
Do Not Crawl in the DUST:
Different URLs with Similar Text∗

Ziv Bar-Yossef
†

Dept. of Electrical Engineering
Technion, Haifa 32000, Israel

Google Haifa Engineering
Center, Israel

zivby@ee.technion.ac.il

Idit Keidar
Dept. of Electrical Engineering
Technion, Haifa 32000, Israel

idish@ee.technion.ac.il

Uri Schonfeld
‡

Dept. of Computer Science
University of California

Los Angeles, CA 90095, USA

shuri@shuri.org

ABSTRACT
We consider the problem of dust: Different URLs with Sim-
ilar Text. Such duplicate URLs are prevalent in web sites, as
web server software often uses aliases and redirections, and
dynamically generates the same page from various different
URL requests. We present a novel algorithm, DustBuster,
for uncovering dust; that is, for discovering rules that trans-
form a given URL to others that are likely to have similar
content. DustBuster mines dust effectively from previous
crawl logs or web server logs, without examining page con-
tents. Verifying these rules via sampling requires fetching
few actual web pages. Search engines can benefit from in-
formation about dust to increase the effectiveness of crawl-
ing, reduce indexing overhead, and improve the quality of
popularity statistics such as PageRank.

Categories and Subject Descriptors: H.3.3: Informa-
tion Search and Retrieval.

General Terms: Algorithms.

Keywords: search engines, crawling, URL normalization,
duplicate detection, anti-aliasing.

1. INTRODUCTION
The DUST problem. The web is abundant with dust:
Different URLs with Similar Text [17, 10, 20, 18]. For exam-
ple, the URLs http://google.com/news and http://news.

google.com return similar content. Adding a trailing slash
or /index.html to either returns the same result. Many web
sites define links, redirections, or aliases, such as allowing
the tilde symbol ˜ to replace a string like /people. A single
web server often has multiple DNS names, and any can be
typed in the URL. As the above examples illustrate, dust
is typically not random, but rather stems from some general
rules, which we call DUST rules, such as “˜” → “/people”,
or “/index.html” at the end of the URL can be omitted.

∗A short version of this paper appeared as a poster at
WWW2006 [21]. A full version, including proofs and more
experimental results, is available as a technical report [2].
†Supported by the European Commission Marie Curie In-
ternational Re-integration Grant and by Bank Hapoalim.
‡This work was done while the author was at the Technion.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

dust rules are typically not universal. Many are artifacts
of a particular web server implementation. For example,
URLs of dynamically generated pages often include param-
eters; which parameters impact the page’s content is up to
the software that generates the pages. Some sites use their
own conventions; for example, a forum site we studied allows
accessing story number “num” both via the URL http://

domain/story?id=num and via http://domain/story_num.
Our study of the CNN web site has discovered that URLs
of the form http://cnn.com/money/whatever get redirected
to http://money.cnn.com/whatever. In this paper, we fo-
cus on mining dust rules within a given web site. We are
not aware of any previous work tackling this problem.

Standard techniques for avoiding dust employ universal
rules, such as adding http:// or removing a trailing slash, in
order to obtain some level of canonization. Additional dust
is found by comparing document sketches. However, this is
conducted on a page by page basis, and all the pages must
be fetched in order to employ this technique. By knowing
dust rules, one can reduce the overhead of this process.

Knowledge about dust rules can be valuable for search en-
gines for additional reasons: dust rules allow for a canonical
URL representation, thereby reducing overhead in crawling,
indexing, and caching [17, 10], and increasing the accuracy
of page metrics, like PageRank. For example, in one crawl
we examined, the number of URLs fetched would have been
reduced by 26%.

We focus on URLs with similar contents rather than iden-
tical ones, since different versions of the same document are
not always identical; they tend to differ in insignificant ways,
e.g., counters, dates, and advertisements. Likewise, some
URL parameters impact only the way pages are displayed
(fonts, image sizes, etc.) without altering their contents.

Detecting DUST from a URL list. Contrary to ini-
tial intuition, we show that it is possible to discover likely
dust rules without fetching a single web page. We present
an algorithm, DustBuster, which discovers such likely rules
from a list of URLs. Such a URL list can be obtained from
many sources including a previous crawl or web server logs.1

The rules are then verified (or refuted) by sampling a small
number of actual web pages.

At first glance, it is not clear that a URL list can provide
reliable information regarding dust, as it does not include
actual page contents. We show, however, how to use a URL

1Increasingly many web server logs are available nowadays
to search engines via protocols like Google Sitemaps [13].

list to discover two types of dust rules: substring substitu-
tions, which are similar to the “replace” function in editors,
and parameter substitutions. A substring substitution rule
α→ β replaces an occurrence of the string α in a URL by the
string β. A parameter substitution rule replaces the value
of a parameter in a URL by some default value. Thanks to
the standard syntax of parameter usage in URLs, detecting
parameter substitution rules is fairly straightforward. Most
of our work therefore focuses on substring substitution rules.

DustBuster uses three heuristics, which together are very
effective at detecting likely dust rules and distinguishing
them from invalid ones. The first heuristic leverages the
observation that if a rule α → β is common in a web site,
then we can expect to find in the URL list multiple examples
of pages accessed both ways. For example, in the site where
story?id= can be replaced by story_, we are likely to see
many different URL pairs that differ only in this substring;
we say that such a pair of URLs is an instance of the rule
“story?id=” → “story_”. The set of all instances of a rule
is called the rule’s support. Our first attempt to uncover
dust is therefore to seek rules that have large support.

Nevertheless, some rules that have large support are not
dust rules. For example, in one site we found instances
such as http://movie-forum.com/story_100 and http://

politics-forum.com/story_100 which support the invalid
rule “movie-forum” → “politics-forum”. Another exam-
ple is “1” → “2”, which emanates from instances like pic-1.
jpg and pic-2.jpg, story_1 and story_2, and lect1 and
lect2, none of which are dust. Our second and third heuris-
tics address the challenge of eliminating such invalid rules.
The second heuristic is based on the observation that invalid
rules tend to flock together. For example in most instances
of “1” → “2”, one could also replace the “1” by other digits.
We therefore ignore rules that come in large groups.

Further eliminating invalid rules requires calculating the
fraction of dust in the support of each rule. How could this
be done without inspecting page content? Our third heuris-
tic uses cues from the URL list to guess which instances are
likely to be dust and which are not. In case the URL list
is produced from a previous crawl, we typically have docu-
ment sketches [7] available for each URL in the list. These
sketches can be used to estimate the similarity between doc-
uments and thus to eliminate rules whose support does not
contain sufficiently many dust pairs.

In case the URL list is produced from web server logs,
document sketches are not available. The only cue about the
contents of URLs in these logs is the sizes of these contents.
We thus use the size field from the log to filter out instances
(URL pairs) that have “mismatching” sizes. The difficulty
with size-based filtering is that the size of a dynamic page
can vary dramatically, e.g., when many users comment on
an interesting story or when a web page is personalized. To
account for such variability, we compare the ranges of sizes
seen in all accesses to each page. When the size ranges of
two URLs do not overlap, they are unlikely to be dust.

Having discovered likely dust rules, another challenge
that needs to be addressed is eliminating redundant ones.
For example, the rule “http://site-name/story?id=” →
“http://site-name/story_” will be discovered, along with
many consisting of substrings thereof, e.g., “?id=” → “_”.
However, before performing validations, it is not obvious
which rule should be kept in such situations– the latter could
be either valid in all cases, or invalid outside the context of

the former. We are able to use support information from
the URL list to remove many redundant likely dust rules.
We remove additional redundancies after performing some
validations, and thus compile a succinct list of rules.

Canonization. Once the correct dust rules are discovered,
we exploit them for URL canonization. While the canon-
ization problem is NP-hard in general, we have devised an
efficient canonization algorithm that typically succeeds in
transforming URLs to a site-specific canonical form.

Experimental results. We experiment with DustBuster
on four web sites with very different characteristics. Two
of our experiments use web server logs, and two use crawl
outputs. We find that DustBuster can discover rules very
effectively from moderate sized URL lists, with as little as
20,000 entries. Limited sampling is then used in order to
validate or refute each rule.

Our experiments show that up to 90% of the top ten rules
discovered by DustBuster prior to the validation phase are
found to be valid, and in most sites 70% of the top 100
rules are valid. Furthermore, dust rules discovered by Dust-
Buster may account for 47% of the dust in a web site and
that using DustBuster can reduce a crawl by up to 26%.

Roadmap. The rest of this paper is organized as follows.
Section 2 reviews related work. We formally define the dust
detection and canonization problems in Section 3. Section
4 presents the basic heuristics our algorithm uses. Dust-
Buster and the canonization algorithm appear in Section 5.
Section 6 presents experimental results. We end with some
concluding remarks in Section 7.

2. RELATED WORK
The standard way of dealing with dust is using document

sketches [6, 11, 7, 22, 9, 16, 15], which are short summaries
used to determine similarities among documents. To com-
pute such a sketch, however, one needs to fetch and inspect
the whole document. Our approach cannot replace docu-
ment sketches, since it does not find dust across sites or
dust that does not stem from rules. However, it is desir-
able to use our approach to complement document sketches
in order to reduce the overhead of collecting redundant data.
Moreover, since document sketches do not give rules, they
cannot be used for URL canonization, which is important,
e.g., to improve the accuracy of page popularity metrics.

One common source of dust is mirroring. A number of
previous works have dealt with automatic detection of mir-
ror sites on the web [3, 4, 8, 19]. We deal with the comple-
mentary problem of detecting dust within one site. A ma-
jor challenge that site-specific dust detection must address
is efficiently discovering prospective rules out of a daunting
number of possibilities (all possible substring substitutions).
In contrast, mirror detection is given pairs of sites to com-
pare, and only needs to determine whether they are mirrors.

Our problem may seem similar to mining association rules
[1], yet the two problems differ substantially. Whereas the
input of such mining algorithms consists of complete lists
of items that belong together, our input includes individ-
ual items from different lists. The absence of complete lists
renders techniques used therein inapplicable to our problem.

One way to view our work is as producing an Abstract
Rewrite System (ARS) [5] for URL canonization via dust
rules. For ease of readability, we have chosen not to adopt
the ARS terminology in this paper.

3. PROBLEM DEFINITION
URLs. We view URLs as strings over an alphabet Σ
of tokens. Tokens are either alphanumeric strings or non-
alphanumeric characters. In addition, we require every URL
to start with the special token ^ and to end with the special
token $ (^ and $ are not included in Σ).

A URL u is valid, if its domain name resolves to a valid
IP address and its contents can be fetched by accessing the
corresponding web server (the http return code is not in the
4xx or 5xx series). If u is valid, we denote by doc(u) the
returned document.

DUST. Two valid URLs u1, u2 are called dust if their cor-
responding documents, doc(u1) and doc(u2), are “similar”.
To this end, any method of measuring the similarity be-
tween two documents can be used. For our implementation
and experiments, we use the popular shingling resemblance
measure due to Broder et al. [7].

DUST rules. We seek general rules for detecting when
two URLs are dust. A dust rule φ is a relation over the
space of URLs. φ may be many-to-many. Every pair of
URLs belonging to φ is called an instance of φ. The support
of φ, denoted support(φ), is the collection of all its instances.

Our algorithm focuses primarily on detecting substring
substitution rules. A substring substitution rule α → β is
specified by an ordered pair of strings (α, β) over the token
alphabet Σ. (In addition, we allow these strings to simulta-
neously start with the token ^ and/or to simultaneously end
with the token $.) Instances of substring substitution rules
are defined as follows:

Definition 3.1 (Instance of a rule). A pair u1, u2

of URLs is an instance of a substring substitution rule α→
β, if there exist strings p, s s.t. u1 = pαs and u2 = pβs.

For example, the pair of URLs http://www.site.com/

index.html and http://www.site.com is an instance of the
dust rule “/index.html$” → “$”.

The DUST problem. Our goal is to detect dust and
eliminate redundancies in a collection of URLs belonging to
a given web site S. This is solved by a combination of two
algorithms, one that discovers dust rules from a URL list,
and another that uses them in order to transform URLs to
their canonical form.

A URL list is a list of records consisting of: (1) a URL; (2)
the http return code; (3) the size of the returned document;
and (4) the document’s sketch. The last two fields are op-
tional. This type of list can be obtained from web server logs
or from a previous crawl. The URL list is a (non-random)
sample of the URLs that belong to the web site.

For a given web site S, we denote by US the set of URLs
that belong to S. A dust rule φ is said to be valid w.r.t.
S, if for each u1 ∈ US and for each u2 s.t. (u1, u2) is an
instance of φ, u2 ∈ US and (u1, u2) is dust.

A DUST rule detection algorithm is given a list L of URLs
from a web site S and outputs an ordered list of dust rules.
The algorithm may also fetch pages (which may or may not
appear in the URL list). The ranking of rules represents the
confidence of the algorithm in the validity of the rules.

Canonization. Let R be an ordered list of dust rules
that have been found to be valid w.r.t. some web site S. We
would like to define what is a canonization of the URLs in
US using the rules in R. To this end, we assume that there
is some standard way of applying every rule φ ∈ R, so that

applying φ to any URL u ∈ US results in a URL φ(u) that
also belongs to US (this assumption holds true in all the
data sets we experimented with).

The rules in R naturally induce a labeled graph GR on
US : there is an edge from u1 to u2 labeled by φ if and only if
(u1, u2) is an instance of φ. Note that adjacent URLs in GR

correspond to similar documents. For the purpose of canon-
ization, we assume that document dissimilarity respects at
least a weak form of the triangle inequality, so that URLs
connected by short paths in GR are similar URLs too. Thus,
if GR has a bounded diameter (as it does in the data sets
we encountered), then every two URLs connected by a path
are similar. A canonization that maps every URL u to some
URL that is reachable from u thus makes sense, because the
original URL and its canonical form are guaranteed to be
dust.

A set of canonical URLs is a subset CUS ⊆ US that is
reachable from every URL in US (equivalently, CUS is a
dominating set in the transitive closure of GR). A canon-
ization is any mapping C : US → CUS that maps every
URL u ∈ US to some canonical URL C(u), which is reach-
able from u by a directed path. Our goal is to find a small set
of canonical URLs and a corresponding canonization, which
is efficiently computable.

Finding the minimum size set of canonical URLs is in-
tractable, due to the NP-hardness of the minimum dominat-
ing set problem (cf. [12]). Fortunately, our empirical study
indicates that for typical collections of dust rules found in
web sites, efficient canonization is possible. Thus, although
we cannot design an algorithm that always obtains an op-
timal canonization, we will seek one that maps URLs to a
small set of canonical URLs, and always terminates in poly-
nomial time.

Metrics. We use three measures to evaluate dust de-
tection and canonization. The first measure is precision—
the fraction of valid rules among the rules reported by the
dust detection algorithm. The second, and most impor-
tant, measure is the discovered redundancy—the amount of
redundancy eliminated in a crawl. It is defined as the dif-
ference between the number of unique URLs in the crawl
before and after canonization, divided by the former.

The third measure is coverage: given a large collection of
URLs that includes dust, what percentage of the duplicate
URLs is detected. The number of duplicate URLs in a given
URL list is defined as the difference between the number of
unique URLs and the number of unique document sketches.
Since we do not have access to the entire web site, we mea-
sure the achieved coverage within the URL list. We count
the number of duplicate URLs in the list before and after
canonization, and the difference between them divided by
the former is the coverage.

One of the standard measures of information retrieval is
recall. In our case, recall would measure what percent of
all correct dust rules is discovered. However, it is clearly
impossible to construct a complete list of all valid rules to
compare against, and therefore, recall is not directly mea-
surable in our case.

4. BASIC HEURISTICS
Our algorithm for extracting likely string substitution rules

from the URL list uses three heuristics: the large support
heuristic, the small buckets heuristic, and the similarity like-

liness heuristic. Our empirical results provide evidence that
these heuristics are effective on web-sites of varying scopes
and characteristics.

Large support heuristic.

Large Support Heuristic
The support of a valid DUST rule is large.

For example, if a rule “index.html$” → “$” is valid, we
should expect many instances witnessing to this effect, e.g.,
www.site.com/d1/index.html and www.site.com/d1/, and
www.site.com/d3/index.html and www.site.com/d3/. We
would thus like to discover rules of large support. Note that
valid rules of small support are not very interesting anyway,
because the savings gained by applying them are negligible.

Finding the support of a rule on the web site requires
knowing all the URLs associated with the site. Since the
only data at our disposal is the URL list, which is unlikely
to be complete, the best we can do is compute the support
of rules in this URL list. That is, for each rule φ, we can find
the number of instances (u1, u2) of φ, for which both u1 and
u2 appear in the URL list. We call these instances the sup-
port of φ in the URL list and denote them by support

L
(φ).

If the URL list is long enough, we expect this support to be
representative of the overall support of the rule on the site.

Note that since | support
L
(α→ β)| = | support

L
(β → α)|,

for every α and β, our algorithm cannot know whether both
rules are valid or just one of them is. It therefore outputs
the pair α, β instead. Finding which of the two directions is
valid is left to the final phase of DustBuster.

Given a URL list L, how do we compute the size of the
support of every possible rule? To this end, we introduce
a new characterization of the support size. Consider a sub-
string α of a URL u = pαs. We call the pair (p, s) the
envelope of α in u. For example, if u =http://www.site.

com/index.html and α =“index”, then the envelope of α
in u is the pair of strings “^http://www.site.com/” and
“.html$”. By Definition 3.1, a pair of URLs (u1, u2) is an
instance of a substitution rule α→ β if and only if there ex-
ists a shared envelope (p, s) so that u1 = pαs and u2 = pβs.

For a string α, denote by EL(α) the set of envelopes of
α in URLs that satisfy the following conditions: (1) these
URLs appear in the URL list L; and (2) the URLs have α
as a substring. If α occurs in a URL u several times, then
u contributes as many envelopes to EL(α) as the number of
occurrences of α in u. The following theorem, proven in the
full draft of the paper, shows that under certain conditions,
|EL(α)∩EL(β)| equals | supportL(α→ β)|. As we shall see
later, this gives rise to an efficient procedure for computing
support size, since we can compute the envelope sets of each
substring α separately, and then by join and sort operations
find the pairs of substrings whose envelope sets have large
intersections.

Theorem 4.1. Let α 6= β be two non-empty and non-
semiperiodic strings. Then,

| support
L
(α→ β)| = |EL(α) ∩EL(β)|.

A string α is semiperiodic, if it can be written as α = γkγ′

for some string γ, where |α| > |γ|, k ≥ 1, γk is the string
obtained by concatenating k copies of the string γ, and γ′ is
a (possibly empty) prefix of γ [14]. If α is not semiperiodic,
it is non-semiperiodic. For example, the strings “/////”

and “a.a.a” are semiperiodic, while the strings “a.a.b” and
“%////” are not.

Unfortunately, the theorem does not hold for rules where
one of the strings is either semiperiodic or empty. For exam-
ple, let α be the semiperiodic string “a.a” and β = “a”. Let
u1 = http://a.a.a/ and let u2 = http://a.a/. There are
two ways in which we can substitute α with β in u1 and ob-
tain u2. Similarly, let γ be “a.” and δ be the empty string.
There are two ways in which we can substitute γ with δ in
u1 to obtain u2. This means that the instance (u1, u2) will
be associated with two envelopes in EL(γ)∩EL(δ) and with
two envelopes in EL(α) ∩ EL(β) and not just one. Thus,
when α or β are semiperiodic or empty, |EL(α) ∩ EL(β)|
can overestimate the support size. On the other hand, such
examples are quite rare, and in practice we expect a minimal
gap between |EL(α) ∩ EL(β)| and the support size.

Small buckets heuristic. While most valid dust rules
have large support, the converse is not necessarily true:
there can be rules with large support that are not valid. One
class of such rules is substitutions among numbered items,
e.g., (lect1.ps,lect2.ps), (lect1.ps,lect3.ps), and so on.

We would like to somehow filter out the rules with “mis-
leading” support. The support for a rule α → β can be
thought of as a collection of recommendations, where each
envelope (p, s) ∈ EL(α) ∩ EL(β) represents a single recom-
mendation. Consider an envelope (p, s) that is willing to give
a recommendation to any rule, for example “^http://” →
“^”. Naturally its recommendations lose their value. This
type of support only leads to many invalid rules being con-
sidered. This is the intuitive motivation for the following
heuristic to separate the valid dust rules from invalid ones.

If an envelope (p, s) belongs to many envelope sets EL(α1),
EL(α2),. . . , EL(αk), then it contributes to the intersections
EL(αi) ∩ EL(αj), for all 1 ≤ i 6= j ≤ k. The substrings
α1, α2, . . . , αk constitute what we call a bucket. That is, for
a given envelope (p, s), bucket(p, s) is the set of all substrings
α s.t. pαs ∈ L. An envelope pertaining to a large bucket
supports many rules.

Small Buckets Heuristic
Much of the support of valid DUST substring substitution

rules is likely to belong to small buckets.

Similarity likeliness heuristic. The above two heuris-
tics use the URL strings alone to detect dust. In order to
raise the precision of the algorithm, we use a third heuristic
that better captures the “similarity dimension”, by provid-
ing hints as to which instances are likely to be similar.

Similarity Likeliness Heuristic
The likely similar support of a valid DUST rule is large.

We show below that using cues from the URL list we can de-
termine which URL pairs in the support of a rule are likely to
have similar content, i.e., are likely similar, and which are
not. The likely similar support, rather than the complete
support, is used to determine whether a rule is valid or not.
For example, in a forum web site we examined, the URL
list included two sets of URLs http://politics.domain/

story_num and http://movies.domain/story_num with dif-
ferent numbers. The support of the invalid rule “http://

politics.domain” → “http://movies.domain” was large,
yet since the corresponding stories were very different, the
likely similar support of the rule was found to be small.

How do we use the URL list to estimate similarity between
documents? The simplest case is that the URL list includes
a document sketch, such as the shingles of Broder et al. [7],
for each URL. Such sketches are typically available when the
URL list is the output of a previous crawl of the web site.
When available, documents sketches are used to indicate
which URL pairs are likely similar.

When the URL list is taken from web server logs, docu-
ments sketches are not available. In this case we use docu-
ment sizes (document sizes are usually given by web server
software). We determine two documents to be similar if
their sizes “match”. Size matching, however, turns out to be
quite intricate, because the same document may have very
different sizes when inspected at different points of time or
by different users. This is especially true when dealing with
forums or blogging web sites. Therefore, if two URLs have
different “size” values in the URL list, we cannot immedi-
ately infer that these URLs are not dust. Instead, for each
unique URL, we track all its occurrences in the URL list,
and keep the minimum and the maximum size values en-
countered. We denote the interval between these two num-
bers by Iu. A pair of URLs, u1 and u2, in the support are
considered likely similar if the intervals Iu1

and Iu2
overlap.

Our experiments show that this heuristic is very effective in
improving the precision of our algorithm, often increasing
precision by a factor of two.

5. DUSTBUSTER
In this section we describe DustBuster—our algorithm for

discovering site-specific dust rules. DustBuster has four
phases. The first phase uses the URL list alone to generate
a short list of likely dust rules. The second phase removes
redundancies from this list. The next phase generates likely
parameter substitution rules and is discussed in the full draft
of the paper. The last phase validates or refutes each of the
rules in the list, by fetching a small sample of pages.

5.1 Detecting likely DUST rules
Our strategy for discovering likely dust rules is the fol-

lowing: we compute the size of the support of each rule that
has at least one instance in the URL list, and output the
rules whose support exceeds some threshold MS. Based on
Theorem 4.1, we compute the size of the support of a rule
α→ β as the size of the set EL(α)∩EL(β). That is roughly
what our algorithm does, but with three reservations:

(1) Based on the small buckets heuristic, we avoid con-
sidering certain rules by ignoring large buckets in the com-
putation of envelope set intersections. Buckets bigger than
some threshold T are called overflowing, and all envelopes
pertaining to them are denoted collectively by O and are
not included in the envelope sets.

(2) Based on the similarity likeliness heuristic, we filter
support by estimating the likelihood of two documents being
similar. We eliminate rules by filtering out instances whose
associated documents are unlikely to be similar in content.
That is, for a given instance u1 = pαs and u2 = pβs, the
envelope (p, s) is disqualified if u1 and u2 are found unlikely
to be similar using the tests introduced in Section 4. These
techniques are provided as a boolean function LikelySimilar
which returns false only if the documents of the two input

URLs are unlikely to be similar. The set of all disqualified
envelopes is then denoted Dα,β .

(3) In practice, substitutions of long substrings are rare.
Hence, our algorithm considers substrings of length at most
S, for some given parameter S.

To conclude, our algorithm computes for every two sub-
strings α, β that appear in the URL list and whose length is
at most S, the size of the set (EL(α)∩EL(β)) \ (O ∪Dα,β).

1:Function DetectLikelyRules(URLList L)
2: create table ST (substring, prefix, suffix, size range/doc sketch)
3: create table IT (substring1, substring2)
4: create table RT (substring1, substring2, support size)
5: for each record r ∈ L do

6: for ℓ = 0 to S do

7: for each substring α of r.url of length ℓ do

8: p := prefix of r.url preceding α
9: s := suffix of r.url succeeding α
10: add (α, p, s, r.size range/r.doc sketch) to ST
11: group tuples in ST into buckets by (prefix,suffix)
12: for each bucket B do

13: if (|B| = 1 or |B| > T) continue
14: for each pair of distinct tuples t1, t2 ∈ B do

15: if (LikelySimilar(t1, t2))
16: add (t1.substring, t2.substring) to IT
17: group tuples in IT into rule supports by (substring1,substring2)
18: for each rule support R do

19: t := first tuple in R
20: add tuple (t.substring1, t.substring2, |R|) to RT
21: sort RT by support size
22: return all rules in RT whose support size is ≥ MS

Figure 1: Discovering likely DUST rules.

Our algorithm for discovering likely dust rules is described
in Figure 1. The algorithm gets as input the URL list L.
We assume the URL list has been pre-processed so that: (1)
only unique URLs have been kept; (2) all the URLs have
been tokenized and include the preceding ^ and succeeding
$; (3) all records corresponding to errors (http return codes
in the 4xx and 5xx series) have been filtered out; (4) for each
URL, the corresponding document sketch or size range has
been recorded.

The algorithm uses three tables: a substring table ST, an
instance table IT, and a rule table RT. Their attributes are
listed in Figure 1. In principle, the tables can be stored in
any database structure; our implementation uses text files.

In lines 5–10, the algorithm scans the URL list, and records
all substrings of lengths 0 to S of the URLs in the list. For
each such substring α, a tuple is added to the substring ta-
ble ST. This tuple consists of the substring α, as well as its
envelope (p, s), and either the URL’s document sketch or its
size range. The substrings are then grouped into buckets
by their envelopes (line 11). Our implementation does this
by sorting the file holding the ST table by the second and
third attributes. Note that two substrings α, β appear in
the bucket of (p, s) if and only if (p, s) ∈ EL(α) ∩EL(β).

In lines 12–16, the algorithm enumerates the envelopes
found. An envelope (p, s) contributes 1 to the intersection of
the envelope sets EL(α)∩EL(β), for every α, β that appear
in its bucket. Thus, if the bucket has only a single entry,
we know (p, s) does not contribute any instance to any rule,
and thus can be tossed away. If the bucket is overflowing
(its size exceeds T), then (p, s) is also ignored (line 13).

In lines 14–16, the algorithm enumerates all the pairs
(α, β) of substrings that belong to the bucket of (p, s). If it
seems likely that the documents associated with the URLs

pαs and pβs are similar (through size or document sketch
matching) (line 15), (α, β) is added to the instance table IT
(line 16).

The number of times a pair (α, β) has been added to the
instance table is exactly the size of the set (EL(α)∩EL(β))\
(O ∪ Dα,β), which is our estimated support for the rules
α → β and β → α. Hence, all that is left to do is compute
these counts and sort the pairs by their count (lines 17–22).
The algorithm’s output is an ordered list of pairs. Each pair
representing two likely dust rules (one in each direction).
Only rules whose support is large enough (bigger than MS)
are kept in the list.

The full draft of the paper contains the following analysis:

Proposition 5.1. Let n be the number of records in the
URL list and let m be the average length (in tokens) of URLs

in the URL list. The above algorithm runs in Õ(mnST 2)

time and uses O(mnST 2) storage space, where Õ suppresses
logarithmic factors.

Note that mn is the input length and S and T are usu-
ally small constants, independent of m and n. Hence, the
algorithm’s running time and space are only (quasi-) linear.

5.2 Eliminating redundant rules
By design, the output of the above algorithm includes

many overlapping pairs. For example, when running on a fo-
rum site, our algorithm finds the pair (“.co.il/story?id=”,
“.co.il/story_”), as well as numerous pairs of substrings
of these, such as (“story?id=”, “story_”). Note that every
instance of the former pair is also an instance of the lat-
ter. We thus say that the former refines the latter. It is
desirable to eliminate redundancies prior to attempting to
validate the rules, in order to reduce the cost of validation.
However, when one likely dust rule refines another, it is not
obvious which should be kept. In some cases, the broader
rule is always true, and all the rules that refine it are re-
dundant. In other cases, the broader rule is only valid in
specific contexts identified by the refining ones.

In some cases, we can use information from the URL list in
order to deduce that a pair is redundant. When two pairs
have exactly the same support in the URL list, this gives
a strong indication that the latter, seemingly more general
rule, is valid only in the context specified by the former rule.
We can thus eliminate the latter rule from the list.

We next discuss in more detail the notion of refinement
and show how to use it to eliminate redundant rules.

Definition 5.2 (Refinement). A rule φ refines a rule
ψ, if support(φ) ⊆ support(ψ).

That is, φ refines ψ, if every instance (u1, u2) of φ is also
an instance of ψ. Testing refinement for substitution rules
turns out to be easy, as captured in the following lemma
(proven in the full draft of the paper):

Lemma 5.3. A substitution rule α′ → β′ refines a sub-
stitution rule α → β if and only if there exists an envelope
(γ, δ) s.t. α′ = γαδ and β′ = γβδ.

The characterization given by the above lemma immedi-
ately yields an efficient algorithm for deciding whether a
substitution rule α′ → β′ refines a substitution rule α→ β:
we simply check that α is a substring of α′, replace α by
β, and check whether the outcome is β′. If α has multiple

occurrences in α′, we check all of them. Note that our algo-
rithm’s input is a list of pairs rather than rules, where each
pair represents two rules. When considering two pairs (α, β)
and (α′, β′), we check refinement in both directions.

Now, suppose a rule α′ → β′ was found to refine a rule
α → β. Then, support(α′ → β′) ⊆ support(α → β), im-
plying that also support

L
(α′ → β′) ⊆ support

L
(α → β).

Hence, if | supportL(α′ → β′)| = | supportL(α → β)|, then
supportL(α′ → β′) = supportL(α → β). If the URL list is
sufficiently representative of the web site, this gives an in-
dication that every instance of the refined rule α → β that
occurs on the web site is also an instance of the refinement
α′ → β′. We choose to keep only the refinement α′ → β′,
because it gives the full context of the substitution.

One small obstacle to using the above approach is the fol-
lowing. In the first phase of our algorithm, we do not com-
pute the exact size of the support | support

L
(α → β)|, but

rather calculate the quantity |(EL(α)∩EL(β))\(O∪Dα,β)|.
It is possible that α′ → β′ refines α→ β and support

L
(α′ →

β′) = supportL(α → β), yet |(EL(α′) ∩ EL(β′)) \ (O ∪
Dα′,β′)| < |(EL(α) ∩EL(β)) \ (O ∪Dα,β)|.

In practice, if the supports are identical, the difference be-
tween the calculated support sizes should be small. We thus
eliminate the refined rule, even if its calculated support size
is slightly above the calculated support size of the refining
rule. However, to increase the effectiveness of this phase,
we run the first phase of the algorithm twice, once with a
lower overflow threshold Tlow and once with a higher over-
flow threshold Thigh. While the support calculated using
the lower threshold is more effective in filtering out invalid
rules, the support calculated using the higher threshold is
more effective in eliminating redundant rules.

The algorithm for eliminating refined rules from the list
appears in Figure 2. The algorithm gets as input a list
of pairs, representing likely rules, sorted by their calculated
support size. It uses three tunable parameters: (1) the max-
imum relative deficiency, MRD, (2) the maximum absolute
deficiency, MAD; and (3) the maximum window size, MW.
MRD and MAD determine the maximum difference allowed
between the calculated support sizes of the refining rule and
the refined rule, when we eliminate the refined rule. MW
determines how far down the list we look for refinements.

1:Function EliminateRedundancies(pairs list R)
2: for i = 1 to |R| do

3: if (already eliminated R[i]) continue
4: for j = 1 to min(MW, |R| − i) do

5: if (R[i].size −R[i + j].size >
max(MRD · R[i].size,MAD)) break

6: if (R[i] refines R[i + j])
7: eliminate R[i + j]
8: else if (R[i + j] refines R[i]) then
9: eliminate R[i]
10: break
11: return R

Figure 2: Eliminating redundant rules.

The algorithm scans the list from top to bottom. For each
rule R[i], which has not been eliminated yet, the algorithm
scans a “window” of rules below R[i]. Suppose s is the
calculated size of the support of R[i]. The window size is
chosen so that (1) it never exceeds MW (line 4); and (2) the
difference between s and the calculated support size of the

lowest rule in the window is at most the maximum between
MRD · s and MAD (line 5). Now, if R[i] refines a rule R[j]
in the window, the refined rule R[j] is eliminated (line 7),
while if some rule R[j] in the window refines R[i], R[i] is
eliminated (line 9).

It is easy to verify that the running time of the algorithm
is at most |R| · MW . In our experiments, this algorithm
reduces the set of rules by over 90%.

5.3 Validating DUST rules
So far, the algorithm has generated likely rules from the

URL list alone, without fetching even a single page from the
web site. Fetching a small number of pages for validating
or refuting these rules is necessary for two reasons. First,
it can significantly improve the final precision of the algo-
rithm. Second, the first two phases of DustBuster, which
discover likely substring substitution rules, cannot distin-
guish between the two directions of a rule. The discovery of
the pair (α, β) can represent both α → β and β → α. This
does not mean that in reality both rules are valid or invalid
simultaneously. It is often the case that only one of the di-
rections is valid; for example, in many sites removing the
substring index.html is always valid, whereas adding one is
not. Only by attempting to fetch actual page contents we
can tell which direction is valid, if any.

The validation phase of DustBuster therefore fetches a
small sample of web pages from the web site in order to
check the validity of the rules generated in the previous
phases. The validation of a single rule is presented in Figure
3. The algorithm is given as input a likely rule R and a list
of URLs from the web site and decides whether the rule is
valid. It uses two parameters: the validation count, N (how
many samples to use in order to validate each rule), and the
refutation threshold, ǫ (the minimum fraction of counterex-
amples to a rule required to declare the rule invalid).

1:Function ValidateRule(R, L)
2: positive := 0
3: negative := 0
4: while (positive < (1 − ǫ)N and negative < ǫN) do

5: u := a random URL from L on which applying R results
in a different URL

6: v := outcome of application of R to u
7: fetch u and v
8: if (fetch u failed) continue
9: if (fetch v failed or DocSketch(u) 6= DocSketch(v))

10 negative := negative + 1
11: else

12: positive := positive + 1
13: if (negative ≥ ǫN)
14: return false
15: return true

Figure 3: Validating a single likely rule.

In order to determine whether a rule is valid, the algo-
rithm repeatedly chooses random URLs from the given test
URL list until hitting a URL on which applying the rule
results in a different URL (line 5). The algorithm then ap-
plies the rule to the random URL u, resulting in a new URL
v. The algorithm then fetches u and v. Using document
sketches, such as the shingling technique of Broder et al.
[7], the algorithm tests whether u and v are similar. If they
are, the algorithm accounts for u as a positive example at-
testing to the validity of the rule. If v cannot be fetched,

or they are not similar, then it is accounted as a negative
example (lines 9–12). The testing is stopped when either
the number of negative examples surpasses the refutation
threshold or when the number of positive examples is large
enough to guarantee the number of negative examples will
not surpass the threshold.

One could ask why we declare a rule valid even if we find
(a small number of) counterexamples to it. There are several
reasons: (1) the document sketch comparison test sometimes
makes mistakes, since it has an inherent false negative prob-
ability; (2) dynamic pages sometimes change significantly
between successive probes (even if the probes are made at
short intervals); and (3) the fetching of a URL may some-
times fail at some point in the middle, after part of the page
has been fetched. By choosing a refutation threshold smaller
than one, we can account for such situations.

Figure 4 shows the algorithm for validating a list of likely
dust rules. Its input consists of a list of pairs representing
likely substring transformations, (R[i].α,R[i].β), and a test
URL list L.

For a pair of substrings (α, β), we use the notation α > β
to denote that either |α| > |β| or |α| = |β| and α succeeds
β in the lexicographical order. In this case, we say that
the rule α → β shrinks the URL. We give precedence to
shrinking substitutions. Therefore, given a pair (α, β), if
α > β, we first try to validate the rule α→ β. If this rule is
valid, we ignore the rule in the other direction since, even if
this rule turns out to be valid as well, using this rule during
canonization is only likely to create cycles, i.e., rules that can
be applied an infinite number of times because they cancel
out each others’ changes. If the shrinking rule is invalid,
though, we do attempt to validate the opposite direction, so
as not to lose a valid rule. Whenever one of the directions of
(α, β) is found to be valid, we remove from the list all pairs
refining (α, β)– once a broader rule is deemed valid, there
is no longer a need for refinements thereof. By eliminating
these rules prior to validating them, we reduce the number
of pages we fetch. We assume that each pair in R is ordered
so that R[i].α > R[i].β.

1:Function Validate(rules list R, test URLList L)
2 create an empty list of rules LR
3: for i = 1 to |R| do

4: for j = 1 to i - 1 do

5: if (R[j] was not eliminated and R[i] refines R[j])
6: eliminate R[i] from the list
7: break
8: if (R[i] was eliminated)
9: continue
10: if (ValidateRule(R[i].α → R[i].β, L))
11: add R[i].α → R[i].β to LR
12: else if (ValidateRule(R[i].β → R[i].α, L))
13: add R[i].β → R[i].α to LR
14: else

15: eliminate R[i] from the list
16: return LR

Figure 4: Validating likely rules.

The running time of the algorithm is at most O(|R|2 +
N |R|). Since the list is assumed to be rather short, this
running time is manageable. The number of pages fetched
is O(N |R|) in the worst-case, but much smaller in practice,
since we eliminate many redundant rules after validating
rules they refine.

5.4 URL canonization
The canonization algorithm receives a URL u and a list

of valid dust rules R. The idea behind this algorithm is
very simple: it repeatedly applies to u all the rules in R,
until there is an iteration in which u is unchanged, or until
a predetermined maximum number of iterations has been
reached. For details see the full draft of the paper.

As the general canonization problem is hard, we cannot
expect this polynomial time algorithm to always produce
a minimal canonization. Nevertheless, our empirical study
shows that the savings obtained using this algorithm are
high. We believe that this common case success stems from
two features. First, our policy of choosing shrinking rules
whenever possible typically eliminates cycles. Second, our
elimination of refinements of valid rules leaves a small set of
rules, most of which do no affect each other.

6. EXPERIMENTAL RESULTS
Experiment setup. We experiment with DustBuster
on four web sites: a dynamic forum site, an academic site
(www.ee.technion.ac.il), a large news site (cnn.com) and a
smaller news site (nydailynews.com). In the forum site, page
contents are highly dynamic, as users continuously add com-
ments. The site supports multiple domain names. Most of
the site’s pages are generated by the same software. The
news sites are similar in their structure to many other news
sites on the web. The large news site has a more complex
structure, and it makes use of several sub-domains as well as
URL redirections. The academic site is the most diverse: It
includes both static pages and dynamic software-generated
content. Moreover, individual pages and directories on the
site are constructed and maintained by a large number of
users (faculty members, lab managers, etc.)

In the academic and forum sites, we detect likely dust
rules from web server logs, whereas in the news sites, we
detect likely dust rules from a crawl log. Table 1 depicts
the sizes of the logs used. In the crawl logs each URL ap-
pears once, while in the web server logs the same URL may
appear multiple times. In the validation phase, we use ran-
dom entries from additional logs, different from those used
to detect the rules. The canonization algorithm is tested on
yet another log, different from the ones used to detect and
validate the rules.

Web Site Log Size Unique URLs
Forum Site 38,816 15,608
Academic Site 344,266 17,742
Large News Site 11,883 11,883
Small News Site 9,456 9,456

Table 1: Log sizes.

Parameter settings. The following DustBuster parame-
ters were carefully chosen in all our experiments. Our em-
pirical results suggest that these settings lead to good results
(see more details in the full draft of the paper). The max-
imum substring length, S, was set to 35 tokens. The max-
imum bucket size used for detecting dust rules, Tlow, was
set to 6, and the maximum bucket size used for eliminating
redundant rules, Thigh, was set to 11. In the elimination of
redundant rules, we allowed a relative deficiency, MRD, of

up to 5%, and an absolute deficiency, MAD, of 1. The max-
imum window size, MW, was set to 1100 rules. The value of
MS, the minimum support size, was set to 3. The algorithm
uses a validation count, N, of 100 and a refutation threshold,
ǫ, of 5%-10%. Finally, the canonization uses a maximum of
10 iterations. Shingling [7] is used in the validation phase
to determine similarity between documents.

Detecting likely DUST rules and eliminating redun-
dant ones. DustBuster’s first phase scans the log and
detects a very long list of likely dust rules. Subsequently,
the redundancy elimination phase dramatically shortens this
list. Table 2 shows the sizes of the lists before and after
redundancy elimination. It can be seen that in all of our
experiments, over 90% of the rules in the original list have
been eliminated.

Web Site Rules Rules Remaining
Detected after 2nd Phase

Forum Site 402 37 (9.2%)
Academic Site 26,899 2,041 (7.6%)
Large News Site 12,144 1,243 (9.76%)
Small News Site 4,220 96 (2.3%)

Table 2: Rule elimination in second phase.

In Figure 5, we examine the precision level in the short
list of likely rules produced at the end of these two phases in
three of the sites. Recall that no page contents are fetched in
these phases. As this list is ordered by likeliness, we examine
the precision@k; that is, for each top k rules in this list, the
curves show which percentage of them are later deemed valid
(by DustBuster’s validation phase) in at least one direction.
We observe that, quite surprisingly, when similarity-based
filtering is used, DustBuster’s detection phase achieves a
very high precision rate even though it does not fetch even
a single page. In the forum site, out of the 40–50 detected
rules, over 80% are indeed valid. In the academic site, over
60% of the 300–350 detected rules are valid, and of the top
100 detected rules, over 80% are valid. In the large news
sites, 74% of the top 200 rules are valid.

This high precision is achieved, to a large extent, thanks
to the similarity-based filtering (size matching or shingle
matching), as shown in Figures 5(b) and 5(c). The log in-
cludes invalid rules. For example, the forum site includes
multiple domains, and the stories in each domain are differ-
ent. Thus, although we find many pairs http://domain1/

story_num and http://domain2/story_num with the same
num, these represent different stories. Similarly, the aca-
demic site has pairs like http://site/course1/lect-num.

ppt and http://site/course2/lect-num.ppt, although the
lectures are different. Such invalid rules are not detected,
since stories/lectures typically vary in size. Figure 5(b) il-
lustrates the impact of size matching in the academic site.
We see that when size matching is not employed, the preci-
sion drops by around 50%. Thus, size matching reduces the
number of accesses needed for validation. Nevertheless, size
matching has its limitations– valid rules (such as “ps” →
“pdf”) are missed at the price of increasing precision. Fig-
ure 5(c) shows similar results for the large news site. When
we do not use shingles-filtered support, the precision at the
top 200 drops to 40%. Shingles-based filtering reduces the
list of likely rules by roughly 70%. Most of the filtered rules
turned out to be indeed invalid.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

top k rules

log#4
log#3
log#2
log#1

(a) Forum, 4 different logs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

pr
ec

is
io

n

top k rules

With Size Matching
No Size Matching

(b) Academic site, impact of size match-
ing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

P
re

ci
si

on

top k rules

Without shingles-filtered support
With shingles-filtered support

(c) Large news site, impact of shingle
matching, 4 shingles used.

Figure 5: Precision@k of likely dust rules detected in DustBuster’s first two phases without fetching actual
content.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ec

is
io

n

number of validations

log#4
log#3
log#2
log#1

(a) Forum, 4 different logs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ec

is
io

n

number of validations

log#4
log#3
log#2
log#1

(b) Academic, 4 different logs.

Figure 6: Precision among rules that DustBuster attempted to validate vs. number of validations used (N).

Validation. We now study how many validations are
needed in order to declare that a rule is valid; that is, we
study what the parameter N in Figure 4 should be set to. To
this end, we run DustBuster with values of N ranging from 0
to 100, and check which percentage of the rules found to be
valid with each value of N are also found valid when N=100.
The results from conducting this experiment on the likely
dust rules found in 4 logs from the forum site and 4 from
the academic site are shown in Figure 6 (similar results were
obtained for the other sites). In all these experiments, 100%
precision is reached after 40 validations. Moreover, results
obtained in different logs are consistent with each other.

At the end of the validation phase, DustBuster outputs a
list of valid substring substitution rules without redundan-
cies. Table 3 shows the number of valid rules detected on
each of the sites. The list of 7 rules found in one of the logs
in the forum site is depicted in Figure 7 below. These 7
rules or refinements thereof appear in the outputs produced
using each of the studied logs. Some studied logs include 1–
3 additional rules, which are insignificant (have very small
support). Similar consistency is observed in the academic
site outputs. We conclude that the most significant dust
rules can be adequately detected using a fairly small log
with roughly 15,000 unique URLs.

Coverage. We now turn our attention to coverage, or the
percentage of duplicate URLs discovered by DustBuster, in
the academic site. When multiple URLs have the same doc-
ument sketch, all but one of them are considered duplicates.
In order to study the coverage achieved by DustBuster, we
use two different logs from the same site: a training log and
a test log. We run DustBuster on the training log in order to

Web Site Valid Rules Detected
Forum Site 7
Academic Site 52
Large News Site 62
Small News Site 5

Table 3: The number of rules found to be valid.

1 “.co.il/story_” → “.co.il/story?id=”
2 “\&LastView=\&Close=” → “”
3 “.php3?” → “?”
4 “.il/story_” → “.il/story.php3?id=”
5 “\&NewOnly=1\&tvqz=2” → “\&NewOnly=1”
6 “.co.il/thread_” → “.co.il/thread?rep=”
7 “http://www.../story_” → “http://www.../story?id=”

Figure 7: The valid rules detected in the forum site.

learn dust rules and we then apply these rules on the test
log. We count what fraction of the duplicates in the test log
are covered by the detected dust rules. We detect duplicates
in the test log by fetching the contents of all of its URLs and
computing their document sketches. Figure 8 classifies these
duplicates. As the figure shows, 47.1% of the duplicates in
the test log are eliminated by DustBuster’s canonization al-
gorithm using rules discovered on another log. The rest
of the dust can be divided among several categories: (1)
duplicate images and icons; (2) replicated documents (e.g.,
papers co-authored by multiple faculty members and whose
copies appear on each of their web pages); (3) “soft errors”,

i.e., pages with no meaningful content, such as error message
pages, empty search results pages, etc.

Figure 8: dust classification, academic.

Savings in crawl size. The next measure we use to eval-
uate the effectiveness of the method is the discovered redun-
dancy, i.e., the percent of the URLs we can avoid fetching
in a crawl by using the dust rules to canonize the URLs.
To this end, we performed a full crawl of the academic site,
and recorded in a list all the URLs fetched. We performed
canonization on this list using dust rules learned from the
crawl, and counted the number of unique URLs before (Ub)
and after (Ua) canonization. The discovered redundancy is

then given by Ub−Ua

Ub

. We found this redundancy to be 18%

(see Table 4), meaning that the crawl could have been re-
duced by that amount. In the two news sites, the dust rules
were learned from the crawl logs and we measured the re-
duction that can be achieved in the next crawl. By setting a
slightly more relaxed refutation threshold (ǫ = 10%), we ob-
tained reductions of 26% and 6%, respectively. In the case
of the forum site, we used four logs to detect dust rules,
and used these rules to reduce a fifth log. The reduction
achieved in this case was 4.7%.

Web Site Reduction Achieved
Academic Site 18%
Small News Site 26%
Large News Site 6%
Forum Site(using logs) 4.7%

Table 4: Reductions in crawl size.

7. CONCLUSIONS
We have introduced the problem of mining site-specific

dust rules. Knowing about such rules can be very useful
for search engines: It can reduce crawling overhead by up
to 26% and thus increase crawl efficiency. It can also reduce
indexing overhead. Moreover, knowledge of dust rules is
essential for canonizing URL names, and canonical names
are very important for statistical analysis of URL popularity
based on PageRank or traffic. We presented DustBuster, an
algorithm for mining dust very effectively from a URL list.
The URL list can either be obtained from a web server log
or a crawl of the site.

Acknowledgments. We thank Tal Cohen and the forum
site team, and Greg Pendler and the http://ee.technion.

ac.il admins for providing us with access to web logs and

for technical assistance. We thank Israel Cidon, Yoram
Moses, and Avigdor Gal for their insightful input.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. 20th VLDB, pages 487–499,
1994.

[2] Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not crawl in
the DUST: different URLs with similar text. Technical
Report CCIT Report #601, Dept. Electrical Engineering,
Technion, 2006.

[3] K. Bharat and A. Z. Broder. Mirror, Mirror on the Web: A
Study of Host Pairs with Replicated Content. Computer
Networks, 31(11–16):1579–1590, 1999.

[4] K. Bharat, A. Z. Broder, J. Dean, and M. R. Henzinger. A
comparison of techniques to find mirrored hosts on the
WWW. IEEE Data Engin. Bull., 23(4):21–26, 2000.

[5] M. Bognar. A survey on abstract rewriting. Available
online at:
www.di.ubi.pt/~desousa/1998-1999/logica/mb.ps, 1995.

[6] S. Brin, J. Davis, and H. Garcia-Molina. Copy Detection
Mechanisms for Digital Documents. In Proc. 14th
SIGMOD, pages 398–409, 1995.

[7] A. Z. Broder, S. C. Glassman, and M. S. Manasse.
Syntactic clustering of the web. In Proc. 6th WWW, pages
1157–1166, 1997.

[8] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding
replicated web collections. In Proc. 19th SIGMOD, pages
355–366, 2000.

[9] E. Di Iorio, M. Diligenti, M. Gori, M. Maggini, and
A. Pucci. Detecting Near-replicas on the Web by Content
and Hyperlink Analysis. In Proc. 11th WWW, 2003.

[10] F. Douglis, A. Feldman, B. Krishnamurthy, and J. Mogul.
Rate of change and other metrics: a live study of the world
wide web. In Proc. 1st USITS, 1997.

[11] H. Garcia-Molina, L. Gravano, and N. Shivakumar. dscam:
Finding document copies across multiple databases. In
Proc. 4th PDIS, pages 68–79, 1996.

[12] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[13] Google Inc. Google sitemaps.
http://sitemaps.google.com.

[14] D. Gusfield. Algorithms on Strings, Trees and Sequences:
Computer Science and COmputational Biology. Cambridge
University Press, 1997.

[15] T. C. Hoad and J. Zobel. Methods for identifying versioned
and plagiarized documents. J. Amer. Soc. Infor. Sci. Tech.,
54(3):203–215, 2003.

[16] N. Jain, M. Dahlin, and R. Tewari. Using bloom filters to
refine web search results. In Proc. 7th WebDB, pages
25–30, 2005.

[17] T. Kelly and J. C. Mogul. Aliasing on the world wide web:
prevalence and performance implications. In Proc. 11th
WWW, pages 281–292, 2002.

[18] S. J. Kim, H. S. Jeong, and S. H. Lee. Reliable evaluations
of URL normalization. In Proc. 4th ICCSA, pages 609–617,
2006.

[19] H. Liang. A URL-String-Based Algorithm for Finding
WWW Mirror Host. Master’s thesis, Auburn University,
2001.

[20] F. McCown and M. L. Nelson. Evaluation of crawling
policies for a web-repository crawler. In Proc. 17th
HYPERTEXT, pages 157–168, 2006.

[21] U. Schonfeld, Z. Bar-Yossef, and I. Keidar. Do not crawl in
the DUST: different URLs with similar text. In Proc. 15th
WWW, pages 1015–1016, 2006.

[22] N. Shivakumar and H. Garcia-Molina. Finding
Near-Replicas of Documents and Servers on the Web. In
Proc. 1st WebDB, pages 204–212, 1998.

