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ABSTRACT
Unstructured peer-to-peer lookup systems incur small constant
overhead per single join or leave operation, and can easily sup-
port keyword searches. Hence, they are suitable for dynamic
failure-prone environments. In this paper, we define metrics
for evaluating unstructured overlays for peer-to-peer lookup
systems. These metrics capture the search dependability and
efficiency, and the granularity at which one can control the
tradeoff between the two, as well as fairness. According to
these metrics, we evaluate different graphs and overlays, in-
cluding a Gnutella graph, a power law random graph, normal
random graphs, a 3-regular random graph, and a 3-Araneola
overlay. Our study shows that, according to our metrics, a 3-
Araneola overlay achieves the best results, and hence it is an
excellent solution for flooding-based peer-to-peer lookup sys-
tem.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications

General Terms
Graphs, Evaluation, Measurement

Keywords
Unstructured peer-to-peer overlays, lookup systems, depend-
ability, efficiency, metrics

1. INTRODUCTION
In unstructured peer-to-peer lookup systems, peers self or-

ganize into unstructured overlay networks. Examples to such
systems include eMule, Freenet, and Gnutella. Unstructured
lookup systems incur small constant overhead per single join
or leave operation, and can easily support keyword searches.
Chawathe et al. [3] have argued that these two features of un-
structured lookup systems are highly important, as users fre-
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quently join and leave lookup sessions, and keyword searches
are more popular than exact-match queries. Indeed, most of
the currently deployed lookup systems are unstructured ones.

In unstructured lookup systems, the search is not structural
and may fail. However, queries usually succeed in locating
files due to natural file redundancy [3], that is, popular files are
held by many nodes. Most unstructured peer-to-peer lookup
systems and some partially-structured ones employ flooding
in order to locate a searched object, at least among a subset
of the nodes, e.g., super-peers in KaZaA. Due to the natural
file redundancy, it is usually enough to limitedly flood the net-
work in order to locate a searched object [7]. The main reason
for using flooding is due to the high search reliability achieved
by it. Nevertheless, as with all other search techniques, the
dependability of flood-based search depends on the robust-
ness of the overlay: in a highly connected overlay, flooding
achieves high reliability, even in dynamic failure-prone envi-
ronments, whereas in a disconnected overlay, it may fail to
locate an object that is stored in the system. Flooding also in-
curs low latency, and can locate many copies of a searched ob-
ject. However, flooding is also inefficient, as it creates a high
number of duplicate search messages, i.e., multiple copies of
a query may be sent to a given node by its multiple neighbors.
Another problem with flooding is the difficulty to choose the
appropriate TTL (Time-To-Live), which controls the flooding
propagation. A high TTL achieves high search reliability but
also incurs high overhead. The flooding effectiveness versus
the overhead it incurs mainly depends on characteristics of the
overlay. These characteristics also determine how the flood-
ing overhead is distributed among the different nodes, and
the overlay’s dependability. In this paper, we define metrics
capturing the above important overlay features and evaluate a
number of overlays according to these metrics.

Our first metric, c, is the overlay’s connectivity, i.e., the
minimal number of disjoint paths between a pair of nodes in
the overlay. This metric measures the overlay’s fault-tolerance
in the presence of node failures and disconnections, and hence
captures the search dependability.

The second metric, fe (flooding efficiency), evaluates the
flooding coverage versus the overhead it incurs. Assume a
query q is propagated from a random node with a TTL of i.
Then, fe(i) is defined as Ni

Mi

, where Ni is the expected num-
ber of nodes that receives q and Mi is the expected number
of copies of q that are sent. A high fe value implies a small
number of duplicates, and hence high efficiency.

The third metric, cg (coverage granularity), measures the
difference in the coverage when increasing the TTL by one.



A small cg allows one to build an adaptive dependable lookup
system that adjusts to varying failure rates, where faults in-
clude node and link failures. For example, if cg is small, in-
creasing the TTL by one upon multiple query failures will in-
crease the search reliability at the expense of a slightly higher
overhead. Likewise, reducing the TTL by one upon succeed-
ing to locate many copies of searched objects will result in
overhead reduction while achieving similar search reliability.
For a given TTL i, we define dcg(i) as Ni+1

Ni

, where Ni is as
defined above.

Our final metric, lb (load balancing), evaluates how the
flooding overhead is distributed among the nodes. Assume
a query is initiated from a random node with a certain TTL.
In a random overlay, the probability that a random node is re-
quested to forward this query to its neighbors is proportional
to the node’s degree. Therefore, it is desirable that overlays
would be degree-balanced, in order to incur similar overhead
on all nodes. This is becoming more important now, as many
ISPs have started to limit the maximal bandwidth consump-
tion of every user. For random overlays, we define lb as dmax

dmin

,
where dmax (dmin) is the maximal (minimal, respectively)
node degree.

We evaluate different graphs and overlays according to the
above four metrics. We start by evaluating a Gnutella graph,
which is a typical file sharing application graph. We proceed
by applying our metrics on several synthetic graph structures,
including a power law graph, normal random graphs, and a
3-regular random graph (a k-regular random graph with N
nodes is a graph chosen uniformly at random from the set of
k-regular graphs with N nodes). Finally, we evaluate an Ara-
neola’s overlay [8], which is a distributed approximation of a
k-regular random graph. Our results show that a 3-regular ran-
dom graph and a 3-Araneola overlay achieve the best (virtually
identical) results.

In addition, we examine the join overhead in each of the
graphs mentioned above. We observe that a Gnutella graph
and an Araneola overlay incur the lowest construction and
maintenance overhead: in these two graphs structures, each
join (or leave) operation is handled locally and entails the send-
ing of a small constant number of messages. In normal ran-
dom graph constructions, a join or leave operation is also han-
dled locally, though such operation incurs sending O(log N)
messages, where N is the number of nodes in the system. In
a power law graph, some nodes have a high degree, propor-
tional to N, and hence joining/leaving of such nodes inevitably
entails high overhead. In contrast to the above four graph
structures, there are no known distributed constructions of k-
regular random graphs. Therefore, with this graph structure, a
single join or leave operation requires reconstructing the graph
anew, and hence leads to an overhead of Ω(N) messages.

This paper proceeds as follows: Section 2 discusses peer-
to-peer lookup systems. In Section 3, we describe in detail
the tested graphs, and in Section 4 we evaluate these graphs
according to our metrics. In Section 5, we analyze the join
cost in each of the graphs. Section 6 concludes the paper.

2. RELATED WORK
Structured lookup systems, e.g., Pastry, can achieve per-

fect search reliability, and incur the sending of only O(log N)
messages per search operation. However, such systems incur

high joining overhead of O(M log(N)) messages, where M
is the number of objects held by the joining node. Assuming
N = 30, 000 and M = 90 as in Gnutella [1], a single join
operation incurs a prohibitive overhead of more than 1, 300
messages. In addition, structured lookup systems do not sup-
port keyword searches, which are highly popular.

Partially structured lookup systems, e.g., KaZaA, usually
rely on some infrastructure, e.g., super-peers. Therefore, such
systems can achieve higher scalability compared to pure un-
structured lookup systems. However, the infrastructure can be
expensive to construct and maintain. Moreover, super-peers
have high bandwidth consumption. In addition, infrastructure-
based systems are much more vulnerable to malicious attacks
than pure peer-to-peer systems. Moreover, in this paper, we
show that the major problems of pure peer-to-peer unstruc-
tured lookup systems, e.g., low search efficiency resulting in a
high search overhead, which lead to abandoning the pure peer-
to-peer model for super-peers, can be eliminated with the use
of a good overlay.

Unstructured lookup systems such as Gnutella can scale up
to tens of thousands of users, without relying on any infras-
tructure [3]. In such systems, the search may fail. However,
queries usually succeed in locating files due to natural file re-
dundancy [3], that is, popular files are held by many nodes.
Search algorithms typically used in unstructured lookup sys-
tems are based on flooding and/or random walks [7]. In a ran-
dom walk, a query is forwarded to a randomly chosen neighbor
at each step, until the object is found. While this search tech-
nique can incur smaller overhead than flooding, it also dramat-
ically increases the search latency. In addition, in typical dy-
namic wide-area environments, a random walk usually fails to
achieve a similar search reliability to that achieved by flood-
ing. Therefore, most currently deployed peer-to-peer lookup
systems employ flooding as their search algorithm. In this pa-
per, we focus on improving the flooding efficiency in unstruc-
tured lookup systems.

Lv et al. [7], propose a search algorithm based on multiple
random walks, which resolves queries for popular objects al-
most as quickly as flooding, while reducing the network traf-
fic. However, this search technique is not feasible for low-
replicated objects or for failure-prone settings. In addition, Lv
et al. evaluate the efficiency of flooding over several graph
structures. Their results show that flooding over a normal
random graph achieves the best efficiency among the tested
graphs. Lv et al., however, do not examine low-degree bal-
anced graphs such as a 3-regular random graph. In this paper,
we show that flooding over such a graph (or an approximation
of such a graph) achieves much higher efficiency than flooding
over normal random graphs. Moreover, we show that a lim-
ited flooding over a 3-regular random graph achieves similar
efficiency to that achieved by random walks, while achieving
higher reliability and incurring lower latency.

3. THE EVALUATED OVERLAYS
In our study, we use six undirected graph topologies. In

all of the graphs, there are 10, 000 nodes. We start with a
Gnutella-like graph. This graph was constructed using a node
degree distribution of a real Gnutella graph taken from [9]. In
order to allow a fair comparison among all the six topologies,
we extrapolated the data from [9] in order to create a 10, 000
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(a) A Gnutella-like graph.
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(b) A power-law random graph.
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(c) A normal random graph, p = 3
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Figure 1: Distribution of node degrees in four graphs. Note that we use log scale for the power-law random and Gnutella
graphs, while for the normal random graphs we use a linear scale.

node graph. We kept an average of 3.4 links per-node as in [9],
and a node degree distribution similar to the one in [9]. In such
a graph, there is a small number of highly-connected nodes,
with 100 or more links, and the majority of the nodes have a
degree between 3 and 10. Similar characteristics also occur
in other peer-to-peer file sharing applications [5, 3]. Fig 1(a)
shows the node degree distribution of the Gnutella-like graph.
We compare this graph with a power-law random graph. In
this graph, the ith node chooses w

iα other nodes as its neigh-
bors, where w = 500, α = 0.8, and 1 ≤ i ≤ 10, 000. We use
this setting in order to achieve an average node degree of 3.4
links per-node, as in the Gnutella-like graph. Fig 1(b) shows
the node degree distribution of this graph.

Next, we use two normal random graphs, one with p =
3

20,000
and the second with p = 1

2000
, in which a node cre-

ates a connection with a given other node with a probability of
3

20,000
and 1

2,000
, (respectively). The resulting average node

degrees are 3 and 10, (respectively). We use the first nor-
mal random graph in order to allow a fair comparison with
the previous two graphs. However, since such a graph is not
connected (a normal random graph is connected if and only if
p = O(log N) [2]), we also use the second connected normal
random graph. Fig 1(c) and Fig 1(d) show the node degree
distributions of these two graphs.

Next, we use a 3-regular random graph, in which each node
is connected to three other random nodes. Finally, we use a 3-
Araneola overlay [8], in which roughly 90% of the nodes have
a degree of 3, while the rest have a degree of 4, leading to an
average node degree of roughly 3.1.

4. THE METRICS

4.1 Connectivity
Table 1 presents the connectivity of the different graphs. A

k-regular random graph and a k-Araneola graph are almost
always k connected [10, 8]. Therefore, such graphs achieve
high dependability even with high failure-rates, (includes node
and link failures). A normal random graph is connected with
high probability if p is at least logarithmic in the number of
nodes [2]. Therefore, the first normal random graph is discon-
nected (connectivity 0). The second one has a connectivity of
1. The power-law random graph and the Gnutella-like graph
have a connectivity of 1, as several nodes in these graphs have
a degree of 1. Such nodes are very likely to be disconnected
from the overlay graph. For a given number of links, we ob-
serve that a 3-regular random graph and a 3-Araneola over-
lay achieve much higher connectivity than a Gnutella graph,
a power-law random graph, and normal random graphs, due
to their regular structure. In fact, a 3-regular random graph
and a 3-Araneola overlay, in which the average node degree is
roughly 3, achieve higher connectivity than a normal random
graph with an average node degree of 10.

4.2 Flooding Efficiency
We now evaluate the flooding efficiency in all the graphs

except the normal random graph with p = 3

20,000
, as this graph

is not connected. For each graph, we run the flooding protocol
10, 000 times, one time from each node, and we calculated
the average flooding efficiency. We report about our results in
Fig. 2, and Fig. 3 shows the coverage achieved with each TTL.

In a power-law random graph and in a Gnutella-like graph,
starting from a TTL of 4, the flooding efficiency, i.e., the cov-
erage divided by the overhead, is poor. This is due to the pres-



Graph Connectivity
3-regular random graph 3

3-Araneola overlay 3
Normal random graph(p = 3

20,000
) 0

Normal random graph(p = 1

2,000
) 1

Gnutella-like graph 1
Power-law random graph 1

Table 1: Connectivity: A 3-regular random graph and a
3-Araneola overlay has a connectivity of 3. The rest of the
graphs have a connectivity of 1 or 0.
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Figure 2: Flooding efficiency: for effective TTLs, a 3-
Araneola overlay and a 3-regular random graph achieve
a near to perfect search efficiency. Other graphs achieve
much lower search efficiency.

ence of high-degree nodes in both of the graphs, which create
and receive many duplicate search messages. A similar phe-
nomenon occurs in the normal random graph with p = 1

2,000
,

as the degrees in such a graph range from 1 to 23. In con-
trast, in low degree balanced graphs such as a 3-Araneola over-
lay and a 3-regular random graph, the flooding efficiency is
very high. For small TTLs (≤ 8), the flooding efficiency
of the 3-regular random graph and the 3-Araneola overlay is
very close to one. Hence, for such TTLs, flooding is as ef-
ficient as random walks. Fig. 3 shows that with a TTL of
7/8/9, flooding over a 3-Araneola overlay and a 3-regular
random graph reaches, on average, to 485/989/1957 (roughly
4.85%/9.9%/20%) and 376/739/1424 (roughly 3.8%/7.4%/14%)
nodes, respectively. Therefore, with a 3-Araneola overlay and
a 3-regular random graph, it is possible to reach any desired
portion of the nodes efficiently; this is thanks to their good
coverage granularity, as discussed in the next section.
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Figure 3: Coverage versus TTL.
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Figure 4: Coverage granularity: a 3-Araneola overlay and
a 3-regular random graph achieve a good cg value for all
TTLs. In the rest of the graphs, cg(i) is very high for small
(effective) TTLs and low for high (ineffective) TTLs, in
which the flooding efficiency is poor.

4.3 The Coverage Granularity
Recall that cg(i) is defined as Ni+1

Ni

, where Ni is the ex-
pected number of nodes that receive a query that originates
from a random node with a TTL of i. Fig. 4 shows cg(i) for
the five graphs evaluated in the previous section. As the figure
shows, a 3-Araneola overlay and a 3-regular random graph
have a low (virtually identical) cg(i) value for all TTLs. In
addition, in these two graphs, cg(i) is very similar for all the
TTLs. This is due to the fact that k-regular random graphs
are good expanders. Therefore, in these two graphs, one can
adapt the search dependability and overhead according to the
failure rate. In contrast, in the rest of the graphs, cg(i) is very
high for small (effective) TTLs and low for high (ineffective)
TTLs. In addition, in these graphs, the low coverage granular-
ity is achieved only when the flooding efficiency is poor (see
Section 4.2).

4.4 Load Balancing
It is desirable that the flooding overhead would be distributed

equally among all nodes. Recall that for a random overlay, we
define the load balancing (lb) as dmax

dmin

, where dmax (dmin)
is the maximal (minimal, respectively) node degree. In the
normal random graph with p = 3

20,000
, we ignore nodes with

degree 0, as they are not connected to the overlay. Table 2
shows the lb value of the different graphs. The 3-regular ran-
dom graph achieves perfect load balancing, i.e., 1. Next, the
3-Araneola overlay achieves excellent load-balancing: 4

3
. The

two normal random graphs have lb values of 14

1
and 23

1
. In

such graphs, assuming queries are distributed uniformly, the
overhead incurred on a highly-connected node may be O(log N)
times the overhead incurred on a low-connected node, as in
such graphs a connected node’s degree is between 1 and O(log N).
In the Gnutella-like graph and the power-law random graph
the load balance is even worse, as the overhead incurred on a
highly-connected node can be two orders of magnitude greater
than the overhead incurred on a low-connected node.

5. THE JOIN COST
The results of Section 4 have shown that the 3-regular ran-

dom graph and the 3-Araneola overlay are the best overlays
among the tested graphs. We now examine the cost/feasibility



Graph lb = dmax

dmin

3-regular random graph 1
3-Araneola overlay 4/3

Normal random graph(p = 3

20,000
) 14/1

Normal random graph(p = 1

2,000
) 23/1

Gnutella-like graph 103/1
Power-law random graph 502/1

Table 2: Load balancing: a 3-regular random graph
achieves perfect load balancing of 1. A 3-Araneola over-
lay achieves a good load balancing of 4

3
. The rest of the

graphs achieves poor load balancing.

of distributed constructions of the tested graphs. Specifically,
we examine the join overhead in each of the graphs. We eval-
uate this overhead in two ways. We first assume the existence
of a membership service that maintains at each node a small
number of random node identities. Examples to such scalable
membership services can be found in [4, 8]. Next, we eval-
uate the join overhead without relying on the existence of a
membership service. In this case, we assume that a joining
node knows the identity of some other node that is currently
in the system. We assume, however, in this case that a random
walk of O(log N) steps from a given node reaches a random
node. Law et al. [6] have shown that this assumption is true
for expander graphs. Note that a scalable membership ser-
vice amortizes the logarithmic cost of knowing a random node
by aggregating membership information, and hence it is more
efficient than a random walk for retrieving random node iden-
tities.

Table 3 shows the join cost for each graph in both cases. In a
3-Araneola overlay, a join operation requires sending 3k = 9
messages, assuming the existence of a membership service. In
the absence of such a service, connecting to a random node
requires sending O(3 + log N) = O(log N) messages. In
a Gnutella graph, the overheads are similar to the overheads
above. However, for a high degree node, i.e., one that has 100
or more links, the leave overhead is very high, as such a node
is connected to many other nodes.

In a normal random graph and in a power-law random graph,
given a membership service, the join cost is the node’s degree.
In a connected normal random graph this degree is logarithmic
in the number of nodes in the system, and in a power-law ran-
dom graph a node’s degree can be O(N). Therefore, assum-
ing the existence of a membership service, the joining over-
head in a (connected) normal random graph and in a power-
law random graph is O(log N) and O(N), respectively. In
the absence of a membership service, these overheads need to
be multiple by O(log N), the overhead for retrieving a ran-
dom node. Finally, in a k-regular random graph, since no dis-
tributed constructions of such a graph are known, a join oper-
ation requires the reconstruction of the entire graph, leading to
a prohibitive overhead of Ω(N) messages.

6. CONCLUSIONS
We have defined metrics for evaluating unstructured over-

lays for peer-to-peer lookup systems. These metrics capture
the search dependability and efficiency, the granularity at which
one can control the tradeoff between the two, and also the fair-
ness. According to these metrics, we evaluated various over-
lays. Our results show that a 3-regular random graph and a

Graph The join cost
(with membership service)

3-Araneola overlay 9
Gnutella-like graph constant

Normal random graph O(log N)
Power-law random graph O(N)
3-regular random graph Ω(N)

Graph The join cost
(without membership service)

3-Araneola overlay O(log N)
Gnutella-like graph O(log N)

Normal random graph O(log2 N)
Power-law random graph Ω(N)
3-regular random graph Ω(N)

Table 3: The join cost: A 3-Araneola overlay achieves the
lowest join cost.
3-Araneola overlay achieve the best results in term of all four
metrics. Moreover, using such overlays eliminates the main
drawback due to which unstructured overlays were abandoned,
namely the search inefficiency. In fact, with such overlays, one
can reach up to 20% of the nodes with almost perfect search
efficiency.

As opposed to a 3-regular random graph, a 3-Araneola over-
lay supports dynamic user behavior. In such an overlay, each
single join or leave operation is handled locally, and incurs
the sending of only 9 messages on average (or O(log N) mes-
sages in the absence of a membership service). Therefore, we
conclude that a 3-Araneola overlay is an excellent solution for
a flooding-based peer-to-peer lookup system.
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