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ABSTRACT
This paper takes a step toward developing a theory for un-
derstanding aborts in transactional memory systems (TMs).
Existing TMs may abort many transactions that could, in
fact, commit without violating correctness. We call such
unnecessary aborts spare aborts. We classify what kinds
of spare aborts can be eliminated, and which cannot. We
further study what kinds of spare aborts can be avoided effi-
ciently. Specifically, we show that some unnecessary aborts
cannot be avoided, and that there is an inherent tradeoff
between the overhead of a TM and the extent to which it
reduces the number of spare aborts. We also present an ef-
ficient example TM algorithm that avoids certain kinds of
spare aborts, and analyze its properties and performance.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming

General Terms
Algorithms, Performance, Theory

Keywords
Transactional memory

1. INTRODUCTION
The emergence of multi-core architectures raises the prob-

lem of efficient synchronization in multithreaded programs.
Conventional locking introduces a host of well-known prob-
lems: coarse grained locks are not scalable, while fine grained
locks are error-prone and hard to design. Transactional
memory [10, 16] has gained popularity in recent years as a
new synchronization abstraction for multithreaded systems,
which has the potential to overcome the pitfalls of traditional
locking schemes. A transactional memory toolkit, or TM
for short, allows threads to bundle multiple operations on
memory objects into one transaction. Similarly to database
transactions [17], transactions are executed atomically : ei-
ther all of the transaction’s operations appear to take effect
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simultaneously (in this case, we say that the transaction
commits), or none of transaction’s operations are seen (in
this case, we say that transaction aborts). We formally de-
fine the model and correctness criterion in Section 3.

A transaction’s abort may be initiated by a programmer or
may be the result of a TM decision. In the latter case, we say
that the transaction is forcefully aborted by the TM. For ex-
ample, when one transaction reads some object A and then
writes to some object B, while another transaction reads
the old value of B and then attempts to write A, one of the
transactions must be aborted in order to ensure atomicity.
Most existing TMs perform unnecessary (spare) aborts, i.e.,
aborts of transactions that could have committed without
violating correctness; see Section 2. Spare aborts have sev-
eral drawbacks: work done by the aborted transaction is lost,
computer resources are wasted, and the overall throughput
decreases. Moreover, after the aborted transactions restart,
they may conflict again, leading to livelock and degrading
performance even further.

The aim of this paper is to advance the theoretical un-
derstanding of TM aborts, by studying what kinds of spare
aborts can or cannot be eliminated, and what kinds of spare
aborts can or cannot be avoided efficiently. Specifically, we
show that some unnecessary aborts cannot be avoided, and
that there is an inherent tradeoff between the overhead of a
TM and the extent to which it refrains from spare aborts.

Previous works introduced two related notions: commit-
abort ratio [6] and permissiveness [7]. The latter stipulates
that in runs that do not violate correctness, no aborts should
happen. However, while shedding insight on the inherent
limitations of online TMs, these notions do not provide an
interesting yardstick for comparing TMs. This is because
under these measures, all online TMs inherently perform
poorly for some worst-case workloads, as we show in Sec-
tion 4.

In Section 5, we then define measures of spare aborts that
are appropriate for online TMs. Intuitively, our strict online
permissiveness property allows a TM to abort some transac-
tion only if not aborting any transaction would violate cor-
rectness. Unlike ealier notions, strict online permissiveness
does not prevent the TM from taking an action that might
lead to an abort in the future. Thus, the information avail-
able to the TM at every given moment suffices to implement
strict online permissiveness. Clearly, this property depends
on the correctness criterion the TM needs to satisfy. In this
paper, we consider opacity [8] or slight variants thereof (see
Section 3). In this context, strict online permissiveness pro-
hibits aborting a transaction whenever the execution history



is equivalent to some sequential one. We prove that strict
online permissiveness cannot be satisfied efficiently by show-
ing a reduction from the NP-hard view serializability [14]
problem. We then define a more relaxed property, online
permissiveness, which allows the TM to abort transactions
if otherwise it would have to change the serialization order
between already committed transactions. We show that on-
line permissiveness also has inherent costs — it cannot be
satisfied by a TM using invisible reads. Moreover, the infor-
mation about a read should be exposed in shared memory
immediately after the read operation returns.

In Section 6, we show a polynomial time TM protocol
satisfying online permissiveness. The protocol maintains a
precedence graph of transactions and keeps it acyclic. Un-
fortunately, we show that the graph must contain some com-
mitted transactions. But without removing any committed
transactions, detecting cycles in the precedence graph would
be impractical as it would induce a high runtime complexity.
Hence, we define precise garbage collection rules for remov-
ing transactions from the graph. Even so, a näıve traversal
of the graph would be costly; we further introduce optimiza-
tion techniques that decrease the number of nodes traversed
during the acyclity check.

Finally, we note that our goal is not to build a better
TM, but rather to understand what can and what cannot
be achieved, and at what cost. Future work may further
explore the practical aspects of the complexity vs. spare-
aborts tradeoffs; our conclusions appear in Section 7.

2. RELATED WORK
Most existing TM implementations, e.g., [9, 5, 4, 3] abort

one transaction whenever two overlapping transactions ac-
cess the same object and at least one access is a write.
While easy to implement, this approach may lead to high
abort rates, especially in situations with long-running trans-
actions and contended shared objects. Aydonat and Ab-
delrahman [2] referred to this problem and proposed a so-
lution based on a conflict serializability graph and multi-
versioned objects in order to reduce the number of unnec-
essary aborts. However, their solution still induces spare
aborts, and does not characterize exactly when such aborts
are avoided. Moreover, they implement a stricter correct-
ness criterion than opacity, which inherently requires more
aborts. Riegel et al. [15] looked at the problem of spare
aborts from a different angle, and introduced weaker cor-
rectness criteria, which allow TMs to reduce the number of
aborts.

Napper and Alvisi [13] described a serializable TM, based
upon multi-versioned objects, which used cycle detection in
the precedence graph when validating the correctness cri-
terion. The focus of the paper was providing a lock-free
solution. The authors did not refer to the aspect of spare
aborts and, in fact, their TM did lead to spare aborts due
to a limitation on write operation, which had to insert the
new version after the latest one. In addition, Napper and
Alvisi did not refer to the problems of garbage collection and
computational complexity of operations.

Gramoli et al. [6] referred to the problem of spare aborts
and introduced the notion of commit-abort ratio, which is
the ratio between the number of committed transactions and
the overall number of transactions in the run. Clearly, the
commit-abort ratio depends on the choice of the transaction
that should be aborted in case of a conflict. This decision

is the prerogative of a contention manager [9]. Attiya et
al. [1] showed a Ω(s) lower bound for the competitive ra-
tio for transactions’ makespan of any online deterministic
contention manager, where s is the number of shared ob-
jects. Their proof, however, does not apply to our model,
because it is based upon the assumption that whenever mul-
tiple transactions need exclusive access to the same shared
object, only one of these transactions may continue, while
others should be immediately aborted. In contrast, our
model allows the TM to postpone the decision regarding
which transaction should be aborted till the commit, thus
introducing additional knowledge and improving the com-
petitive ratio. In this paper, we show that every TM is
Ω(L) competitive in terms of commit-abort ratio, where L
is the number of live transactions in the system. This result
suggests that it is not interesting to compare (online) TMs
by their commit-abort ratio, as the distance from the opti-
mal result turns out to be an artifact of the workload rather
than the algorithm, and every TM has a workload on which
it performs poorly by this measure.

Input acceptance is also a notion presented by Gramoli et
al. [6] — a TM accepts a certain input pattern (sequence
of invocations) if it commits all of its transactions. The
authors compared different TMs according to their input
acceptance patterns. Guerraoui et al. [7] introduced the re-
lated notion of π-permissiveness. Informally, a TM satisfies
π-permissiveness for a correctness criterion π, if every his-
tory that does not violate π is accepted by the TM. Thus,
π-permissiveness can be seen as optimal input acceptance.
However, Guerraoui et al. focused on a model with single-
version objects, and their correctness criterion was based
upon conflict serializability, which is stronger than opacity
and thus allows more aborts. They ruled out the idea of en-
suring permissiveness deterministically, and instead provide
a randomized solution, which is always correct and avoids
spare aborts with some positive probability. In contrast,
we do not limit the model to include single-version objects
only, our correctness criterion is a generalization of opac-
ity [8], and we focus on deterministic guarantees. Although
permissiveness does not try to regulate the decisions of the
contention manager, we show that no online TM may achieve
permissiveness. Intuitively, this results from the freedom of
choice for returning the object value during the read oper-
ation — returning the wrong value might cause an abort
in subsequent operations, which is avoided by a clairvoyant
(offline) algorithm.

3. SYSTEM MODEL
Transactions. Our definition of Transactional Memory

(TM) is based on [8]. A TM allows threads to run transac-
tions. Transactions perform operations on shared objects.
The objects considered in this paper are read/write regis-
ters. The status of a transaction may be either live, aborted,
or committed. A transaction can perform operations as long
as it is live. Each transaction has a unique identifier (id).
Retrying an aborted transaction is interpreted as creating
a new transaction with a new id. The maximal possible
number of live transactions is L.

The API of the TM includes the following operations. The
operation startTransaction() returns the id of a newly cre-
ated transacton. The status of a newly created transaction
is always live. When Ti is live, it can invoke the following
operations: read(Ti,o), which returns the value of register



o, and write(Ti,o,v), which writes value v to register o. For
the sake of simplicity, we assume that the values written
to the registers are unique. When Ti wishes to terminate,
it invokes operation tryCommit(Ti) or tryAbort(Ti). If
tryCommit(Ti) returns Ci, the status of Ti changes to com-
mitted, while tryAbort(Ti) always returnsAi, indicating that
Ti is aborted. The abort value Ai may also be returned as a
response to read, write or tryCommit invocations, in which
case we say that the TM forcefully aborts transaction Ti.
If the TM forcefully aborts transaction Tj as a result of an-
other transaction’s operation, then the returned value of the
subsequent operation of Tj will be Aj . The read-set and the
write-set of Ti are denoted as read(Ti) and write(Ti) respec-
tively, and are not known in advance.

The calls to the TM are blocking — the invoking thread
waits for a response before invoking more operations. We
assume that TM operations issued by different threads are
executed atomically. This allows us to neglect issues related
to overlapping operation executions, which are not the focus
of this paper; in practice, such atomicity can be implemented
using locks or well-known lock-free solutions, e.g., [5]. Note,
however, that transactions may overlap.

The TM guarantees that each operation invocation even-
tually gets a response, even if all other threads are sleeping.
This limits the TM’s behavior upon operation invocation, so
that it may either return an operation response, or abort a
transaction, but cannot wait for other transactions to invoke
operations.

Transaction histories. A transaction history is the se-
quence of operations issued by transactions in a given TM
execution, ordered by the time at which they are issued (in
the rest of the paper we use the notion of run as a synonim to
a transaction history). Two histories H1 and H2 are equiv-
alent if they contain the same transactions and each trans-
action Ti issues the same operations in the same order with
the same responses in both. A history H is complete if it
does not contain live transactions. If history H is not com-
plete, we may build from it a complete history Complete(H)
by adding an abort operation for every live transaction. We
define committed(H) to be the subsequence of H consisting
of all the operations of all the committed transactions in H.

The real-time order on transactions is as follows: if the
first event of transaction Ti is issued after the last response
of transaction Tj in H, then Tj ≺H Ti. Transactions Ti and
Tj are concurrent if neither Tj ≺H Ti, nor Ti ≺H Tj . A
history S is sequential if it has no concurrent transactions.
A sequential history S is legal if it respects the sequential
specification of each object accessed in S. Transaction Ti
is legal in S if the largest subsequence S′ of S, such that,
for every transaction Tk ∈ S′, either (1) k = i, or (2) Tk is
committed and Tk ≺S Ti, is a legal history.

Correctness. Our correctness criterion resembles the
opacity condition of Guerraoui and Kapalka [8]. Let Γ(H)
be a partial order on transactions. A TM satisfies Γ-opacity
if for every history H generated by the TM there exists a
sequential history S, s.t.:

• S is equivalent to Complete(H).

• Every transaction Ti ∈ S is legal in S.

• If (Ti, Tj) ∈ Γ(H), then Ti ≺S Tj .

When Γ(H) includes all the ordered pairs of non-concur-
rent transactions in H, the history S should preserve the

real-time order of H. On the other hand, when Γ is empty,
the correctness criterion is a serializability with considera-
tion of aborted transactions. The use of Γ makes it possible
to require transactional ordering that lies between serializ-
ability and strict serializability according to any arbitrary
rule (e.g., Riegel et al. [15] considered demanding real-time
order only from transactions belonging to the same thread).
We define a more general criterion in order to broaden the
scope of our results. In the rest of this paper, we will assume
that Γ(H) is a subset of the real-time order on transactions,
unless stated otherwise.

We should note that our notion of Γ-opacity is somewhat
stronger than the original one defined by Guerraoui and Ka-
palka [8], in that it is a safety property (i.e., prefix-closed).
Since the set of histories of every TM is prefix closed, every
TM satisfying the original (weaker) property also satisfies
the (stronger) version we define. Moreover, the notion of
opacity-permissiveness does not make sense in the context
of the former because no TM may generate opaque histo-
ries that have non-opaque prefixes. Indeed, the paper that
defines permissiveness [7] uses an even stronger notion of
opacity, which is in fact prefix-closed.

4. PREVIOUS MEASURES LIMITATIONS

4.1 Commit-Abort Ratio
The commit-abort ratio (τ) [6] is the ratio between the

number of committed transactions and the overall number
of transactions in the history. Unfortunately, no online TM
may guarantee optimal commit-abort ratio. Recall that L
is the number of live transactions. We show that every TM
is Ω(L) competitive in terms of its commit-abort ratio.

We use the style of [15] to depict transactional runs. Ob-
jects are represented as horizontal lines o1, o2, etc. Trans-
actions are drawn as polylines with circles corresponding to
accesses to the objects. Filled circles indicate writes, and
empty circles indicate reads. Commit is indicated by the
letter C, and abort by the letter A. If the TM implements
the access to the object as if it had appeared in past, the
dashed arc indicates the point in time at which the access
to the object appears according to the TM serialization.

Lemma 1. Every TM is Ω(L) competitive in terms of its
commit-abort ratio.

Proof. Consider the scenarios depicted in Figure 1. The
runs are indistinguishable until the time when TL tries to
commit. Transactions T1 and T2 cannot both commit be-
cause both write o1 after reading its previous value. In run
r1 (Figure 1(a)), the TM commits T2, then T1 aborts and
then the transactions T3 · · ·TL try to write to o3 and must
be aborted because they conflict with T2, resulting in τ = 1

L
.

In run r2 (Figure 1(b)), the TM aborts T2, T1 commits and
then the transactions T3 · · ·TL try to write to o2 and there-
fore must be aborted, resulting again in τ = 1

L
. The optimal

offline TM in these cases would abort only one transaction,
yielding τ = L−1

L
. The online TM, however, cannot dis-

tinguish between r1 and r2 at the moment it should decide
whether to abort T1 or T2, hence the competitive ratio is
Ω(L).

4.2 Permissiveness
Since requiring an optimal commit-abort ratio is too re-

strictive, we consider a weaker notion that limits aborts only
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(b) Run r2: T1 commits, all other transac-
tions abort: τ = 1

L

Figure 1: No online TM may know whether to abort T1 or T2 in order to obtain an optimal commit-abort
ratio.

in runs where none are necessary: a TM provides permis-
siveness [7] if it accepts every history satisfying Γ-opacity.
Gramoli et al. showed that existing TM implementations do
not accept all inputs they could have, and hence are not
permissive. We show that this is an inherent limitation.

The formal impossibility illustrated in Figure 2 is captured
in the following lemma:

Lemma 2. For any Γ, there is no online TM implemen-
tation providing Γ-opacity-permissiveness.

Proof. Consider the scenario depicted in Figure 2. All
the objects have initial values, v0. All the transactions start
at the same time, ti, and are therefore not ordered accord-
ing to the real-time order, thus the third condition of our
correctness criterion holds for any Γ.
T1 writes values v1 to o2 and o1. At time t0, there is a read

operation of T2 and the TM should decide what value should
be returned. In general, the TM has four possibilities: (1)
return v1, (2) return v0, (3) return some value v′ different
from v0 and v1, and (4) abort T2. If the TM chooses to abort,
then opacity-permissiveness is violated and we are done. (3)
is not possible, for returning such a value would produce a
history, for which any equivalent sequential history S would
violate the sequential specification of o1 and thus would not
be legal.

Consider case (1): the TM returns v1 for T2 at time t0.
This serializes T2 after T1. Consider run r1 depicted in Fig-
ure 2(a), where T3 tries to write to o3 and commit. In this
run, the TM has to forcefully abort T3, because not doing
so would produce a history H with no equivalent sequential
history: T1 ≺ T2 ≺ T3 ≺ T1. However, if T2 would read v0

in run r1, then T2, T1 and T3 would be legal, and no trans-
action would have to be forcefully aborted. So Γ-opacity-
permissiveness is violated.

In case (2), the TM returns v0 for transaction T2 at time
t0, serializing T2 before T1. Consider run r2 depicted in Fig-
ure 2(b). Transaction T4 writes to o2, and afterwards reads
and writes to o3. Transaction T4 has to be serialized after T1,
because T1 has read v0 from o2. When T2 will try to write
to o3 and commit, the TM will have to forcefully abort some
transaction, because not doing so would produce a history
with no equivalent sequential history: T2 ≺ T1 ≺ T4 ≺ T2.
But if T2 would read v1 in run r2, then no transaction would
have to be forcefully aborted. So again, Γ-opacity-permis-
siveness is violated.

Runs r1 and r2 are indistinguishable to the TM at time
t0. Therefore, no online TM can accept both of the patterns,
while an offline TM can accept both of them.

5. ONLINE PERMISSIVENESS — LIMITA-
TIONS AND COSTS

5.1 Strict Online Opacity-Permissiveness
We next define a property that prohibits spare aborts, and

yet is possible to implement.

Definition 1. A TM satisfies strict online Γ-opacity-per-
missiveness if the TM forcefully aborts a set S of live trans-
actions only when aborting any subset S′ ⊂ S of transactions
violates Γ-opacity for the given Γ.

Note that this property does not define which transaction
should be aborted if abort happens, and does not prohibit
returning a value that will cause aborts in the future. For
example, in the scenarios depicted in Figure 2, at time t0,
a TM satisfying this property may return either value, even
though this might cause an abort in the future.

An algorithm satisfying strict online opacity-permissive-
ness should be able to detect whether returning a given value
creates a history satisfying Γ-opacity. We show that this
cannot be detected efficiently. To this end, we recall a well-
known result about checking the serializability of the given
history, which was proven by Papadimitriou [14].

Given history H, the augmented history H̄ is the history,
which is identical to H, except two additional transactions:
Tinit that initializes all variables without reading any, and
Tread that is the last transaction of H̄, reading all variables
without changing them. The set of live transactions in H is
defined in the following way: (1) Tread is live in H, (2) If for
some live transaction Tj , Tj reads a variable from Ti, then
Ti is also live in H. Note that aborted transaction cannot
be live according to this definition (no transaction may read
the values written by the aborted one). Transaction is dead
if it is not live. Two histories H and H ′ are view equivalent
if and only if (1) they have the same sets of live transactions
and (2) Ti reads from Tj in H if and only if Ti reads from Tj
in H ′. History H is view serializable, if for every prefix H ′

of H, complete(H ′) is view equivalent to some serial history
S.

Theorem 1 (Papadimitriou). Testing whether the his-
tory H is view-serializable is NP-complete in the size of the
history, even if H has no dead transactions.

Lemma 3. For any Γ, detecting whether the history H
satisfies Γ-opacity is NP-complete in the size of the history.

Proof. We will show a reduction from the NP-complete
problem of detecting view-seializability of history H without
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Figure 2: At time t0, no online TM knows which value should be returned to T2 when reading o1 in order to
allow for commit in the future.

dead transactions to the problem of detecting whether some
history H ′ satisfies Γ-opacity. Consider history H with no
dead transactions. In the absence of aborted transactions,
the definition of view serializability differs from the defini-
tion of opacity only in the fact that opacity refers to the
partial order Γ, which is a subset of a real-time order. We
construct history H ′, which is identical to history H except
the following addition: for each Ti in H, we add start(Ti) at
the beginning of H ′. We will show that H is view serializable
if and only if H ′ satisfies Γ-opacity.
H is view serializable if and only if there exists a legal se-

quential history S, which is view equivalent to Complete(H).
All the transactions in H ′ are concurrent (start(Ti) follows
before any other event for every Ti), therefore the third con-
dition of Γ-opacity vacuously holds for any Γ. In the absence
of aborts in H ′, H ′ satisfies Γ-opacity if and only if there ex-
ists a legal sequential history S′, so that every transaction in
H ′ issues the same invocation events and receives the same
response events as in S′. Therefore, H ′ satisfies Γ-opacity if
and only if H ′ is view-serializable.

5.2 Online Opacity-Permissiveness

o1
T1

T2

o2

o3

T4

T3

C

C C

C

t0

Figure 3: The order of transactions T1 and T2 is
changed after their commit time.

Intuitively, the problem with strict online opacity-permis-
siveness lies in the fact that the order of committed transac-
tions may be undefined and may change in the future. Con-
sider, for example, the scenario depicted in Figure 3. Trans-
actions T1 and T2 are not ordered according to real-time
order, therefore they are not ordered by Γ. At time t0, the
serialization order is T1 → T2, as o1 holds the value written
by T2. When T3 commits, the serialization order of T1 and T2

becomes undefined, since T3 overwrites o1 before any trans-
action reads the value written by T2. And when T4 commits,
the serialization order becomes T2 → T4 → T1 → T3. If the
partial serialization order induced by the run cannot change
after being defined, the problem becomes much easier. We
capture this intuition with the following definition:

Definition 2. A TM satisfies λ-persistent ordering for
a partial order λ if for every run λ is updated according
to the following rules: (1) at the beginning of the run λ is
empty; (2) at any point in time λ is a transitive closure
over a relation ordering exactly all the pairs of Ti, Tj, s.t.
write(Ti) ∩ write(Tj) 6= ∅; and (3) each time λ is updated,
its new value preserves the one previously defined.

In other words, if Ti and Tj are committed transactions in
H that have written to the same object in a given TM, then
they are ordered by λ and their order will persist in every
extension of the run.

We now define a more relaxed property, online Γ-opacity-
permissiveness, which may be satisfied at a reasonable im-
plementation cost.

Definition 3. A TM satisfies online Γ-opacity-permis-
siveness for a given Γ if the TM satisfies λ-persistent or-
dering for some λ consistent with Γ, and the TM forcefully
aborts a set S of live transactions only when aborting any
subset S′ ⊂ S of transactions violates (Γ ∪ λ)-opacity.

Note that Definition 3 implies that each committing trans-
actions should define its serialization order with regard to all
other committed transactions that have written to the same
objects. To the best of our knowing, all existing TMs do in
fact define the order on two transactions that write to the
object by the time the latter commits. We note that this re-
quirement might be limiting for TMs that wish to exploit the
benefits of commutative or write-only operations (see [12]),
and do not necessarily define the serialization point of the
committed transactions. However, this limitation is essen-
tial for an effective check of the opacity criterion.

In the following sections we show a polynomial-time TM
satisfying online opacity-permissiveness. We now prove that
such an implementation, nevertheless, has some inherent
costs.

One of the basic decisions that needs to be made during
the design of a TM is whether to expose the fact that trans-
action Ti has read the object o, i.e. make a change in shared
memory as a result of the read, making the read visible. In
case we expose the read, there arises another question, re-
garding whether we can postpone exposing the read until
the commit. One of the central problems with exposing the
read is that it requires writing metadata in shared mem-
ory. One typically tries to avoid writes to shared memory,
because writing data that is read by different cores has a
high cache penalty. Postponing exposing the read until the
commit may save redundant writes in case the transaction
eventually aborts.



Unfortunately, if a TM satisfying online opacity-permis-
siveness does not expose a read operation immediately when
the read happens, then all read operations through the entire
execution must return the respective objects’ initial values,
rendering such a TM implementation completely useless:

Lemma 4. For any Γ, if a TM satisfies online Γ-opacity-
permissiveness and never exposes read operations when the
reads happen, then no transaction Ti can read from a com-
mitted transaction Tj if Tj has written to more than one
object.

Proof. Assume by contradiction that there exists a TM,
satisfying online Γ-opacity-permissiveness that does not ex-
pose read operations when the reads happen, and which al-
lows transactions to read values written by the transactions
with more than one object in the write-set. Consider run
r1 depicted in Figure 4. Transaction T3 reads o3 without
exposing it. Afterwards transaction T2 writes to o3 and o2.
Then T3 writes to o1 and tries to commit. We next construct
r2, where transaction T1 reads the value written by trans-
action T2, as depicted in Figure 4(b). By our assumption,
this value can indeed be read by some transaction. T1 then
continues to read o1. Note that T1 is not aware of transac-
tion T3 preceding T2 because T3 did not expose its read. All
the transactions start at the same time and therefore cannot
be ordered by real-time order. In run r1, T3 must commit
because the run satisfies Γ-opacity. In run r2, however, T3

cannot commit because that would create a precedence cy-
cle T1 → T3 → T2 → T1 and thus violate Γ-opacity. But
since we assumed that reads are invisible, runs r1 and r2 are
indistinguishable to T3 at time t0, a contradiction.

6. THE ABORTS-AVOIDER ALGORITHM
We now present AbortsAvoider, a TM algorithm imple-

menting online opacity-permissiveness. The basic idea be-
hind AbortsAvoider is to maintain a precedence graph of
transactions, and keep it acyclic, as explained in Section 6.1.
A simplified version of the protocol based on this graph is
then presented in Section 6.2. The key challenge Abort-
sAvoider faces is that completed transactions cannot always
be removed from the graph, whereas keeping all transactions
forever is clearly impractical. We address this challenge in
Section 6.3, presenting a garbage collection mechanism for
removing terminated transactions from the graph. In Sec-
tion 6.4 we present another optimization, which shortens
paths in the graph to reduce the number of terminated trans-
actions traversed during the acyclity check. Our complexity
analysis appears in the same section.

In this section, we state theorems stipulating the correct-
ness of AbortsAvoider. For space limitations, their formal
proofs are deferred to the full version of this paper [11].

6.1 Basic Concept: Precedence Graph
Information bookkeeping. Our protocol maintains ob-

ject version lists. We now explain what such a TM does: (1)
each object o is associated with a totally ordered set of ver-
sions, (2) a read of o returns the value of one of o’s versions,
and (3) a write to o adds a new version of o upon com-
mit. For simplicity, at any given moment, we number the
versions of the object in increasing order. (Note that the
numbering is for analysis purposes only, and the numbers of
the versions change during the run as the versions are in-
serted and removed from the versions list). The object ver-

sion o.vn includes the data, o.vn.data, the writer transaction,
o.vn.writer, and a set of readers, o.vn.readers. Each transac-
tion has a readList and a writeList. An entry in a readList
points to the version that has been read by the transaction.
A writeList entry points to the object that should be up-
dated after commit, the new data, and the place to insert
the new version, (which may be undefined till the commit).

Precedence graph. Transactions may point to one an-
other, forming a directed labelled precedence graph, PG.
PG reflects the dependencies among transactions as created
during the run. The vertexes of PG are transactions, the
edges of PG are as follows (Figure 5):

o.vn

writer

readers

o.vn-1

writer

readers

RaW

WaW

RaW W
aR

Figure 5: Object versions and the precedence graph.

If (Tj , Ti) ∈ Γ, then PG contains (Tj , Ti) labelled LΓ (Γ
order). If Ti reads o.vn and Tj writes o.vn, then PG contains
(Tj , Ti) labelled LRaW (Read after Write). If transaction Ti
writes o.vn and Tj writes o.vn−1, then PG contains (Tj , Ti)
(Write after Write) labelled LWaW . If transaction Ti writes
o.vn and Tj reads o.vn−1, then PG contains (Tj , Ti) labelled
LWaR (Write after Read).

Below we present lemmas that link maintaining acyclity
in PG and satisfying online-permissiveness. We restrict our
discussion to non-local histories, which we now define. We
say that a read operation of Ti readi(o) in H is local if it is
preceded in H|Ti by a write operation writei(o,v). A write
operation writei(o,v) is local if it is followed in H|Ti by an-
other write operation writei(o,v’). The non-local history of
H is the longest subsequence of H not containing local op-
erations [8]. Note that the precedence graph does not refer
to local operations.

Lemma 5. Consider a TM that maintains object version
lists. If PG is acyclic throughout some run, then the non-
local history H of the run satisfies Γ-opacity.

Proof. Let H be a history over transactions {T1 . . . Tn}.
Let HC = Complete(H), i.e. H with Ai added for every live
Ti ∈ H.

Since PG is acyclic, it can be topologically sorted. Let
Ti1, . . . , Tin be a topological sort of PG, and let S be the
sequential history Ti1, . . . , Tin. Clearly, S is equivalent to
HC because both of the histories contain the same transac-
tions and each transaction issues the same operations and
receives the same responses in both of them.

We now prove that every Ti ∈ S is legal. Assume by con-
tradiction that there are non-legal transactions in S. Let Ti
be the first such transaction. If Ti is non-legal, Ti reads a
value of object o that is not the latest value written to o in
S by a committed transaction. (Recall that by definition of
object version lists, only values written by committed trans-
actions can be read.) S contains only non-local operations,
and therefore Ti reads the version o.vn written by another
transaction Tj . Therefore, there is an edge from Tj to Ti in
PG. It follows that Tj is committed in S and ordered before
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Figure 4: T3 does not distinguish between r1 and r2 at time t0. If T1 does not expose its reads, it is not allowed
to read the value written by T2, because otherwise the commit of T3 would violate Γ-opacity.

Ti according to the topological sort. If the value of o.vn is
not the latest value written in S before Ti, then there exists
another committed transaction T ′j that writes to o and is
ordered between Tj and Ti in S. If T ′j writes to a version
earlier than o.vn, then there is a path from T ′j to Tj in PG,
and therefore T ′j is ordered before Tj in S. If T ′j writes to a
version later than o.vn, then there is a path from Ti to T ′j in
PG, and therefore T ′j is ordered after Ti in S. In any case, T ′j
cannot be ordered between Tj and Ti in S, a contradiction.

Finally, for each pair Ti ≺Γ Tj , PG contains an edge from
Ti to Tj . Therefore, according to the topological sort, S
preserves the partial order Γ.

Summing up, Complete(H) is equivalent to a legal sequen-
tial history S, and S preserves partial order Γ. Therefore H
is Γ-opaque.

We define λPG to be the following binary relation: if PG
contains a path from Ti to Tj consisting of LWaW edges,
then Ti ≺λP G Tj . Note that if PG is acyclic, then λPG is
reflexive, antisymmetric and transitive, and therefore λPG
is a partial order.

Lemma 6. Every TM that maintains object version lists
and keeps PG acyclic satisfies λPG-persistent ordering.

Proof. We will show that every TM maintaining object
version lists and keeping PG acyclic satisfies the three nec-
essary conditions for λPG-persistent ordering.

(1) Initially PG does not contain edges and thus λPG is
empty.

(2) Consider an arbitrary point during the run. Let χ be
the transitive closure of the partial order containing exactly
all the pairs of transactions Ti, Tj committed up to this
point, s.t. write(Ti) ∩ write(Tj) 6= ∅, where Ti ≺χ Tj iff Tj
writes a higher numbered version than Ti. We show that
λPG is equal to χ.

We show first that λPG ⊇ χ. Consider two committed
transactions Ti ≺χ Tj that have a common object o in their
write-sets, s.t. Ti has written to the version o.vi and Tj has
written to the version o.vj , where i < j. Then PG contains
a path from Ti to Tj consisting of LWaW edges and therefore
λPG contains a pair (Ti, Tj). λPG is transitive by definition,
and therefore λPG ⊇ χ. It remains to show that λPG ⊆ χ.
If Ti ≺λP G Tj , then PG contains a path from Ti to Tj
consisting of LWaW edges. Every edge on the path defines
a pair of committed transactions that have written to the
same object and therefore are ordered by χ. By transitivity
of χ, we conclude that Ti ≺χ Tj . We have shown that both
λPG ⊇ χ and λPG ⊆ χ. Therefore, λPG = χ.

(3) Finally, edges are never removed from PG, therefore
each time λPG is updated, its new value preserves the pre-
viously defined order.

Lemma 7. Consider a TM that maintains object version
lists and forcefully aborts a set S of live transactions only
when aborting any subset S′ ⊂ S of transactions creates
a cycle in PG. Then this TM satisfies online Γ-opacity-
permissiveness.

Proof. Consider the partial order λPG. As shown in
Lemma 6, the TM satisfies λPG-persistent ordering. We
need to show that if there is a cycle in PG, then the run
violates (Γ ∪ λPG)-opacity.

We show first that if there is an edge (Ti, Tj) in PG, then
every legal sequential history S preserving Γ ∪ λPG and
equivalent to Complete(H) orders Ti before Tj . Consider
two transactions Ti and Tj s.t. there is an edge (Ti, Tj) in
PG. If the edge is labelled LΓ, then (Ti, Tj) ∈ Γ, and S
orders Ti before Tj . If the edge is labelled LRaW , then Tj
reads a value written by Ti and S also orders Ti before Tj . If
the edge is labelled LWaW , then Ti < Tj according to λPG,
hence S also orders Ti before Tj . If the edge is labelled
LWaR, then Ti reads o.vn while Tj writes o.vn+1. On the
one hand, Tj should be ordered after o.vn.writer in S (there
is an edge from o.vn.writer to Tj labelled LWaW ). On the
other hand, Tj cannot be ordered between o.vn.writer and
Ti, because Ti must read the value written by o.vn.writer in
S. Therefore, Tj is ordered after Ti in S in this case as well.

Summing up, an edge (Ti, Tj) in the precedence graph
induces the order of Ti before Tj in any legal sequential
history S preserving Γ∪λPG and equivalent to Complete(H).
Therefore, if PG contains a cycle, no such sequential history
exists, and the TM cannot satisfy Γ ∪ λ-opacity.

Corollary 1. Consider a TM maintaining object ver-
sion lists that keeps PG acyclic and forcefully aborts a set S
of live transactions only when aborting any subset S′ ⊂ S of
transactions creates a cycle in PG. Then this TM satisfies
Γ-opacity and online Γ-opacity-permissiveness.

6.2 Simplified Γ-AbortsAvoider Algorithm
AbortsAvoider algorithm maintains object version lists as

explained above, keeps PG acyclic and forcefully aborts a
transaction only if not aborting any transaction would create
a cycle in PG. Read and write operations are straightfor-
ward, they are depicted in Algorithm 1. A read operation
(line 4) looks for the latest possible object version to read
without creating a cycle in PG. Write operations (line 14)
postpone the actual work till the commit.
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Figure 6: Checking the written objects in a greedy way during the commit may lead to a spare abort.

Algorithm 1 Γ-AbortsAvoider for Ti - Read/Write.

1: procedure Start()
2: Tprev ← the latest transaction preceding Ti by Γ
3: PG.addEdges({(Tprev, Ti)})

4: procedure Read(Object o)
5: if o ∈ Ti.writeList then return Ti.writeList [o].data
6: if o ∈ Ti.readList then return Ti.readList [o].data
7: n ← the latest version that can be read without cre-

ating a cycle in PG
8: if n =⊥ then return abort event Ai
9: newEdges ← {(o.vn.writer, Ti),(Ti, o.vn+1.writer)}

10: PG.addEdges(newEdges)
11: o.vn.readers.add(Ti)
12: Ti.readList.add(〈o.vn〉)
13: return o.vn.data

14: procedure Write(Object o, ObjectData val)
15: if o ∈ Ti.writeList then
16: Ti.writeList [o].data ← val ; return
17: if o ∈ Ti.readList then
18: � non-blind write, victim version is read version
19: writeNode ← 〈o,readList [o].version, val〉
20: else
21: � blind write, victim version is not known
22: writeNode ← 〈o,⊥,val〉
23: Ti.writeList.add(writeNode)

The commit operation is more complicated. Intuitively,
for each object written during transaction, the algorithm
should find a place in the object’s version list to insert the
new version without creating a cycle. Unfortunately, check-
ing the objects one after another in a greedy way can lead
to spare aborts, as we illustrate in Figure 6(a). Commit-
ting T3 first seeks for a place to install the new version of
o1 and decides to install it after the last one (serializing T3

after T2). When T3 considers o2, it discovers that the new
version cannot be installed after the last one, because T3

should precede T1, but it also cannot be installed before the
last one, because that would make T3 precede T2, so T3 is
aborted. However, installing the new version of o1 before
the last one would have allowed T3 to commit, as depicted
in Figure 6(b), that is why aborting T3 violates online Γ-
opacity-permissiveness.

Our commit operation (Algorithm 2, line 24) is divided
to two phases. We call the object version after which the
new version is to be installed a victim version. The victim
version is known only for the non-blind writes (that is ver-
sion, which has been read before the write, line 19). In the

first phase the algorithm tries to install the non-blind writes
(lines 28–34). In the second phase (lines 36–49) the algo-
rithm tries to find the vicim versions for the blind writes in
iterations. Initially, the victim is the object’s latest version.
In each iteration, the algorithm traverses the objects and for
each one searches for the latest possible victim to install the
new version without creating a cycle in PG (line 41). When
victim o.vn is found, an edge from Ti to the writer of o.vn+1

is added to PG (line 47). We add only the outgoing edges at
this point, because changing the victim from o.vn to o.vn−1

may remove some incoming edges to Ti but cannot remove
outgoing ones. Meanwhile, incoming edges are kept in in-
Edges. After each iteration, there are possibly new outgoing
edges added to PG, that would mean that the previously
found victim versions might not suit anymore and a new it-
eration should be run. Once there is an iteration when no
new edges are added, the algorithm commits — it installs
the new versions after their victims and adds all the edges,
including inEdges from the latest iteration, to the PG.

The following theorem shows that AbortsAvoider is cor-
rect and avoids unnecessary aborts.

Theorem 2. Γ-AbortsAvoider satisfies Γ-opacity and on-
line Γ-opacity-permissiveness.

In the rest of the paper we will show the garbage collection
rules and optimization techniques for the protocol.

6.3 Garbage Collection
A TM should garbage collect unused metadata. In this

section, we describe how terminated transactions may be
garbage collected.

Terminated transaction Ti may be garbage collected if it
cannot participate in any cycle in PG. Unfortunately, the
simple check of whether the terminated transaction has no
incoming edges is not enough. Consider, for example, the
scenario depicted in Figure 7. At time t0, T1 has no incom-
ing edges, but we are still not allowed to garbage collect it
as we now explain. There is a transaction T2 that read ob-
ject o1 with a live preceding transaction T3. At the time
of T3’s commit, it discovers that it cannot install the last
version of o1, and tries to install the preceding version. Had
we removed T1 from PG, this would have caused a consis-
tency violation, because we would miss the cycle between T1

and T3. The example above demonstrates the importance of
knowing that from some point onward, Ti may have no new
incoming edges. The lemma below shows that some edge
additions can be saved:

Lemma 8. If Ti is a terminated transaction, then no in-
coming edges need to be added to Ti in PG as long as for



Algorithm 2 Γ-AbortsAvoider for Ti - Commit.

24: procedure Commit
25: newEdges← ∅ � edges added upon commit
26: blinds← ∅ � the set of blind writes
27: � Phase I — install the non-blind writes
28: for each n in Ti.writeList do
29: if n.victim 6=⊥ then
30: (v,edgs)←validateWrite(newEdges,n.victim)
31: if v = false then return abort event Ai
32: newEdges← newEdges ∪ edgs
33: else
34: blinds ← blinds ∪ {n}
35: � Phase II — install the blind writes
36: repeat
37: foundOutEdges ← false
38: inEdges ← ∅
39: for each n in blinds do
40: � find the latest possible victim
41: (victim,edges)←findVictim(newEdges,n)
42: if victim =⊥ then return abort event Ai
43: for each e in edges do
44: if e is incoming to Ti then
45: inEdges ← inEdges ∪ e
46: else if e /∈ newEdges then
47: newEdges ← newEdges ∪ {e}
48: foundOutEdges ← true
49: until foundOutEdges = false
50: � commit point
51: for each n in Ti.writeList do
52: install the new version right after n.victim
53: PG.addEdges(newEdges ∪ inEdges)

54: procedure findVictim(List〈Edge〉 newEdges, WriteN-
ode wn) : (ObjectVersion, List〈Edge〉)

55: � find the latest possible victim
56: if wn.victim =⊥ then vctm←wn.latestVersion
57: else vctm ← wn.victim
58: while vctm 6=⊥ do
59: � check installing the new version after vctm
60: (valid, edges)←validateWrite(newEdges,vctm)
61: if valid = true then return (vctm,edges)
62: vctm← vctm.prev � go to the previous version
63: return (⊥,⊥) � no suitable victim found

64: procedure validateWrite(edges, o.vn) : (boolean,
List〈Edge〉)

65: added←{(o.vn.writer, Ti), (o.vn.readers, Ti),
(Ti, o.vn.next.writer)}

66: valid←acyclity of PG after adding edges ∪ added
67: return (valid, added)

each o.vn written blindly by Ti there is no reader with a live
preceding transaction.

Based on Lemma 8 we can optimize the algorithm to add
fewer edges.

Garbage collection conditions. We say that a transac-
tion is stabilized if no incoming edges may be added to it in
the future. At the moment when Ti has no incoming edges
and it is stabilized, we know that Ti will not participate in
any cycle, and thus may be garbage collected.

Theorem 3. The terminated transaction Ti is stabilized
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Figure 7: The blind write of transaction T1 does not
allow us to garbage collect it at time t0.

at time t0 if either (1) Ti has not written blindly any object
version o.vn, or (2) all live transactions at time t0 and all
the transactions beginning after t0 follow Ti according to Γ.

For this, we define that terminated transactions with no
incoming edges satisfying one of the conditions of Theorem 3
may be garbage collected. Note that in the runs with no
blind writes, every terminated transaction is stabilized and
thus the transaction may be garbage collected at the mo-
ment it has no incoming edges.

6.4 Path Shortening and Runtime Analysis
AbortsAvoider protocol allows adding new edges to PG

only if they do not introduce cycles in PG. The straightfor-
ward cycle detection algorithm runs DFS starting from Ti,
traversing a set of nodes we refer to as ingressi. We now
present an optimization that reduces the number of nodes
in ingressi.

Consider stabilized terminated Tj . The idea is to connect
the ingress nodes to the egress nodes of Tj directly, thus
preventing DFS from traversing Tj . This becomes possible
because Tj is stabilized and thus may not have new ingress
nodes, hence the egress nodes do not miss the precedence
info when they lose their edges from Tj . Once a terminated
transaction Tj satisfies the conditions of Lemma 8 and it can
no longer have additional incoming edges, (e.g., any trans-
action with no blind writes), we remove all of its outgoing
edges by connecting its ingress nodes directly to its egress
nodes as described above, and indicate that Tj is a sink, i.e.,
cannot have outgoing edges in the future. Once a transaction
is marked as a sink, any outgoing edge that should be added
from it is instead added from its ingress nodes. Note that
our path shortening only bypasses stabilized nodes. Had
we bypassed also non-stabilized ones, we would have had to
later deal with adding new incoming nodes to their egress
nodes, which could require a quadratic number of operations
in the number of terminated transactions. Hence, we chose
not to do that.

Runtime complexity of the operations. Running
DFS on ingressi takes O(V 2), where V is the number of
transactions preceding Ti, which have not been garbage col-
lected. In the general case, V = #T + #L, where #T and
#L denote the number of terminated and live transactions
respectively.

The read operation seeks the proper version to read in
the version list. Unfortunately, the number of versions that
need to be kept is limited only by the number of terminated
transactions. Consider the scenario depicted in Figure 8.
Here, the only version of o2 that may be read by T1 is the
first, all other versions are written by transactions that T1

precedes. In order to find a latest suitable version, the read
operation may use a binary search – O(log(#T)) versions
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Figure 8: All object versions must be kept, as their
writers have a live preceding transaction T2.

should be checked. Adding the edges takes O(#L). So alto-
gether, the read complexity is O(log(#T)·max{#L2,#T2}),
and O(log(#T) ·#L2) when there are no blind writes.

The write operation postpones all the work till the com-
mit. We denote the number of writes of the given trans-
action as #W. The number of iterations in the commit
phase is O(#W · #T), and in each iteration O(#W) vali-
date operations should be run. So the overall write cost is
O(#W2 ·#T ·max{#L2,#T2}), and O(#L2) when there are
no blind writes.

Finally, we would like to emphasize that although in the
worst-case, these costs may seem high, transactions without
blind writes are garbage collected immediately upon com-
mit. Moreover, the only nodes in ingressi where cycles are
checked are transactions that conflict with Ti. Typically,
in practice, the number of such conflicts is low, suggesting
that our algorithm’s common-case complexity is expected to
be good. On the other hand, if the number of conflicts is
high, then most TMs existing today would abort one of the
transactions in each of these cases, which is not necessarily
a better alternative.

7. CONCLUSIONS
The paper took a step towards providing a theory for un-

derstanding TM aborts, by investigating what kinds of spare
aborts can or cannot be eliminated, and what kinds can or
cannot be avoided efficiently. We have shown that some un-
necessary aborts cannot be avoided, and that there is an in-
herent tradeoff between the overhead of a TM and the extent
to which it reduces the number of spare aborts: while strict
online opacity-permissiveness is NP-hard, we presented a
polynomial time algorithm AbortsAvoider, satisfying the
weaker online opacity-permissiveness property. Understand-
ing the properties of spare aborts is still far from being com-
plete. For example, relaxations of the online opacity-per-
missiveness property or restrictions of the workload may be
amenable to more efficient solutions. Moreover, the implica-
tions of the inherent “spare aborts versus time complexity”
tradeoff we have shown are yet to be studied.
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