
SALSA: Scalable and Low Synchronization NUMA-aware
Algorithm for Producer-Consumer Pools

Elad Gidron
CS Department

Technion, Haifa, Israel
eladgi@cs.technion.ac.il

Idit Keidar
EE Department

Technion, Haifa, Israel
idish@ee.technion.ac.il

Dmitri Perelman
∗

EE Department
Technion, Haifa, Israel

dima39@tx.technion.ac.il

Yonathan Perez
EE Department

Technion, Haifa, Israel
yonathan0210@gmail.com

ABSTRACT
We present a highly-scalable non-blocking producer-consumer
task pool, designed with a special emphasis on lightweight
synchronization and data locality. The core building block
of our pool is SALSA, Scalable And Low Synchronization Al-
gorithm for a single-consumer container with task stealing
support. Each consumer operates on its own SALSA con-
tainer, stealing tasks from other containers if necessary. We
implement an elegant self-tuning policy for task insertion,
which does not push tasks to overloaded SALSA containers,
thus decreasing the likelihood of stealing.

SALSA manages large chunks of tasks, which improves lo-
cality and facilitates stealing. SALSA uses a novel approach
for coordination among consumers, without strong atomic
operations or memory barriers in the fast path. It invokes
only two CAS operations during a chunk steal.

Our evaluation demonstrates that a pool built using SALSA
containers scales linearly with the number of threads and
significantly outperforms other FIFO and non-FIFO alter-
natives.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming

General Terms
Algorithms, Performance

Keywords
Multi-core, concurrent data structures

∗This work was partially supported by Hasso Plattner In-
stitute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

1. INTRODUCTION
Emerging computer architectures pose many new chal-

lenges for software development. First, as the number of
computing elements constantly increases, the importance of
scalability of parallel programs becomes paramount. Sec-
ond, accessing memory has become the principal bottleneck,
while multi-CPU systems are based on NUMA architectures,
where memory access from different chips is asymmetric.
Therefore, it is instrumental to design software with local
data access, cache-friendliness, and reduced contention on
shared memory locations, especially across chips. Further-
more, as systems get larger, their behavior becomes less pre-
dictable, underscoring the importance of robust programs
that can overcome unexpected thread stalls.

Our overarching goal is to devise a methodology for devel-
oping parallel algorithms addressing these challenges. In this
paper, we focus on one of the fundamental building blocks of
highly parallel software, namely a producer-consumer task
pool. Specifically, we present a scalable and highly-efficient
non-blocking pool, with lightweight synchronization-free op-
erations in the common case. Its data allocation scheme is
cache-friendly and highly suitable for NUMA environments.
Moreover, our pool is robust in the face of imbalanced loads
and unexpected thread stalls.

Our system is composed of two independent logical en-
tities: 1) SALSA, Scalable and Low Synchronization Algo-
rithm, a single-consumer pool that exports a stealing op-
eration, and 2) a work stealing framework implementing a
management policy that operates multiple SALSA pools.

In order to improve locality and facilitate stealing, SALSA
keeps tasks in chunks, organized in per-producer chunk lists.
Only the producer mapped to a given list can insert tasks
to chunks in this list, which eliminates the need for synchro-
nization among producers.

Though each consumer has its own task pool, inter-consumer
synchronization is required in order to allow stealing. The
challenge is to do so without resorting to costly atomic op-
erations (such as CAS or memory fences) upon each task
retrieval. We address this challenge via a novel chunk-based
stealing algorithm that allows consume operations to be
synchronization-free in the common case, when no stealing
occurs, which we call the fast path. Moreover, SALSA re-
duces the stealing rate by moving entire chunks of tasks in
one steal operation, which requires only two CAS operations.

In order to achieve locality of memory access on a NUMA
architecture, SALSA chunks are kept in the consumer’s local
memory. The management policy matches producers and
consumers according to their proximity, which allows most
task transfers to occur within a NUMA node.

In many-core machines running multiple applications, sys-
tem behavior becomes less predictable. Unexpected thread
stalls may lead to an asymmetric load on consumers, which
may in turn lead to high stealing rates, hampering perfor-
mance. SALSA employs a novel auto-balancing mechanism
that has producers insert tasks to less loaded consumers,
and is thus robust to spurious load fluctuations.

We have implemented SALSA in C++, and tested its
performance on a 32-core NUMA machine. Our experi-
ments show that the SALSA-based work stealing pool scales
linearly with the number of threads; it is 20 times faster
than other work-stealing alternatives, and shows a signifi-
cant improvement over state-of-the-art non-FIFO alterna-
tives. SALSA-based pools scale well even in unbalanced
scenarios.

This paper proceeds as follows. Section 2 describes re-
lated work. We give the system overview in Section 3. The
SALSA single-consumer algorithm is described in Section 4
and its correctness is discussed in Section 5. We discuss our
implementation and experimental results in Section 6, and
finally conclude in Section 7.

2. RELATED WORK

Task pools.
There is a large body of work on lock-free unbounded

FIFO queues and LIFO stacks [12, 16, 17, 21, 22]. However,
due to the inherent need for ordering all operations, such
algorithms generally have high contention and do not scale,
and are therefore less appealing for use as task pools.

A number of previous works have recognized this limita-
tion, and observed that strict FIFO order is seldom needed
in multi-core systems [3, 4, 7, 24]. To the best of our knowl-
edge, all previous solutions use strong atomic operations
(like CAS), at least in every consume operation. More-
over, most of them [3, 4, 7] do not partition the pool among
processors, and therefore do not achieve good locality and
cache-friendliness, which has been shown to limit their scal-
ability on NUMA systems [6].

The closest non-FIFO pool to our work is the Concur-
rent Bags of Sundell et al. [24], which, like SALSA, uses
per-producer chunk lists. This work is optimized for the
case that the same threads are both consumers and produc-
ers, and typically consume from themselves, while SALSA
improves the performance of such a task pool in NUMA
environments where producers and consumers are separate
threads. Unlike our pool, the Concurrent Bags algorithm
uses strong atomic operations upon each consume. In addi-
tion, steals are performed in the granularity of single tasks
and not whole chunks as in SALSA. Overall, their through-
put does not scale linearly with the number of participating
threads, as shown in [24] and in Section 6 of this paper.

Techniques.
Variations of techniques we employ were previously used

in various contexts. Work-stealing [9] is a standard way to
reduce contention by using individual per-consumer pools,

where tasks may be stolen from one pool to another. We
improve the efficiency of stealing by transferring a chunk of
tasks upon every steal operation. Hendler et al. [15] have
proposed stealing of multiple items by copying a range of
tasks from one dequeue to another, but this approach re-
quires costly CAS operations on the fast-path and intro-
duces non-negligible overhead for item copying. In con-
trast, our approach of chunk-based stealing coincides with
our synchronization-free fast-path, and steals whole chunks
in O(1) steps. Furthermore, our use of page-size chunks al-
lows for data migration in NUMA architectures to improve
locality, as done in [8].

The principle of keeping NUMA-local data structures was
previously used by Dice et al. for constructing scalable
NUMA locks [11]. Similarly to their work, our algorithm’s
data allocation scheme is designed to reduce inter-chip com-
munication.

The concept of a synchronization-free fast-path previously
appeared in works on scheduling queues, e.g., [5, 14]. How-
ever, these works assume that the same process is both the
producer and the consumer, and hence the synchronization-
free fast-path is actually used only when a process transfers
data to itself. On the other hand, our pool is synchronization-
free even when tasks are transfered among multiple threads;
our synchronization-free fast-path is used also when multiple
producers produce data for a single consumer. We do not
know of any other work that supports synchronization-free
data transfer among different threads.

The idea of organizing data in chunks to preserve local-
ity in dynamically-sized data structures was previously used
in [10, 12, 14, 24]. SALSA extends on the idea of chunk-
based data structures by using chunks also for efficient steal-
ing.

3. SYSTEM OVERVIEW
In the current section we present our framework for scal-

able and NUMA-aware producer-consumer data exchange.
Our system follows the principle of separating mechanism
and policy. We therefore consider two independent logical
entities:

1. A single consumer pool (SCPool) mechanism manages
the tasks arriving to a given consumer and allows tasks
stealing by other consumers.

2. A management policy operates SCPools: it routes pro-
ducer requests to the appropriate consumers and initi-
ates stealing between the pools. This way, the policy
controls the system’s behavior according to considera-
tions of load-distribution, throughput, fairness, local-
ity, etc. We are especially interested in a management
policy suitable for NUMA architectures (see Figure 1),
where each CPU has its own memory, and memories
of other CPUs are accessed over an interconnect. As
a high rate of remote memory accesses can decrease
the performance, it is desirable for the SCPool of a
consumer to reside close to its own CPU.

SCPool abstraction.
The SCPool API provides the abstraction of a single-

consumer task pool with stealing support, see Algorithm 1.
A producer invokes two operations: produce(), which at-
tempts to insert a task to the given pool and fails if the pool

SCPool 1

Memory 1
CPU1

cons 1 prod 1 SCPool 3

Memory 2
CPU2

cons 3prod 3

interconnect

SCPool 2
cons 2 prod 2

SCPool 4
cons 4prod 4

d l lProd 2 access list:
cons2, cons1, cons3, cons4

Cons 4 access list:
cons3, cons1, cons2

Figure 1: Producer-consumer framework overview. In this example, there are two processors connected to
two memory banks (NUMA architecture). Two producers and two consumers running on each processor,
and the data of each consumer is allocated at the closest physical memory. A producer (consumer) has a
sorted access list of consumers for task insertion (respectively stealing).

Algorithm 1 API for a Single Consumer Pool with stealing
support.

1: boolean: produce(Task, SCPool) � Tries to insert the
task to the pool, returns false if no space is available.

2: void: produceForce(Task, SCPool) � Insert the task to
the pool, expanding the pool if necessary.

3: {Task ∪⊥}: consume() � Retrieve a task from the
pool, returns ⊥ if no tasks in the pool are detected.

4: {Task ∪⊥}: steal(SCPool from) � Try to steal a
number of tasks from the given pool and move them to
the current pool. Return some stolen task or ⊥.

is full, and produceForce(), which always succeeds by ex-
panding the pool on demand. There are also two ways to
retrieve a task from the pool: the owner of the pool (only)
can call the consume() function; while any other thread
can invoke steal(), which tries to transfer a number of tasks
between two pools and return one of the stolen tasks.

A straightforward way to implement the above API is us-
ing dynamic-size multi-producer multi-consumer FIFO queue
(e.g., Michael-Scott queue [21]). In this case, produce() en-
queues a new task, while consume() and steal() dequeue
a task. In the next section we present SALSA, a much more
efficient SCPool.

Management policy.
A management policy defines the way in which: 1) a pro-

ducer chooses an SCPool for task insertion; and 2) a con-
sumer decides when to retrieve a task from its own pool or
steal from other pools. Note that the policy is independent
of the underlying SCPool implementation. We believe that
the policy is a subject for engineering optimizations, based
on specific workloads and demands.

In the current work, we present a NUMA-aware policy.
If the individual SCPools themselves are lock-free, then our
policy preserves lock-freedom at the system level. Our policy
is as follows:

• Access lists. Each process in the system (producer
or consumer) is provided with an access list, an or-
dered list of all the consumers in the system, sorted
according to their distance from that process (see Fig-
ure 1). Intuitively, our intention is to have a producer
mostly interact with the closest consumer, while steal-
ing mainly happens inside the same processor node.

• Producer’s policy. The producer policy is imple-
mented in the put() function in Algorithm 2. The op-

Algorithm 2 Work stealing framework pseudo-code.

5: Local variables:
6: SCPool myPool � The consumer’s pool
7: SCPool[] accessList

8: Function get():
9: while(true)

10: � First try to get a task from the local pool
11: t ← myPool.consume()
12: if (t 6= ⊥) return t
13: � Failed to get a task from the local pool – steal
14: foreach SCPool p in accessList in order do:
15: t ← p.steal()
16: if (t 6= ⊥) return t
17: � No tasks found – validate emptiness
18: if (checkEmpty()) return ⊥

19: Function put(Task t):
20: � Produce to the pools by the order of the access list
21: foreach SCPool p in accessList in order do:
22: if (p.produce(t)) return
23: firstp ← the first entry in accessList
24: � If all pools are full, expand the closest pool
25: produceForce(t,firstp)
26: return

eration first calls the produce() of the first SCPool in
its access list. Note that this operation might fail if the
pool is full, (which can be seen as evidence of that the
corresponding consumer is overloaded). In this case,
the producer tries to insert the task into other pools, in
the order defined by its access list. If all insertions fail,
the producer invokes produceForce() on the closest
SCPool, which always succeeds (expanding the pool if
needed).

• Consumer’s policy. The consumer policy is imple-
mented in the get() function in Algorithm 2. A con-
sumer takes tasks from its own SCPool. If its SCPool
is empty, then the consumer tries to steal tasks from
other pools in the order defined by its access list. The
checkEmpty() operation handles the issue of when a
consumer gives up and returns ⊥. This is subtle is-
sue, and we discuss it in Section 5. Stealing serves
two purposes: first, it is important for distributing the
load among all available consumers. Second, it ensures
that tasks are not lost in case they are inserted into
the SCPool of a crashed (or very slow) consumer.

4. ALGORITHM DESCRIPTION
In the current section we present the SALSA SCPool. We

first show the data structures of SALSA in Section 4.1, and
then present the basic algorithm without stealing support
in Section 4.2. The stealing procedure is described in Sec-
tion 4.3, finally, the role of chunk pools is presented in Sec-
tion 4.4. For the simplicity of presentation, in this section
we assume that the the memory accesses satisfy sequential
consistency [19], we describe the ways to solve memory re-
ordering issues in Section 6.1.

4.1 SALSA Structure

Algorithm 3 SALSA implementation of SCPool: Data
Structures.

27: Chunk type
28: Task[CHUNK SIZE] tasks
29: int owner � owner’s consumer id
30: Node type
31: Chunk c; initially ⊥
32: int idx; initially -1
33: Node next;

34: SALSA per consumer data structure:
35: int consumerId
36: List〈Node〉[] chunkLists � one list per producer + ex-

tra list for stealing (every list is single-writer multi-
reader)

37: Queue〈Chunk〉 chunkPool � pool of spare chunks
38: Node currentNode, initially ⊥ � current node to work

with

idx=2 idx=‐1idx=4prod0

TAKEN
TAKEN

Task
Taskidx=0

prod1

prod2

prod3kL
is
ts

owner=c1 owner=c1

0
1

0
1 TAKEN

TAKEN
Task
Task

Task
┴
┴
┴owner=c1

TAKEN

idx=0prod3

prod4

prod5

ch
un

k 1
2
3
4

1
2
3
4

0

Task
Task
┴
┴

steal 1
2
3
4

Figure 2: Chunk lists in SALSA single consumer
pool implementation. Tasks are kept in chunks,
which are organized in per-producer lists; an ad-
ditional list is reserved for stealing. Each list can be
modified by the corresponding producer only. The
only process that is allowed to retrieve tasks from
a chunk is the owner of that chunk (defined by the
ownership flag). A Node’s index corresponds to the
latest task taken from the chunk or the task that is
about to be taken by the current chunk owner.

The SALSA data structure of a consumer ci is described
in Algorithm 3 and partially depicted in Figure 2. The tasks
inserted to SALSA are kept in chunks, which are organized
in per-producer chunk lists. Only the producer mapped to a
given list can insert a task to any chunk in that list. Every
chunk is owned by a single consumer whose id is kept in the

owner field of the chunk. The owner is the only process that
is allowed to take tasks from the chunk; if another process
wants to take a task from the chunk, it should first steal the
chunk and change its ownership. A task entry in a chunk is
used at most once. Its value is ⊥ before the task is inserted,
and TAKEN after it has been consumed.

The per-producer chunk lists are kept in the array chun-
kLists (see Figure 2), where chunkLists[j] keeps a list of
chunks with tasks inserted by producer pj . In addition, the
array has a special entry chunkLists[steal], holding chunks
stolen by ci. Every list has a single writer who can mod-
ify the list structure (add or remove nodes): chunkLists[j] ’s
modifier is the producer pj , while chunkLists[steal] ’s mod-
ifer is the SCPool’s owner. The nodes of the used chunks
are lazily reclaimed and removed by the list’s owner. For
brevity, we omit the linked list manipulation functions from
the pseudo-code bellow. Our single-writer lists can be im-
plemented without synchronization primitives, similarly to
the single-writer linked-list in [20]. In addition to holding
the chunk, a node keeps the index of the latest taken task
in that chunk, this index is then used for chunk stealing as
we show in Section 4.3.

Safe memory reclamation is provided by using hazard point-
ers [20] both for nodes and for chunks. The free (reclaimed)
chunks in SALSA are kept at per-consumer chunkPools im-
plemented by lock-free Michael-Scott queues [21]. As we
show in Section 4.4, the chunk pools serve two purposes: 1)
efficient memory reuse and 2) producer-based load balanc-
ing.

4.2 Basic Algorithm

4.2.1 SALSA producer
The description of SALSA producer functions is presented

in Algorithm 4. The insertion of a new task consists of two
stages: 1) finding a chunk for task insertion (if necessary),
and 2) adding a task to the chunk.

Finding a chunk.
The chunk for task insertions is kept in the local producer

variable chunk (line 41 in Algorithm 4). Once a producer
starts working with a chunk c, it continues inserting tasks to
c until c is full – the producer is oblivious to chunk stealing.
If the chunk ’s value is ⊥, then the producer should start
a new chunk (function getChunk). In this case, it tries to
retrieve a chunk from the chunk pool and to append it to
the appropriate chunk list. If the chunk pool is empty then
the producer either returns ⊥ (if force=false), or allocates a
new chunk by itself (otherwise) (lines 56–58).

Inserting a task to the chunk.
As previously described in Section 4.1, different produc-

ers insert tasks to different chunks, which removes the need
for synchronization among producers. The producer local
variable prodIdx indicates the next free slot in the chunk.
All that is left for the insertion function to do, is to put a
task in that slot and to increment prodIdx (line 48). Once
the index reaches the maximal value, the chunk variable is
set to ⊥, indicating that the next insertion operation should
start a new chunk.

4.2.2 SALSA consumer without stealing
The consumer’s algorithm without stealing is given in the

Algorithm 4 SALSA implementation of SCPool: Producer Functions.

39: Producer local variables:
40: int producerId
41: Chunk chunk; initially ⊥ � the chunk to insert to
42: int prodIdx; initially 0 � the prefix of inserted tasks

43: Function produce(Task t, SCPool scPool):
44: return insert(t, scPool, false)

45: Function insert(Task t, SCPool scPool, bool force):
46: if (chunk = ⊥) then � allocate new chunk
47: if (getChunk(scPool, force) = false) then return

false
48: chunk.tasks[prodIdx] ← t; prodIdx++
49: if(prodIdx = CHUNK SIZE) then
50: chunk ← ⊥ � the chunk is full
51: return true

52: Function produceForce(Task t, SCPool scPool):
53: insert(t, scPool, true)

54: Function getChunk(SALSA scPool, bool force)
55: newChunk ← dequeue chunk from scPool.chunkPool
56: if (chunk = ⊥) � no available chunks in this pool
57: if (force = false) then return false
58: newChunk ← allocate a new chunk
59: newChunk.owner ← scPool.consumerId
60: node← new node with idx = −1 and c = newChunk
61: scPool.chunkLists[producerId].append(node)
62: chunk ← newChunk; prodIdx ← 0
63: return true

left column of Algorithm 5. The consumer first finds a
nonempty chunk it owns and then invokes takeTask() to
retrieve a task.

Unlike producers, which have exclusive access to inser-
tions in a given chunk, a consumer must take into account
the possibility of stealing. Therefore, it should notify other
processes which task it is about to take.

To this end, each node in the chunk list keeps an index
of the taken prefix of its chunk in the idx variable, which is
initiated to −1. A consumer that wants to take a task T ,
first increments the index, then checks the chunk’s owner-
ship, and finally changes the chunk entry from T to TAKEN
(lines 78–80). By doing so, a consumer guarantees that idx
always points to the last taken task or to a task that is about
to be taken. Hence, a process that is stealing a chunk from
a node with idx = i can assume that the tasks in the range
[0 . . . i) have already been taken. The logic for dealing with
stolen chunks is described in the next section.

4.3 Stealing
The stealing algorithm is given in the function steal() in

Algorithm 5. We refer to the stealing consumer as cs, the
victim process whose chunk is being stolen as cv, and the
stolen chunk as ch.

The idea is to turn cs to the exclusive owner of ch, such
that cs will be able to take tasks from the chunk without
synchronization. In order to do that, cs changes the owner-
ship of ch from cv to cs using CAS (line 96) and removes the
chunk from cv’s list (line 104). Once cv notices the change
in the ownership it can take at most one more task from ch
(lines 83–86).

When the steal() operation of cs occurs simultaneously
with the takeTask() operation of cv, both cs and cv might
try to retrieve the same task. We now explain why this
might happen. Recall that cv notifies potential stealers of
the task it is about to take by incrementing the idx value
in ch’s node (line 78). This value is copied by cs in line 99
when creating a copy of ch’s node for its steal list.

Consider, for example, a scenario in which the idx is in-
cremented by cv from 10 to 11. If cv checks ch’s ownership
before it is changed by cs, then cv takes the task at index
11 without synchronization (line 80). Therefore, cs cannot
be allowed to take the task pointed by idx. Hence, cv has to
take the task at index 11 even if it does observe the owner-
ship change. After stealing the chunk, cs will eventually try

to take the task pointed by idx+1. However, if cs copies the
node before idx is incremented by cv, cs might think that
the value of idx + 1 is 11. In this case, both cs and cv will
try to retrieve the task at index 11. To ensure that the task
is not retrieved twice, both invoke CAS in order to retrieve
this task (line 108 for cs, line 83 for cv).

The above algorithm works correctly as long as the steal-
ing consumer can observe the node with the updated index
value. This might not be the case if the same chunk is con-
currently stolen by another consumer rendering the idx of
the original node obsolete. In order to prevent this situation,
stealing a chunk from the pool of consumer cv is allowed only
if cv is the owner of this chunk (line 96). This approach is
prone to the ABA problem: consider a scenario where con-
sumer ca is trying to steal from cb, but before the execution
of the CAS in line 96, the chunk is stolen by cc and then
stolen back by cb. In this case, ca’s CAS succeeds but ca
has an old value of idx. To prevent this ABA problem, the
owner field contains a “tag”, which is incremented on ev-
ery CAS operation. For brevity, tags are omitted from the
pseudo-code.

A näıve way for cs to steal the chunk from cv would be
first to change the ownership and then to move the chunk to
the steal list. However, this approach may cause the chunk
to “disappear” if cs is stalled, because the chunk becomes
inaccessible via the lists of cs and yet cs is its owner. There-
fore, SALSA first adds the original node to the steal list of
cs, then change the ownership, and only then replaces the
original node with a new one (lines 95–104).

4.4 Chunk Pools
As described in Section 4.1, each consumer keeps a pool

of free chunks. When a producer needs a new chunk for
adding a task to consumer ci, it tries to get a chunk from ci’s
chunk pool – if no free chunks are available, the produce()
operation fails.

As described in Section 3, our system-wide policy defines
that if an insertion operation fails, then the producer tries
to insert a task to other pools. Thus, the producer avoids
adding tasks to overloaded consumers, which in turn de-
creases the amount of costly steal operations. We further
refer to this technique as producer-based balancing.

Another SALSA property is that a chunk is returned to
the pool of a consumer that retrieves the latest task of this
chunk. Therefore, the size of the chunk pool of consumer ci

Algorithm 5 SALSA implementation of SCPool: Consumer Functions.

64: Function consume():
65: if (currentNode 6= ⊥) then � common case
66: t ← takeTask(currentNode)
67: if (t 6= ⊥) then return t
68: foreach Node n in ChunkLists do: � fair traversal
69: if (n.c 6= ⊥ ∧ n.c.owner = consumerId) then
70: t ← takeTask(n)
71: if (t 6= ⊥) then currentNode ← n; return t
72: currentNode ← ⊥; return ⊥

73: Function takeTask(Node n):
74: chunk ← n.c
75: if (chunk = ⊥) then return ⊥ � stolen chunk
76: task ← chunk.tasks[n.idx + 1]
77: if (task = ⊥) then return ⊥ � no inserted tasks

� tell the world you’re going to take a task from idx
78: n.idx++
79: if (chunk.owner = consumerId) then � common case
80: chunk.tasks[n.idx] ← TAKEN
81: checkLast(n)
82: return task

� the chunk has been stolen, CAS the last task and
go away

83: success ← (task 6= TAKEN ∧
CAS(chunk.tasks[n.idx], task, TAKEN))

84: if(success) then checkLast(n)
85: currentNode ← ⊥
86: return (success) ? task : ⊥

87: Function checkLast(Node n):
88: if(n.idx + 1 = CHUNK SIZE) then
89: n.c ← ⊥; return chunk to chunkPool
90: currentNode ← ⊥

91: Function steal(SCPool p):
92: prevNode ← a node holding tasks, whose owner is p,

from some list in p’s pool � different policies possible

93: if (prevNode = ⊥) return ⊥ � No Chunk found
94: c ← prevNode.c; if (c = ⊥) then return ⊥

� make it restealable
95: chunkLists[steal].append(prevNode)
96: if (CAS(c.owner,p.consumerId,consumerId)=false)
97: chunkLists[steal].remove(prevNode)
98: return ⊥ � failed to steal

99: newNode ← copy of prevNode
100: if (newNode.idx+1 = CHUNK SIZE)
101: chunkLists[steal].remove(prevNode)
102: return ⊥
103: replace prevNode with newNode in chunkLists[steal]
104: prevNode.c ← ⊥

� done stealing the chunk, take one task from it
105: idx ← newNode.idx
106: task ← c.tasks[idx+1]
107: if (task = ⊥) then return ⊥ � still no task at idx+1

108: if (task = TAKEN ∨
!CAS(c.tasks[idx+1], task, TAKEN)) then

109: task ← ⊥
110: if (task 6= ⊥) then checkLast(newNode)
111: newNode.idx ← newNode.idx+1
112: if (c.owner = consumerId) currentNode← newNode
113: return task

is proportional to the rate of ci’s task consumption. This
property is especially appealing for heterogeneous systems
– a faster consumer ci, (e.g., one running on a stronger or
less loaded core), will have a larger chunk pool, and so more
produce() operations will insert tasks to ci, automatically
balancing the overall system load.

5. CORRECTNESS

Linearizability.
In the full version of the paper [13], we prove that SALSA

does not return the same task twice. However, for our sys-
tem to be linearizable, we must ensure that SALSA’s get()
operation returns ⊥ only if the pool contains no tasks at
some point during the consume operation. We describe a
policy for doing so in a lock-free manner.

Let us examine why a näıve approach, of simply traversing
all task pools and returning ⊥ if no task is found, violates
correctness. First, a consumer might “miss” one task added
during its traversal, and another removed during the same
traversal, as illustrated in Figure 3. In this case, a single
traversal would have returned ⊥ although the pool was not
empty at any point during the consume operation. Second,
a consumer may miss a task that is moved from one pool to
another due to stealing. In order to identify these two cases,
we add to each pool a special emptyIndicator, a bit array
with a bit per-consumer, which is cleared every time the

pool may become empty. In SALSA, this occurs when the
last task in a chunk is taken or when a chunk is stolen. In ad-
dition, we implement a new function, checkEmpty() (full
pseudo-code shown in [13]), which is called by the framework
whenever a consumer fails to retrieve tasks from its pool and
all other pools. This function return true only if there is a
time during its execution when there are no tasks in the sys-
tem. If checkEmpty() returns false, the consumer simply
restarts its operation.

Denote by c the number of consumers in the system. The
checkEmpty() function works as follows: the consumer
traverses all SCPools, to make sure that no tasks are present.
After checking a pool, the consumer sets its bit in emp-
tyIndicator using CAS. The consumer repeats this traversal
c times, where in all traversals except the first, it checks that
its bit in emptyIndicator is set, i.e., that no chunks were
emptied or removed during the traversal. The c traversals
are needed in order to account for the case that other con-
sumers have already stolen or removed tasks, but did not
yet update emptyIndicator, and thus their operations were
not detected by the consumer. Since up to c − 1 pend-
ing operations by other consumers may empty pools before
any emptyIndicator changes, it is guaranteed that among c
traversals in which no chunks were seen and the emptyIndi-
cator did not change, there is one during which the system
indeed contains no tasks, and therefore it is safe to return

produce t
b

in SCPool
b

produce t
c

in SCPool
c

consume:
return t

b

consume:

Check
SCPool

a

Check
SCPool

c

return
a:

b:

p:

Check
SCPool

b

Figure 3: An example where a single traversal may violate linearizability: consumer a is trying to get a task.
It fails to take a task from its own pool, and starts looking for chunks to steal in other pools. At this time
there is a single non-empty chunk in the system, which is in b’s pool; a checks c’s pool and finds it empty. At
this point, a producer adds a task to c’s pool and then b takes the last task from its pool before a checks it.
Thus, a finds b’s pool empty, and returns ⊥. There is no way to linearize this execution, because throughout
the execution of a’s operation, the system contains at least one task.

⊥. This method is similar to the one used in Concurrent
Bags [24].

Lock-freedom.
The operations of every individual SALSA SCPool are

trivially wait-free, since they always return. However, a
get() operation is restarted whenever checkEmpty() re-
turns false, and therefore the algorithm does not guarantee
that a consumer will finish every operation. Nevertheless,
as shown in the full version of the paper [13], the system is
lock-free, i.e., there always exists some consumer that makes
progress.

6. IMPLEMENTATION AND EVALUATION
In this section we evaluate the performance of our work-

stealing framework built on SALSA pools. We first present
the implementation details on dealing with memory reorder-
ing issues in Section 6.1. The experiment setup is described
in Section 6.2, we show the overall system performance in
Section 6.3, study the influence of various SALSA techniques
in Section 6.4 and check the impact of memory placement
and thread scheduling in Section 6.5.

6.1 Dealing with Memory Reordering
The presentation of the SALSA algorithm in Section 4

assumes sequential consistency [19] as the memory model.
However, most existing systems relax sequential consistency
to achieve better performance. Specifically, according to
x86-TSO [23], memory loads can be reordered with respect
to older stores to different locations. In SALSA, this re-
ordering can cause an index increment to occur after the
ownership validation (lines 78, 79 in Algorithm 5), which vi-
olates correctness as it may cause the same task to be taken
twice, by both the original consumer and the stealing thread.

The conventional way to ensure a correct execution in such
cases is to use memory fences to force a specific memory or-
dering. For example, adding an mfence instruction between
lines 78 and 79 guarantees SALSA’s correctness. However,
memory fences are costly and their use in the common path
degrades performance. Therefore, we prefer to employ a syn-
chronization technique that does not add substantial over-
head to the frequently used takeTask() operation. One ex-
ample for such a technique is location-based memory fences,
recently proposed by Ladan-Mozes et al. [18], which is un-
fortunately not implemented in current hardware.

In our implementation, we adopt the synchronization tech-

nique described by Dice et al. [1], where the slow thread
(namely, the stealer) binds directly to the processor on which
the fast thread (namely, the consumer) is currently running,
preempting it from the processor, and then returns to run
on its own processor. Thread displacement serves as a full
memory fence, hence, a stealer that invokes the displacement
binding right after updating the ownership (before the line
99 in Algorithm 5) observes the updated consumer’s index.
On the other hand, the steal-free fast path is not affected by
this change.

6.2 Experiment Setup
We compare the following task pool implementations:

• SALSA – our work-stealing framework with SCPools
implemented by SALSA.

• SALSA+CAS – our work-stealing framework with
SCPools implemented by a simplistic SALSA varia-
tion, in which every consume() and steal() opera-
tion tries to take a single task using CAS. In essence,
SALSA+CAS removes the effects of SALSA’s low syn-
chronization fast-path and per-chunk stealing. Note
that disabling per-chunk stealing in SALSA annuls the
idea of chunk ownership, hence, disables its low syn-
chronization fast-path as well.

• ConcBag – an algorithm similar to the lock-free Con-
current Bags algorithm [24]. It is worth noting that
the original algorithm was optimized for the scenario
where the same process is both a producer and a con-
sumer (in essence producing tasks to itself), which we
do not consider in this paper; in our system no thread
acts as both a producer and a consumer, therefore ev-
ery consume operation steals a task from some pro-
ducer. We did not have access to the original code, and
therefore reimplemented the algorithm in our frame-
work. Our implementation is faithful to the algorithm
in the paper, except in using a simpler and faster un-
derlined linked list algorithm. All engineering deci-
sions were made to maximize performance.

• WS-MSQ – our work-stealing framework with SCPools
implemented by Michael-Scott non-blocking queue [21].
Both consume() and steal() operations invoke the
dequeue() function.

• WS-LIFO – our work-stealing framework with SCPool
implemented by Michael’s LIFO stack [20].

0

50

100

150

200

250

300

350

400

450

500

8 12 16 20 24 28 32

Th
ro

ug
hp

ut
 (1

00
0

ta
sk

s/
m

se
c)

Num of threads

SALSA

SALSA+CAS

ConcBag

WS-MSQ

WS-LIFO

(a) System throughput – N producers, N consumers.

0

50

100

150

200

250

300

350

400

450

500

Th
ro

ug
hp

ut
 (1

00
0

ta
sk

s/
m

se
c)

Num of producers / Num of consumers

(b) System throughput – variable producers-consumers ratio.

Figure 4: System throughput for various ratios of producers and consumers. SALSA scales linearly with the
number of threads – in the 16/16 workload, it is ×20 faster than WS-MSQ and WS-LIFO, and ×3.5 faster
than Concurrent Bags. In tests with equal numbers of producers and consumers, the differences among
work-stealing alternatives are mainly explained by the consume operation efficiency, since stealing rate is low
and hardly influences performance.

We did not experiment with additional FIFO and LIFO
queue implementations, because, as shown in [24], their per-
formance is of the same order of magnitude as the Michael-
Scott queue. Similarly, we did not evaluate CAFÉ [7] pools
because their performance is similar to that of WS-MSQ [6],
or ED-Pools [3], which have been shown to scale poorly in
multi-processor architectures [6, 24].

All the pools are implemented in C++ and compiled with
-O2 optimization level. In order to minimize scalability is-
sues related to allocations, we use jemalloc allocator, which
has been shown to be highly scalable in multi-threaded envi-
ronments [2]. Chunks of SALSA and SALSA+CAS contain
1000 tasks, and chunks of ConcBag contain 128 tasks, which
were the respective optimal values for each algorithm (see
the full version of the paper [13]).

We use a synthetic benchmark where 1) each producer
works in a loop of inserting dummy items; 2) each consumer
works in a loop of retrieving dummy items. Each data point
shown is an average of 5 runs, each with a duration of 20
seconds. The tests are run on a dedicated shared memory
NUMA server with 8 Quad Core AMD 2.3GHz processors
and 16GB of memory attached to each processor.

6.3 System Throughput
Figure 4(a) shows system throughput for workloads with

equal number of producers and consumers. SALSA scales
linearly as the number of threads grows to 32 (the number
of physical cores in the system), and it clearly outperforms
all other competitors. In the 16/16 workload, SALSA is
×20 faster than WS-MSQ and WS-LIFO, and more than
×3.5 faster than Concurrent Bags.

We note that the performance trend of ConcBags in our
measurements differs from the results presented by Sundell
et al. [24]. While in the original paper, their throughput
drops by a factor of 3 when the number of threads increases
from 4 to 24, in our tests, the performance of ConcBags
increases with the number of threads. The reasons for the
better scalability of our implementation can be related to the

use of different memory allocators, hardware architectures,
and engineering optimizations.

All systems implemented by our work-stealing framework
scale linearly because of the low contention between con-
sumers. Their performance differences are therefore due to
the efficiency of the consume() operation – for example,
SALSA is ×1.7 faster than SALSA+CAS thanks to its fast-
path consumption technique.

In ConcBags, which is not based on per-consumer pools,
every consume() operation implies stealing, which causes
contention among consumers, leading to sub-linear scalabil-
ity. The stealing policy of ConcBags algorithm plays an
important role. The stealing policy described in the origi-
nal paper [24] proposes to iterate over the lists using round
robin. We found out that the approach in which each stealer
initiates stealing attempts from the predefined consumer im-
proves ConcBags’ results by 53% in a balanced workload.

Figure 4(b) shows system throughput of the algorithms
for various ratios of producers and consumers. SALSA out-
performs other alternatives in all scenarios, achieving its
maximal throughput with equal number of producers and
consumers, because neither of them is a system bottleneck.

We next evaluate the behavior of the pools in scenar-
ios with a single producer and multiple consumers. Fig-
ure 5(a) shows that the performance of both SALSA and
SALSA+CAS does not drop as more consumers are added,
while the throughput of other algorithms degrades by the
factor of 10. The degradation can be explained by high
contention among stealing consumers, as evident from Fig-
ure 5(b), which shows the average number of CAS operations
per task transfer.

6.4 Evaluating SALSA techniques
In this section we study the influence of two of the tech-

niques used in SALSA: 1) chunk-based-stealing with a low-
synchronization fast path (Section 4.3), and 2) producer-
based balancing (Section 4.4). To this end, we compare
SALSA and SALSA+CAS both with and without producer-

0

5

10

15

20

25

30

35

40

1 4 8 12 16 20 24 28 31

Th
ro

ug
hp

ut
 (1

00
0

ta
sk

s/
m

se
c)

Num of consumers

SALSA

SALSA+CAS

ConcBag

WS-MSQ

WS-LIFO

(a) System throughput – 1 Producer, N consumers.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 4 8 12 16 20 24 28 31

CA
S

op
er

at
io

ns
 p

er
 ta

sk
 r

et
ri

ev
al

Num of consumers

SALSA

SALSA+CAS

ConcBag

WS-MSQ

(b) CAS operations per task retrieval – 1 Producer, N consumers.

Figure 5: System behavior in workloads with a single producer and multiple consumers. Both SALSA and
SALSA+CAS efficiency balance the load in this scenario. The throughput of other algorithms drops by a
factor of 10 due to increased contention among consumers trying to steal tasks from the same pool.

0

5

10

15

20

25

30

35

40

1 4 8 12 16 20 24 28 31

Th
ro

ug
hp

ut
 (1

00
0

ta
sk

s/
m

se
c)

Num of consumers

SALSA
SALSA+CAS
SALSA no balancing
SALSA+CAS no balancing

Figure 6: System throughput – 1 Producer, N con-
sumers. Producer-based balancing contributes to
the robustness of the framework by reducing steal-
ing. With no balancing, chunk-based stealing be-
comes important.

based balancing (in the latter a producer always inserts tasks
to the same consumer’s pool).

Figure 6 depicts the behavior of the four alternatives in
single producer / multiple consumers workloads. We see
that producer-based balancing is instrumental in redistribut-
ing the load: neither SALSA nor SALSA+CAS suffers any
degradation as the load increases. When producer-based
balancing is disabled, stealing becomes prevalent, and hence
the stealing granularity becomes more important: SALSA’s
chunk based stealing clearly outperforms the näıve task-
based approach of SALSA+CAS.

6.5 Impact of Scheduling and Allocation
We now evaluate the impact of scheduling and allocation

in our NUMA system. To this end, we compare the follow-
ing three alternatives: 1) the original SALSA algorithm; 2)
SALSA with no affinity enforcement for the threads s.t. pro-
ducers do not necessarily work with the closest consumers;

0

50

100

150

200

250

300

350

400

450

500

2 4 8 12 16 20 24 28

Th
ro

ug
hp

ut
 (1

00
0

ta
sk

s/
m

se
c)

Num of threads

SALSA

SALSA (OS affinity)

SALSA (central alloc)

Figure 7: Impact of scheduling and allocation (equal
number of producers and consumers). Performance
decreases once the interconnect becomes saturated.

3) SALSA with all the memory pools preallocated on a single
NUMA node.

Figure 7 depicts the behavior of all the variants in the
balanced workload. The performance of SALSA with no
predefined affinities is almost identical to the performance of
the standard SALSA, while the central allocation alternative
looses its scalability after 12 threads.

The main reason for performance degradation in NUMA
systems is bandwidth saturation of the interconnect. If all
chunks are placed on a single node, every remote memory
access is transfered via the interconnect of that node, which
causes severe performance degradation. In case of random
affinities, remote memory accesses are distributed among
different memory nodes, hence their rate remains below the
maximum available bandwidth of each individual channel,
and the program does not reach the scalability limit.

7. CONCLUSIONS
We presented a highly-scalable task pool framework, built

upon our novel SALSA single-consumer pools and work steal-
ing. Our work has employed a number of novel techniques

for improving performance: 1) lightweight and synchronization-
free produce and consume operations in the common case;
2) NUMA-aware memory management, which keeps most
data accesses inside NUMA nodes; 3) a chunk-based stealing
approach that decreases the stealing cost and suits NUMA
migration schemes; and 4) elegant producer-based balancing
for decreasing the likelihood of stealing.

We have shown that our solution scales linearly with the
number of threads. It outperforms other work-stealing tech-
niques by a factor of 20, and state-of-the art non-FIFO pools
by a factor of 3.5. We have further shown that it is highly
robust to imbalances and unexpected thread stalls.

We believe that our general approach of partitioning data
structures among threads, along with chunk-based migra-
tion and an efficient synchronization-free fast-path, can be
of benefit in building additional scalable high-performance
services in the future.

8. REFERENCES
[1] http://home.comcast.net/~pjbishop/Dave/

Asymmetric-Dekker-Synchronization.txt.

[2] www.facebook.com/notes/facebook-engineering/

scalable-memory-allocation-using-jemalloc/

480222803919.

[3] Y. Afek, G. Korland, M. Natanzon, and N. Shavit.
Scalable producer-consumer pools based on
elimination-diffraction trees. In Proceedings of the 16th
international Euro-Par conference on Parallel
processing: Part II, Euro-Par’10, pages 151–162, 2010.

[4] Y. Afek, G. Korland, and E. Yanovsky.
Quasi-linearizability: Relaxed consistency for
improved concurrency. In Principles of Distributed
Systems, Lecture Notes in Computer Science, pages
395–410.

[5] N. S. Arora, R. D. Blumofe, and C. G. Plaxton.
Thread scheduling for multiprogrammed
multiprocessors. In Proceedings of the tenth annual
ACM symposium on Parallel algorithms and
architectures, SPAA ’98, pages 119–129, 1998.

[6] D. Basin. Café: Scalable task pools with adjustable
fairness and contention. Master’s thesis, Technion,
2011.

[7] D. Basin, R. Fan, I. Keidar, O. Kiselov, and
D. Perelman. Café: scalable task pools with adjustable
fairness and contention. In Proceedings of the 25th
international conference on Distributed computing,
DISC’11, pages 475–488, 2011.

[8] S. Blagodurov, S. Zhuravlev, M. Dashti, and
A. Fedorova. A case for numa-aware contention
management on multicore systems. In Proceedings of
the 2011 USENIX conference on USENIX annual
technical conference, USENIXATC’11, 2011.

[9] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J.
ACM, 46:720–748, September 1999.

[10] A. Braginsky and E. Petrank. Locality-conscious
lock-free linked lists. In Proceedings of the 12th
international conference on Distributed computing and
networking, ICDCN’11, pages 107–118, 2011.

[11] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining
numa locks. In Proceedings of the 23rd ACM

symposium on Parallelism in algorithms and
architectures, SPAA ’11, 2011.

[12] A. Gidenstam, H. Sundell, and P. Tsigas. Cache-aware
lock-free queues for multiple producers/consumers and
weak memory consistency. In Proceedings of the 14th
international conference on Principles of distributed
systems, OPODIS’10, pages 302–317, 2010.

[13] E. Gidron, I. Keidar, D. Perelman, and Y. Perez.
SALSA: Scalable and Low Synchronization
NUMA-aware Algorithm for Producer-Consumer
Pools. Technical report, Technion, 2012.

[14] D. Hendler, Y. Lev, M. Moir, and N. Shavit. A
dynamic-sized nonblocking work stealing deque.
Distrib. Comput., 18:189–207, February 2006.

[15] D. Hendler and N. Shavit. Non-blocking steal-half
work queues. In Proceedings of the twenty-first annual
symposium on Principles of distributed computing,
PODC ’02, pages 280–289, 2002.

[16] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable
lock-free stack algorithm. In Proceedings of the
sixteenth annual ACM symposium on Parallelism in
algorithms and architectures, SPAA ’04, pages
206–215, 2004.

[17] M. Hoffman, O. Shalev, and N. Shavit. The baskets
queue. In Proceedings of the 11th international
conference on Principles of distributed systems,
OPODIS’07, pages 401–414, 2007.

[18] E. Ladan-Mozes, I.-T. A. Lee, and D. Vyukov.
Location-based memory fences. In Proceedings of the
23rd ACM symposium on Parallelism in algorithms
and architectures, SPAA ’11, pages 75–84, 2011.

[19] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Trans. Comput., pages 690–691, 1979.

[20] M. M. Michael. Hazard pointers: Safe memory
reclamation for lock-free objects. IEEE Trans. Parallel
Distrib. Syst., 15:491–504, June 2004.

[21] M. M. Michael and M. L. Scott. Simple, fast, and
practical non-blocking and blocking concurrent queue
algorithms. In Proceedings of the fifteenth annual
ACM symposium on Principles of distributed
computing, PODC ’96, pages 267–275, 1996.

[22] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit.
Using elimination to implement scalable and lock-free
fifo queues. In Proceedings of the seventeenth annual
ACM symposium on Parallelism in algorithms and
architectures, SPAA ’05, pages 253–262, 2005.

[23] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and
M. O. Myreen. x86-tso: a rigorous and usable
programmer’s model for x86 multiprocessors.
Commun. ACM, pages 89–97, 2010.

[24] H. Sundell, A. Gidenstam, M. Papatriantafilou, and
P. Tsigas. A lock-free algorithm for concurrent bags.
In Proceedings of the 23rd ACM symposium on
Parallelism in algorithms and architectures, SPAA ’11,
pages 335–344, 2011.

