the fast agreement algorithm does
not terminate successfully.

Proof. We now prove that a detection will not occur if the fast agreement
algorithm terminates successfully, that is, TestIfSAProposalNeeded (Figure 7)
will not return true at any server after time t0.

If the fast agreement algorithm terminates successfully after time t0, then every
server s send a view V using lasts′ for every s′ in SS. Before s sends lasts, the
NSView at s is not CS, so a lasts′ received by s before it sends lasts will not
result in detection (Figure 6, proposal event handler does nothing for proposals
that do not match NSView). By the time s sends V , s must have received lasts′ for
every s′ ∈ SS, by assumption. Therefore, s will not receive any further proposal
messages from s′ that might lead to a detection. Since running is set to FA from
the time that s sends lasts until it sends V , a detection will only occur if there
is some lasts′ which has usedProps[s] set to the propNum of lasts (Figure 7,
TestIfSAProposalNeeded).

The usedProps function of s′ is updated before s′ sends a view to its clients
(Figure 6, proposal event handler). At that time, usedProps[s] is set to the

46 · I. Keidar, J. Sussman, K. Marzullo, and D. Dolev

proposal used by s′ for that view. By assumption, s′ uses lasts for the same view
that it uses lasts′ . Therefore, usedProps[s] at s′ is not set to the propNum of
lasts until after lasts′ is sent. Thus no detection will occur if the fast agreement
algorithm terminates successfully.

Lemma A.6. (Slow Agreement Termination) After time t0, if a the slow agree-
ment algorithm is started by some server s then there is some server s′ ∈ SS such
that the slow agreement algorithm started by s′ terminates at all servers.

Proof. First, note that if the slow agreement algorithm is invoked by some
server s in SS, then eventually every server s′ in SS will enter the slow agreement
algorithm by sending a proposal of type SA, (Figure 7, TestIfSAProposalNeeded).
Also, this will occur after s′ has received its final NE from the notification service.

Second, note that any proposal sent in the slow agreement algorithm by a server
s has a greater propNum than any proposal of type SA received by s beforehand
(Figure 7, SendSAProposal).

Third, note that propNum at server s is increased above the propNum of those
proposal messages received by s only in response to a NE or upon reception of a
proposal of type FA, and proposal messages of type FA are sent only in response
to a NE. Since after time t0 no NE is received by a server, there is a time t1 > t0
after which no more proposal messages of type FA are sent or received and thus
propNum at s no longer increases above the propNum of other proposal messages.

Let n be the largest propNum which was sent in a proposal of type SA. By the
argument above, if some server sends a proposal of type SA after t0, then any
server that sends a proposal of type SA with propNum= n does so after its last NE.
Therefore, from Property 3.2, all of the servers in SS receive this proposal, and all
respond by sending proposal messages of type SA with propNum= n (unless they
have already done so). These proposal messages will also be received by all of
the servers in SS. Furthermore, in all of these proposal messages, NSView is CS.
Since no proposal messages of type FA and no proposal messages of type SA with
a higher propNum will be sent, the slow agreement algorithm will terminate once
all of these proposal messages are received.

Theorem Agreement on Views. Let CS be a set of clients, and SS the set
of servers serving clients in CS. Assume that there is a time t0 such that from
time t0 onwards, the NSView at all of the servers in SS is exactly the set CS. Then
eventually, all of the clients in CS receive the same view V from their servers, such
that V.members = CS, and do not receive new views or startChange messages
henceforward.

Proof. When each server receives the last NE from the notification service that
sets its NSView to CS, it runs the fast agreement algorithm. If this agreement
terminates successfully, all of the clients in CS will receive the same view. If it
fails, then by Lemma A.4, the slow agreement algorithm will be run. The slow
agreement algorithm always terminates, as proven in Lemma A.6.

It remains to be proven that the clients will not receive any further startChange
or view messages after that view is received. Due to the fifo nature of communi-
cation, the clients will not receive a message from the server after the view unless
the server sends another message.

Moshe: A Group Membership Service for WANs · 47

The server only sends messages to the client if it begins or ends either of the agree-
ment algorithms. Since the fast agreement algorithm in which we are interested is
running after the last NE received by each server, the fast agreement algorithm will
not be run again. If the slow agreement algorithm is run, and it terminates, then
every server will have run the same round of the slow agreement algorithm and
received all of the proposal messages, as described in Lemma A.6. Thus, unless a
stimulus to run another round of the slow agreement algorithm is received by some
server, the slow agreement algorithm will not run again. But, the only stimulus to
run this algorithm is from a detection that the fast agreement algorithm is blocked.
Lemma A.5 shows that the detection mechanism detects blocking after time t0 only
if the fast agreement algorithm does not terminate successfully. Thus, unless the
fast agreement is run again, there will not be another run of the slow agreement
algorithm. But, we have already argued that the fast agreement algorithm will not
be run again.

