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Abstract

We present Optimistic Virtual Synchrony (OVS), a
new form of group commumnication which provides the
same capabilities as Virtual Synchrony at better per-
formance. It does so by allowing applications to send
messages during periods in which services implement-
ing Virtual Synchrony block. OVS also allows appli-
cations to determine the policy as to when messages
sent optimistically should be delivered and when they
should be discarded. Thus, OVS gives applications fine-
grain control over the specific semantics they require,
and does not impose costs for enforcing any semantics
that they do not require. At the same time, OVS pro-
vides a single easy-to-use interface for all applications.

1. Introduction

Group communication systems [1, 26] are powerful
building blocks that facilitate the development of fault-
tolerant distributed applications; they provide an ab-
straction which allows processes to be easily organized
into multicast groups. Group communication systems
typically integrate two types of services: group mem-
bership and reliable group multicast. The group mem-
bership service maintains a listing of the currently ac-
tive and connected group members and delivers this
information to its clients whenever the list changes.
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The output of the membership service is called a view.
The reliable group multicast service delivers messages
to the current view members.

Group communication systems generally provide
some variant of Virtual Synchrony semantics (e.g., [21,
14, 26, 24, 12, 18]), that mask environment fail-
ures, and simulate a “benign” world in which mes-
sage delivery is reliable within each view. Such se-
mantics are especially useful for fault-tolerant appli-
cations that maintain some consistent replicated state
(e.g., [3, 17, 12, 25, 6, 20]).

The key aspect of Virtual Synchrony is the inter-
leaving of message send and delivery events with view
events. To discuss such interleaving, we associate mes-
sage send and delivery events with views: we say that
an event e occurs at a process p in view v if v was the
last view delivered to p before e. A useful property
specified by nearly all variants of Virtual Synchrony is
that processes moving together from a view v to an-
other view v’ deliver the same set of messages in v.
This property has been called View Synchrony or, by
itself, Virtual Synchrony (see [26]).

All variants of Virtual Synchrony specify that ev-
ery message m be delivered in the same view v by all
processes that deliver m. Many variants (e.g., [9, 14,
21, 18, 16, 12, 24]) strengthen this property to require
that the view in which a message is delivered be the
same view in which it was sent. This latter property
has been called Sending View Delivery (see [26]).

Sending View Delivery is exploited by applications
to reduce the amount of context information sent with
each message. Processes that are in the same view
share a common state that is derived from the messages
that they have jointly received in that view. Sending



View Delivery allows a process that receives a mes-
sage to easily deduce information about the state of
another process when that process sent the message.
For example, Sending View Delivery has been used for
applications that send vectors of data corresponding
to view members. Such an application can rely on the
fact that the ith entry in the vector corresponds to the
ith member in the current view. Hence, the identities
of the members need not be included in the message
(see [14]). Another application that can use Sending
View Delivery is state transfer (cf. Section 3.2).

Providing Sending View Delivery is costly: it re-
quires that the application be periodically blocked from
sending messages. Otherwise, a process that persists
in sending messages during a view change might indef-
initely postpone the view change (assuming that other
important properties such as View Synchrony and Self-
delivery—a process delivers its own messages—are pro-
vided). Therefore, in order to provide Sending View
Delivery, most group communication systems block
processes from sending messages from the time that
the need for a view change is recognized until the view
is delivered to the application. Such blocking wastes
valuable computation and network resources.

We address this waste of resource using an optimistic
approach. We present Optimistic Virtual Synchrony
(OVS), a novel form of group communication that pro-
vides the power of Sending View Delivery without the
performance penalty of blocking. In OVS, each view
event is preceded by an optimistic view event, which
provides the application with an estimate of the next
view. After this event, applications may optimistically
send messages that will conditionally be delivered in
the next view. Messages are only sent but not deliv-
ered optimistically; thus OVS never causes applications
to roll back their states.

Once the next view is delivered, the OVS service
checks if some application defined property holds. If
0, then the messages are delivered; if not, they are dis-
carded, and the sending application is informed. Thus,
the application specifies the certification policy for opti-
mistic message delivery, and OVS provides the mecha-
nisms for applying the certification and performing the
needed compensation should the certification fail.

In particular, OVS generalizes both of the commonly
provided Virtual Synchrony semantics: On one side of
the spectrum, applications that do not require Send-
ing View Delivery can send optimistic messages that
will always be delivered, providing semantics similar
to [5, 8, 11]. On the other side of the spectrum, ap-
plications that rely on Sending View Delivery may ig-
nore OVS by simply refraining from sending optimistic
messages, providing semantics similar to [4, 14, 24].

We have observed, however, that most applications lie
somewhere in the middle. Applications that use Send-
ing View Delivery seldom require complete knowledge
of the coming view; typical applications are satisfied
by weaker constraints. Several examples of applica-
tions that benefit from the improved performance of
OVS are discussed in Section 3.

We built a version of OVS on top of an existing
group communication service, Transis [11]. Transis
does not provide Sending View Delivery to applica-
tions. However, the communication mechanism used
internally by Transis servers does provide Sending View
Delivery (at the server level only). We used this mech-
anism in implementing OVS on top of Transis. As ex-
pected, our performance measurements show that in-
troducing optimism significantly reduces the message
delivery latency during view changes. Furthermore, the
overhead induced by OVS is very small. We describe
the implementation and present our performance mea-
surements in Section 4.

The method we used to implement OVS in Tran-
sis can be applied in any group communication system
that allows multiple processes to send messages concur-
rently (e.g., Horus [14, 23], Ensemble [15], Relacs [8],
and those of [18, 24]). We believe that it is possible to
design a similar method for supporting OVS in token-
based systems (e.g., Totem [4]), but we have not ex-
plored this possibility.

1.1. Evaluating OVS

Optimism does not provide additional capabilities
for the application programmer. Rather, optimism al-
lows processes to make progress in situations where
they would otherwise be forced to block. The utility of
optimism can be measured in three ways:

1. By illustrating applications that can make reasonable
progress under optimism during periods in which they
would otherwise be forced to block. In Section 3, we
provide examples of applications that benefit from the
optimism provided by OVS.

2. By demonstrating that the additional overhead as-
sociated with supporting the optimistic execution s not
too great. In Section 4 we measure this by comparing
the implementation of OVS on top of Transis with the
non-optimistic version of Transis.

3. By demonstrating that the actions performed opti-
mistically are undone (rolled back) infrequently enough
that the cost of undoing actions is masked by the gain
from optimism. With OVS, the undoing (or rolling
back) of optimistic messages is very small, as these
messages are sent when the available bandwidth would
otherwise not be utilized, and they are merely dropped.



(Note that messages are not optimistically delivered to
the application, hence applications do not need to undo
their effects). In Section 4 we show that a very small
amount of computation is needed to determine if an
optimistic message is to be delivered or not.

The frequency at which optimistic messages are
dropped depends on two factors: the environment and
the application-specified policy. An optimistic message
is dropped only if new changes of connectivity occur in
the environment while a view change is taking place,
and if these changes are not allowed by the application-
specified policy. Note that the fraction of optimistic
messages that are dropped is highly application de-
pendent. In fact, in Section 3 we show examples of
applications that never drop optimistic messages.

2. The OVS Programming Model

Group communication services interact with their
applications via an interface consisting of at least three
types of events: a send event sent by the application to
the group communication service to send a message; a
receive event sent by the group communication service
to the application to deliver the message; and a view
event sent by the group communication service to no-
tify the application that the view is changing. A view
consists of a set of processes and a unique identifier.

Group communication services that support Send-
ing View Delivery require applications to refrain from
sending messages while view changes are taking place.
To this end, block and flush events are added to this
interface. The group communication service sends a
block event to the application to inform it that a view
change is under way. The application responds with a
flush event, acknowledging the block event. The flush
event follows all the messages sent by the application
in the current view. The application then refrains from
sending messages until it receives a new view from the
group communication service. The blocking mecha-
nism ensures that every message is delivered in the view
in which it was sent (see [14, 18]).

With OVS, the block event is replaced by an op-
timistic view event, optView which contains a set of
members. This set is an estimate of what the set of
members in the next view will be. Group membership
algorithms (e.g., [19, 4]) can usually provide an opti-
mistic view that is accurate unless further changes in
the system connectivity occur during the view change.
When the application receives the optView event, it
sends a flush event and enters optimistic mode. In opti-
mistic mode, the application may still receive messages
that were sent in the view that it is leaving, but at
the same time, the application can optimistically send

messages to be conditionally delivered in the next view.
The messages sent in optimistic mode are called opti-
mistic messages. When the group communication ser-
vice delivers a new wview to the application, the applica-
tion returns to normal mode and sends a viewAck event
to the group communication service; the viewAck de-
notes the end of the optimistic messages for this view.

Messages sent in the normal mode are delivered in
the view in which they are sent. Optimistic messages,
if delivered, are delivered in the view that immedi-
ately follows the view in which they are sent. When
the new view is delivered, the group communication
service checks whether the optimistic messages should
be delivered or not. This is checked by applying an
application-provided predicate, MessageCondition, to
each optimistic message. All the processes evaluate the
same MessageCondition deterministically. If the predi-
cate is evaluated to true, the message is delivered. Oth-
erwise, the message is discarded at all locations except
for the sender. The sender is informed of non-delivered
optimistic messages via the discardedMessages event.

The parameters of the MessageCondition predicate
include the set of members of the new view, the op-
timistic view in which the message was sent, and
the message for which the condition is being checked.
Group communication services that supplement views
with information regarding previous views of other
members, (e.g., [10, 7], or the transitional view/set
of [21, 2, 26, 18]) can provide this information as a pa-
rameter to the predicate as well. Section 3 gives some
examples of MessageCondition predicates.

Note that OVS generalizes both of the commonly
provided Virtual Synchrony semantics: it can be used
by applications that do not require Sending View De-
livery (e.g., [6]) by always evaluating the MessageCon-
dition to true, and can be ignored by applications that
wish to preserve Sending View Delivery semantics in
their original form.

3. Examples of Using OVS

We present several different applications that benefit
from Optimistic Virtual Synchrony. These applications
are meant to be illustrative of the power of OVS, but
are by no means exhaustive.

3.1. Primary Views

Applications that maintain globally consistent
shared state (e.g., [17, 3, 12, 20]) usually avoid incon-
sistencies by allowing only members of one view (the
primary view) to update the shared state at a given



time. Different primary views can be defined for dif-
ferent replicated objects. Such applications can use
Sending View Delivery as follows: messages that up-
date an object are sent only in the object’s primary
view, whereas query messages are sent in all views.

Consider, for example, an application in which each
object has a designated master site such that the ob-
ject is updated only in a view containing that site. The
optimistic MessageCondition predicate for such an ap-
plication might be:

boolean MessageCondition(set newView, optView,
char *m)
return (m.type = query
V masterCopyOf (m.object) € newView)

Thus, with OVS messages are blocked only when
the master site fails, while with Sending View Delivery
messages are blocked when any site fails or is suspected
of failing.

A similar approach can be used for quorum-based
algorithms; the predicate can check if the new view
contains a quorum of m.object’s copies. When an op-
timistic message is discarded, the sender stores the re-
quest until the view changes to a primary one.

3.2. State Transfer

Typical applications of group communication ser-
vices, (e.g., [2, 25, 16, 17, 3, 20]), sometimes engage
in state transfer when a new view is delivered. State
transfer messages are usually utilized only if they are
fresh, i.e., they pertain to the current view. Therefore,
applications that send state transfer messages usually
require Sending View Delivery, or impose it by tag-
ging state transfer messages with views and discarding
messages pertaining to old views (see [2]).

Note that the applications identified above do not
need any guarantees about the ensuing view for the
state transfer message to be correct. Thus, the Mes-
sageCondition predicate for state transfer messages is
always evaluated to true. The only guarantee needed is
a fresh delivery property: that the message will be de-
livered in the next view, not in some view further in the
future. This points out one of the strengths of OVS:
Sending View Delivery as specified in [21, 12, 16, 18]
and provided by group communication services such
as [9, 24, 4, 14, 18] provides a much more costly ab-
straction than is needed for this application. On the
other hand, group communication services that do not
support Sending View Delivery (e.g., [11, 5]) do not
provide this fresh delivery property.

3.3. Waiting for State Transfer to Complete

Many applications that exchange state transfer mes-
sages when a new view is delivered (e.g., [17, 3, 12, 20])
refrain from sending messages until all state transfer
messages are received. Thus such applications extend
the blocking period imposed by the group communica-
tion service until the state transfer is complete. How-
ever, many applications need not engage in state trans-
fer upon receipt of every new view. Several group com-
munication services provide applications with a set of
processes that are known to have retained agreement
on the sequence of delivered messages in the previous
view. Such a set is called the transitional view/set
in [21, 2, 26, 18]. If the transitional set is a super-
set of the new view, then such applications need not
engage in state transfer (see [2, 26]).

Such applications can benefit from OVS by sending
messages optimistically, and delivering these messages
only if the new view is a subset of the transitional set,
i.e., if no state transfer is necessary. The MessageCon-
dition predicate for such an application might be:

boolean MessageCondition(set newView, optView,
char *m, set transitional)
return (newView C transitional)

If the optimistic assumption is false and state transfer
is needed, the messages sent optimistically will be dis-
carded, and the application can re-send the information
once the state transfer is complete.

3.4. Data Vectors

Sending View Delivery is exploited by applications
that send vectors of data corresponding to processes: it
allows such applications to send the vector without an-
notations, by corresponding the ith entry in the vector
to the ith member of the current view. This reduces the
amount of context information sent with each message
and the message processing time (see [14]).

Using OVS, such applications may also send opti-
mistic messages containing data without annotations
while they are in the optimistic mode. When the view
is delivered, the application may request the OVS ser-
vice for the optimistic views of all of the view members.
These can be used to create conversion tables which
convert an index in each sender’s optimistic view to
a corresponding index in the new view, and to remove
entries in the vector which correspond to members that
are not in the new view. The MessageCondition pred-
icate in this case is always evaluated to true. This
technique induces some processing overhead, but only
on the processing of optimistic messages.



3.5. Causal Multicast

An example of an application that sends vectors of
data corresponding to processes is an implementation
of causal multicast using vector clocks [13]. Causal mul-
ticast ensures that by the time a process p receives a
multicast message m sent by a process ¢, p has also re-
ceived all of the messages that g received before sending
m. A vector clock is a vector of integers, indexed by
processes. The value of the vector clock of p for some
process g represents the sequence number of the last
message multicast by ¢ that p has received. When a
message m is multicast by a process ¢, m includes a
copy of the vector clock at ¢g. If p receives m from ¢
and the vector clock value in m for some other process
s is greater than the vector clock value of p for s, then
p knows that there is a message from s that causally
precedes m that p has not yet received and p cannot
deliver m yet (see [13]).

This technique is used for implementing causal
group multicast in the ISIS and Horus group commu-
nication systems. With Sending View Delivery, view
members receive messages only from other members of
the same view. Therefore, if the processes in the new
view agree on the messages received before the view,
then only the vector clock values for the processes in
the view need to be included in further messages, and
this greatly reduces the overhead.

This implementation of causal multicast was a main
influence on the design of the Weak Virtual Synchrony
(WVS) programming model of Horus [14]. While a
view change takes place WVS provides applications
with suggested views and guarantees that the ensu-
ing view will be an ordered superset of the suggested
view. Processes may send messages during the sug-
gested view, and these messages will be delivered in
the ensuing view (see Section 5). WVS is exploited for
causal vectors as follows: in suggested views, processes
send vectors that include entries for all of the members
of the suggested view. When the message is delivered
in the ensuing view, the entries in the vector pertaining
to processes that left the view are filtered out.

OVS can be used in the same manner: In optimistic
mode, processes can send vectors which include entries
for all of the members of the optimistic view. As ex-
plained in Section 3.4 above, those can be sent without
annotations. However, in order to preserve causality,
the vector has to include indices corresponding to all
the view members. Therefore, if the ensuing view is
indeed a superset of the optimistic view, the messages
can be processed as with WVS. Otherwise, they should
be discarded. The message condition is as follows:

boolean MessageCondition(set newView, optView,

char *m)
return (newView \ optView # {})

When a message is discarded, the sender re-sends the
information with the appropriate vector clock. We fur-
ther compare WVS with OVS in Section 5.

4. Implementation and Performance

We implemented Optimistic Virtual Synchrony on
top of the Transis group communication service [11].
We chose Transis because it provides the two seman-
tics we were interested in: it provides the application
processes with a service that does not provide Sending
View Delivery, and it internally uses a service that does
provide Sending View Delivery. We used this service
to implement both Sending View Delivery and OVS in
Transis, and to provide these semantics to Transis ap-
plications. We compared the performance of Transis
with support for OVS with the performance of normal
Transis as well as with the version of Transis that does
support Sending View Delivery.

We had two goals for this implementation:

1. To understand what extra support would be
needed to provide OVS on top of an existing group
communication service.

2. To compare the performance of OVS with that of a
group communication service that provides Send-
ing View Delivery, as well as with the performance
of one that does not. By implementing OVS on
top of Transis, we could better ensure that such a
comparison be fair.

In Section 4.1 we describe how we met the first goal.
The second goal is discussed in Section 4.2.

4.1. Implementing OVS in Transis

The Transis group communication service is struc-
tured around a group of servers. The Transis servers
communicate with each other using reliable FIFO links.
When the need for a view change is recognized by some
server, this server sends synchronization messages to
the other servers to denote the end of the current view.
If a server receives a synchronization message with-
out having detected the need for a view change itself,
it treats the synchronization message as a detection
and also engages in the view change algorithm. Each
server refrains from sending new messages after sending
the synchronization message and until the new view is
delivered. Thus, Sending View Delivery is supported
among the Transis servers.



With OVS, optimistic messages can be sent during
this time period. The synchronization messages to-
gether with the FIFO ensure that when an optimistic
message reaches a Transis server, this server is either
also in the optimistic mode for the same view, or in the
subsequent regular view, as illustrated in Figure 1.
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Figure 1. Possible arrival times of optimistic
messages at Transis servers.

We added code to Transis in the following places:
1. When a Transis server initiates a view change. An
optView is sent to the application processes. When
an application responds with a flush, it has entered
optimistic mode. The application mode (optimistic or
normal) is saved in the OVS process.
2. When a process sends a message. If the sending
application is in optimistic mode then the message is
marked as optimistic before sending it to the members
of the optimistic view.
3. When a process receives a message. (including loop-
back receipt of a message by its sender). If the message
is not marked as optimistic, it is not handled by OVS
code but is rather passed to the regular Transis code
as usual. Otherwise, there are two cases handled dif-
ferently in OVS:
a. If a view change is under way, then the optimistic
message is enqueued in a buffer for optimistic mes-
sages, and its receipt is masked from Transis.

b. If a view change is not under way, then, as ex-
plained above, the optimistic message must have
been sent during the optimistic mode preceding
the current view. In this case, the MessageCondi-
tion is applied to the message in order to determine
whether the message should be delivered or not.

4. When Transis delivers a new view. Each message in
the optimistic message buffer is checked for whether
the sender is a member of the new view, and then
the MessageCondition for the message is checked. De-
pending on the result, the message is either delivered
or dropped, and the sender is notified via a discard-
edMessages event that a message that it sent will not
be delivered.

In addition, if the new view contains members which
are not members of the optimistic view, then the op-
timistic messages will not have been sent to these new

view members. Therefore, once the new view is deliv-
ered by Transis, the OVS service at the sender immedi-
ately retransmits duplicates of these messages to new
members that were not in the sender’s optimistic view
(without waiting for the Transis loss detection mecha-
nism to detect that they are missing).

Since Transis does not support selective sending to
individual processes, we re-send the message to the en-
tire view. Note that doing so sends a duplicate of the
original message, which processes that had previously
received it simply ignore. This is a penalty of using a
broadcast mechanism; with point-to-point communica-
tion, this could be avoided.

When the application responds with a viewAck, its
mode is changed to normal.

Note that OVS can be implemented in a simi-
lar manner atop any group communication system in
which processes communicate over FIFO channels, can
send messages spontaneously without waiting for a to-
ken, and send synchronization (or flush) messages to
each other to denote the end of the message stream
in a terminating view. Examples of such systems in-
clude [14, 15, 8, 18, 24, 23].

4.2. Performance Measurements

In this section we describe the measured perfor-
mance of OVS implemented on top of Transis. The
tests were run on three 333 Megahertz Sun UltraSparc
5/10s, running SunOS version 5.6. The machines were
connected via 10MBit/sec Ethernet. The machines
were not being used by others users during these tests.
In each test, no fewer than 40,000 messages were sent.
All messages in the tests were about 1Kbyte long, a
batch of 15 messages was sent every 15 milliseconds.
Each test was repeated at least three times to ensure
that the results were not spurious.

We measured two different aspects of OVS: (1) the
overhead associated with processing messages; (2) a
comparison of the average time to deliver messages af-
ter a view change in OVS versus the average time to
deliver messages after a view change in Transis.

4.2.1 The overhead of OVS

The life-cycle of a message in Transis can be roughly
described as consisting of three stages: pre-send pro-
cessing, wire time, and pre-delivery processing. When
a message is sent by an application process in Transis,
the Transis process associated with the sender performs
some pre-send processing (e.g., marshaling of header
information) before sending it on the communication
stratum or handing it off to its own reception handler.



When a message is received by a Transis server, pre-
delivery processing (e.g., demarshaling, ensuring that
it meets delivery semantics) is performed before the
message can be delivered to the application process.

We measured the average wall clock time a message
spends in each of these stages. As expected, our mea-
surements show that the wire time is the most signifi-
cant component in the message life-cycle: The average
pre-send processing time was consistently around 90 us
for all of the tests we ran. The average wire time was
around 1000 us, and the average pre-delivery process-
ing time on the server side was consistently around 40
us for all of the tests.

The main performance gain of OVS is the utilization
of bandwidth that would be unused with group commu-
nication services implementing Sending View Delivery.
By utilizing this bandwidth, we mask the pre-send pro-
cessing time and wire time for optimistic messages, to
allow faster delivery of messages after the view change.
Our experiments demonstrate that the time gained in
faster delivery outweighs any overhead induced by OVS
in the pre-delivery processing time!.
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Figure 2. Transis and OVS pre-delivery mes-
sage processing times.

In Figure 2 we compare the pre-delivery processing
time of regular messages in Transis to that of OVS.
For OVS, we distinguish between two cases: (1) the
new view contains only members that were in the
optimistic view, hence no message retransmission is
needed; and (2) the new view does contain new mem-
bers and retransmission is needed?. In the second case

I During the pre-send processing, OVS only adds one bit of in-
formation to the message header denoting that it is an optimistic
one, therefore, the overhead OVS induces on the pre-send pro-
cessing time is negligible, and the overhead of using OVS affects
mainly the pre-delivery processing time.

2This latter case did not naturally occur in our experiments,

the pre-delivery time on the sender is larger since it
includes the time required to retransmit the message.
On the receiver side, extra time is necessary to iter-
ate over the message buffer, evaluate the MessageCon-
dition, and change the internal structure of the mes-
sage. We measured the pre-delivery processing time
both at the sender and at the receiver. As expected,
with no retransmissions, the processing time was only
slightly larger with OVS: around 50 us at the sender
and around 60 at the receiver. With retransmissions,
the sender side pre-delivery processing time is almost
125 ps per message, and the receiver side is slightly
over 70 pus per message. Retransmissions slow down
the sender which has to engage in retransmitting them;
they also slow down the receiver since in Transis mes-
sages are retransmitted to all of the processes, and
therefore the receiver receives duplicate messages.

All in all, we observe that the overhead induced by
OVS is smaller by an order of magnitude than the per-
formance gain from masking the pre-send processing
and the wire times.

4.2.2 Latency of optimistic messages

The direct benefit of OVS is that it allows messages
to be sent during the view change while still provid-
ing Sending View Delivery semantics. Transis normally
does not provide applications with Sending View Deliv-
ery semantics, which allows applications to send mes-
sages during view changes. In this case the messages
are buffered by the Transis server at the sender side
during the view change, as opposed to being buffered
at the receiver side with OVS and not being sent at all
with a service providing Sending View Delivery. Thus,
the latency associated with the communication should
be masked by OVS.

To measure this benefit, we formulated the following
function f: Consider a run in which a single process p
sends a stream of messages, and during which the view
changes exactly once. Define deliver,(m) to be the
time that a message m of this stream is delivered by a
process q. Let mg be the last message sent by p before
p is notified that a view change is beginning. Number
the messages following mg as my, ma, etc. Thus, m;
is the first message that is affected by the view change:
i.e., in OVS, it is the first optimistic message; in the
version of Transis that supports Sending View Delivery,
it is the first message sent after blocking; and in the
normal Transis, it is the first message buffered during

in which the new view was always identical to the optimistic one.
For the sake of measuring it, we had the OVS service retransmit
messages although these were not needed.



the view change. Now, we define the function f as:

flg, k) def (delivery(my,) — deliverq(mg))/k

Function f gives the average time it takes to deliver
a message at a process after a view change has begun.
The same function, outside of a view change, would be
the inverse of the throughput of the system. That is,
f is the frequency with which messages are delivered.
We measured the values of f for four different com-
munication primitives:
1. the normal Transis, without Sending View Deliv-
ery;

2. a version of Transis that supports Sending View
Delivery;

3. Transis with support for OVS, without the need
for retransmission; and

4. Transis with support for OVS, with the need for
retransmission.

Figure 3 shows, for one test, the measured f(p,k)
for these four primitives. Since p is the sender in this
test, this graph shows the function for the local delivery
of messages and is not affected by the communication
latency. The receiver side for this test showed similar
behavior, as did the other tests that were run. Due
to the scale of these measurements relative to the dif-
ferences in the values, the three primitives other than
the version of Transis providing Sending View Delivery
cannot be seen separately. We observe that although
OVS is as powerful as Sending View Delivery, it allows
for communication speeds comparable to a system that
does not provide Sending View Delivery.

In our experiments, an average view change took
about one second. Running on 10MBit/sec Ethernet,
OVS sent approximately 1000 1Kbyte messages dur-
ing this second. Since with Sending View Delivery this
bandwidth is not exploited, there is a build-up of mes-
sages following the view change. Figure 3 shows that
the build-up lingers on and effects the delivery latency
for several seconds. So, messages sent with OVS are
still delivered faster than those sent with Sending View
Delivery a few seconds after the view change.

For completeness, we compared the average deliv-
ery time for messages outside view changes in Transis
with the average delivery time for non-optimistic mes-
sages in Transis with OVS. As expected, these were
equal, i.e., OVS induces no delay on the delivery of
non-optimistic messages.

5. Related Work

The use of optimism in group communication was
previously suggested by [22]. There, optimistic as-

sumptions are made about the order in which messages
are received in order to quickly provide totally ordered
message delivery, whereas in our approach, optimistic
assumptions are made about the view. The optimism
of [22] is orthogonal to our use, and the approaches
could be combined.

Optimistic Virtual Synchrony allows applications to
send messages during periods in which other group
communication systems block. Two other (non-
optimistic) approaches to eliminate such blocking have
been suggested: light-weight groups and Weak Virtual
Synchrony (WVS).

Light-weight groups are used in systems that are
built around a small number of servers that provide
group communication services to numerous application
clients. In some of these systems (e.g., Transis [11]
and Spread [5]), client membership is implemented as
a light-weight layer that communicates with a heavy-
weight layer asynchronously using a FIFO buffer. Al-
though the heavy-weight layer supports Sending View
Delivery, the asynchrony may cause messages to ar-
rive in later views than the ones in which they were
sent. The resulting semantics are too weak for many
applications, as illustrated in Section 3 above. In other
light-weight group systems (e.g., [23]), the semantics of
the heavy-weight layer are preserved, and applications
are required to block. OVS can be used to improve the
performance of systems of the latter kind.

In order to eliminate the need for blocking while
still providing support for a certain type of applica-
tions that rely on Sending View Delivery, WVS [14]
was introduced. In WVS, every view v is preceded by
at least one suggested view event. The set of processes
in the suggested view is guaranteed to be an ordered
superset of v. Sending View Delivery is replaced by
the weaker requirement that messages sent in the sug-
gested view be delivered in the next regular view, and
processes can continue sending messages while the view
change is taking place. Processes that use WVS main-
tain translation tables that map process ranks in the
suggested view to process ranks in the new view. Thus,
although messages are no longer guaranteed to be de-
livered in the view in which they were sent, applications
may still send vectors of data indexed by processes.

One shortcoming of WVS is that it is useful only
for applications that are satisfied with knowledge of
a superset of the actual view, and does not suffice for
applications that have different requirements about the
ensuing view (see examples in Section 3 above). In
contrast, OVS provides applications with the flexibility
to determine the policy as to what the ensuing view
must be for the messages to be processed. In particular,
applications designed to work with WVS can exploit
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Figure 3. f(p, k) for sender delivery (in logarithmic scale).

OVS by requiring the ensuing view to be a subset or
the optimistic view (see Section 3.4 above).

A second shortcoming of the WVS model is that
once a suggested view is delivered, new processes are
not allowed to join the next regular view. If a new
process joins while a view change is taking place, a
protocol implementing WVS is forced to deliver an ob-
solete view, and then immediately start a new view
change to add the joiner. Furthermore, WVS requires
processes that continue together to the same new view
to deliver each other’s suggested views. Therefore, if
two connected processes deliver conflicting suggested
views, then they are forced to deliver views exclud-
ing each other before they can deliver a common view
again. This imposes severe limitations on the mem-
bership service’s choice of the next view and forces
the membership service to deliver obsolete views. In
contrast, OVS does not impose any limitations on the
membership service’s choice of the next view, hence
OVS does not require the membership service to de-
liver obsolete views. We believe that obsolete views
should be avoided since they cause extra overhead for
applications to process and increase network conges-
tion by withholding information from applications that
might allow them to avoid sending messages that will

be discarded (see [19]).

6. Conclusions

We have presented Optimistic Virtual Synchrony, a
novel form of group communication which provides the
power of Sending View Delivery without the execution
penalty of blocking.

OVS provides applications with the flexibility to de-
termine the certification policy (message condition) as
to when optimistic messages should be delivered and
when they should be discarded. We have described sev-
eral different applications that can benefit from OVS.
Our examples illustrate how different applications can
use OVS with different message conditions. We have
observed that applications seldom require that the new
view be identical to the optimistic one; typical appli-
cations are in fact satisfied by weaker constraints. We
believe that the flexibility to specify the message con-
dition is important, as it gives applications fine-grain
control over the specific semantics they require, and
does not impose costs for enforcing any semantics that
they do not require. At the same time, OVS provides a
single easy-to-use interface suitable for all applications.

We have shown that the overhead induced by OVS



on the processing of optimistic messages is smaller by
an order of magnitude than the performance benefit
gained from sending messages while group communica-
tion services that support Sending View Delivery would
block. The latency of optimistic messages sent using
OVS is significantly smaller than the latency imposed
by the blocking period in group communication ser-
vices that provide Sending View Delivery, and is simi-
lar to the latency of messages sent during view changes
using a group communication service that does not.
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