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ABSTRACT

This paper presents Venus, a service for securing user in-
teraction with untrusted cloud storage. Specifically, Venus
guarantees integrity and consistency for applications access-
ing a key-based object store service, without requiring trusted
components or changes to the storage provider. Venus com-
pletes all operations optimistically, guaranteeing data in-
tegrity. It then verifies operation consistency and notifies
the application. Whenever either integrity or consistency
is violated, Venus alerts the application. We implemented
Venus and evaluated it with Amazon S3 commodity storage
service. The evaluation shows that it adds no noticeable
overhead to storage operations.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications;
H.3.4 [Systems and Software|: Distributed Systems

General Terms
Design, Security, Theory, Verification

Keywords

Cloud storage, integrity, forking semantics, hashing

1. INTRODUCTION

A growing number of cloud providers offer diverse ser-
vices over the Internet. These include online storage and
computing resources, e.g., Amazon Web Services, web appli-
cation hosts such as Google App Engine, and Software as a
Service (SaaS) applications offered by companies like Sales-
force.com. Data storage is one of the most prominent cloud

*Participated through a project taken in the Networked
Software Systems Laboratory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCSW'’10, October 8, 2010, Chicago, Illinois, USA.

Copyright 2010 ACM 978-1-4503-0089-6/10/10 ...$10.00.

Technion, Haifa, Israel
ymcrcat@gmail.com

Technion, Haifa, Israel
dani.shaket@ gmail.com

applications: individuals store their data online, companies
back up local data to the cloud, and many user groups col-
laborate on data hosted by a remote provider. The ubiquity
offered by the Internet and the power to immediately scale
and expand the resources available to a client are unique
to cloud computing. In addition, the commoditization of
cloud computing infrastructure and its pay-on-demand pric-
ing model, coupled with the ability to minimize in-house
fixed infrastructure costs, offer a distinct competitive ad-
vantage for companies and organizations, large and small.
However, concerns about the trustworthiness of cloud ser-
vices abound. Clients question the privacy and integrity of
their data in the cloud, complain about irregular and unas-
sured availability of SaaS applications, and worry in gen-
eral about missing quality-of-service guarantees. A number
of recent high-profile incidents, such as Amazon S3’s silent
data corruption’, a privacy breach in Google Docs?, and
ma.gnolia’s data loss® rang the alarm bells for cloud users.
Data security is often mentioned as the biggest challenge
facing the cloud computing model. This work addresses data
integrity and consistency for cloud storage. Two orthogonal
concerns are confidentiality, as offered by encryption, and
availability, in the sense of resilience and protection against
loss (actually, many users consider cloud storage to be more
resilient than local storage). Cloud services can be secured
following two distinct approaches: from within the cloud in-
frastructure or from the outside. This work falls in the cat-
egory of an external security mechanism that can be added
transparently to an existing and untrusted service, deployed
incrementally, and gives immediate benefits to its clients.
We present Venus, short for VErificatioN for Untrusted
Storage. With Venus, a group of clients accessing a remote
storage provider benefits from two guarantees: integrity and
consistency. Integrity means that a data object read by
any client has previously been written by some client; it
protects against simple data modifications by the provider,
whether inadvertent or caused by malicious attack. Note
that a malicious provider might also try a “replay attack”
and answer to a read operation with properly authenticated
data from an older version of the object, which has been

"http://developer.amazonwebservices. com/connect/
thread. jspa?threadID=22709
*http://blogs.wsj.com/digits/2009/03/08/1214/
Shttp://www.wired.com/epicenter/2009/01/
magnolia-suffer/



superseded by a newer version. Venus restricts such behavior
and guarantees that either the returned data is from the
latest write operation to the object, ensuring that clients
see atomic operations, or that the provider misbehavior is
exposed. This is the consistency property of Venus, which
allows multiple clients to access the stored data concurrently
in a consistent fashion.

Venus notifies the clients whenever it detects a violation
of integrity or consistency. Applications may handle this
error in a variety of ways, such as switching to another
service provider. Venus works transparently with simple
object-based cloud storage interfaces, such that clients may
continue to work with a commodity storage service of their
choice without changing their applications.

During normal operation, clients of cloud storage should
not have to communicate with each other. If clients did
communicate, they could simply exchange the root value
of a hash tree on the stored objects to obtain consistency.
This, however, would introduce a prohibitive coordination
overhead — clients should be able to execute operations
in isolation, when the other clients are disconnected. But
without client-to-client communication for every operation,
a malicious service could simply ignore write operations by
some clients and respond to other clients with outdated data.
Previous solutions dealt with the problem using so-called
“forking” semantics (in SUNDR [20, 17], and other propos-
als [7, 19, 4]). These solutions guarantee integrity, and by
adding some extra out-of-band communication among the
clients can also be used to achieve a related notion of con-
sistency. However, they also incur a major drawback that
hampers system availability. Specifically, even when the ser-
vice functions correctly, all these protocols may sometimes
block a client during an operation, requiring the client to
wait for another client to finish, and do not guarantee that
every client operation successfully completes. It has been
shown that this limitation is inherent [6, 5].

Venus eliminates this problem by letting operations fin-
ish optimistically and establishing consistency later. When
the service is correct, all client operations therefore termi-
nate immediately and the service is “wait-free.” When an
operation returns optimistically, it is called red, and Venus
guarantees integrity, but not yet consistency. If the stor-
age service is indeed correct, Venus notifies the application
later when a red operation is known to be consistent and
thereby becomes green; in this sense, Venus is eventually
consistent [23, 22]. Venus guarantees that the green op-
erations of all clients are consistent, i.e., that they can be
ordered in a single sequence of atomic operations. If some
red operations are irreconcilable and so may never become
green, Venus ensures that every client eventually receives a
failure notification.

Venus does not require any additional trusted components
and relies only on the clients that are authorized to access
the data. Venus allows a dynamic set of potentially dis-
connected clients. A subset of clients that are frequently
online is designated as a core set; these clients manage the
group membership and help to establish consistency. Venus
assumes that clients are correct or may crash silently, but
otherwise follow their specification, and that a majority of
the clients in the core set is correct. The storage service
usually functions properly, but may become subject to at-
tacks or behave arbitrarily. Venus is asynchronous and never
violates consistency or integrity due to timeouts, but relies

on some synchrony assumptions for liveness. Clients may
occasionally communicate with each other by email. Since
this is conducted in the background, independently of stor-
age operations, and only if a client suspects that the storage
service is faulty, it does not affect the performance of Venus.

Our implementation of Venus is comprised of a client-side
library and a verifier. The client-side library overrides the
interface of the storage service, extending it with eventual
consistency and failure notifications. The verifier brokers
consistency information and can be added to the storage ser-
vice in a modular way; typically it will also run in the cloud,
hosted by the same untrusted service that provides the stor-
age. Internally, the verifier and the storage service might be
replicated for fault tolerance and high availability. Note that
using replication within the cloud does not solve the prob-
lem addressed by Venus, since from the client’s perspective,
the entire cloud is a single trust domain. We stress that
Venus does not trust the verifier any more than the storage
service — the two entities may collude arbitrarily against
the clients, and separating them simply supports a layered
implementation with commodity providers. Of course, the
verifier could be run by a trusted third party, but it would
be a much stronger assumption and existing protocols suffice
for integrity and consistency in this model [2].

We have implemented Venus and deployed it using the
commodity Amazon S3 cloud storage service!. Venus re-
quires an additional message exchange between client and
verifier for each operation, in addition to accessing the raw
storage. We report on experiments using Venus connected
to S3 and with a verifier deployed either on a remote server
or on the same LAN as the clients. We compare the per-
formance of storage access using Venus to that of the raw
S3 service. Both the latency and the throughput of Venus
closely match the performance of the raw S3 service. Specifi-
cally, when the verifier is deployed on the local LAN, Venus’
performance is identical to that of S3. When the verifier
is deployed remotely, Venus adds a small overhead to la-
tency compared to S3 (corresponding to one round of ad-
ditional communication with the verifier) and achieves the
same throughput. We have also tested Venus’ capability to
detect service misbehavior and present logs from such an
experiment, where the clients communicate with each other
and detect that the cloud storage provider has violated con-
sistency (as simulated).

Contributions.

Our results demonstrate that data integrity and consis-
tency for remote storage accessed by multiple clients can be
obtained without significant overhead, no additional trusted
components, and seamlessly integrated with the normal op-
erations. Specifically, Venus is the first practical decentral-
ized algorithm that

e verifies cryptographic integrity and consistency of re-
motely stored data accessed by multiple clients with-
out introducing trusted components,

e does not involve client-to-client coordination or intro-
duce extra communication on the critical path of nor-
mal operations,

e provides simple semantics to clients, lets operations
execute optimistically, but guarantees that either all

4http: //aws.amazon.com/s3/



operations eventually become consistent, or that every
client is informed about the service failure, and

e is practically implemented on top of a commodity cloud
storage service.

Venus may secure a variety of applications that currently use
cloud storage, such as online collaboration, Internet backup,
and document archiving. No less important is that Venus
enables many applications that require verifiable guarantees
and do not blindly trust a service provider to be deployed
in the cloud.

Organization.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 presents the design
of Venus, and Section 4 defines its semantics. The protocol
for clients and the verifier is given in Section 5. Section 6 de-
scribes our implementation of Venus, and finally, Section 7
presents its evaluation.

2. RELATED WORK

Data integrity on untrusted storage accessed by a single
client with small trusted memory can be protected by storing
the root of a hash tree locally [2]. Systems applying this
approach to outsourced file systems and to cloud storage
have also been demonstrated [10, 11].

In cryptographic storage systems with multiple clients,
such “root hashes” are additionally signed; TDB [18], SiR-
iUS [9], and Plutus [15] are some representative examples
implementing this method. In order to ensure freshness, the
root hashes must be propagated by components that are at
least partially trusted, however. Going beyond ensuring the
integrity of data that is actually read from an untrusted ser-
vice by a single client, recent work by Juels and Kaliski [14]
and by Ateniese et al. [1] introduces protocols for assuring
the client that it can retrieve its data in the future, with high
probability. Unlike Venus, this work does not guarantee con-
sistency for multiple clients accessing the data concurrently.

Several recent systems provide integrity using trusted com-
ponents, which cannot be subverted by intrusions. A promi-
nent system of this kind is CATS [26], which provides storage
accountability based on an immutable public bulletin board
available to the service and to all clients. Another proposal
is A2M [8], which utilizes a trusted append-only memory
(realized in hardware or software) to ensure atomic seman-
tics. Venus uses client signatures on the data, but no trusted
components.

A separate line of work provides so-called forking seman-
tics [20], which are weaker than conventional atomic seman-
tics, but these systems do not require any trusted compo-
nents whatsoever. SUNDR [17], Cachin et al. [7, 4] and
Majuntke et al. [19] propose storage systems of this kind
that ensure forking consistency semantics. They guaran-
tee that after a single consistency violation by the service,
the views seen by two inconsistent clients can never again
converge. The main drawbacks of these systems lie, first,
in the difficulty of understanding forking semantics and ex-
ploiting them in applications, and, second, in their mono-
lithic design, which integrates storage operations with the
consistency mechanism. Hence, it is difficult to use these
approaches for securing practical cloud storage.

Furthermore, the systems with forking semantics men-
tioned so far [17, 7, 4] may block reading clients when a read-

write conflict occurs [6, 5]. In such situations, readers can-
not progress until the writer completes its operation, which
is problematic, especially if the writer crashes. Majuntke
et al. [19] and Williams et al. [24] provide fork-consistency
and guarantee system-wide progress but their algorithms
may abort some conflicting operations. Going beyond fork-
consistent protocols designed for untrusted storage, the sys-
tem of Williams et al. [24] provides an untrusted database
server and supports transactions. In contrast, Venus never
blocks a client operation when the storage service is correct,
and every client may proceed independently of other clients
and complete every operation. Venus provides more intu-
itive system semantics, whereby operations complete opti-
mistically before their consistency is verified. In the ab-
sence of failures, every client operation is eventually marked
as green, and Venus ensures that all clients observe a single
sequence of green operations.

FAUST [5] implements the notion of weak fork-lineariza-
bility, which allows client operations to complete optimisti-
cally, as in Venus. It also provides notifications to clients,
but they are different and less intuitive — FAUST issues sta-
bility notifications, where each notification includes a vector
indicating the level of synchronization that a client has with
every other client. This stability notion is not transitive and
requires every client to explicitly track the other clients in
the system and to assess their relation to the data accessed
by an operation. FAUST is therefore not easily amenable to
dynamic changes in the set of clients. Furthermore, it is un-
clear how clients can rely on FAUST stability notifications
in a useful manner; global consistency in FAUST (among all
clients) is guaranteed only if no client ever crashes. FAUST
does not work with commodity storage; like other proposals,
it integrates storage operations with the consistency mech-
anism, and it does not allow multiple clients to modify the
same object, which is the usual semantics of commodity stor-
age services.

In contrast, indications in Venus simply specify the last
operation of the client that has been verified to be globally
consistent, which is easy to integrate with an application.
Venus eliminates the need for clients to track each other,
and enables dynamic client changes. Unlike the previous
protocols [5, 7, 19], Venus allows all clients to modify the
same shared object. Most importantly, the design of Venus
is modular, so that it can be deployed with a commodity
storage service.

Orthogonal to this work, many storage systems have been
proposed that internally use replication across several nodes
to tolerate a fraction of corrupted nodes (e.g., [12] and refer-
ences therein). For instance, HAIL [3] is a recent system that
relies replicated storage servers internally, of which at least
a majority must be correct at any time. It combines data
replication with a method that gives proofs of retrievability
to the clients. But a storage service employing replication
within its cloud infrastructure does not solve the problem
addressed by Venus — from the perspective of the client,
the cloud service is still a single trust domain.

3. SYSTEM MODEL

Figure 1 depicts our system model, which includes a stor-
age service, a generic commodity online service for storing
and retrieving objects of arbitrary size, a verifier, which im-
plements our consistency and verification functions and mul-
tiple clients. The storage service is used as is, without any
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Figure 1: Venus Architecture.

modification. Usually the storage service and the verifier are
hosted in the same cloud and will be correct; but they may
become faulty or corrupted by an adversary, and they may
collude together against the clients.

There are an arbitrary number of clients, which are sub-
ject to crash failures. Clients may be connected intermit-
tently and are frequently offline. The core set of clients
is a publicly known subset of the clients with a special role.
These clients help detect consistency and failures (Section 5.4)
and manage client membership (Section 5.6); to this end,
clients occasionally communicate directly with clients from
the core set. A quorum of the core set of clients must not
crash (but may also be offline temporarily). Note that clients
of cloud services, and especially users of cloud storage, do
not operate continuously. Hence, clients should not depend
on other clients for liveness of their operations. Indeed, every
operation executed by a client in Venus proceeds indepen-
dently of other clients and promptly completes, even if all
other clients are offline.

Clients in Venus are honest and do not deviate from their
specification (except for crashing). Note that tolerating ma-
licious clients does not make a lot of sense, because every
client may write to the shared storage. From the perspec-
tive of the correct clients, the worst potential damage by
another client is to simply overwrite the storage with bo-
gus information. Venus, just like commodity cloud storage,
cannot not perform application-specific validation of written
data.

Venus clients are admitted by a member of the core set, as
determined by the same access-control policy as the one used
at the commodity storage interface. Clients are identified by
a signature public key and an email address, bound together
with a self-signed certificate. Every client knows initially at
least the public keys of all clients in the core set.

Messages between clients and the verifier or the storage
service are sent over reliable point-to-point channels. Client-
to-client communication is conducted using digitally signed
email messages; this allows clients to go temporarily offline
or to operate behind firewalls and NATs. Clients rarely
communicate directly with each other.

The storage service is assumed to have an interface for
writing and reading data objects. The write operation takes
the identifier obj of the object and some data x as parame-
ters and returns an acknowledgment. The read operation ex-
pects an object identifier obj and returns the data stored in

the object. After a new object is successfully stored, clients
are able to read it within a bounded period of time, though
perhaps not immediately. We assume that this bound is
known; in practice, it can be obtained dynamically®. The
assumption that such time threshold exists reflects clients’
expectation from any usable storage service. Inability to
meet this expectation (e.g., due to an internal partition)
can be perceived as a failure of the storage provider as far
as clients are concerned. Venus makes several attempts to
read the object, until this time bound is exceeded, at which
time a failure notification is issued to clients.

4. VENUS INTERFACE AND SEMANTICS

Venus overrides the write(obj, ) and read(obj) operations
for accessing an object identified by 0bj in the interface of
the storage service. Venus does not allow partial updates of
an object, the value z overwrites the value stored previously.
If the object does not exist yet, it is created. For simplicity of
presentation, we assume that each client executes operations
sequentially.

Venus extends the return values of write and read opera-
tions by a local timestamp ¢, which increasing monotonically
with the sequence of operations executed by the client. An
operation o always completes optimistically, without wait-
ing for other clients to complete their operations; at this
point, we say that o is red, which means that the integrity
of the operation has been checked, but its consistency is yet
unverified.

A weak form of consistency is nevertheless guaranteed for
all operations that become red. Namely, they ensure causal
consistency [13], which means intuitively that all operations
are consistent with respect to potential causality [16]. For
example, a client never reads two causally related updates
in the wrong order. In addition, it guarantees that a read
operation never returns an outdated value, if the reader was
already influenced by a more recent update. Causality has
proven to be important in various applications, such as var-
ious collaborative tools and Web 2.0 applications [21, 25].
Although usually necessary for applications, causality is of-
ten insufficient. For example, it does not rule out replay
attacks or prevent two clients from reading two different
versions of an object.

Venus provides an asynchronous callback interface to a
client, which issues periodic consistency and failure notifi-
cations. A consistency notification specifies a timestamp ¢
that denotes the most recent green operation of the client,
using the timestamp returned by operations. All operations
of the client up to this operations have been verified to to
be consistent and are also green. Intuitively, all clients ob-
serve the green operations in the same order. More precisely,
Venus ensures that there exists a global sequence of opera-
tions, including at least the green operations of all clients,
in which the green operations appear according to their or-
der of execution. Moreover, this sequence is legal, in the
sense that every read operation returns the value written by
the last write that precedes the read in the sequence, or an
empty value if no such write exists. Note that the sequence
might include some red operations, in addition to the green
ones. This may happen, for instance, when a client starts

5Amazon guarantees that S3 objects can be read immedi-
ately after they are created: http://aws.typepad.com/aws/
2009/12/aws-importexport-goes-global.html



to write and crashes during the operation, and a green read
operation returns the written value.

Failure notifications indicate that the storage service or
the verifier has violated its specification. Venus guarantees
that every complete operation eventually becomes green, un-
less the client executing it crashes, or a failure is detected.

5. PROTOCOL DESCRIPTION

Section 5.1 describes the interaction of Venus clients with
the storage service. Section 5.2 describes wersions, used
by Venus to check consistency of operations. Section 5.3
presents the protocol between the clients and the verifier.
Section 5.4 describes how clients collect information from
other clients (either through the verifier or using client-to-
client communication), and use it for eventual consistency
and failure detection. Section 5.5 describes optimizations.

For simplicity, we first describe the protocol for a fixed
set of clients C4,...,Cy, and relax this assumption later in
Section 5.6. The algorithm uses several timeout parameters,
which are introduced in Figure 2. We have formally proven
that Venus provides the properties defined in Section 4; these
proofs are omitted due to space limitations.

In what follows, we distinguish between objects provided
by Venus and which can be read or written by applications,
and objects which Venus creates on storage. The former are
simply called objects, while the latter are called low-level
objects. Every update made by the application to an object
obj managed with Venus creates a new low-level object at
the storage service with a unique identifier, denoted p, in the
description below, and the verifier maintains a pointer to the
last such update for every object managed by Venus. Clients
periodically garbage-collect such low-level objects (see also
Section 5.5).

R Number of times an operation is retried on the storage service.
tqummy | Frequency of dummy-read operations.
tsend | Time since last version observed from another client, before
that client is contacted directly.
teceive | Frequency of checking for new messages from other clients.

Figure 2: Venus timeout parameters.

5.1 Overview of read and write operations

The protocol treats all objects in the same way; we there-
fore omit the object identifier in the sequel.

The general flow of read and write operations is presented
in Figure 3. When a write(z) operation is invoked at a
client C; to update the object, the client calculates hg, a
cryptographic hash of z, and writes = to the storage ser-
vice, creating a new low-level object with a unique path ps,
chosen by the client-side library. Using p, as a handle, the
written data can later be retrieved from storage. Notice
that p, identifies the low-level object created for this up-
date, and it is different from the object identifier exported
by Venus, which is not sent to storage. After the low-level
write completes, C; sends a SUBMIT message to the verifier
including p, and h., informing it about the write operation.
C; must wait before sending the SUBMIT message, since if
C; crashes before x is successfully stored, p; would not be a
valid handle and read operations receiving p, from the ver-
ifier would fail when trying to retrieve x from the storage

service. The verifier orders all SUBMIT messages, creating a
global sequence H of operations.

verifier client storage verifier client storage
MIT

VV/~,‘[
b,
%

write operation read operation

Figure 3: Operation flow.

When a read operation is invoked, the client first sends a
SUBMIT message to the verifier, in order to retrieve a handle
corresponding to the latest update written to the object.
The verifier responds with a REPLY message including p.
and h, from the latest update. The reader then contacts
the storage service and reads the low-level object identified
by pz. In most cases, the data will be returned by the stor-
age service. The reader then checks the integrity of the data
by computing its hash and comparing it to h,; if they are
equal, it returns the data to the application. If the storage
provider responds that no low-level object corresponds to p,
the client re-executes the read. If the correct data can still
not be read after R repetitions, the client announces a fail-
ure. Similarly, failure is announced if hashing the returned
data does not result in h;. Updates follow the same pattern:
if the storage does not successfully complete the operation
after R attempts, then the client considers it faulty.

Since the verifier might be faulty, a client must verify the
integrity of all information sent by the verifier in REPLY mes-
sages. To this end, clients sign all information they send in
SUBMIT messages. A more challenging problem, which we
address in the next section, is verifying that p, and hy re-
turned by the verifier correspond to the latest write opera-
tion, and in general, that the verifier orders the operations
correctly.

5.2 From timestamps to versions

In order to check that the verifier constructs a correct
sequence H of operations, our protocol requires the verifier
to supply the context of each operation in the REPLY. The
context of an operation o is the prefix of H up to o, as
determined by the client that executes o. This information
can be compactly represented using versions as follows.

Every operation executed by a client C; has a local time-
stamp, returned to the application when the operation com-
pletes. The timestamp of the first operation is 1 and it is
incremented for each subsequent operation. We denote the
timestamp of an operation o by ts(0). Before C; completes o,
it determines a vector-clock value vc(o) representing the con-
text of o; the j-th entry in vc(o) contains the timestamp of
the latest operation executed by client C; in o’s context.

In order to verify that operations are consistent with re-
spect to each other, more information about the context of
each operation is needed. Specifically, the context is com-
pactly represented by a version, as in previous works [20,
7, 5]. A wersion(o) is a pair composed of the vector-clock
version(o).ve, which is identical to ve(o), and a second vec-
tor, wversion(o).vh, where the i-th entry contains a cryp-
tographic hash of the prefix of H up to o. This hash is



computed by iteratively hashing all operations in the se-
quence with a cryptographic collision-resistant hash func-
tion. Suppose that o; is the last operation of C; in Cj’s
context, i.e., version(o).vc[j] = ts(o;). Then, the j-th entry
in wversion(o).vh contains a representation (in the form of
a hash value) of the prefix of H up to o;. Client C; calcu-
lates version(o).vh during the execution of o according to the
information provided by the verifier in the REPLY message.
Thus, if the verifier follows its protocol, then version(o).vh[j]
is equal to version(o;).vh[j].

For simplicity, we sometimes write vc(o) and vh(o) for
version(o).vc and version(o).vh, respectively. We define the
following order (similarly to [20, 7, 5]), which determines
whether o could have appeared before another operation o’
in the same legal sequence of operations:

Order on versions: version(o) < wversion(o’) whenever
both of the following conditions hold:

1. ve(o) < we(0), i.e., for every k, ve(o)[k] < ve(o)[k].
2. For every k such that vc(o)[k] = ve(o')[k], it holds that
vh(o)[k] = vh(o")[K].

The first condition checks that the context of o includes at
least all operations that appear in the context of 0. Suppose
that oy is the last operation of Cj appearing both in the
context of o and in that of o/. In this case, the second
condition verifies that the prefix of H up to oy is the same
in the contexts of o and o. We say that two versions are
comparable when one of them is smaller than or equal to the
other. The existence of incomparable versions indicates a
fault of the verifier.

5.3 Operation details

Each client maintains a version corresponding to its most
recently completed operation opre,. Moreover, if oprey is a
read operation, the client keeps pprev and hpreq retrieved by
Oprev from the verifier. Note that client C; does not know
context and version of its current operation when it sends the
SUBMIT message, as it only computes them after receiving
the REPLY. Therefore, it sends the version of oprev With the
SUBMIT message its next operation to the verifier.

When sending the SUBMIT message for a READ opera-
tion o, C; encloses a representation of o (including the time-
stamp ts(0)), the version opres of its previous operation as
well as a signature on vh(opres)[i]. Such a signature is called
a proof and authenticates the prefix of C;’s context of opres.
If 0 is a write operation, the message also includes the tuple
(pz, hs,ts(0)), where p, is the handle and h, is the hash of
the data already written to the storage provider. Otherwise,
if 0 is a read operation, and oprey, Was also a read, the mes-
sage includes (pprev, hprev, t8(0prev)). All information in the
SUBMIT message is signed (except for the proof, which is a
signature by itself).

Recall that the verifier constructs the global sequence H
of operations. It maintains an array Ver, in which the j-th
entry holds the last version received from client C;. More-
over, the verifier keeps the index of the client from which
the maximal version was received in a variable ¢; in other
words, Ver[c] is the maximal version in Ver. We denote the
operation with version Ver{c] by o.. The verifier also main-
tains a list Pending, containing the operations that follow
oc in ‘H. Hence, operations appear in Pending according to
the order in which the verifier received them from clients (in

SUBMIT messages). Furthermore, a variable Proofs contains
an array of proofs from SUBMIT messages. Using this array,
clients will be able to verify their consistency with C; up to
Cj’s previous operation, before they agree to include Cj’s
next operation in their context.

Finally, the verifier stores an array Paths containing the
tuple (pe, ha, ts(0)) received most recently from every client.
Notice that if the last operation of a client C; is a write, then
this tuple is included in the SUBMIT message and the verifier
updates Paths[j] when it receives the SUBMIT. On the other
hand, the SUBMIT message of a read operation does not con-
tain the handle and the hash; the verifier updates Paths[j]
only when it receives the next SUBMIT message from C;. The
verifier processes every SUBMIT message atomically, updat-
ing all state variables together, before processing the next
SUBMIT message.

After processing a SUBMIT message, the verifier sends a
REPLY message that includes ¢, version(o.), Pending, Proofs
(only those entries in Proofs which correspond to clients ex-
ecuting operations in Pending), and for a read operation
also a tuple (pz, ha,tz) with a handle, hash, and timestamp
as follows. If there are write operations in Pending, then
the verifier takes (pz, ha,tz) from the entry in Paths corre-
sponding to the client executing the last write in Pending.
Otherwise, if there are no writes in Pending, then it uses the
tuple (pz, ha, tz) stored in Paths|c].

When C; receives the REPLY message for its operation o,
it verifies the signatures on all information in the message,
and then performs the following checks:

1. The maximal version sent by the verifier, version(oc),
is at least as big as the version corresponding to C;’s
previous operation, version(oprev)-

2. The timestamp ts(0prey) of C;’s previous operation is
equal to ve(oc)[i], as oprev should be the last operation
that appears in the context of oc.

3. If o is a read operation, then (pg, hs,ts) indeed corre-
sponds to the last write operation in Pending, or to o.
if there are no write operations in Pending. This can
be checked by comparing t, to the timestamp of the
appropriate operation in Pending or to ts(o.), respec-
tively.

Next, C; computes version(o), by invoking the function
shown in Figure 4, to represent o’s context based on the
prefix of the history up to o. (represented by version(o.)),
and on the sequence of operators in Pending. The following
additional checks require traversing Pending, and are there-
fore performed during the computation of version(o), which
iterates over all operations in Pending:

4. There is at most one operation of every client in Pend-
ing, and no operation of C;, that is, the verifier does
not include too many operations in Pending.

5. For every operation o by client C'j in Pending, the time-
stamp ts(o) is equal to vc(oc)[j] + 1, that is, o is in-
deed the next operation executed by C; after the one
appearing in the context of oc.

6. For every client C; that has an operation in Pending,
Proofs[j] is a valid signature by C; on vh(o.)[j]. That
is, the context of o. includes and properly extends the
context of the previous operation of Cj, as represented
by the hash vh(o.)[j] and the signature Proofs[j].



1: function compute-version-and-check-pending(o)
2: (ve,vh) « version(oc)

3: histHash < vh|[c]

4:  forg=1,...,|Pending| : // traverse pending ops
5: let C; be the client executing Pending|q)

6: velj] «— velg] + 1

T histHash — hash(histHash|| Pending|q])

8: vh[j] < histHash

9: perform checks 4, 5, and 6 (see text below)
10:  wersion(o) = (ve, vh)

11:  return version(o)

Figure 4: Computing the version of an operation.

If one of the checks fails, the application is notified and a
failure message is sent to the core set clients, as described
in Section 5.4.

5.4 Detecting consistency and failures

An application of Venus registers for two types of call-
back notifications: consistency notifications, which indicate
that some operations have become green and are known to
be consistent, and failure notifications, issued when a fail-
ure of the storage service or the verifier has been detected.
Below we describe the additional mechanisms employed by
the clients for issuing such notifications, including client-to-
client communication.

Each client C; maintains an array CVer. For every client C
in the core set, C'Ver[j] holds the biggest version of C; known
to C;. The entries in C'Ver might be outdated, for instance,
when C; has been offline for a while, and more importantly,
CVer[j] might not correspond to an operation actually exe-
cuted by Cj, as we explain next. Together with each entry
of CVer, the client keeps the local time of its last update to
the entry.

Every time a client C'; completes an operation o, it calcu-
lates version(o) and stores it in C'Ver[i]. To decide whether
its own operations are globally consistent, C; must also col-
lect versions from other clients. More precisely, it needs to
obtain the versions from a majority quorum of clients in
the core set. Usually, these versions arrive via the verifier,
but they can also be obtained using direct client-to-client
communication.

To obtain another client’s version via the verifier, C; pig-
gybacks a VERSION-REQUEST message with every SUBMIT
message that it sends. The VERSION-REQUEST message in-
cludes the identifier k of some client in the core set. In
response, the verifier includes Version[k] with the REPLY
message. When C; receives the REPLY message, it updates
CVerlk] if the received version is bigger than the old one (of
course, the signature on the received version must be verified
first). Whenever C; executes an operation, it requests the
version of another client from the core set in the VERSION-
REQUEST message, going in round-robin over all clients in
the core set. When no application-invoked operations are
in progress, the client also periodically (every tgummy time
units) issues a dummy-read operation, to which it also at-
taches VERSION-REQUEST messages. The dummy-read op-
erations are identical to application-invoked reads, except
that they do not access the storage service after processing
the REPLY message. A dummy-read operation invoked by C;
causes an update to Version[i] at the verifier, even though no
operation is invoked by the application at C;. Thus, clients
that repeatedly request the version of C; from the verifier
see an increasing sequence of versions of Cj.

It is possible, however, that C} goes offline or crashes, in
which case C; will not see a new version from C} and will not
update CVerlk]. Moreover, a faulty verifier could be hiding
C'x’s new versions from C;. To client C; these two situations
look the same. In order to make progress faced with this
dilemma, C; contacts C}, directly whenever CVer{k] does not
change for a predefined time period tsend. More precisely,
C; sends the maximal version in CVer to C}, asking Cy
to respond with a similar message. When Cy is online, it
checks for new messages from other clients every t,eceive time
units, and thus, if C% has not permanently crashed, it will
eventually receive this message and check that the version
is comparable to the maximum version in its array CVer. If
no errors are found, Cy responds to C; with the maximal
version from CVer, as demonstrated in Figure 5(a). Notice
that this maximal version does not necessarily correspond to
an operation executed by C;. All client-to-client messages
use email and are digitally signed to prevent attacks from
the network.

client C, client C, client C, client C,

failure
notification

failure
notification

(b)

Figure 5: Consistency checks using client-to-client com-
munication. In (a) the checks pass, which leads to a re-
sponse message and consistency notifications. In (b) one
of the checks fails and C2 broadcasts a failure message.

When a client C; receives a version directly from Cf, it
makes sure the received version is comparable with the max-
imal version in its array CVer. If the received version is
bigger than CVer[k], then C; updates the entry.

Whenever an entry in C'Ver is updated, C; checks whether
additional operations become green, which can be deter-
mined from CVer as explained next. If this is the case,
Venus notifies the application and outputs the timestamp
of the latest green operation. To check if an operation o
becomes green, C; invokes the function in Figure 6, which
computes a consistency set C(o) of o. If C(o) contains a
majority quorum of the clients in the core set, the function
returns green, indicating that o is now known to be consis-
tent.

1: function check-consistency(o)
Clo) — 0
for each client C}, in the core set:
if CVer{k].vc[i] > ts(o) then
add k to C(o)
if C(o0) contains a quorum of the core set then
return green
else
return red

Figure 6: Checking whether o is green.

C starts with the latest application-invoked (non-dummy)
red operation o, going over its red operations in reverse or-
der of their execution, until the first application-invoked red
operation o is encountered that becomes green. If such an



operation o is found, C; notifies the application that all op-
erations with timestamps smaller than or equal to ts(o) are
now green.

If at any point a check made by the client fails, it broad-
casts a failure message to all core set clients; when receiving
such message for the first time, a core set client forwards
this message to all other core set clients. When detecting
a failure or receiving a failure message, a client notifies its
application and ceases to execute application-invoked and
dummy operations. After becoming aware of a failure, a
core set client responds with a failure message to any re-
ceived version message, as demonstrated in Figure 5(b).

5.5 Optimizations and garbage collection

Access to the storage service consumes the bulk of exe-
cution time for every operation. Since this time cannot be
reduced by our application, we focus on overlapping as much
of the computation as possible with the access to storage.

For a read operation, as soon as a REPLY message is re-
ceived, the client immediately starts reading from the stor-
age service, and concurrently makes all checks required to
complete its current operation. In addition, the client pre-
pares (and signs) the information about the current opera-
tion that will be submitted with its next operation (notice
that this information does not depend on the data returned
by the storage service).

A write operation is more difficult to parallelize, since a
SUBMIT message cannot be sent to the verifier before the
write to the storage service completes. This is due to the
possibility that a SUBMIT message reaches the verifier but
the writer crashes before the data is successfully written
to the storage service, creating a dangling pointer at the
verifier. If this happens, no later read operation will be able
to complete successfully.

We avoid this problem by proceeding with the write opti-
mistically, without changing the state of the client or veri-
fier. Specifically, while the client awaits the completion of its
write to the storage, it sends a DUMMY-SUBMIT message to
the verifier, as shown in Figure 7. Unlike a normal SUBMIT,
this message is empty and thus cannot be misused by the
verifier, e.g., by presenting it to a reader as in the scenario
described above. When receiving a DUMMY-SUBMIT message,
the verifier responds with a REPLY message identical to the
one it would send for a real SUBMIT message (notice that a
REPLY message for a write operation does not depend on the
contents of the SUBMIT message). The writer then optimisti-
cally makes all necessary checks, calculations and signatures.
When storing the data is complete, the client sends a SUB-
MIT message to the verifier. If the REPLY message has not
changed, pre-computed information can be used, and other-
wise, the client re-executes the checks and computations for
the newly received information.

Venus creates a new low-level object at the storage provider
for every write operation of the application. In fact, this is
exactly how updates are implemented by most cloud stor-
age providers, which do not distinguish between overwriting
an existing object and creating a new one. This creates the
need for garbage collection. We have observed, however,
that with Amazon S3 the cost of storing multiple low-level
objects for a long period of time is typically much smaller
than the cost of actually uploading them (which is anyway
necessary for updates), thus eager garbage collection will not
significantly reduce storage costs. In Venus, each client pe-
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Figure 7: Speculative write execution.

riodically garbage-collects low-level objects on storage cor-
responding to its outdated updates.

5.6 Joining the system

We have described Venus for a static set of clients so far,
but in fact, Venus supports dynamic client joins. In order
to allow for client joins, clients must have globally unique
identifiers. In our implementation these are their unique
email addresses. All arrays maintained by the clients and
by the verifier, including the vector clock and the vector
of hashes in versions, are now associative arrays, mapping
a client identifier to the corresponding value. Clients may
also leave Venus silently but the system keeps their entries
in versions.

The verifier must not accept requests from clients for which
it does not have a public key signed by some client in the
core set. As mentioned in Section 3, every client wishing
to join the system knows the core set of clients and their
public keys. To join the system, a new client C; sends a
JOIN message, including its public key, to some client in the
core set; if the client does not get a response it periodically
repeats the process until it gets a successful response. When
receiving a JOIN request from Cj, a client C; in the core set
checks whether C; can be permitted access to the service
using the externally defined access policy, which permits a
client to access Venus if and only if the client may also access
the object at the storage service. If access to C; is granted,
C; still needs to verify that C; controls the public key in the
JOIN message. To this end, C; asks the joining client to sign
a nonce under the supplied public key, as shown in Figure 8.

If the signature returned by Cj is valid, then C; signs C;’s
public key and sends it to the verifier. After the verifier has

joining client client in core-set verifier

JOIN, public key
%

\S‘“%,
%}

ack

Figure 8: Flow of a join operation.



acknowledged its receipt, C; sends a final acknowledgment
to C, and from this time on, C; may invoke read and write
operations in Venus.

The verifier informs a client C; about clients that are yet
unknown to Cj, by including their signed public keys in RE-
PLY messages to C;. In order to conclude what information
C; is missing, the verifier inspects version(oprev) received
from C; in the SUBMIT message, where it can see which
client identifiers correspond to values in the associative ar-
rays. A client receiving a REPLY message extracts all public
keys from the message and verifies that the signature on
each key was made by a client from the core set. Then, it
processes the REPLY message as usual. If at any time some
information is received from the verifier, but a public key
needed to verify this information is missing, then C; con-
cludes that the verifier is faulty and notifies its application
and the other clients accordingly.

6. IMPLEMENTATION

We implemented Venus in Python 2.6.3, with Amazon S3
as the storage service. Clients communicate with S3 using
HTTP. Communication with the verifier uses direct TCP
connections or HTTP connections; the latter allow for sim-
pler traversal of firewalls.

Client-to-client communication is implemented by auto-
mated emails. This allows our system to handle offline
clients, as well as clients behind firewalls or NATs. Clients
communicate with their email provider using SMTP and
IMAP for sending and receiving emails, respectively. Clients
are identified by their email addresses.

For signatures we used GnuPG. Specifically, we used 1024-
bit DSA signatures. Each client has a local key-ring where it
stores the public keys corresponding to clients in our system.
Initially the key-ring stores only the keys of the clients in the
core set, and additional keys are added as they are received
from the verifier, signed by some client in the core set. We
use SHA-1 for hashing.

Venus does not access the versioning support of Amazon
S3, which was announced only recently, and relies on the
basic key-value store functionality.

To evaluate how Venus detects service violations of the
storage service and the verifier, we simulated some attacks.
Here we demonstrate one such scenario, where we simulate
a “split-brain” attack by the verifier, in a system with two
clients. Specifically, the verifier conceals operations of each
client from the other one. Figure 9 shows the logs of both
clients as generated by the Venus client-side library. We
observe that one email exchange suffices to detect the in-
consistency.

7. EVALUATION

We report on measurements obtained with Venus for clients
deployed at the Technion (Haifa, Israel), Amazon S3 with
the US Standard Region as the storage service, and with the
verifier deployed at MIT (Cambridge, USA) and locally at
the Technion.

The clients in our experiments run on two IBM 8677 Blade
Center chassis, each with 14 JS20 PPC64 blades. We dedi-
cate 25 blades to the clients, each blade having 2 PPC970FX
cores (2.2 GHz), 4GB of RAM and 2 BroadCom BCM5704S
NICs. When deployed locally, the verifier runs on a separate
HS21 XM blade, Intel QuadCore Xeon E5420 with 2.5GHz,

16GB of RAM and two BroadCom NetXtreme IT BCM5708S
NICs. In this setting the verifier is connected to the clients
by a 1Gb Ethernet.

When run remotely at MIT, the verifier is hosted on a
shared Intel Xeon CPU 2.40GHz machine with 2GB RAM.
In this case, clients contact the verifier using HTTP, for tun-
neling through a firewall, and the requests reach the Venus
verifier redirected by a CGI script on a web server.

All machines run the Linux 2.6 operating system.

7.1 Operation latency

We examine the overhead Venus introduces for a client
executing operations, compared to direct, unverified access
to S3, which we denote here by “raw S3.”

Figure 10 shows the average operation latency for a single
client executing operations (since there is a single client in
this experiment, operations become green immediately upon
completing). The latencies are shown for raw S3, with the
verifier in the same LAN as the client at the Technion, and
with the remote verifier at MIT. Each measurement is an
average of the latencies of 300 operations, with the 95%
confidence intervals shown. We measure the average latency
for different sizes of the data being read or written, namely
1KB, 10KB, 100KB and 1000KB.

Figure 10 shows that the latency for accessing raw S3 is
very high, in the orders of seconds. Many users have pre-
viously reported similar measurements® 7. The large confi-
dence intervals for 1000KB stem from a high variance in the
latency (also previously reported by S3 users) of accessing
big objects on S3. The variance did not decrease when an
average of 1000 operations was taken.

The graphs show that the overhead of using Venus com-
pared to using Amazon S3 directly depends on the location
of the verifier. When the verifier is local, the overhead is
negligible. When it is located far from the clients, the over-
head is constant (450-550 ms.) for all measured data sizes.
It stems from one two-way message exchange between the
client and verifier, which takes two round-trip times in prac-
tice, one for establishing a TCP connection and another one
for the message itself. Although we designed the verifier
and the clients to support persistent HT'TP connections, we
found that the connection remained open only between each
client and a local proxy, and was closed and re-opened be-
tween intermediate nodes in the message route. We suspect
the redirecting web server does not support keeping HTTP
connections open.

We next measure the operation latency with multiple clients
and a local verifier. Specifically, we run 10 clients, 3 of which
are the core set. Half of the clients perform read operations,
and half of them perform writes; each client executes 50 op-
erations. The size of the data in this experiment is 4KB.
Figure 11 shows the average time for an operation to com-
plete, i.e., to become red, as well as the time until it becomes
green, with tgummy set to 3 sec., or to 5 sec. Client-to-client
communication was disabled for these experiments.

One can observe that as the time between user-invoked
operations increases, the average latency of green notifica-
tions initially grows as well, because versions advance at a
slower rate, until the dummy-read mechanism kicks in and

http://bob.pythonmac.org/archives/2006/12/06/
cachefly-vs-amazon-s3/

"http://developer.amazonwebservices.com/connect/
message. jspa’messageID=93072



Log of Client #1: venusclient] @gmail.com

09:26:38: initializing client venusclient]@gmail.com

09:26:43: executing dummy-read with <REQUEST-VERSION, venusclient2@gmail.com>
-: no update to CVersions[venusclient2@gmail.com]

09:26:45: received email from client venusclient2@gmail.com. Signature OK

failure detected: venusclient2@gmail.com sent an incomparable version

- notifying other clients and shutting down...

Log of Client #2: venusclient2@gmail.com

09:26:30: initializing client venusclient2@gmail.com

09:26:35: executing dummy-read with <REQUEST-VERSION, venusclient] @gmail.com>
no update to CVersions[venusclient] @gmail.com]

09:26:40: executing dummy-read with <REQUEST-VERSION, venusclient]@gmail.com>;
no update to CVersions[venusclient]l@gmail.com]

sending version to client venusclient] @gmail.com, requesting response
09:26:45: executing dummy-read with <REQUEST-VERSION, venusclient] @gmail.com>
no update to CVersions[venusclient] @gmail.com]

09:26:49: received email from client venusclient] @gmail.com. Signature OK

failure reported by client venusclient]@gmail.com

-: notifying other clients and shutting down...

Figure 9: Client logs from detecting a simulated “split-brain” attack, where the verifier hides each client’s operations
from the other clients. System parameters were set to tgummy = 5s€c., tsenqg = 10sec., and treceive = 5sec. There are
two clients in the system, which also form the core set. After 10 seconds, client #2 does not observe a new version
corresponding to client #1 and contacts it directly. Client #1 receives this email, and finds the version in the email to
be incomparable to its own latest version, as its own version does not reflect any operations by client #2. The client
replies reporting of an error, both clients notify their applications and halt.
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Figure 10: Average latency of a read and write operations, with 95% confidence intervals. The overhead is negligible
when the verifier is the same LAN as the client. The overhead for WAN is constant.
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Figure 11: Average latency for operations with multiple
clients to become red and green respectively.

ensures steady progress. Of course the time it takes for an
operation to complete, i.e., to become red, is not affected by
the frequency of invocations.

7.2 Verifier

Knowing that the overhead of our algorithm at the client-
side is small, we proceed to test the verifier’s scalability and
throughput. Since our goal here is to test the verifier under
high load, we perform this stress test with a synthetic multi-
client program, which simulates many clients to the server.
The simulated clients only do as much as is needed to flood
the verifier with plausible requests.

Amazon S3 does not support pipelining HTTP operation

throughput

40 —-+--raw S3
—a—\Venus (verifier in LAN)

operations / sec.
N
S

0 10 20 30 40 50
number of clients

Figure 12: Average throughput with multiple clients.

requests, and thus, an operation of a client on S3 has to
end before that client can invoke another operation. Con-
sequently, the throughput for clients accessing raw S3 can
be expected to be the number of client threads divided by
the average operation latency. In order to avoid side effects
caused by contention for processing and I/O resources, we
do not run more 2 client threads per each of our 25 dual-
core machines, and therefore measure throughput with up
to 50 client threads. As Venus clients access Amazon S3 for
each application-invoked operation, our throughput cannot
exceed that of raw S3, for a given number of clients. Our
measurements show that the throughput of Venus is almost
identical to that of raw S3, as can be seen in Figure 12.



8.  CONCLUSIONS

In this paper we presented Venus, a practical service that
guarantees integrity and consistency to users of untrusted
cloud storage. Venus can be deployed transparently with
commodity online storage and does not require any addi-
tional trusted components. Unlike previous solutions, Venus
offers simple semantics and never aborts or blocks client op-
erations when the storage is correct. We implemented Venus
and evaluated it with Amazon S3. The evaluation demon-
strates that Venus has insignificant overhead and can there-
fore be used by applications that require cryptographic in-
tegrity and consistency guarantees while using online cloud
storage.
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