
1

How to Choose a Timing Model?

Idit Keidar and Alexander Shraer

Abstract

When employing a consensus algorithm for state machine
replication, should one optimize for the case that all commu-
nication links are usually timely, or for fewer timely links?
Does optimizing a protocol for better message complexity
hamper the time complexity? In this paper, we investigate
these types of questions using mathematical analysis as well
as experiments over PlanetLab (WAN) and a LAN. We present
a new and efficient leader-based consensus protocol that
has O(n) stable-state message complexity (in a system with
n processes) and requires only O(n) links to be timely at
stable times. We compare this protocol with several previously
suggested protocols. Our results show that a protocol that
requires fewer timely links can achieve better performance,
even if it sends fewer messages.

Index Terms— synchrony assumptions, eventual syn-
chrony, failure detectors, consensus algorithms, FT Middle-
ware.

I. Introduction
Consensus is an important building block for achieving

fault-tolerance using the state-machine paradigm [20]. It is
therefore not surprising that the literature is abundant with
fault-tolerant protocols for solving this problem. But how does
a system designer choose, among the multitude of available
protocols, the right one for her system? This decision depends
on a number of factors, e.g., time and message complexity,
resilience to failures (process crashes, message loss, etc.), and
robustness to unpredictable timing delays.

In this paper we focus on the latter, namely the assump-
tions the protocol makes about timeliness. These are captured
in a timing model. We study the impact of the choice of
a timing model on the performance in terms of time and
message complexity. It is important to note that although
the physical system is often given, the system designer
has freedom in choosing the timing model representing this
system. For example, one seldom comes across a system

Department of Electrical Engineering, Technion, Haifa,
Israel.{idish@ee,shralex@tx}.technion.ac.il

A preliminary version of this paper appears in the 37th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN)

where the network latency can exceed an hour. This suggests
that in principle, even the most unpredictable systems can be
modeled as synchronous, with an upper bound of an hour
on message latency. Although a round-based synchronous
protocol works correctly in this system, it can take an hour
to execute a single communication round, and hence may
not be the optimal choice. Indeed, measurements show that
timely delivery of 100% of the messages is feasible neither
in WANs nor under high load in LANs[8], [5], [3]. Instead,
systems choose timeouts by which messages usually arrive
(e.g., 90% or 99% of the time); note that by knowing the
typical latency distribution in the system, a designer can fine-
tune the timeout to achieve a desired percentage of timely
arrivals. One can then employ protocols that ensure safety
even when messages arrive late [8], [21], [14]. Such protocols
are called indulgent [17].

While indulgent protocols ensure safety regardless of time-
liness, they do make some timeliness assumptions in order
to ensure progress. Periods during which these assumptions
hold are called stable. For example, it is possible to require
Eventual Synchrony (ES) [14], [8], where messages among all
pairs of processes are timely in stable periods. Alternatively,
one can use weaker majority-based or leader-based models,
where only part of the links are required to be timely in stable
periods. This defines a tradeoff: whereas weaker models may
require more communication rounds for decision, they may
also have better coverage, that is, their timeliness require-
ments will be satisfied more often. A second consideration is
message complexity: protocols that send more messages per
round may require fewer rounds. Thus, there may also be a
tradeoff between the time and message complexities.

In order to provide insights into such tradeoffs, this paper
(1) defines a new timing model, (2) introduces a novel time
and message efficient algorithm, and (3) presents an eval-
uation of different consensus algorithms using probabilistic
analysis, as well as concrete measurements in a LAN and in
WAN over PlanetLab [4]. We next elaborate on each one of
these contributions.

We define a new model (Section III), eventually weak
leader-majority ♦WLM . It includes a leader oracle, and only
requires that in stable periods, there be timely links from
a designated leader process to other processes and from a
majority of processes to the leader. Nothing is required before

{idish@ee, shralex@tx}.technion.ac.il

2
stabilization. The leader oracle can be implemented with
linear (in n, the number of processes) per-round stable state
message complexity [22], [24].

We then present a new efficient algorithm for ♦WLM

(Section IV), which has linear stable state message com-
plexity, and decides within 5 rounds from stabilization. If
the leader stabilizes earlier than the communication, our
algorithm decides in 4 rounds. Although ♦WLM was not
previously defined, its conditions allow some existing algo-
rithms [21], [9] to make progress. However, these algorithms
may take O(n) rounds after stabilization [11] when run in
♦WLM , in runs where the leader is not initially known.

Section V performs probabilistic analysis of the behavior
of consensus in different indulgent models, comparing our
new algorithm with three previously known algorithms. All
the compared algorithms always take a constant number of
rounds from stabilization, however unlike our new algorithm,
which has linear stable-state message complexity, the other
three algorithms have quadratic message complexity. Our
analysis studies the coverage of different models as well
as the number of rounds needed to reach stabilization and
then decision in each model. Although it makes simplifying
assumptions, this analysis gives a good starting point to
understand such behaviors in real systems. Note that we study
the performance of consensus without taking into account
the cost of leader election. This is justified since election
protocols often ensure leader stability [24], [1], [15], i.e., the
leader is seldom re-elected. Thus, the same leader may persist
for numerous instances of consensus (possibly thousands). For
simplicity, our analysis looks at runs where the processes’
rounds are synchronized.

In a real implementation, a round synchronization mech-
anism must be employed. One way to do so is using syn-
chronized clocks (e.g., GPS clocks) when present. Section VI
discusses possible ways to achieve round synchronization,
including the solution we implemented and deployed in
PlanetLab.

We then compare the performance of our new algorithm
in LAN and WAN with that of three previously known
algorithms (Section VII). We compare our measurements with
the probabilistic analysis and explain discrepancies that arise.
We give insights to the effect of good leader election on
leader-based consensus protocols. We show that our message
efficient protocol, although requiring more stable communica-
tion rounds than several previously known protocols, incurs
practically no cost in terms of actual running time, due to
its easier to satisfy weak timeliness requirements: it achieves
comparable (and sometimes superior) performance to that of
the best O(n2) (message complexity) protocol, provided that
adequate timeouts are set. Section VIII concludes the paper.

II. Related work
Model and Algorithm. In an earlier paper [19], we

introduced a round-based framework, GIRAF, for describing
timing models and indulgent protocols that exploit them. We

have studied the number of rounds required for consensus in
stable periods in several timing models. Nevertheless, [19]
studies neither how long it takes to reach stability in practical
network settings, nor the round durations in these models.
The current paper provides analysis and measurements of
the actual time it takes to reach consensus while assuming
the different models in a LAN and a WAN (PlanetLab).
Moreover, [19] focuses on time complexity, and ignores
message complexity, which is no less important. Our new
protocol has O(n) stable state message complexity, unlike
the algorithms in [19], which all have quadratic message
complexity.

The ♦WLM model satisfies the progress requirements of
the well-known Paxos protocol [21], and recent improve-
ments, such as [9]. But as noted in [11], although these
algorithms ensure constant time decision in Eventual Syn-
chrony (ES), they may take a linear number of communi-
cation rounds after stabilization to decide in weaker models
like ♦WLM . Most other previously suggested leader-based
protocols, e.g., [10], [18], require the leader to receive timely
messages from a majority in each round, including during
unstable periods, and hence do not work in ♦WLM .

Malkhi et al. [24] have presented a somewhat weaker
timing model intended for use with Paxos, where, as in
♦WLM , some process has bidirectional timely links with
a majority, but unlike ♦WLM , this process does not have
outgoing timely links to the rest of the processes. Although
their model allows Paxos to make progress so that some of the
processes decide, it does not allow all the processes to reach
consensus decision in a timely manner [19]. Here, we measure
time until global decision, i.e., until all processes decide,
and therefore strengthen the model accordingly. Probabilistic
analysis of the coverage of other models was performed in a
different context by Schmid [25].

Evaluation. The time to reach consensus after stabilization
in ES has been studied in [13]; here, we also measure the
time it takes to reach stabilization, and consider additional
models. Other papers evaluated related algorithms in practical
settings. Cristian and Fetzer [8] studied stable periods, but
only for a model similar to ES, over a LAN. The insight that
a leader-based algorithm can work better than ES appears
in previous measurements on WANs [3], [2] and simulations
[26]. However these studies treated different questions than
we do, e.g., did not measure the time required to get a
sufficiently long stable period that allows for consensus deci-
sion. Unlike most of the previous evaluations, our evaluation
includes mathematical analysis as well as measurements in
both LAN and WAN, thus identifying general trends that do
not depend on a specific setting.

III. Model and Problem Definitions
We consider an asynchronous distributed system consisting

of a set Π of n > 1 processes, p1, p2, . . . , pn, fully connected
by communication links. Processes and links are modeled
as deterministic state-machines, called I/O automata [23].

3Algorithm 1 Generic algorithm for process pi.
States:

ki ∈ N , initially 0 /*round number*/
senti[Π] ∈ Boolean array,

initially ∀pj ∈ Π : senti[j] = true
FDi ∈ OracleRange, initially arbitrary
Mi[N][Π] ∈Messages∪{⊥},

initially ∀k ∈ N∀pj ∈ Π : Mi[k][j] = ⊥
Di ∈ 2Π, initially ∅

Actions and Transitions:
input receive(〈m, k〉)i,j , k ∈ N

Effect: Mi[k][j]← m
output send (〈Mi[ki][i], ki〉)i,j

Precondition: j ∈ Di ∧ senti[j] = false
Effect: senti[j]← true

input end-of-roundi

Effect: FDi ← oraclei (ki)
if (ki = 0) then 〈Mi[1][i], Di〉 ← initialize (FDi)
else 〈Mi[ki + 1][i], Di〉 ← compute (ki, Mi, FDi)
ki ← ki + 1
∀pj ∈ Π : senti[j]← false

An automaton’s transitions are triggered by actions, which
are classified as input, output, and internal. Action π of
automaton A is enabled in state s if A has a transition of
the form (s, π, s′). The transitions triggered by input actions
are always enabled, whereas those triggered by output and
internal actions are preconditioned on the automaton’s current
state. Communication links do not create, duplicate, or alter
messages. Messages may be lost by links or take unbounded
latency. Timing models defined below restrict such losses and
late arrivals. Less than n/2 processes may fail by crashing.
A process that does not fail is correct.

Algorithms and models are defined using the GIRAF
framework [19], which we extend here to allow for arbi-
trary communication patterns. For space limitations, we only
overview GIRAF; for formal treatment see [19]. In GIRAF, all
algorithms are instantiations of Algorithm 1, a generic round-
based algorithm. Process pi is equipped with a failure detector
oracle, which can have an arbitrary output range [6], and is
queried using the oraclei function. To implement a specific
algorithm, one implements two functions: initialize(), and
compute(). Both are passed the oracle output, and compute()
also takes as parameters the set of messages received so far
and the round number.

Each process’s computation proceeds in rounds. The ad-
vancement of rounds is controlled by the environment via the
end-of-round input action. The end-of-roundi actions occur
separately in each process pi, and there are no restrictions
on the relative rate at which they occur at different pro-
cesses, i.e., rounds are not necessarily synchronized among
processes. However, specific environment properties defined
below do require some synchronization between processes,
e.g., that some messages are received at one process at the
same round in which they are sent by another. Therefore,
an implementation of an environment that guarantees such

properties needs to employ some sort of round or clock
synchronization mechanism (e.g., see Section VI).

When the end-of-round action first occurs, it queries the
oracle and calls initialize(), which returns the message for
sending in round 1 and a set, Di, of the destinations of
this message. Subsequently, in each round, a process sends a
message to processes in Di (although allowed, self messages
are not necessary since a message is always stored in the
incoming buffer of the sender) and receives messages avail-
able on incoming links, until the end-of-round action occurs,
at which point the oracle is queried and compute() is called,
which returns the message for the next round, and a new set
Di of target processes. Note that although in Algorithm 1 all
received messages are stored, in a real implementation many
of these messages can be garbage-collected, depending on the
needs of the specific application.

Environments are specified using round-based properties.
We consider only eventual properties. Namely, the system
may be asynchronous for an arbitrary period of time, but
eventually there is a round GSR (Global Stabilization Round),
starting from which no process fails and all properties hold
in each round. GSR is the first round that satisfies this
requirement.

We now define some round-based properties. The link from
ps to pd is timely in round k, if the following holds: if (i)
end-of-rounds occurs in round k, (ii) d ∈ Ds in round k,
and (iii) pd is correct, then pd receives the round k message
of ps in round k. A process p is a ♦j-sourcev if in every
round k ≥ GSR, there are j processes to which it has
timely outgoing links. Correctness is not required from the
recipients, and p’s link with itself counts towards the count
of j. The subscript “v” indicates that the set of j timely links is
allowed to change in each round (i.e., the failures are mobile).
Similarly, a correct process p is a ♦j-destinationv if in every
round k ≥ GSR, it has j timely incoming links from correct
processes. An Ω failure detector outputs a process so that
there is some correct pi s.t. for every round k ≥ GSR and
every correct pj , oraclej(k) = i.

We study the following four timing models:
ES (Eventual Synchrony) [14] in every round k ≥ GSR, all

links between correct processes are timely.
♦LM (Leader-Majority) [19]: Ω failure detector, the leader is a

♦n-source, and every correct process is a ♦(
⌊

n
2

⌋

+1)-
destinationv .

(New) ♦WLM (Weak-Leader-Majority) : Ω failure detector,
the leader is a ♦n-source and a ♦(

⌊

n
2

⌋

+ 1)-
destinationv .

♦AFM (All-From-Majority) [19] (simplified): every correct
process is a ♦(

⌊

n
2

⌋

+1)-destinationv , and a ♦(
⌊

n
2

⌋

+1)-
sourcev .

Consensus. A consensus problem is defined for a given
value domain, Values. We assume that Values is a totally
ordered set (our algorithm makes use of this order). Every
process pi has a read-only variable propi ∈ Values, initialized
to some value v ∈ Values, and a write-once variable deci ∈
Values∪{⊥} initialized to ⊥. We say that pi decides d ∈Values
in round k if pi writes d to deci when ki = k.

4
A consensus algorithm must ensure: (a) (validity) if a

process decides v then propi = v for some process pi,
(b) (agreement) no two correct processes decide differently,
and (c) (termination) every correct process eventually decides.
We say that algorithm A achieves global decision at round k

if every process that decides decides by round k and at least
one process decides at round k. It was shown in [16] that any
indulgent algorithm that solves consensus also solves uniform
consensus, a variant of consensus in which no two processes
(whether correct or faulty) are allowed to decide differently.
Therefore, for the rest of this paper, we implicitly refer to
uniform consensus whenever consensus is mentioned.

IV. Time and Message Efficient Algorithm
Algorithm 2 is a consensus algorithm for ♦WLM, which

has a linear stable state message complexity and reaches
global decision within 5 rounds of GSR.

As in many indulgent algorithms, including Paxos, pro-
cesses commit with increasing timestamps (called “ballots”
in [21]), and decide on a value committed by majority. In
Paxos, the leader always attempts to discover the highest
timestamp in the system before committing on a new one.
Although this occurs promptly in ES, in ♦WLM , even after
stabilization, the leader can continue to hear increasing times-
tamps for O(n) rounds. Each time it receives a timestamps
higher than the one it has, the decision attempt is aborted,
leading to a linear worst case decision time after GSR [11].
Our algorithm avoids such scenarios. Nevertheless, we still
need the leader to start a new decision attempt with a
fresh timestamp higher than those previously possessed by
processes. But unlike Paxos, our algorithm does not assume
that the leader knows all the timestamps of correct processes.
Instead, the new timestamp is chosen to be the round number,
which is monotonically increasing. This must be done with
care, so as to ensure that the leader does not miss timestamps
of real decisions.

Key idea to preserving consistency is to trust the leader,
even if it competes against a higher timestamp, provided
that it indicates that at least a majority believes it to be the
leader. The latter is conveyed using the majApproved message
field, which attests to the fact that the leader’s timestamps
reflect “fresh” information from a majority, and therefore any
timestamp it does not know of could not have led to decision.

A second challenge our algorithm addresses is avoiding
“wasted” rounds when the system stabilizes in the middle of a
decision attempt. This poses a problem, as we strive to reduce
the number of rounds needed for reaching a consensus, so that
the system is not required to have long periods of stability.
The solution we employ is to pipeline proposals. Namely, the
leader tries in each round to make progress towards a decision,
based on its current state and the messages it gets in the
current round, regardless of the unknown status of previous
attempts to make progress.

We now describe the algorithm in detail. Algorithm 2
works in the framework of Algorithm 1 described in

Section III, and therefore implements the initialize() and
compute() functions. These function are passed leaderi, the
leader trusted by pi’s Ω oracle in the current round. Process
pi maintains the following local variables: an estimate of the
decision value, esti; the timestamp of the estimated value,
tsi; the maximal timestamp received in the current round,
maxTSi; the maximal estimate received with timestamp
maxTSi in the current round, maxESTi (recall that Values
is a totally ordered set); the leader provided by the oracle at
the end of the previous round, prevLDi, and in the current
round, newLDi; a Boolean flag, majApprovedi , which is used
to indicate whether pi received a message in the current round
from a majority of processes that indicated pi as their leader;
and the message type, msgTypei, which is used as follows:
If pi sees a possibility of decision in the next few rounds,
then it sends a COMMIT message. Once pi decides, it sends
a DECIDE message in all subsequent rounds. Otherwise, the
message type is PREPARE.

We now describe the computation of round ki. If pi has
not decided, it updates its variables (lines 15-18), and then
executes the following conditional statements:

• If pi receives a DECIDE message then it decides on the
received estimate by writing that estimate to deci (rule
decide-1, line 20), and sets its message type (for the
round ki + 1 message) to DECIDE.

• If pi receives a COMMIT message from a majority,
including itself (rule decide-2), and receives a message
from itself with the majApproved = true (rule decide-
3), it decides on its own estimate and sets its message
type to DECIDE (line 23). Rule decide-3 ensures that
no other process commits or decides in the same round
with a different value, since the commit rule checks
majApproved of the leader, and two processes cannot
claim to be majApproved in the same round, since it is
not possible that different processes were trusted to be
leaders by a majority in the same round (round ki − 1).
Rule decide-2 ensures that a majority of processes have
the latest information about the decided value. Since
commits in further rounds require the leader to hear from
a majority (the majApproved indicator required by rule
commit), the leader must hear from at least one process
that has this information, and this will ensure that it does
not promote a value that contradicts agreement.

• Let prevLDi be the leader indicated in pi’s round ki

message. If pi receives a round ki message from prevLDi

with the majApproved indicator as true, then pi sets its
message type (for the round ki+1 message) to COMMIT,
adopts the estimate received from prevLDi, say est′, and
sets its timestamp to the current round number ki (line
25). We say that pi commits in round ki with estimate
est′. The majApproved indicator ensures that commits
of the same round are on the same value, since any such
commit is on an estimate received from a leader that was
trusted by a majority in the previous round (ki-1), and
majorities intersect.

5Algorithm 2 leader–based algorithm, code for process pi.
1: Additional state
2: esti ∈ Values, initially propi; tsi, maxTSi ∈ N , initially 0; majApprovedi ∈ Boolean, initially false
3: prevLDi, newLDi ∈ Π; msgTypei ∈ {PREPARE, COMMIT, DECIDE}, initially PREPARE

4: Message format
5: 〈msgType ∈ {PREPARE, COMMIT, DECIDE}, est ∈ Values, ts ∈ N , leader ∈ Π, majApprovedi ∈ Boolean〉

6: procedure Destinations(leaderi)
7: if (leaderi = pi) then return Π.
8: else return {leaderi}

9: procedure initialize(leaderi)
10: prevLDi ← newLDi ← leaderi

11: return 〈〈msgTypei , esti, tsi, newLDi, majApprovedi〉, Destinations(leaderi)〉

12: procedure compute(ki , M[*][*], leaderi)
13: if deci = ⊥ then
14: /*Update variables*/
15: prevLDi ← newLDi; newLDi ← leaderi

16: maxTSi ← max{ m.ts | m ∈M [ki][∗] }
17: maxESTi ← max{ m.est | m ∈M [ki][∗] ∧m.ts = maxTSi }
18: majApprovedi ← (|{ j | M [ki][j].leader = pi }| > bn/2c)
19: /*Round Actions*/
20: if ∃m ∈M [ki][∗] s.t. m.msgType = DECIDE then /*decide-1*/
21: deci ← esti ← m.est; msgTypei ← DECIDE
22: else if ((|{ j | M [ki][j].msgType = COMMIT }| > bn/2c) ∧M [ki][i].msgType = COMMIT) /*decide-2*/

and (M [ki][i].majApproved) then /*decide-3*/
23: deci ← esti; msgTypei ← DECIDE;
24: else if (M [ki][prevLDi].majApproved) then /*commit*/
25: esti ←M [ki][prevLDi].est; tsi ← ki; msgTypei ← COMMIT;
26: else tsi ← maxTSi; esti ← maxESTi; msgTypei ← PREPARE
27: return 〈〈msgTypei, esti, tsi, newLDi , majApprovedi〉, Destinations(leaderi)〉

• Otherwise, pi prepares (sets his message type to PRE-
PARE) and adopts the estimate maxESTi and timestamp
maxTSi (line 26).

Finally, pi returns the message for the next round and
a subset of processes to which this message is intended.
This group is calculated using procedure Destinations() as
follows: if pi believes that it is the leader of the current
round, then Destinations() returns the set of all processes,
and otherwise, the procedure returns the trusted leader. Thus,
starting from the first round in which all processes indicate
the same leader in their messages (at most one round after
GSR), every process sends a message to this leader, and the
leader sends a message to every other process. The stable state
message complexity is therefore linear in n.

We prove the correctness of Algorithm 2 in Appendix I,
and show that it reaches global decision by round GSR+4, i.e.,
in 5 rounds starting at GSR. If the eventual requirements of
the Ω leader are satisfied starting from round GSR−1 (instead
of starting from round GSR as the model requires), then all
correct processes decide by round GSR+3, i.e., in 4 rounds
(if GSR= 1 this means that querying the oracle before the
first communication round returns the correct Ω leader at
all processes). We make this distinction in order to analyze
the performance of the algorithm in the common case, when
leader re-election is rare.

V. Probabilistic Comparison
We study four models and the fastest known algorithm in

each model – 3 rounds for ES ([12]), 3 for ♦LM ([19]), 4

with stable leader for ♦WLM (Section IV), and 5 for ♦AFM

([19]).
In this section we model link failure probabilities as In-

dependent and Identically Distributed (IID) Bernoulli random
variables. By “link failure” we mean that the link fails to
deliver a message in the same round in which it is sent.
We assume that processes proceed in synchronized rounds,
although this is not required for correctness, and focus on
runs with no process failures, which are common in practice.
Additionally, we do not take the cost of leader election into
account, since we assume a stable leader, i.e., a leader that is
seldom re-elected (e.g., [24], [1]). Such a leader can persist
throughout numerous instances of consensus.

We denote the probability that a message arrives on time
by p. For simplicity, we do not treat a process’ link with
itself differently than other links. Our metric in this section
is number of rounds until global decision. The length of each
round is the time needed to satisfy p, and it is the same for all
algorithms we deal with, while the number of rounds depends
on the algorithm. In Section VII-B we investigate the effect of
changing the explicit time length of each round on the overall
decision time in each model.

A. Mathematical Analysis

All communication in some single round k can be repre-
sented as an n by n matrix A, where the rows are the des-
tination process indices, the columns are the source process
indices, and each entry Ai,j is 0 if a message sent by pj to pi

does not arrive in round k, and 1 if it does reach pi in round

6
k. p is the probability of any entry Ai,j to be 1. Note that
our protocol for ♦WLM may not send messages on some
links. If a message is not sent, we denote the corresponding
entry in A by ⊥. We define random variables for decision
time in different models subscripted by the model name, e.g.,
DES is the total number of rounds until decision (including
the time until stabilization) in ES. We denote by PM (e.g.,
PAFM) the coverage of model M , i.e., the probability that a
communication round satisfies the requirements of M . Below
we assume a fixed n, and show the asymptotic analysis in
Appendix III.

Analysis of ES. Recall that ES requires all entries in the
matrix A to be 1. The probability for this is:

PES = pn2

(1)

An optimal ES consensus algorithm reaches a global decision
in 3 rounds from stabilization, thus we need the assumptions
of ES to be satisfied for 3 consecutive rounds starting at some
round k ≥ 1. The probability of this to happen at any given
round k is (PES)3. Thus:

E(DES) =
1

(PES)3
+ 2 (2)

Analysis of ♦LM. Let pk be the stable leader. For ♦LM ,
it is required that A has a majority of ones in every row.
Additionally, ♦LM requires that ∀1 ≤ j ≤ n Aj,k = 1.
Denote the event that there is a majority of ones in row Aj by
M and the event that Aj,k = 1 by L. We have n independent
rows, and thus:

P♦LM = (Pr(L ∩M))n = (Pr(L) · Pr(M |L))n (3)

Note that Pr(L) = p. Given that Aj,k = 1, the probability
that more than n

2 − 1 of the remaining n − 1 entries of row
j are 1 is:

Pr(M |L) =

n−1
∑

i=bn

2
c

(

n− 1

i

)

pi(1 − p)n−1−i (4)

Global decision is achieved in 3 rounds from stabilization in
♦LM , meaning that this condition on A has to be satisfied
for 3 rounds, and thus:

E(D♦LM) =
1

(P♦LM)3
+ 2 (5)

Analysis of ♦WLM. Let pk be the stable leader. ♦WLM

requires that A has a majority of ones in row Ak. We denote
this event by M . Additionally, it requires that ∀1 ≤ j ≤

n Aj,k = 1. We denote this event by L′.

P♦WLM = Pr(L′ ∩M) = Pr(L′) · Pr(M |L′) (6)

Note that Pr(L′) = pn, and Pr(M |L′) = Pr(M |L) (defined
in Equation 4) since row Ak is independent of other rows.
These conditions only examine the row and column corre-
sponding to the leader, pk . Since pk is stable, all processes
agree on its identity, and thus, the leader sends messages to
all other processes, while every other process sends a message

to the leader. Hence, the entries of A are not ⊥.
We first analyze the algorithm of Section IV, which takes 4

rounds starting from GSR, under the stable leader assumption.
We get:

E(D♦WLM) =
1

(P♦WLM)4
+ 3 (7)

For comparison, we also examine an alternative solution:
running the optimal algorithm for ♦LM over a simulation of
♦LM in ♦WLM (shown in Appendix II). We show that this
simulation reaches global decision in 7 rounds. Therefore:

E(DSimulated ♦WLM) =
1

(P♦WLM)7
+ 6 (8)

Analysis of ♦AFM. This model requires A to have a
majority of ones in each row and column. Consider a given
row k of A. We first analyze the probability that the row
includes a majority of ones. To this end, let Xj be the
random variable representing the cell Ak,j . According to our
assumption, X1, X2, ..., Xn are independent and identically
distributed Bernoulli random variables with probability of
success p. Let X =

∑n
i=1 Xi. The probability that any given

row in A has a majority of 1’s is:

Pr(X >
n

2
) =

n
∑

i=bn

2
c+1

(

n

i

)

pi(1− p)n−i

For n (independent) rows we need to raise this expression to
the power of n. Now assume that every row has a majority
of 1 entries. The probability of an entry to be 1 is still at
least p. We therefore can make an identical calculation for
the columns, raising the expression again to the power of 2.

P♦AFM ≥ (Pr(X >
n

2
))2n (9)

Since the algorithm for ♦AFM achieves global decision in
5 rounds from GSR, this needs to hold for 5 consecutive
rounds, and therefore we additionally raise the expression to
the power of 5. We get:

E(D♦AFM) =
1

(P♦AFM)5
+ 4 (10)

B. Numerical results

We plot the upper bounds on expected decision times given
in Equations 2, 5, 7, 8 and 10 for specific values of p. We
focus on the case that n = 8, similarly to the group sizes used
in other performance studies of consensus-based systems [8],
[2], [9], which used 4-9 nodes.

In Figure 1(a) we see that even with a very high probability
of timely message delivery, performance in ES deteriorates
drastically as p decreases, while ♦AFM , ♦LM and the direct
algorithm for ♦WLM maintain excellent performance. The
direct algorithm for ♦WLM does not incur practically any
penalty for its improvement of message complexity from
quadratic in n to linear. We can also see that ♦LM and our
algorithm for ♦WLM outperform ♦AFM in this high range
of p. Finally, the simulated algorithm for ♦WLM (♦LM

algorithm running over the simulation from Appendix II) is

7

0.98 0.985 0.99 0.995 1
0

10

20

30

40

50

p

N
um

be
r o

f r
ou

nd
s

(a) Expected number of rounds until global decision − IID

ES
<>AFM
<>LM
Simulated <>WLM
Direct <>WLM

0.9 0.92 0.94 0.96 0.98 1
0

10

20

30

40

50

60

70

p

N
um

be
r o

f r
ou

nd
s

(b) Expected number of rounds until global decision − IID

<>AFM
<>LM
Simulated <>WLM
Direct <>WLM

0 0.5 1 1.5 2 2.5 3 3.5
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Timeout (ms.)

fra
ct

io
n

of
 s

at
is

fy
in

g
ro

un
ds

(c) Measurements on LAN vs. IID predictions

ES (LAN)
<>AFM (LAN)
<>LM (LAN)
<>WLM (LAN)
ES (IID)
<>AFM (IID)
<>LM (IID)
<>WLM (IID)

90 120 150 180 210 240 270 300 330 350
0.61

0.64

0.67

0.7

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1

Timeout (ms.)

p

(d) Fraction of timely messages measured in WAN

100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Timeout (ms.)

fra
ct

io
n

of
 s

at
is

fy
in

g
ro

un
ds

(e) Average incidence of rounds satisfying the model
WAN measurements with 95% confidence intervals

ES
<>AFM
<>LM
<>WLM

50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

0.12

Timeout (ms.)

V
ar

ia
nc

e
(m

s.
2)

(f) Variance of satisfying rounds incidence (WAN)

ES
<>AFM
<>LM
<>WLM

100 150 200 250 300 350
0

50

100

150

200

250

timeout (millisec.)

N
um

be
r o

f r
ou

nd
s

(g) Average number of rounds until global decision
WAN measurements with 95% confidence intervals

ES
<>AFM
<>LM
<>WLM

100 150 200 250 300 350
0

5

10

15

20

25

30

Timeout (ms.)

Ti
m

e
(s

ec
.)

 (h) Average time until global decision
WAN measurements with 95% confidence intervals

ES
<>AFM
<>LM
<>WLM

150 200 250 300
0

0.5

1

1.5

Timeout (ms.)

Ti
m

e
(s

ec
.)

(i) Minimal average time until global decision (WAN)

<>LM
<>WLM

0.73

0.65

Fig. 1. Comparison between ES, ♦AFM , ♦LM and ♦WLM .

worse than the direct one, as it is much harder to maintain the
needed timeliness conditions for 7 rounds than for 4 rounds.

Figure 1(b) examines smaller success probabilities, start-
ing from from 0.9. Here ES is not shown, since it steeply
deteriorates as we decrease p (e.g., ES requires 349 rounds for
p = 0.97). The intuition of why ES performs so poorly, is that
it is practically impossible to get 3 matrices not containing a
single zero entry, if the probability for a zero is non-negligible.
Our direct algorithm for ♦WLM greatly outperforms the
simulated algorithm (e.g., for p = 0.92 our algorithm requires
18 rounds, while the simulation-based requires 114 rounds).
♦AFM is better than ♦LM and ♦WLM when p is low,
but from p = 0.96, ♦LM becomes better, and starting from
p = 0.97, the direct algorithm for ♦WLM becomes better.
Thus, ♦AFM is better for lower p values, e.g., for p = 0.85

♦AFM is expected to take 10 rounds and ♦LM - 69 rounds.
Comparing the algorithms for ♦LM and ♦WLM , we see
that even though ♦WLM requires fewer timely links, ♦LM

is slightly better, since the dominant factor in the performance
of both is the requirement that the leader is a ♦n-source, and
satisfying it for 4 rounds instead of 3 is harder.

VI. Implementing Round Synchronization
In GIRAF (Algorithm 1), there are no restrictions on the

relative rate at which rounds occur at different processes, i.e.,
rounds are not necessarily synchronized among processes.
However, certain model-specific environment properties do
require some synchronization of rounds, e.g., in ♦WLM ,
starting from some round onward, the leader is required to
receive a message from some majority of processes (that
might be different in each round) during the same round
in which they are sent. Therefore, an implementation of an
environment that guarantees such properties needs to employ
some sort of round or clock synchronization mechanism.
One way to do so is using synchronized clocks (e.g., GPS
clocks or a clock synchronization protocol like NTP) when
present. This is often sufficient in a LAN, where machines

8
usually have synchronized clocks. In WANs, it is preferable to
implement solutions that do not require synchronized clocks.

One way to achieve this is to explicitly wait for sufficiently
many messages in each round before moving to the next
round. For example, the leader in an algorithm that assumes
♦WLM might wait until it receives messages from a majority
of processes in a round before proceeding to the next round.
However, this approach has several drawbacks. First, the
algorithm has no knowledge of when the stabilization occurs,
thus the round-termination conditions (e.g., sufficiently many
messages) must be applied from the outset, even before
stabilization. A temporary partition can then cause a process
to fall behind, and others to be an arbitrary number of rounds
ahead of it. When stabilization eventually occurs, it may
take this process unbounded time to catch up. This can be
solved by making the late processes “skip” rounds, as done
for example in [11]. Second, it is impossible to specify round-
termination conditions corresponding to properties such as j-
source, which require j processes to receive some outgoing
message. Thus, such an implementation cannot support the
full range of GIRAF predicates.

We next propose a timeout-based implementation, which
does not suffer from the above drawbacks. Our solution is
simple to implement, and, as we see in the next section,
also achieves excellent synchronization. An important part of
our implementation is a “network learning” process, which
measures the average latency between every pair of nodes
in the system using pings. At each node ni, this process
maintains an array Li, such that Li[j] is the average latency
between node ni and node nj as measured at ni. This
information is used for two purposes: to set the parameters
and fine-tune the round synchronization mechanism, as we
describe below, and to elect one well-connected process as
the leader, as discussed in Section VII-A. The system can
be made adaptive and self healing by periodically running
this process, re-calculating the arrays Li and re-electing the
leader, however this was not required in our setting as our
experiments were short and it sufficed to run the network-
learning process only once.

The round synchronization process on a node ni gets the
timeout as a parameter and runs two threads. In each local
round ki, the task of the first thread is to receive and record
messages, inserting them into a message buffer according to
the round to which the message belongs (this information
is included in the message). Upon receipt of a message
belonging to a future round kj > ki from a node nj , this
thread records the message and notifies the second thread.

The second thread starts each round ki by sending mes-
sages to its peers, and then waits for the remainder of the
round as specified by the timeout parameter. At the end of
each round it calls compute(). In case of a notification from
the first thread about a receipt of round-kj message from
node nj , this thread stops waiting, i.e., the round is ended
immediately, and compute() is called. It then starts round kj ,
and the duration of this round is set to timeout −Li[j].

This algorithm allows a slow node to join its peers already
in round kj , utilizing round-kj message it received, and
takes into account the expected latency of this message to
approximate the remaining time for round kj in order to start
round kj + 1 together with the peers. We found that this
algorithm achieves very fast synchronization, and whenever
the synchronization is lost, it is immediately regained.

VII. Measurements
In this section we compare ES, ♦AFM , ♦LM and

♦WLM using experiments in two different practical settings
- a LAN and a WAN (using PlanetLab). Additionally, we
investigate whether the predictions made assuming the IID
model in Section V were accurate. Like our analysis, the
experiments involve 8 nodes.

A. LAN

Our experiment includes 8 nodes running simultaneously
on a 100Mbit/sec LAN. Each process sent 100 UDP messages
to all others. In a LAN, machines often have synchronized
clocks, and there is no need for a synchronization algorithm.
We therefore do not focus on round synchronization over
LAN, and only measure message latencies and their impact
on satisfying the conditions for consensus in different models.

The purpose of this experiment is to compare PM , i.e.,
the coverage of model M (the probability of a communication
round to satisfy model M) according to IID-based predictions
to its coverage according to measurements in a LAN, for
various timeouts. A message is considered to arrive in a
communication round if its latency is less than the timeout.
The IID-predicted values are calculated by taking the fraction
of all messages that arrived in all communication rounds of
the experiment as an estimate for p (the probability of a
message to arrive on time in the IID analysis) and then using
Equations 1, 3, 6 and 9 from Section V-A. We found that the
measured p values were high already for very short timeouts.
For example, whereas for a timeout of 0.1ms we measured
p = 0.7, for a timeout of 0.2ms it was already p = 0.976.

Figure 1(c) shows measured and predicted PES , P♦AFM ,
P♦LM and P♦WLM . We see that even in a LAN, the
ES model has low coverage, which matches the IID-based
predictions. Although still worse than the other models, ES

is better in practice than what was predicted. The reason is
that the messages that are late in a run tend to concentrate,
rather than to spread among all rounds of the run uniformly
as in IID. Thus, in practice, there are fewer rounds that suffer
from message loss, and PES is higher.

On the other hand, ♦AFM is worse in reality than was
predicted, since it is sensitive to a poor performance of any
single node. While in IID all nodes are the same, in our
experiment, one node was occasionally slow. ♦AFM requires
this node, like any other, to receive a message from a majority
of processes, and its message had to reach a majority of
processes (these two requirements can be satisfied by the
same set of links). Since this node is slow, there is a higher

9
chance of messages to be late on its links than on other links
(unlike in IID), making it harder to satisfy ♦AFM . As ♦LM

requires each process to receive a message from a majority, it
suffers from the same problem as ♦AFM . ♦LM additionally
requires that the messages of the leader reach all processes,
which explains why there are more rounds satisfying ♦AFM

than ♦LM .
According to IID-based prediction, at a high rate of

message arrival (p values), P♦LM and P♦WLM are almost
identical as can be seen from Figure 1(c), and both are
worse than ♦AFM . In practice, for leader-based algorithms,
choosing a good leader helps. As implementing a leader
election algorithm is beyond the scope of this paper, we
designated one process to act as a leader in all runs. We
chose this process as follows: before running our experiments,
we measured the round-trip times of all links using pings,
and then chose a well-connected node to be the leader.
Given this leader, both ♦WLM and ♦LM behaved much
better than IID analysis predicted, and we see that ♦WLM

performs much better than all other models. When we run
♦LM and ♦WLM with a less optimal leader, whose links
have average timeliness, we saw that much bigger timeouts
are needed for reasonable performance, and in particular,
bigger timeouts than for ♦AFM . For example, while ♦AFM

reaches P♦AFM = 0.97 at a timeout of 0.9ms, with an
average leader ♦WLM and ♦LM reach the same incidence
only at a timeout of 1.6ms. With a good leader ♦WLM

reaches this point at 0.35ms and ♦LM at 0.8ms.
Note that we did not experiment under high load condi-

tions, as our focus is not on high throughput applications.
Under a high load, different protocols may prove advanta-
geous.

B. WAN

We implemented round synchronization (Section VI) and
deployed it in PlanetLab, using 8 nodes located in Switzer-
land, Japan, California USA, Georgia USA, China, Poland,
United Kingdom, and Sweden. The participating processes
on these nodes are started up non-synchronously, and then
synchronized and continue running for an overall of 300
communication rounds per experiment. We consider only
rounds that occur after the system stabilizes for the first
time (with respect to the model) to eliminate startup effects.
The experiment was repeated with different timeouts, 33
times (runs) for each timeout. The PlanetLab node located
in United Kingdom was chosen to serve as the leader for
the leader-based protocols, since it was found to be well
connected using the same method as was done for our LAN
experiment (Section VII-A). We measure the time and number
of rounds until the appropriate conditions for global decision
are satisfied for each model, starting at 15 random points of
each run, and the average of these represent the run. We also
measure the fraction of rounds in each run that satisfy the
timeliness requirements of the different models.

Figure 1(d) shows how timeouts translate to fraction of
delivered messages (p in Section V) as measured in our

experiment. We have chosen to work with timeouts which
assure that up to 99% messages are delivered on time, since
it is known that in WANs, the maximal latency can be orders
of magnitude longer than the usual latency [5], [3], and thus
assuring 100% is unrealistic.

Figure 1(e) shows the measured coverage PES , P♦AFM ,
P♦LM and P♦WLM , averaged over the repetitions of the
experiment for each timeout, as well as the 95% confidence
interval for the average. Figure 1(f) shows the varience of the
values used to calculate the average points in Figure 1(e). We
see that ♦WLM has much better coverage than the other
models. This is because ♦WLM only requires timeliness
from the incoming and outgoing links of the leader. We also
observe that ♦LM and ♦WLM have much better coverage
than ♦AFM and ES. For example, for a timeout of 160ms

we get PES = 0, P♦AFM = 0.4 while P♦LM = 0.79 and
P♦WLM = 0.94.

We see that ES rounds are really rare, especially with
short timeouts (for example when the timeout is less than
200ms, PES = 0), which matches the IID-based prediction
of Section V (on average, a timeout of 200ms corresponds to
p = 0.95 used in IID analysis, i.e., 95% of messages arrive
on time). We observe that while the confidence intervals of
P♦AFM , P♦LM , and P♦WLM are small and diminish as we
increase the timeout, the confidence intervals for ES grow.
Given a fixed number of measurements, the interval length
follows from the variance. ES has high variance even for
large timeouts, due to message loss. While in some runs, over
80% of rounds satisfy ES with a timeout of 350ms, in others
only 30% do. For short timeouts the variance of ES is low
and its confidence intervals are short since the incidence of
ES rounds is consistently low.

Figure 1(f) shows that for longer timeouts, the high in-
cidence of ♦AFM , ♦LM and ♦WLM rounds varies only
slightly (unlike ES). However, for short timeouts ♦LM

has high variance. This is caused by its sensitivity to bad
performance by any single node, as was also observed in
LAN. Specifically, for a timeout of 160ms, while in some
runs 95% of all rounds satisfy the conditions of ♦LM , in
other runs little more than 15% do. This happened because in
some runs with this timeout, PlanetLab node located in Poland
was slow to receive messages, although most of the messages
it sent arrived on time. While in IID all links are the same, we
saw that in reality this is not true. This affects ♦LM which
requires every node to receive a message from a majority.
On the other hand, P♦AFM is consistently low (around 0.4,
rarely above 0.5) for this timeout, hence the low variance. For
larger timeouts, usually all nodes manage to receive a message
from a majority, and we see that the incidence of ♦AFM and
♦LM is high, while the confidence intervals become shorter
and the variance goes to 0.

Figure 1(g) and Figure 1(h) show the average (over all
runs) number of rounds and time (resp.) that were needed
to reach global decision in each model. We observe that for
low timeouts the algorithm of Section IV achieves consensus

10
much faster than the algorithms assuming any of the other
models ([12], [19]). For timeouts starting with approximately
180ms and higher, its performance is comparable to ♦LM ,
whereas ♦AFM takes more rounds and time than both for
timeouts less than 230ms. As before, the choice of the leader
gave ♦LM and ♦WLM an advantage over ♦AFM and
thus the difference from IID-based prediction in Figure 1(b)
(according to Figure 1(d), a timeout of 160ms corresponds,
on average, to p = 0.88). We note that the advantage of the
leader-based protocols stems from our assumption of leader-
stability. If the leader is highly unstable, the time it takes
these protocols to decide can be expected to be much higher
(depending on the specific leader election protocol, which is
beyond the scope of this paper), and hence ♦AFM would be
preferred.

In general, we see that a longer timeout (a higher p in
the IID analysis), reduces the number of rounds for decision.
On the other hand, it is obvious that a higher p, or a longer
timeout, make each individual round longer. We wish to
explore this tradeoff and determine the optimal timeout. Of
course, the specific optimum would be different for a different
system setting, but the principle remains. Figure 1(i) zooms-
in on the appropriate part of Figure 1(h), and demonstrates
this tradeoff for ♦LM and ♦WLM . For timeouts less than
170ms (on average, this corresponds to p = 0.90 for IID),
while ♦WLM ’s required number of rounds is increasing (as
the timeout decreases), the length of each round is decreasing.
For timeouts more than 170ms (as the timeout increases)
the number of required rounds decreases, but the cost of
each round increases. For example, if we set our timeout to
180ms, although the number of rounds will be very small (4.5
rounds on average according to Figure 1(g)), the actual time
until decision will be 800ms, which is about the same as the
average time we would get if we shorten the timeout to 160ms

although the required number of rounds would be higher. This
shows that setting conservative timeouts (improving p) will
not necessarily improve performance. As we see from this
graph, it might actually make it worse.

From Figure 1(i), we conclude that in our setting, choosing
the timeout to be 170ms is optimal for the ♦WLM algorithm
and the timeout 210ms is optimal for ♦LM . These timeouts
correspond to p = 0.90 and p = 0.96, e.g., setting the timeout
to 170ms causes 90% of messages on average to arrive on
time in our setting. Note that we present a methodology rather
than a specific timeout: a system administrator can perform
measurements and choose the timeout for a specific system,
according to such criteria.

Finally, when compared with their optimal timeouts, we
see that ♦WLM is expected to take 730ms, which is only
80ms more than what ♦LM is expected to take at its best
setting. We conclude that it is clearly well worth using
♦WLM , while gaining the reduction of stable state message
complexity from quadratic to linear.

VIII. Conclusions

We presented a timing model that requires timeliness on
O(n) links in stable periods and allows unbounded periods
of asynchrony. We introduced a consensus algorithm for
this model, which has linear per-round stable state message
complexity, and achieves global decision in a constant small
number of rounds from stabilization. Since all previously
known algorithms that can operate in this model require linear
number of rounds, we compared our algorithm to algorithms
that require stronger models, all of which also have quadratic
message complexity.

Even though our algorithm might take more rounds to
decide compared to the others, we have shown that its easier
to satisfy weak stability requirements allow it to achieve
comparable or even superior global consensus decision time
(with very low variance), despite the fact that it sends much
fewer messages in each round. Thus, optimizing for message
complexity and requiring fewer timely links might actually
improve decision time. Our analysis includes measurements
in a LAN and a WAN, as well as mathematical analysis, and
thus is valid in a broad variety of systems.

APPENDIX I
CORRECTNESS OF ALGORITHM 2

Lemma 1. A process’s timestamp at the start of round k is
less than k.

Proof: We prove the claim by induction on the round
number k′. Base case: k′ = 1. The claim is correct since a
process’s timestamp is initialized to 0. The induction hypoth-
esis is that the claim holds up to round k′. Let us inspect
the possible actions of processes at the end of round k′. A
process can decide and in this case its timestamp does not
change and in round k′ + 1 it will remain less or equal to
k′ − 1, by the induction hypothesis. Alternatively, a process
may commit, and then (on line 28) it will adopt k′ as its
new timestamp for round k′ + 1, and the claim holds here as
well. Finally, a process may adopt the timestamp of a round
k′ message it received in round k′ (line 29) and again, by
induction hypothesis, the claim is true.

Lemma 2. A process’s timestamp is non-decreasing.

Proof: Observe that when a process decides, its times-
tamp does not change. It does not change in the following
rounds as well. If a process pi does not decide in round k,
then it can change its timestamp by adopting either k (when
committing on line 28) or the maximum timestamp (of a
round k message) received in round k as its new timestamp
(line 29). Since pi receives its own message in round k,
the latter is not lower than its current timestamp. In case
it commits, since according to Lemma 1, its old timestamp
cannot exceed k − 1, by adopting k it can only increase.

Lemma 3. If in round k, a process pi commits on estimate
esti, then no process commits in round k with a different

11
estimate, or decides in round k with a different estimate using
rules decide-2,3.

Proof: Observe a process pi that commits in round k.
Then pi evaluates rule commit to true and commits or decides
on the estimate that it receives from its leader, prevLDi (line
28). By rule commit, M [k][prevLDi].majApproved = true,
meaning that there is a majority of processes that send a round
k − 1 message with prevLDi as their leader. Let us denote
this majority by M1.

Suppose that a process pj commits in round k with
estimate estj . By the same reason as above, there is a majority
of processes that send a round k− 1 message with prevLDj

as their leader. Let us denote this majority by M2. Since M1

and M2 intersect, as two majorities, prevLDi = prevLDj .
Since pj commits on the estimate estj sent by prevLDj , we
get that estj = esti.

If a process pj decides using rules decide-2,3 in
round k with estimate estj , then by rule decide-3,
M [k][j].majApproved = true, meaning that pj was believed
to be the leader in the previous round k − 1 by a majority
of processes. Let us denote this majority by M2. Since M1

and M2 intersect, as two majorities, prevLDi = j. Since pj

decides on its own estimate estj , we get that estj = esti.

Lemma 4. If some process sends a PREPARE or COM-
MIT message with timestamp ts > 0 and estimate x then
some process commits in round ts with estimate x.

Proof: We prove the claim by induction on the round
number k′, starting from a round k0 in which a message with
the timestamp ts was first sent with some estimate x′, by
some process pj .

Base Case. k‘ = k0. From the definition of k0, pj could not
receive a message with ts from another process in an earlier
round. Thus, pj commits with timestamp ts and estimate x′

in round k0 − 1, and from the algorithm, k0 − 1 = ts.

Induction Hypothesis. If any process sends a PREPARE or
COMMIT message in round k1, such that k0 ≤ k1 ≤ k′,
with timestamp ts and some estimate x′′, then some process
commits in round ts with estimate x′′.

Induction Step. We need to show that if, in round k′+1, a pro-
cess sends a PREPARE or COMMIT message with timestamp
ts and some estimate x′′ then some process commits in round
ts with estimate x′′. Observe, that if a COMMIT message is
sent, it would have a timestamp equal to the previous round
number k′, and since ts = k0 − 1 < k′ (by the base case),
this case is not possible. Observe that if a PREPARE message
is sent in round k′+1 with timestamp ts and estimate x′′, the
sending process must have adopted the timestamp together
with the estimate from some PREPARE or COMMIT message
sent in round k′. By the induction hypothesis, we get that
some process commits in round ts and estimate x′′.
Please note that the claim in Lemma 4 does not hold for

DECIDE messages, since a process decides adopting only
the estimate and not the associated timestamp from another
DECIDE message.

Lemma 5 (Uniform Agreement). No two processes decide
differently.

Proof: Let k be the lowest numbered round in which
some process decides. Suppose pi decides x in round k.
Since no process decides in an earlier round, pi decides
by rules decide-2,3. Therefore, pi receives a majority of
COMMIT messages in round k, including from itself, and it
decides on x - the estimate of one of the COMMIT messages
(the one from itself). From Lemma 3, all COMMIT messages
include the same estimate - x. Hence, a majority of processes
commits in round k − 1 with estimate x. Let us denote this
majority of processes by Sx. Note that k − 1 ≥ 1 since
according to the pseudo-code, the first round of the algorithm
is round number 1. We claim that if any process commits or
decides in round k′ ≥ k − 1 then it commits or decides x.
The proof is by induction on round number k′.
Base Case. k′ = k−1. As processes in Sx commit x in round
k − 1, from Lemma 3, no process commits with an estimate
different from x in round k−1. By definition of k, no process
decides in round k − 1.
Induction Hypothesis. If any process commits or decides in
any round k1 such that k−1 ≤ k1 ≤ k′, then it commits with
estimate x or decides x.
Induction Step. If some process p decides in round k′ + 1,
then in that round either some other process sends a DE-
CIDE message with decision value y (rule decide-1) or p

sends a COMMIT message with estimate y (rule decide-2). In
both cases, by the induction hypothesis, y = x.

Suppose by contradiction that some process pj commits
in round k′ + 1 with estimate z 6= x. First, since pi decides
by rules decide-2,3 in round k, by Lemma 3 we have that
k′+1 6= k. By induction hypothesis k′ ≥ k−1 and we now get
that k′ > k−1. Since k′ > k−1 ≥ 1 we also get that k′ > 1.
Since pj commits, it hasn’t received any DECIDE message
in round k′ + 1. Since rule commit evaluated to true for pj ,
a message m = 〈type (6= DECIDE), z, tsz , ∗, true〉 was
received by pj in round k′ +1 from the leader ld. Notice that
tsz might be different than maxTSi of round k′ + 1.

Observe the majApproved = true field of the message
m. This indicates that the leader received a message from a
majority of processes in round k′, and therefore it must have
heard from at least one process pa ∈ Sx. Recall that every
process in Sx commits in round k − 1 with estimate x. Thus
pa has timestamp k − 1 at the end of round k − 1. From
Lemma 2, since k′ > k − 1, pa’s timestamp is at least k − 1.

If type =COMMIT, this means that tsz = k′ (line 28).
As was explained, k′ > 1, and by Lemma 4 we get that
some process commits in round k′ with estimate z 6= x.
This is a contradiction to the induction hypothesis. If type =

PREPARE, it means that tsz is the maximum timestamp the
leader received in any message of round k′ (line 29). Because

12
it received a message from pa and because, according to
Lemma 1, the highest timestamp that can be received in round
k′ + 1 is k′, we get that k − 1 ≤ tsz ≤ k′, and since (by
Lemma 4) there must be a process that commits in round
tsz with estimate z 6= x (recall that k − 1 > 0), this is a
contradiction to the induction hypothesis.
Auxiliary Notation: we define kleader ≥ GSR to be the first
round starting from which all correct processes indicate in
their messages the same correct process as their leader.

Lemma 6. Starting from round kleader , (a) the correct Ω

leader receives a message from a majority of processes. (b)
every correct process receives the message of the correct Ω

leader.

Proof: By the definition of ♦WLM , starting at round
GSR the leader receives a message from a majority of
processes, and every correct process receives a message from
the leader. This is provided that these messages are actually
sent by the processes (this follows from the definition of
timely link). Since kleader ≥ GSR, it is left to prove that
processes will send these messages.

In each round of Algorithm 2, every process sends a
message to its leader, and the leader sends a message to all
processes. It follows from the definition of kleader , that in
the computation of round kleader − 1, every correct process
gets the identity of the same correct leader from its oracle.
Therefore, every correct process sends a message to this
unique leader at round kleader . By the guarantees of ♦WLM ,
the leader receives a message from majority. This proves (a).

(b) is correct, since the leader also trust itself starting
from the computation of round kleader−1, and will therefore
send a message to every process in round kleader . By the
the guarantees of ♦WLM this message of the leader will be
delivered to every correct process.

Lemma 7. In every round k ≥ kleader + 1, the Ω leader
sends majApproved = true in its round k message, and
every correct process p that does not decide before round k,
either commits or decides in round k.

Proof: In our model, every correct process executes an
infinite number of rounds, and in particular, executes round
k. If p decides by rule decide-1 or rules decide-2,3 we are
done. Otherwise, in order to prove the lemma, we need to
show that rule commit is satisfied.

Starting from round kleader all processes indicate the same
correct process leader in their messages. Since, by Lemma 6,
leader receives a message from a majority of processes in
round kleader onward, and these processes indicate it as leader
in round k − 1 ≥ kleader , it will send majApproved = true

in its round k message. Since, again by Lemma 6, starting
from round kleader every process receives a message from
the correct Ω leader, p receives a message from leader in
round k (p has prevLD = leader in round k), and evaluates
rule commit to true.

Lemma 8. All correct processes decide by round kleader +3.

Proof: Observe that in our model every correct process
executes an infinite number of rounds, and in particular, exe-
cutes round kleader+3. We prove the lemma by contradiction.
Assume that some correct process pj does not decide by round
kleader + 3. Then it did not receive any DECIDE messages in
round kleader + 3, and in particular, since by Lemma 6 it
receives a message from its leader, the leader did not decide
in the previous round, namely round kleader + 2. This means
that in round kleader + 2, the leader evaluated at least one of
decide-2 or decide-3 to false. But according to Lemma 6 rule
decide-3 must evaluate to true for the leader. So the problem
was with rule decide-2. Since by Lemma 6 the leader received
a message from a majority of processes in round kleader +2,
one of the messages must have been with type 6= COMMIT.
According to Lemma 7, all non-commit messages must be
DECIDE messages. But then the leader should decide in round
kleader + 2 by rule decide-1 - a contradiction.

Lemma 9. (a) all correct processes decide by round GSR +

4; and (b) if the eventual requirements of the Ω leader are
satisfied from round GSR − 1 (instead of from GSR), then
all correct processes decide by round GSR + 3.

Proof: (a) According to the definition of ♦WLM ,
starting from round GSR all (correct) processes get the same
leader indication from their Ω oracle (and this indication does
not change in further rounds). Therefore, starting from round
GSR + 1 all processes indicate the same correct Ω leader in
their messages, and we get that kleader = GSR + 1. From
Lemma 8 every correct process decides by round kleader +

3 = GSR + 4.
(b) if the eventual requirements of the Ω leader are satisfied

from round GSR− 1 (instead of from GSR), then all correct
processes indicate the same correct leader process in their
messages starting from round GSR onward, we get that
kleader = GSR, from Lemma 8, all correct processes decide
by round kleader + 3 = GSR + 3.

Theorem 10. (a) the algorithm solves consensus by round
GSR + 4; and (b) if the eventual requirements of the Ω

leader are satisfied starting from round GSR − 1 (instead
of starting from GSR as required by the model), then all
correct processes decide by round GSR + 3.

Proof: From Lemma 9, every correct process decides
by round GSR + 4, or GSR + 3 if the condition of (b) is
satisfied. Validity holds, since the decision can only be one
of the initial estimates of the processes. Uniform agreement
is proven in Lemma 5.

APPENDIX II
A SIMULATION OF ♦LM IN ♦WLM

As was explained in [19], simulating a GIRAF model M2

means invoking the initializeA() and computeA() functions
of some algorithm A that works in M2, while satisfying the
properties of M2. In particular, if M1 and M2 are both GIRAF
models, then a reduction algorithm TM1→M2

instantiates
the initialize() and compute() functions, denoted initializeT ()

13Algorithm 3 simulation of ♦LM in ♦WLM , at process pi.
1: Additional state

Mfixed
i [N][Π] ∈Messages∪{⊥},

initially ∀k ∈ N∀pj ∈ Π : Mfixed
i [k][j] = ⊥

2: procedure initialize♦WLM (leaderi)
3: return 〈initialize♦LM (leaderi), Π〉

4: procedure compute♦WLM (ki, M[*][*], leaderi)
5: if (ki is odd) then
6: return 〈{ M [ki][∗], Π〉
7: /*ki is even*/
8: forall j ∈ N
9: if (∃l ∈ N , s.t. M [k][l][j] 6= ⊥) then

10: Mfixed
i [k/2][j] = M [k][l][j]

11: return 〈compute♦LM (ki/2, Mfixed
i , leaderi), Π〉

and computeT (), and invokes initializeA() and computeA() in
model M1 (while satisfying the properties of M2).

Algorithm 3 presents a simulation, of the ♦LM model in-
troduced in [19], in the ♦WLM model presented in this paper.
Therefore, we show an implementation of initialize♦WLM ()
and compute♦WLM () functions that work in ♦WLM model.
We denote by initialize♦LM () and compute♦LM () the func-
tions of an algorithm designed for ♦LM .

In odd rounds ki, every process pi just forwards the
messages it collected in round ki as an array. The jth entry of
the array is 6= ⊥ only if pi received a message from pj in the
current round. In even rounds ki, each message Mi[ki][l] that
pi receives from pl is in fact an array, as explained above. In
order to find out what message pj sent in the previous round,
pi looks for this message in one of the arrays it received.
Thus, if there is a process pl that sent pj’s message (has the
jth entry of the array it sent 6= ⊥), pi saves this message in a
local message buffer, Mfixed

i , in the entry Mfixed
i [k/2][j]. It

then calls compute♦LM with this local message buffer, and
local round number k/2. This function is called every other
round, hence the k/2. Thus, we simulate one round of ♦LM

in every two rounds of ♦WLM .

Lemma 11. GSR♦LM ≤ GSR♦WLM + 2

Proof: Recall that all eventual properties of ♦WLM

are satisfied starting from round GSR♦WLM , and that both
♦WLM and ♦LM do not have any perpetual properties.

By definition of Ω, there exists a correct process pl that is
indicated as leader by all oracles of correct processes starting
from round GSR♦WLM . Since pl is passed to compute♦LM

(and initialize♦LM ()), the leader indication that these func-
tions see will be constantly pl starting from the first round
k ≥ GSR♦WLM in which any of these functions are called.
Notice that k ≤ GSR♦WLM + 1 since if GSR♦WLM is
even, compute♦LM will be called in GSR♦WLM , and k =

GSR♦WLM . If GSR♦WLM is odd, then compute♦LM will
be called in the next round, i.e. k = GSR♦WLM + 1.

In ♦WLM , starting from round GSR♦WLM , the leader pl

is assured to receive a message from a majority of processes.
By the simulation code, in every odd round, the leader
forwards all received messages to every other process. If

GSR♦WLM is odd, in round GSR♦WLM + 1 every process
will hear from the leader and the compute♦LM function
will be called, where it will see messages from a majority
sent in the previous round and received in this one from the
leader. Similarly, every further invocation of compute♦LM

will see majority of messages from every correct process
that were actually passed through the leader in ♦WLM . If
GSR♦WLM is even, compute♦LM will still be called, but
it is not assured to see messages from a majority, since the
leader forwards what it saw in previous round, which was
before round GSR♦WLM , and therefore the guarantees of
the model were not assured to hold in that round. The next
compute♦LM is in round GSR♦WLM + 2, and only there it
is assured to see a message from a majority sent in previous
round and forwarded by the leader in this one. Thus, in
the worst case, the timeliness guarantees of ♦LM will hold
starting at round GSR♦WLM +2, and as explained above, by
this round the failure detector guarantees hold as well. Thus,
GSR♦LM ≤ GSR♦WLM + 2.

Recall the α-reducibility notion defined in [19]: Model M2

is α-reducible (α : N → N) to model M1, denoted M1 ≥α

M2, if there exists a reduction algorithm TM1→M2
s.t. for

every run r and every
l ∈ N, round GSRM2

(r) + l of model M2 occurs at most in
round GSRM1

(r) + α(l) of model M1.

Lemma 12. ♦WLM ≥α ♦LM , where α(l) = 2l + 2.

Proof: By Lemma 11, round GSR♦LM occurs at most
at round GSR♦WLM + 2. From that round, compute♦LM ()

is called in every even execution of compute♦WLM (). Thus,
round GSR♦LM +1 of model ♦LM occurs at most at round
GSR♦WLM + 4 of model ♦WLM , round GSR♦LM + 2

of model ♦LM at most at round GSR♦WLM + 6 of model
♦WLM , etc. In general, round GSR♦LM + l of model ♦LM

occurs at most in round GSR♦WLM + 2l + 2 of model
♦WLM . We get α(l) = 2l + 2, and ♦WLM ≥α ♦LM .

An optimal consensus algorithm for ♦LM was presented
in [19]. This algorithm reaches global decision by round
GSR♦LM + 2, i.e. in 3 ♦LM rounds. By Lemma 12, there
exists a simulation algorithm of ♦LM in ♦WLM (Algo-
rithm 3), s.t. round GSR♦LM + 2 occurs at most at round
GSR♦LM + 2 ∗ 2 + 2 = GSR♦LM + 6, i.e., global decision
is reached in 7 rounds of ♦WLM .

In Section IV and Appendix I we analyzed the perfor-
mance of the direct algorithm for ♦WLM , Algorithm 3, in
the common case when the leader is stable and the properties
of the oracle are satisfied in round GSR − 1, i.e., one round
earlier. If we use the simulation-based algorithm for ♦WLM

presented in this section, no improvement in performance
will be achieved, and the algorithm will still take at most
7 rounds, since the worst case is when the timeliness (and
not the oracle) properties are satisfied only starting at round
GSR+2 (see proof of Lemma 11). Thus by making the oracle
properties hold a round earlier we do not eliminate the worst
case discussed in this Lemma.

14
Note that the requirements of ♦WLM are satisfied in

♦LM , and therefore a simulation of ♦WLM in ♦LM is
trivial. Both models are therefore equivalent by the “classical”
notion of CHT [6]. Nevertheless, ♦LM inherently requires
a Ω(n2) message complexity (since each process receives a
message from a majority), whereas ♦WLM requires only
linear message complexity as we have shown in this paper.
We therefore think that the “classical” notion of model
reducibility and equivalence could be refined to take message
complexity into account, similarly to the notion of k-round
reducibility [19] that took time (round) complexity of the
reduction into account.

APPENDIX III
ASYMPTOTIC BEHAVIOR OF E(D)

a) ES. : For any fixed p < 1, limn→∞ E(DES) =∞,
since limn→∞ p3n2

= 0.
b) LM. : For any fixed p < 1, its clear that

limn→∞ E(D♦LM) = ∞, since limn→∞ p3n = 0, and
Pr(M |L) ≤ 1.

c) WLM. : Similarly to ♦LM , for any fixed p < 1,
both the expression in Equation (7) and the one in Equation
(8) go to ∞, however Equation (8) grows faster, since the
exponent of p is bigger.

d) AFM. : In the following lemma we show that,
asymptotically, E(D♦AFM) approaches the constant value of
5 rounds, as n, the number of processes, goes to infinity.

Lemma 13. For a fixed p > 1
2 , limn→∞ E(D♦AFM)= 5

Proof: To bound the probability that A has a majority of
1’s in a row, we use a Chernoff bound [7]: Let X1, X2, ..., Xn

and X be as defined above, and denote µ = E(X) = np. By
the Chernoff bound, for any 0 < ε < 1:

P (X ≤ (1− ε)µ) < e−µε2/2

We would like to bound the probability P (X ≤ n
2) and

therefore take ε = (1− 1
2p). Thus, for p > 1/2, we get:

P (X ≤
n

2
) ≤ e−(1− 1

2p
)2np/2

P (X >
n

2
) > 1− e−(1− 1

2p
)2np/2

This is a bound on the probability that any given row in A
has a majority of 1’s. For n (independent) rows, we get that
the probability exceeds (1−e−(1− 1

2p
)2np/2)n. As was already

explained, if we take p as the lower bound for the probability
that given a majority of ones in each row, any given entry in
A is 1, we have to raise this expression to the power of 2.
Additionally, this needs to hold for 5 consecutive rounds:

E(D♦AFM) ≤
1

(1− e−(1− 1

2p
)2np/2)10n

+ 4

For a fixed p < 1, the first expression in the sum above
approaches 1 as n→∞, and therefore E(D♦AFM)→ 5.

ACKNOWLEDGMENTS

We thank Hagit Attiya, Paul Ezhilchelvan and Liran Katzir
for helpful discussions and valuable comments.

REFERENCES

[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg.
Stable leader election. In DISC, 2001.

[2] T. Anker, D. Dolev, G. Greenman, and I. Shnayderman. Evaluating
total order algorithms in WAN. In Int. Workshop on Large-Scale
Group Communication, 2003.

[3] O. Bakr and I. Keidar. Evaluating the running time of a communi-
cation round over the Internet. In PODC, 2002.

[4] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating
system support for planetary-scale network services, 2004.

[5] N. Cardwell, S. Savage, and T. Anderson. Modeling the perfor-
mance of short tcp connections, 1998.

[6] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure
detector for solving consensus. J. ACM, 43(4):685–722, July 1996.

[7] H. Chernoff. A measure of asymptotic efficiency for tests of a
hypothesis based on a sum of observations. Ann. Math. Statist.,
23:493–507, 1952.

[8] F. Cristian and C. Fetzer. The timed asynchronous distributed
system model. In IEEE TPDS, June 1999.

[9] D. Dobre, M. Majuntke, and N. Suri. CoReFP: Contention-Resistant
Fast Paxos for WANs. Technical report, TU Darmstadt, Germany,
2006.

[10] P. Dutta and R. Guerraoui. Fast indulgent consensus with zero
degradation. In EDCC, Oct. 2002.

[11] P. Dutta, R. Guerraoui, and I. Keidar. The overhead of consensus
failure recovery. Technical Report 200456, EPFL, 2004.

[12] P. Dutta, R. Guerraoui, and I. Keidar. The Overhead of Indulgent
Failure Recovery. Distributed Computing, 2006.

[13] P. Dutta, R. Guerraoui, and L. Lamport. How fast can eventual
synchrony lead to consensus?. In DSN, pages 22–27, 2005.

[14] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, 35(2):288–323, Apr. 1988.

[15] A. Fernandez, E. Jimenez, and M. Raynal. Eventual leader elec-
tion with weak assumptions on initial knowledge, communication
reliability, and synchrony. In DSN, 2006.

[16] R. Guerraoui. Revisiting the relationship between non blocking
atomic commitment and consensus problems. In WDAG-9, number
791 in LNCS, pages 87–100. Springer-Verlag, Sept. 1995.

[17] R. Guerraoui. Indulgent algorithms. In PODC, 2000.
[18] R. Guerraoui and M. Raynal. The information structure of indulgent

consensus. IEEE Transactions on Computers, 53(4):453–466, 2004.
[19] I. Keidar and A. Shraer. Timeliness, failure-detectors, and consensus

performance. In PODC, 2006.
[20] L. Lamport. The implementation of reliable distributed multiprocess

systems. Computer Networks, 2, 1978.
[21] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,

16(2):133–169, May 1998.
[22] M. Larrea, A. Fernández, and S. Arévalo. Optimal implementation

of the weakest failure detector for solving consensus. In SRDS,
pages 52–59, 2000.

[23] N. Lynch and M. Tuttle. An introduction to Input/Output Automata.
CWI Quarterly, 2(3):219–246, 1989.

[24] D. Malkhi, F. Oprea, and L. Zhou. Omega meets paxos: Leader
election and stability without eventual timely links. DISC, pages
199–213, Sept. 2005.

[25] U. Schmid. Failure model coverage under transient link failures.
Research Report 2/2004, Technische Universität Wien, 2004.

[26] P. Urban, I. Shnayderman, and A. Schiper. Comparison of failure
detectors and group membership: Performance study of two atomic
broadcast algorithms. DSN, 2003.

	Introduction
	Related work
	Model and Problem Definitions
	Time and Message Efficient Algorithm
	Probabilistic Comparison
	Mathematical Analysis
	Numerical results

	Implementing Round Synchronization
	Measurements
	LAN
	WAN

	Conclusions
	Appendix I: Correctness of Algorithm 2
	Appendix II: A Simulation of LM in WLM
	Appendix III: Asymptotic Behavior of E(D)
	References

