
ACM SIGACT News Distributed Computing Column 23

Sergio Rajsbaum∗

Abstract

The Distributed Computing Column covers the theory of systems that are composed of a number of
interacting computing elements. These include problems of communication and networking, databases,
distributed shared memory, multiprocessor architectures, operating systems, verification, Internet, and
the Web. This issue consists of:

• “Want Scalable Computing? Speculate!” by Idit Keidar and Assaf Schuster

• “Security and Composition of Cryptographic Protocols: A Tutorial (Part I)” by Ran Canetti.

Many thanks to Idit, Assaf and Ran for their contributions to this issue.
I would like to bring your attention to a new book by a distinguished member of our distributed

computing community, Gadi Taubenfeld: Synchronization Algorithms and Concurrent Programming.
This is the first book to give a complete and coherent view of all aspects of synchronization algorithms
in the context of concurrent programming. Dozens of algorithms are presented and their performance
is analyzed according to precise complexity measures. For more details please go to: http://www.
faculty.idc.ac.il/gadi/book.htm

Request for Collaborations: Please send me any suggestions for material I should be including in this
column, including news and communications, open problems, and authors willing to write a guest column
or to review an event related to theory of distributed computing.

Want Scalable Computing? Speculate!

Idit Keidar 1 and Assaf Schuster 2

Abstract

Distributed computing is currently undergoing a paradigm shift, towards large-scale dynamic
systems, where thousands of nodes collaboratively solve computational tasks. Examples of
such emerging systems include autonomous sensor networks, data-grids, wireless mesh net-
work (WMN) infrastructures, and more. We argue that speculative computations will be in-
strumental to successfully performing meaningful computations in such systems. Moreover,
solutions deployed in such platforms will need to be as local as possible.

∗Instituto de Matemáticas, UNAM. Ciudad Universitaria, Mexico City, D.F. 04510. rajsbaum@math.unam.mx.
1EE Department, Technion, Haifa 32000, Israel. idish@ee.technion.ac.il.
2CS Department, Technion, Haifa 32000, Israel. assaf@cs.technion.ac.il.

1

1 Introduction

Emerging distributed computing environments

Distributed systems of enormous scale have become a reality in recent years: Peer-to-peer file-sharing sys-
tems such as eMule [11] regularly report over a million online nodes. Grid computing systems like Con-
dor [6] report harnessing tens of thousands of machines world-wide, sometimes thousands for the same
application [29]. Publish-subscribe infrastructures such as Gryphon [27] and QuickSilver [26] can employ
tens of thousands of machines to disseminate varied information to a large population of users with indi-
vidual preferences, e.g., trading data to stock brokers, or update propagation in large-scale on-line servers.
Wireless sensor networks are expected to span tens of thousands of nodes in years to come [8, 12]; testbeds
of close to a thousand nodes are already deployed today [9, 7].

Nevertheless, in currently deployed large-scale distributed systems, nodes seldom collaboratively per-
form distributed computations or attempt to reach common decisions. The functionality of peer-to-peer and
publish-subscribe systems is typically restricted to file searching and content distribution. Their topology
does not adapt to global considerations, like network partitions or high traffic load at certain hot spots.
Moreover, topic clustering, which has a crucial impact on the performance of publish-subscribe systems,
is usually conducted offline, based on expected subscription patterns rather than continuously measured
ones [30]. Computation grids serve mostly “embarrassingly parallel” computations, where there is virtually
no interaction among the nodes. And current-day sensor networks typically only disseminate information
(sometimes in aggregate form) to some central location [23, 12].

But this paradigm can be expected to change, as large scale systems performing non-trivial distributed
computations will emerge. Simple file sharing applications are expected to evolve into large data-grids, in
which thousands of nodes collaborate to provide complex information retrieval and data mining services [10,
28, 13]. As publish-subscribe systems will be used for larger and more diverse applications, they will need
to optimize their topology and topic clustering adaptively.

Similar demands will arise in emerging wireless computing platforms, such as mobile ad hoc networks
(MANETs), wireless mesh networks (WMNs), and sensor networks. In MANETs, a collection of mobile de-
vices self-organize in order to allow communication among them in the absence of an infrastructure. Solv-
ing graph problems, like minimum vertex cover [15], is important for supporting efficient communication in
such networks. In contrast to MANETs, a WMN provides an infrastructure for supporting communication
among wireless devices, as well as from such devices to stationary nodes on the Internet. Such networks are
expected to be deployed in city-wide scenarios, where potentially thousands of wireless routers will need
to collectively engage in topology control, while dynamically adapting to varying loads. The WMN infras-
tructure will also need to dynamically assign Internet gateways to mobile devices that travel through the
mesh. Since mobile devices are expected to run real-time rich-media applications, gateway assignment will
need to maximize the quality-of-service (QoS). Hence, such assignments ought to take into account local
considerations like proximity to the gateway, as well as global ones like load, since both considerations can
impact the QoS. Optimizing a cost comprised of distance and load is called load-distance balancing [5]. For
example, when the load (user population) and the set of servers (or gateways) are evenly divided across the
network, the optimal cost is attained when each user is assigned to its nearest server. But when one area of
the network is highly congested, a lower cost can be incurred by assigning some users from the loaded area
to lightly-loaded remote servers.

Another example arises in sensor networks, which are expected to autonomously engage in complex
decision making in a variety of application domains, ranging from detection of over-heating in data-centers,
through disaster alerts during earthquakes, to biological habitat monitoring [24]. The nodes in such a net-
work will need to perform a distributed computation in order to cooperatively compute some function of
their inputs, such as testing whether the number of sensors reporting a problem exceeds a certain threshold,

2

or whether the average read exceeds another threshold. More generally, the nodes may need to compute
some aggregation function of their inputs, e.g., majority vote, AND/OR, maximum, minimum, or average.

The need for local computing

Obviously, centralized solutions are not appropriate for such settings, for reasons such as load, communica-
tion costs, delays, and fault-tolerance. At the same time, traditional distributed computing solutions, which
require global agreement or synchronization before producing an output, are also infeasible. In particular,
in dynamic settings, where the protocol needs to be repeatedly invoked, each invocation entails global com-
munication, inducing high latency and load. In fact, the latency for synchronization over a large WAN, as
found in peer-to-peer systems and grids, can be so large that by the time synchronization is finally done, the
network and data may well have already changed. Frequent changes may also lead to computing based on
inconsistent snapshots of the system state. Moreover, synchronizing invocations that are initiated at multi-
ple locations typically relies on a common sequencer (leader) [20], which by itself is difficult and costly to
maintain.

Then how can one cope with the challenge of performing non-trivial computations in large-scale dis-
tributed systems? Locality is the key– there is a need for local solutions, whereby nodes make local decisions
based on communication (or synchronization) with some proximate nodes, rather than the entire network.

Various different definitions of locality appear in the literature. But in general, a solution is typically
said to be local if its costs (usually running time and communication) do not depend on the network size.
A local solution thus has unlimited scalability. It allows for fast computing, low overhead, and low power
consumption.

Speculation is the key to maximum locality

Unfortunately, although locality is clearly desirable, it is not always attainable. Virtually every interesting
problem described above has some instances (perhaps pathological ones) that require global communication
in order to reach the correct solution, even if most of its instances are amenable to local computation.
Consider, for example, load-distance balancing in WMNs [5]. If the user load is evenly distributed across
the entire WMN, then the optimal assignment, namely, assigning each user to its nearest gateway, can be
computed locally by each router. But if load in one area of the network may be arbitrarily high, then the
optimal solution may involve assigning users from this area to arbitrarily distant gateways, which may even
involve communication with the entire network [5].

Locality has been considered in the context of distributed graph constructions, e.g., coloring [21, 25] and
minimum vertex cover [15, 22], which are useful in MANETs. Such problems were mostly shown impossi-
ble to compute locally, (i.e., in constant time), except when limited to simplistic problems, approximations,
or restricted graph models [21, 25, 16]3. Another example arises in computing aggregation functions, such
as majority voting, in sensor networks (or other large graphs) [4, 3, 2]. If the vote is a “landslide victory”,
e.g., when very few or almost all sensors report of a problem, then this fact can be observed in every neigh-
borhood of the network. But in instances where the votes are at a near-tie, one must inevitably communicate
with all nodes to discover the correct solution (if indeed an accurate solution is required).

Fortunately, in many real-life applications, practical instances are highly amenable to local computing [4,
16]. Furthermore, in many important areas, perfect precision is not essential. Consider, for instance, a query
in a data mining application, where the top two results have approximately the same score. In such scenarios,
it is often immaterial which of the two is returned.

3These local solutions typically operate in O(log∗ n) time for a network of size n, which for practical purposes, can be seen as
constant.

3

A desirable solution, therefore, should be “as local as possible” for each problem instance: In instances
amenable to local computations, e.g., evenly distributed load in the WMN example, the system should
converge to the correct result promptly. Moreover, it should become quiescent (stop sending messages)
upon computing the correct result. In instances where reaching the correct solution requires communication
with more distant nodes, the system’s running times and message costs will inevitably be longer, but again,
it is desirable that they be proportional to the distance that needs to be traversed in each instance.

Note, however, that each node by itself cannot deduce solely based upon local communication whether
it is in a problem instance that can be solved locally or not. For example, a WMN node in a lightly-loaded
area of the network cannot know whether some distant node will need to offload users to it. Therefore, in
order to be “as local as possible”, a solution must be speculative. That is, it must optimistically output the
result that currently appears correct, even if this result may be later over-ruled because of messages that later
arrive from distant nodes. In most instances, the computation will complete (and the system will become
quiescent) a long time before any individual node will know that the computation is “done”.

Fortunately, in the domains where such computations are applicable, it is not important for nodes to
know when a computation is “done”. This is because such platforms are constantly changing; that is, their
computations are never “done”. For example, inputs (sensor readings) in a sensor network change over time.
Hence, the system’s output, which is an aggregation function computed over these inputs, must also change.
Regardless of whether speculation is employed, the user can never know whether the output is about to
change, due to some recent input changes that are not yet reflected. The system can only ensure that once
input changes cease, the output will eventually be correct. Using speculation provides the same semantics,
but substantially expedites convergence in the majority of problem instances [2, 4]. At the same time, one
should speculate responsibly: if the current output was obtained based on communication with 100 nodes,
the algorithm shouldn’t speculatively produce a different output after communicating with only 10 nodes.

Such dynamic behavior occurs in various large-scale settings: In data mining applications, the set of
data items changes over time, as items are added, deleted, or modified. In topology control applications,
nodes and communication links fail and get repaired. In WMNs, users join, depart, and move. Hence, spec-
ulative algorithms are useful in all of these platforms. Such algorithms can also be composed– for example,
speculative majority voting can be used as a building block for a speculative data mining application [14].

To summarize, speculative computing is a promising approach for designing large-scale distributed sys-
tems. It is applicable to systems that satisfy the following conditions:

1. Global synchronization is prohibitive. That is, progress cannot be contingent on communication span-
ning the entire network.

2. Many problem instances are amenable to local solutions.

3. Eventual correctness is acceptable. That is, since the system is constantly changing, there isn’t neces-
sarily a meaningful notion of a “correct answer” at every point in time. But when the system stabilizes
for “long enough”, the output should converge to the correct one in the final configuration.

What does “as local as possible” mean?

The discussion above suggests that some problem instances are easier than others, or rather more amenable
to local solutions. For some problems, one can intuitively recognize problem parameters that impact this
amenability, for instance, the load discrepancies in load-distance balancing in WMNs, and the vote ratio in
majority voting. Note that these problem parameters are independent of the system size– the same vote ratio
can occur in a graph of any size. Suggested “local” solutions to these problems have indeed empirically
exhibited a clear relationship between such parameters and the costs [4, 5]. However, how can this notion
be formally defined?

4

The first formal treatment of “instance-based locality” was introduced by Kutten and Peleg in the con-
text of local fault mending [18]. They linked the cost of a correction algorithm (invoked following faults)
to the number of faults in an instance. Similar ideas were subsequently used in various studies of fault-
tolerance [19, 17, 1]. In this context, the number of faults is the problem parameter that determines its
amenability to local computation.

However, the problem parameter that renders instances locally computable is not always intuitive to
pinpoint. Consider, for example, an algorithm computing any given aggregation function on a large graph.
What is the problem parameter that governs its running time? In recent work with Birk et al. [3], we
provide an answer to this question. We define a new formal metric on problem instances, veracity radius
(VR), which captures the inherent possibility to compute them locally. It is defined using the notion of an
r-neighborhood of a node v, which is the set of all nodes within a radius r from v. Intuitively, if for all
r-neighborhoods with r ≥ r0 the aggregation function yields the same value, then there is apparently no
need for a node to communicate with nodes that are farther than r0 hops away from it, irrespective of the
graph size. The VR is then the minimum radius r0 so that in all neighborhoods of radius r ≥ r0, the value
of the aggregation function is the same as for the entire graph4. For example, if the aggregation function
is majority voting, and the VR is 3, then the same value “wins” the vote in every 3-neighborhood in the
graph. This value is clearly the majority over the entire graph, and every node can reach the globally correct
result by communicating only with its 3-neighborhood. It is important to note that the nodes do not know
the instance’s VR, and hence cannot know that the outcome observed in the 3-neighborhood is the right one.
However, a speculative algorithm can output the correct result once it gathers information within a radius of
3, and never change its output value thereafter.

Indeed, VR yields a tight lower bound on output-stabilization time, i.e., the time until all nodes fix
their outputs to the value of the aggregation function, as well as an asymptotically tight lower bound on
quiescence time [3]. Note that the output stabilization bound is for speculative algorithms: it is only seen
by an external observer, whereas a node that runs the algorithm cannot know when it is reached. The above
lower bounds are proven for input classes rather than individual instances. That is, for every given value r
of the VR, no algorithm can achieve output stabilization or quiescence times shorter than r on all problem
instances with a VR of r. In this context, the VR is the problem parameter that defines amenability to local
computation. Empirical evaluation further shows that the performance of a number of efficient aggregation
algorithms [31, 4, 14, 3] is effectively explained by the VR metric.

Although the VR metric is originally defined for a single problem instance, it has also been extended to
deal with on-going aggregation over dynamically changing inputs [2]. This extension examines the VRs of
all instances in a sliding window of input samples. As in the static case, this metric yields a lower bound on
quiescence and output stabilization, and an algorithm whose performance is within a constant factor of the
lower bound [2].

Discussion and additional research directions

This collection of examples naturally raises the question of whether the notion of “amenability to local
computation” can be further generalized. An appealing way to try and generalize the notion of locality is
by linking the per-instance performance of an algorithm directly to the performance of the optimal solution
for this instance. For example, it would be desirable for an algorithm to perform within a factor of the best
possible algorithm on every problem instance.

Unfortunately, it is only possible to prove such results in restricted special cases (e.g., load-distance
balancing when restricted to a line instead of a plane [5]). There is no general way to do so, since it is often

4For practical purposes, the formal VR metric does not consider exact neighborhoods, but rather allows for some slack in the
subgraphs over which the values of the aggregation function are examined [3].

5

not possible to design a single algorithm that is optimal for all instances. Consider again the question of
aggregation on a graph. For every given (fixed) problem instance I , (that is, assignment I of input values to
nodes), it is possible to design an algorithm as follows: each node locally checks whether its input matches
its input in I . If yes, it speculatively decides on the value of the aggregation function on I , and does
not send any messages. Otherwise, it initiates some well-known aggregation algorithm. If a node hears a
message from a neighbor, it joins the well-known algorithm. This algorithm reaches quiescence and output
stabilization within 0 time on instance I , which is clearly impossible for a single algorithm to achieve on all
instances.

In conclusion, it remains a major challenge to find a general notion of “amenability to local computation”
that will capture a wide range of distributed computations, including aggregation problems, fault mending,
load-distance balancing, topic clustering in publish-subscribe systems, data mining, and so on. While such a
general notion is still absent, appropriate metrics– and efficient speculative algorithms– for specific problems
should continue to be sought. Of special interest will be on-going algorithms for dynamically changing
systems, and algorithms providing approximate results rather than perfectly accurate ones.

Acknowledgments

We are thankful to Danny Dolev and Sergio Rajsbaum for helpful comments.

References
[1] Y. Azar, S. Kutten, and B. Patt-Shamir. Distributed error confinement. In ACM Symp. on Prin. of Dist. Computing

(PODC), July 2003.

[2] Y. Birk, I. Keidar, L. Liss, and A. Schuster. Efficient dynamic aggregation. In Int’l Symp. on DIStributed
Computing (DISC), Sept. 2006.

[3] Y. Birk, I. Keidar, L. Liss, A. Schuster, and R. Wolff. Veracity radius - capturing the locality of distributed
computations. In ACM Symp. on Prin. of Dist. Computing (PODC), July 2006.

[4] Y. Birk, L. Liss, A. Schuster, and R. Wolff. A local algorithm for ad hoc majority voting via charge fusion. In
Int’l Symp. on DIStributed Computing (DISC), Oct. 2004.

[5] E. Bortnikov, I. Cidon, and I. Keidar. Load-distance balancing in large networks. Technical Report 587, Technion
Department of Electrical Engineering, May 2006.

[6] Condor. High throughput computing. http://www.cs.wisc.edu/condor/.

[7] D. Culler. Largest tiny network yet. http://webs.cs.berkeley.edu/800demo/.

[8] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design of a wireless sensor network platform for
detecting rare, random, and ephemeral events. In 4th Int’l Conf. on Information Processing in Sensor Networks
(IPSN’05), Apr. 2005.

[9] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K. Whitehouse, and D. Culler. Trio: Enabling
sustainable and scalable outdoor wireless sensor network deployments. In 5th Int’l Conf. on Information Pro-
cessing in Sensor Networks (IPSN) Special track on Platform Tools and Design Methods for Network Embedded
Sensors (SPOTS), Apr. 2006.

[10] EGEE. Enabling grids for e-science. http://public.eu-egee.org/.

[11] eMule Inc. emule. http://www.emule-project.net/.

[12] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scalable coordination in sensor
networks. In ACM/IEEE Int’l Conf. on Mobile Computing and Networking, pages 263–270, Aug. 1999.

6

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In ACM Symposium on Operating Systems
Principles (SOSP), pages 29–43, Oct. 2003.

[14] D. Krivitski, A. Schuster, and R. Wolff. A local facility location algorithm for sensor networks. In Int’l Conf. on
Distributed Computing in Sensor Systems (DCOSS), June 2006.

[15] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally! In ACM Symp. on Prin. of Dist.
Computing (PODC), July 2004.

[16] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the locality of bounded growth. In ACM Symp. on Prin. of Dist.
Computing (PODC), July 2005.

[17] S. Kutten and B. Patt-Shamir. Time-adaptive self-stabilization. In ACM Symp. on Prin. of Dist. Computing
(PODC), pages 149–158, Aug. 1997.

[18] S. Kutten and D. Peleg. Fault-local distributed mending. In ACM Symp. on Prin. of Dist. Computing (PODC),
Aug. 1995.

[19] S. Kutten and D. Peleg. Tight fault-locality. In IEEE Symp. on Foundations of Computer Science (FOCS), Oct.
1995.

[20] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998.

[21] N. Linial. Locality in distributed graph algorithms. SIAM J. Computing, 21:193–201, 1992.

[22] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing,
15(4):1036–1055, Nov. 1986.

[23] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag: a tiny aggregation service for ad-hoc sensor networks.
In 5th Symp. on Operating Systems Design and Implementation (OSDI), Dec. 2002.

[24] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless sensor networks for habitat monitoring. In
ACM Workshop on Sensor Networks and Applications, Sept. 2002.

[25] M. Naor and L. Stockmeyer. What can be computed locally? ACM Symp. on Theory of Computing (STOC),
pages 184–193, 1993.

[26] K. Ostrowski and K. Birman. Extensible web services architecture for notification in large-scale systems. In
IEEE International Conference on Web Services (ICWS), 2006. To appear.

[27] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, and B. Mukherjee. Gryphon: An information flow
based approach to message brokering. In Fast Abstract in Int’l Symposium on Software Reliability Engineering,
Nov. 1998.

[28] TeraGrid. Teragrid project. http://www.teragrid.org/.

[29] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: The Condor experience. Concur-
rency and Computation: Practice and Experience, 17(2–4):323–356, Feb.–Apr. 2005.

[30] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky. Hierarchical clustering of message flows in a multicast data
dissemination system. In Parallel and Dist. Comp. and Systems (PDCS), Nov. 2005.

[31] R. Wolff and A. Schuster. Association rule mining in peer-to-peer systems. In IEEE Int’l Conf. on Data Mining
(ICDM), Nov. 2003.

7

Security and Composition of Cryptographic Protocols: A Tutorial
(Part I)

Ran Canetti 5

Abstract

What does it mean for a cryptographic protocol to be “secure”? Capturing the security require-
ments of cryptographic tasks in a meaningful way is a slippery business: On the one hand, we
want security criteria that prevent “all potential attacks” against a protocol; on the other hand,
we want our criteria not to be overly restrictive and accept “reasonable protocols”. One of the
main reasons for flaws is the often unexpected interactions among different protocol instances
that run alongside each other in a composite system.

This tutorial studies a general methodology for defining security of cryptographic protocols.
The methodology, often dubbed the “ideal model paradigm”, allows for defining the security
requirements of a large variety of cryptographic tasks in a unified and natural way. We first
review more basic formulations that capture security in isolation from other protocol instances.
Next we address the security problems associated with protocol composition, and review for-
mulations that guarantee security even in composite systems.

1 Introduction

Cryptographic protocols, namely distributed algorithms that aim to guarantee some “security properties” in
face of adversarial behavior, have become an integral part of our society and everyday lives. Indeed, we have
grown accustomed to relying on the ubiquity and functionality of computer systems, whereas these systems
make crucial use of cryptographic protocols to guarantee their “expected functionality.” Furthermore, the
security properties of cryptographic protocols and the functionality expected from applications that use them
is being used by lawmakers to modify the ground rules of our society. It is thus crucial that we have sound
understanding of how to specify, develop, and analyze cryptographic protocols.

The need for sound understanding is highlighted by the empirical fact that cryptographic protocols have
been notoriously “hard to get right,” with subtle flaws in protocols being discovered long after development,
and in some cases even after deployment and standardization. In fact, even specifying the security properties
required from protocols for a given task in a rigorous yet intuitively meaningful way has proved to be elusive.

The goal of this tutorial is to introduce the reader to the problems associated with formulating and
asserting security properties of protocols, and to present a general methodology for modeling protocols
and asserting their security properties. The tutorial attempts to be accessible to cryptographers and non-
cryptographers alike. In particular, for the most part it assumes very little prior knowledge in cryptography.
Also, while the main focus is on the foundational aspects of specifying security, the text attempts to be
accessible and useful to practitioners as well as theoreticians. Indeed, the considered security concerns are
realistic ones, and the end goal is to enable analyzing the security of real-world protocols and systems.

5IBM T.J. Watson Research Center, canetti@watson.ibm.com. Supported by NSF CyberTrust Grant #0430450.

8

Cryptographic tasks. In general, a cryptographic task, or a protocol problem, involves a set parties that
wish to perform some joint computational task based on their respective local inputs, while guaranteeing
some “security properties” in the face of various types of “adversarial behavior” by different components of
the system and its users.

To get some feel for the range of issues and concerns involved, we briefly review some of the common-
place cryptographic tasks considered in the literature. Let us start with the very basic goal of guaranteeing
secure communication between parties, in face of an external adversarial entity that has control over the
communication network. Perhaps a first concern here is the authenticity of messages, namely finding out
whether a received message indeed originates from its claimed sender, and whether it was modified en route.
Another central concern is secrecy, namely guaranteeing that the adversary learns as little as possible on the
communicated information. Additional concerns include anonymity, namely the ability to hide the identities
of the communicating parties, and repudiation, namely the ability to prove to a third party that the communi-
cation took place. Salient tasks include key exchange, where two parties wish to agree on a random value
(a key) that is known only to them; encryption, and digital signatures.

Another set of tasks, often called two-party tasks, involve two parties who are mutually distrustful
but still wish to perform some joint computation. Here the only adversarial behavior under consideration
is typically that of the parties themselves, and the communication medium is treated as trusted. Two main
concerns are correctness, namely guaranteeing the validity of the local outputs as a function of the local
inputs, and privacy, namely protecting the secrecy of local data as much as possible. This setting is discussed
at length in the next section, where other concerns are mentioned. One such task is zero-knowledge
(as in [GMRa89]), where one party wishes to convince the other in the correctness of some statement,
without disclosing any additional information on top of the mere fact that the statement is correct. Another
example is commitment, where a party C can commit to a secret value x, by providing some “commitment
information” c that keeps x secret, while guaranteeing to a verifier that C can later come up with only one
value x that’s consistent with c. Another example is coin-tossing (as in, say, [B82]), namely the task where
two parties want to agree on a bit, or a sequence of bits, that are taken from some predefined distribution,
say the uniform distribution. This should hold even if one of the parties is trying to bias the output towards
some value. (In fact, as discussed in later sections, coin-tossing involves some additional, implicit secrecy
concerns regarding the public output. This is a good example of the subtleties involved in security modeling.)
In addition to being natural tasks on their own, protocols for these tasks are often used as building blocks
within protocols for obtaining more complex tasks.

A more general class is that of multi-party tasks where parties wish to perform some joint computation
based on their private local data. Here, in addition to plain correctness and secrecy, there are other typically
other task-specific concerns. We briefly mention some examples: Electronic voting, in a variety of contexts,
require careful balancing among correctness, public accountability, privacy and deniability. Electronic-
commerce applications such as on-line auctions, on line trading and stock markets, and plain on-line
shopping require fairness in completion of the transaction, as well as the ability to resolve disputes in an
acceptable way. On-line gambling tasks require, in addition, the ability to guarantee fair distribution of the
outcomes. Privacy-preserving computations on databases introduce a host of additional concerns and
goals, such as providing statistical information while preserving the privacy of individual entries, obtaining
data while hiding from the database which data was obtained, and answering queries that depend on several
databases without leaking additional information in the process. Secure distributed depositories, either
via a centrally-managed distributed system or in an open, peer-to-peer fashion, involve a host of additional
secrecy, anonymity, availability and integrity concerns.

9

Defining security of protocols. There is vast literature describing protocols aimed at solving the problems
mentioned above, and many others, in a variety of settings. Out of this literature, let us mention only the
works of Yao [Y86], and Goldreich, Micali and Wigderson [GMW87], which give a mechanical way to
generate protocols for solving practically any multi-party cryptographic protocol problem “in a secure way”,
assuming authenticated communication. (These constructions do not cover all tasks; for instance the do not
address the important problem of obtaining authenticated communication. Still, they are very general.)

But, what does it mean for a cryptographic protocol to solve a given protocol problem, or a cryptographic
task, “in a secure way”? How can we formalize the relevant security requirements in a way that makes
mathematical sense, matches our intuition, and at the same time can also be met by actual protocols? This
turns out to be a tricky business.

Initially, definitions of security were problem-specific. That is, researchers came up with ad-hoc mod-
eling of protocols and a set of requirements that seems to match the intuitive perception of the problem at
hand. In addition, definitions were often tailored to capture the properties of specific solutions or protocols.
However, as pointed out already in [Y82A], we would like to have a general framework for specifying the
security properties of different tasks. A general framework allows for more uniform and methodological
specification of security properties. Such a specification methodology may provide better understanding of
requirements and their formalization. It is also likely to result in fewer flaws in formulating the security
requirements of tasks.

There is also another argument in favor of having a general analytical framework. Traditionally, notions
of security tend to be very sensitive to the specific “execution environment” in which the protocol is running,
and in particular to the other protocols running in the system at the same time. Thus, a set of requirements
that seem appropriate in one setting may easily become completely insufficient when the setting is changed
only slightly. This is a serious drawback when trying to build secure systems that make use of crypto-
graphic protocols. Here a general analytical framework with a uniform methodology of specifying security
requirements can be very useful: It allows formulating statements such as “Any protocol that realizes some
task can be used in conjunction with any protocol that makes use of this task, without bad interactions,”
or “Protocols that realize this task continue to realize it in any execution environment, regardless of what
other protocols run in the system.” Such security-preserving composition theorems are essential for building
security protocols in a systematic way. They can be meaningful only in the context of a general framework
for representing cryptographic protocols.

Several general frameworks for representing cryptographic protocols and specifying the security require-
ments of tasks were developed over the years, e.g. [GL90, MR91, B91, BCG93, PW94, C00, HM00, DM00,
PW00, MRST01, C01]. These frameworks differ greatly in their expressibility (i.e., the range of security
concerns and tasks that can be captured), in the computational models addressed, and in many significant
technical details. They also support different types of security-preserving composition theorems. Still, all
of these frameworks follow in one way or another the same underlying definitional approach, called the
trusted-party paradigm.

This tutorial. This tutorial concentrates on the trusted-party definitional paradigm and the security it pro-
vides. Special attention is given to the importance of security-preserving composition in cryptographic
protocols, and to the composability properties of this paradigm in particular. We also provide some compar-
isons with other (non-cryptographic) general approaches for modeling distributed protocols and analyzing
their properties. For sake of concreteness, we concentrate on two specific formalizations of the trusted-party
paradigm. The first one, based on [C00], is somewhat simpler and provides a rather basic notion of security,
with some limited form of security-preserving composition. The second one is that of [C01], called univer-
sally composable (UC) security. This framework is more expressive and provides stronger composability

10

guarantees, at the price of more stringent requirements and a somewhat more complex formalism.
Throughout, the presentation attempts to balance readability and rigor. In particular, we try to keep

the presentation as informal as possible, while providing enough details so as to allow for unambiguous
extraction of a formal model. We also try to highlight the salient points out of the many inevitable details.
We also try to introduce the definition in a gradual way, at the price of a somewhat more lengthy presentation.

This is the first part of a two-part tutorial. This part concentrates on the basic notion of security, and
its formalization for the “stand-alone” case where only a single execution of a protocol is considered, in
isolation from other executions. The second part concentrates on the concerns that arise from running
multiple protocols in the same system. It also includes a mini-survey of definitions and formalizations of
secure protocols.

Section 2 presents and motivates the general paradigm used to define security of protocols. Section 3
presents a simplified formalization of the general paradigm. While considerably restricted in its expressibil-
ity, this formulation allows concentrating on the main ideas without much of the complexity of the general
case. Section 4 presents a more general formulation, while still concentrating on the stand-alone case. It
also briefly discusses some basic general feasibility results. Many relevant works are mentioned as we go
along. However, due to lack of space, a more organized survey or related work is deferred to the second part
of this tutorial.

2 The trusted-party paradigm

This section motivates and sketches the trusted-party definitional paradigm, and highlights some of its main
advantages. More detailed descriptions of actual definitions are left to subsequent sections.

Let us consider, as a generic example, the task of two-party secure function evaluation. Here two
mutually distrustful parties P0 and P1 want to “securely evaluate” some known function f : D2 → D, in
the sense that Pi has value xi and the parties wish to jointly compute f(x0, x1) “in a secure way.” Which
protocols should we consider “secure” for this task?

First attempts. Two basic types of requirements come to mind. The first is correctness: the parties
that follow the protocol (often called the “good parties”) should output the correct value of the function
evaluated at the inputs of all parties. Here the “correct function value” may capture multiple concerns,
including authenticity of the identities of the participants, integrity of the input values, correct use of random
choices, etc. The second requirement is secrecy, or hiding the local information held by the parties as much
as possible. Here it seems reasonable to require that parties should be able to learn from participating in
the protocol nothing more than their prescribed outputs of the computation, namely the “correct” function
value. For instance, in the database example from the beginning of the introduction, correctness means that
the parties output all the entries which appear in both databases, and only those entries. Privacy means that
no party learns anything from the interaction other than the joint entries.

However, formalizing these requirements in a meaningful way seems problematic. Let us briefly men-
tion some of the problematic issues. First, defining correctness is complicated by the fact that it is not clear
how to define the “input value” that an arbitrarily-behaving party contributes to the computation. In partic-
ular, it is of course impossible to “force” such parties to use some value given from above. So, what would
be a “legitimate”, or “acceptable” process for choosing inputs by parties who do not necessarily follow the
protocol?

Another question is how to formulate the secrecy requirement. It seems natural to have a definition
based either on some sort of indistinguishability between two distributions, or alternatively on some notion
of “simulation” of the adversary’s view as in the case of probabilistic encryption or zero-knowledge [GM84,

11

GMRa89, G01]. But it is not clear at this point what should the two distributions be, or in what setting
the “simulator” should operate. In particular, how should the fact that the adversary inevitably obtains the
“correct function value” be incorporated in the secrecy requirement?

In fact, at a second look the correctness and secrecy requirements seem inherently “intertwined” in
a way that prevents separating them out as different requirements. Already from the above discussion it
is apparent that the secrecy requirement must somehow depend on the definition of the “correct function
value”. In addition, as demonstrated by the following example, the definition of “correct function value”
must in itself depend on some secrecy requirement.

Assume that x0, x1 ∈ {0, 1}, and that f is the exclusive or function, namely f(x0, x1) = x0 ⊕ x1.
The protocol instructs P0 to send its input to P1; then P1 announces the result. Intuitively, this protocol is
insecure since P1 can unilaterally determine the output, after learning P0’s input. Yet, the protocol maintains
secrecy (which holds vacuously for this problem since each party can infer the input of the other party from
its own input and the function value), and is certainly “correct” in the sense that the output fits the input that
P1 “contributes” to the computation.

This example (taken from [MR91]) is instructive in more than one way. First, it highlights the fact
that correctness and secrecy requirements depend on each other in a seemingly circular way. Second, it
brings forth another security requirement from protocols, in addition to correctness and secrecy: We want
to prevent one party from influencing the function value in illegitimate ways, even when plain correctness is
not violated.

Additional problems arise when the function to be evaluated is probabilistic, namely the parties wish to
jointly “sample” from a given distribution that may depend on secret values held by the parties. Here it seems
clear that correctness should take the form of some statistical requirement from the output distribution. In
particular, each party should be able to influence the output distribution only to the extent that the function
allows, namely only in ways that can be interpreted as providing a legitimately determined input to the
function. Furthermore, as demonstrated by the following example, the case of probabilistic functions puts
forth an additional, implicit secrecy requirement.

Assume that the parties want to toss k coins, where k is a security parameter; formally, the evaluated
function is f(·, ·) = r, where r

R← {0, 1}k. Furthermore, for simplicity assume that we trust the parties to
follow the protocol instructions (but still want to prevent illegitimate information leakage). Let f be a one-
way permutation on domain {0, 1}k. The protocol instructs P0 to choose s

R← {0, 1}k and send r = f(s) to
P1. Both parties output r.

This protocol preserves secrecy vacuously (since the parties do not have any secret inputs), and is also
perfectly correct in the sense that the distribution of the joint output is perfectly uniform. However, the
protocol lets P0 hold some “secret trapdoor information” on the joint random string. Furthermore, P1 does
not have this information, and cannot feasibly compute it (assuming that f is one-way). As we will see,
this “quirk” of the protocol is not merely an aesthetic concern. Having such trapdoor information can be
devastating for security if the joint string r is used within other protocols.

Other concerns, not discussed here, include issues of fairness in obtaining the outputs (namely, prevent-
ing parties from aborting the computation after they received their outputs but before other parties received
theirs), and addressing break-ins into parties that occur during the course of the computation.

The above discussion seems to suggest that it may be better to formulate a single, unified security
requirement, rather than making several separate ones. This requirement would appropriately intertwine the
various correctness, secrecy, and influence concerns. Furthermore, to sidestep the apparent circularity in the
requirements, and to prevent implicit information leaks as in the coin-tossing example, it seems that this
requirement should somehow specify also the process in which the output is to be obtained.

12

The trusted party paradigm. The trusted party paradigm follows the “unified requirement” approach.
The idea (which originates in [GMW87], albeit very informally) proceeds as follows. In order to determine
whether a given protocol is secure for some cryptographic task, first envision an ideal process for carrying
out the task in a secure way. In the ideal process all parties secretly hand their inputs to an external trusted
party who locally computes the outputs according to the specification, and secretly hands each party its pre-
scribed outputs. This ideal process can be regarded as a “formal specification” of the security requirements
of the task. (For instance, to capture the above secure function evaluation task, the trusted party simply
evaluates the function on the inputs provided by the parties, and hands the outputs back to the parties. If
the function is probabilistic then the trusted party also makes the necessary random choices.) The protocol
is said to securely realize a task if running the protocol amounts to “emulating” the ideal process for the
task, in the sense that any damage that can be caused by an adversary interacting with the protocol can also
be caused by an adversary in the ideal process for the task.

A priori, this approach seems to have the potential to capture all that we want, and in particular untangle
the circularity discussed above. Indeed, in the ideal process both correctness and lack of influence are
guaranteed in fiat, since the inputs provided by any adversarial set of parties cannot depend on the inputs
provided by the other parties in any way, and furthermore all parties obtain the correct output value according
to the specification. Secrecy is also immediately guaranteed, since the only information obtained by any
adversarial coalition of parties is the legitimate outputs of the parties in this coalition. In particular, no
implicit leakage of side-information correlated with the output is possible. Another attractive property of
this approach is its apparent generality: It seems possible to capture the requirements of very different tasks
by considering different sets of instructions for the external trusted party.

It remains to formalize this definitional approach in a way that maintains its intuitive appeal and security
guarantees, and at the same time allows for reasonable analysis of “natural” protocols. In this tutorial we
describe several formalizations, that differ in their complexity, generality and secure composability guaran-
tees. Yet, all these formalizations follow the same outline, sketched as follows. The definition proceeds in
three steps. First we formalize the process of executing a distributed protocol in the presence of adversarial
behavior of some parts of the system. Here the adversarial behavior is embodied via a single, centralized
computational entity called an adversary. Next we formalize the ideal process for the task at hand. The
formalized ideal process also involves an adversary, but this adversary is rather limited and its influence on
the computation is tightly controlled. Finally, we say that a protocol π securely realizes a task F if for any
adversaryA that interacts with π there exists an adversary S that interacts with the trusted party for F , such
that no “external environment,” that gives inputs to the parties and reads their outputs, can tell whether it is
interacting with π or with the trusted party for F .

Very informally, the goal of the above requirement is to guarantee that any information gathered by
the adversary A when interacting with π, as well as any “damage” caused by A, could have also been
gathered or caused by an adversary S in the ideal process with F . Now, since the ideal process is designed
so that no S can gather information or cause damage more than what is explicitly permitted in the ideal
process for F , we can conclude that A too, when interacting with π, cannot gather information or cause
damage more than what is explicitly permitted by F . Another attractive property of this formulation is its
apparent “compositionality”: Since it is explicitly required that no “environment” can tell the protocol from
the trusted party, it makes sense to expect that a protocol will exhibit the same properties regardless of the
activity in the rest of the system.

13

3 Basic security: A simplified case

For the first formalization, we consider a relatively simple setting: As in the previous section, we restrict
ourselves to two-party secure function evaluation, namely the case of two parties that wish to jointly
compute a function of their inputs. We also restrict ourselves to the “stand-alone” case, where the protocol
is executed once, and no other parties and no other protocol executions are considered. Furthermore, we are
only concerned with the case where one of the two parties is adversarial. In particular, the communication
links are considered “trusted”, in the sense that each party receives all the messages sent by the other party,
and only those messages. It turns out that this setting, while highly simplified, actually captures much of the
complexity of the general problem. We thus present it in detail before presenting more general (and more
realistic) settings.

Section 3.2 presents the definition. Section 3.3 exemplifies the definition by providing some definitions
of cryptographic tasks, cast in this model. First, however, we present the underlying model of distributed
computation, in Section 3.1.

3.1 A basic system model

Before defining security of protocols, one should first formulate a model for representing distributed systems
and protocols within them. To be viable, the model should enable expressing realistic communication media
and patterns, as well as realistic adversarial capabilities. This section sketches such a model. Readers that are
satisfied with a more informal notion of distributed systems, protocols, and polynomial-time computation
can safely skip this section.

Several general models for representing and arguing about distributed systems exist, e.g. the CSP model
of Hoare [H85], the π-calculus of Milner [M89, M99], or the I/O automata of Lynch [Ly96]. Here we use the
interactive Turing machines (ITMs) model, put forth in an initial form in Goldwasser, Micali and Rackoff
[GMRa89] (see also [G01]). Indeed, while the ITM model is more “low level” and provides fewer and less
elegant abstraction mechanisms than the above models, it allows for capturing in a natural way the subtle
relations between randomization, interaction, and resource-bounded adversarial behavior. Specifically, we
formulate a simplified version of the model of [C01], that suffices for the two-party, stand-alone case. A
richer model, that’s more appropriate for studying general systems, is mentioned in Section 4.1. (As ex-
pected, many details of this model are to a large extent arbitrary, in the sense that other choices would have
been equally good for our needs. Yet, for concreteness we need to pin down some specific model.)

Interactive Turing Machines. An ITM is a Turing machine with some “shared tapes” which can be writ-
ten into by one machine and read by another. Specifically, we use three externally writable tapes, namely
tapes that can be written on by other ITMs: an input tape, representing inputs provided by the “invoking
program”, an incoming communication tape, representing messages coming from the network, and a sub-
routine output tape, representing outputs provided by subroutines invoked by the present program. The
distinction between these ways of providing information to a running program is instrumental for modeling
security. In particular, The input tape represents information coming from “outside the protocol execution”,
while the incoming communication tape and the subroutine output tapes provide information that is “in-
ternal to a protocol execution.” Also, the incoming communication tape models information coming from
untrusted sources, while the information on the subroutine output tapes is treated as coming from a trusted
source. Finally, we concentrate on probabilistic machines, namely on machines that can make random
choices (or, equivalently, machines that have random tapes.)

14

Systems of ITMs. The model of computation consists of several instances of ITMs that can write to
the externally writable tapes of each other, subject to some global rules. We call an ITM instance an ITI.
Different ITIs can run the same code (ITM); however they would, in general, have different local states.

An execution of a systems of ITMs consists of a sequence of activations of ITIs. In each activation,
the active ITI proceeds according to its current state and contents of tapes until it enters a special wait state.
In order to allow the writing ITI to specify the target ITI we enumerate the ITIs in the system in some
arbitrary order, and require that the write instruction specify the numeral of the target ITI. (This addressing
mechanism essentially assumes that each two ITIs in the system have a “direct link” between them. A more
general addressing mechanism is described in Section 4.1.) In order to simplify determining the order of
activations, we allow an ITI to write to an externally writable tape of at most one other ITI per invocation.
The order of activation is determined as follows: There is a pre-determined ITI, called the initial ITI, which
is the first one to be activated. At the end of each activation, the ITI whose tape was written to is activated
next. If no external write operation was made then the initial ITI is activated. The execution ends when the
initial ITI halts.

In principle, the global input of an execution should be the initial inputs of all ITIs. For simplicity,
however, we define the global input as the input of the initial ITI alone. Similarly, the output of an execution
is the output of the initial ITI.

A final ingredient of a system of ITMs is the control function, which determines which tapes of which
ITI can each ITI write to. As we’ll see, the control function will be instrumental in defining different notions
of security.

Looking ahead, we remark that this very rudimentary model of communication, with its simple and
sequential scheduling of events, actually proves sufficient for expressing general synchrony, concurrency,
and scheduling concerns.

Polynomial-Time ITMs. In order to model resource-bounded programs and adversaries, we need to define
resource-bounded ITMs. We concentrate on polynomial time ITMs. We wish to stick with the traditional
interpretation of polynomial time as “polynomial in the length of the input.” However, since in our model
ITMs can write to the tapes of each other, care should be taken to guarantee that the overall running time
of the system remains polynomial in the initial parameters. We thus say that an ITM M is polynomial time
(PT) if there exists a polynomial p(·) such that at any point during the computation the overall number of
steps taken by M is at most p(n), where n is the overall number of bits written so far into the input tape of
M , minus the number of bits written by M to the input tapes of other ITIs. This guarantees that a system
of communicating ITMs completes in polynomial time in the overall length of inputs, even when ITIs write
to the input tapes of each other. (An alternative, somewhat simpler formulation says that the overall running
time of an ITM should be polynomial in the value of a “security parameter”. However, this requirement
considerably limits the expressibility of the model, especially in the case of reactive computation.)

Protocols. A protocol is defined simply as an ITM. This ITM represents the code to be run by each
participant, namely the the set of instructions to be carried out upon receipt of an input, incoming message, or
subroutine output (namely, output from a subroutine). If the protocol has different instructions for different
roles, then the ITM representing the protocol should specify the behaviors of all roles. A protocol is PT if it
is PT as an ITM.

3.2 The definition of security

We flesh out the definitional plan from Section 2, for the case of two-party, stand-alone, non-reactive tasks.

15

The protocol execution experiment.6 Let π be a two-party protocol. The protocol execution experiment
proceeds as follows. There are three entities (modeled as ITIs): An ITI, called P , that runs the code of π, an
ITI called the adversary, denoted A, and an ITI called the environment, denoted E .

The environment E is the initial ITI; thus it is activated first. Its role in the interaction is limited: All
it does is provide initial inputs to A and the party P running π, and later obtains their final outputs. (The
initial inputs can be thought of as encoded in E’s own input.)

Once either P or A is activated, with either an input value or an incoming message (i.e., a value written
on the incoming communication tape), it runs its code and potentially generates an output (to be read by E),
or a message to be written on the other party’s incoming communication tape.

The final output of the execution is the output of the environment. As we’ll see, it’s enough to let this
output consist of s single bit.

We use the following notation. Let EXECπ,A,E(x) denote the random variable describing the output of
environment E when interacting with adversary A and protocol π on input x (for E). Here the probabil-
ity is taken over the random choices of all the participating ITIs. Let EXECπ,A,E denote the ensemble of
distributions {EXECπ,A,E(x)}x∈{0,1}∗ .

The ideal process. Next an ideal process for two-party function evaluation is formulated. Let f : ({0, 1}∗)2 →
({0, 1}∗)2 be the (potentially probabilistic) two-party function to be evaluated. Here the ith party, i ∈
{1, 2}, has input xi ∈ {0, 1}∗, and needs to obtain the ith coordinate in f(x1, x2).

We want to formalize a process where the parties hand their inputs to a trusted entity which evaluates f
on the provided inputs and hands each party its prescribed output. For that purpose, we add to the system an
additional ITI, denoted Tf , which represents the trusted party and captures the desired functionality. The ITI
P now runs the following simple ideal protocol for f : When receiving input value, P copies this value to
the input tape of Tf . When receiving an output from Tf (on its subroutine output tape), P copies this output
to the subroutine output of E . Messages on the incoming communication tape are ignored.
Tf proceeds as follows: It first waits to receive input (b, x) from P and input x′ from the adversary A,

where b ∈ {1, 2} denotes whether x is to be taken as the first or second input to f . Once the inputs are
received, Tf lets xb ← x, x3−b ← x′, and (y1, y2) ← f(x1, x2). Next, Tf outputs y3−b to A. Once it
receives an ok message from A, Tf outputs yb to P .

Analogously to the protocol execution experiment, let IDEALf,A,E(x) denote the random variable de-
scribing the output of environment E when interacting with adversary A and the ideal protocol for f on
input x (for E), where the probability is taken over the random choices of all the participating ITIs. Let
IDEALf,A,E denote the ensemble {IDEALf,A,E(x)}x∈{0,1}∗ .

Securely evaluating a function. Essentially, a two-party protocol π is said to securely evaluate a two-
party function f if for any adversary A, that interacts with π, there exists another adversary, denoted S, that
interacts with Tf , such that no environment will be able to tell whether it is interacting with π and A, or
alternatively with Tf and S.

To provide a more rigorous definition, we first define indistinguishability of probability ensembles. A
function is negligible if it tends to zero faster than any polynomial fraction, when its argument tends to infin-
ity. Two distribution ensembles X = {Xi}a∈{0,1}∗ and X ′ = {X ′

i}a∈{0,1}∗ are indistinguishable (denoted
X ≈ X ′) if for any a, a′ ∈ {0, 1}k the statistical distance between distributions Xa and X ′

a is a negligi-
ble function of k. (The use of an asymptotic notion of similarity between distribution ensembles greatly

6The presentation below is somewhat informal. Formal description, in terms of a system of ITMs as sketched in the previous
section, can be easily inferred. In particular, the various model restrictions are enforced via an appropriate control function.

16

simplifies the presentation and argumentation. However it inevitably introduces some slack in measuring
distance. More precise and quantitative notions of similarity may be needed to determine the exact quantita-
tive security of protocols. Also, note that we do not define computational indistinguishability of probability
ensembles. This is so since we will only be interested in ensembles of distributions over the binary domain
{0, 1}, and for these ensembles the two notions are equivalent.) Secure evaluation is then defined as follows:

Definition 1 (Basic security for two-party function evaluation) A two-party protocol π securely evalu-
ates a two-party function f if for any PT adversary A there exists a PT adversary S such that for all PT
environments E that output only one bit:

IDEALf,S,E ≈ EXECπ,A,E (1)

3.2.1 Discussion

Motivating some choices in the model. Recall that the protocol execution experiment involves only a
single party running the two-party protocol, where the messages are exchanged with the adversary rather
than with another party running the protocol. This models the fact that we consider the behavior of the
system where one of the parties follows the protocol while the other follows a potentially different strategy.
In two-party protocols where there are two distinct roles there will be two distinct cases depending on the
role played by the party who is running the protocol. However, since the role can be modeled as part of the
input, this distinction need not be made within the general modeling.

The environment captures the “external system” that provides inputs to the parties and obtains their
outputs. In particular, it chooses an input value to the party P running the protocol, and some (potentially
correlated) initial information to the adversary. The environment also obtains the final outputs, both of P
and of the adversary. In other words, the environment essentially sees the “I/O behavior”, or “functionality”
of the protocol and its adversary, without having access to the communication between the parties.

In the present simplified case, an alternative formulation of the model that replaces the environment
with an “external entity” that merely looks at the outcome of the experiment is equivalent to the present
formulation. We opt to model the environment as an entity that takes part in the actual execution experiment
in order to be compatible with the more general formalization presented in the next section. Indeed, there it
is important to allow the environment to be active during the protocol execution experiment.

The ideal process represents in a straightforward way the intuitive notion of a trusted party that obtains
the inputs from the parties and locally computes the desired outputs. In particular, the input provided by the
adversary depends only in the information it was initially given from E (which may or may not be correlated
with the input given to P). Furthermore, A obtains only the specified function value. Yet, the present
formulation of the ideal process does not guarantee fairness: A always receives the output first, and can
then decide whether P will obtain its output.

Interpreting the definition. It is instructive to see how the informal description of Section 2 is imple-
mented. Indeed, if there existed an adversary A that could interact with the protocol and exhibit “bad
behavior” that cannot be exhibited in the ideal process, by any adversary S, then there would exist an envi-
ronment E that outputs ‘1’ with significantly different probabilities in the two executions, and the definition
would be violated.

The present formulation interprets “bad behavior” in a very broad sense, namely in terms of the joint
distribution of the outputs of P and A on any given input. This allows testing, e.g., whether the protocol
allows the adversary to gather information on the other party’s input, where this information is not available
in the ideal process; it also allows testing whether the protocol allows the adversary to influence the output

17

of the other party in ways that are not possible in the ideal process. In particular, it is guaranteed that the
adversary S in the ideal process is able to generate an “effective adversarial input” x2 to the trusted party
that is consistent with P ’s input and output (namely, x2 satisfies y1 = f(x1, x2)1, where x1 is P s input and
y1 is P ’s output).

In addition, the environment can choose to provide A with input that is either uncorrelated with P ’s in-
put, or alternatively partially or fully correlated with P ’s input. This guarantees that the the above properties
of the protocol hold regardless of how much “partial information” on P ’s input has leaked to the adversary
beforehand.

Also, notice that the correctness requirement has a somewhat different flavor for deterministic and prob-
abilistic functions: For deterministic functions, the correctness is absolute, in the sense that the output of the
parties that follow the protocol is guaranteed to be the exact function value. For probabilistic functions, it
is only guaranteed that the outputs are computationally indistinguishable from the distribution specified by
the function. This difference allows the analyst to choose which level of security to require, by specifying
an appropriate f .

Extensions. The definition can be modified in natural ways to require an information-theoretic level of
security, by considering computationally unbounded adversaries and environments, or even perfect security,
by requiring in addition that the two sides of (1) be identical. (To preserve meaningfulness, S should still be
polynomial in the complexity of A, even when A and E are unbounded.)

Similarly, the definition can be modified to consider only restricted types of malicious behavior of the
parties, by appropriately restricting the adversary. In particular, security against “semi-honest” parties that
follow the protocol, but may still try to gather additional information, can be captured by requiring A to
follow the original protocol.

Another, more technical issue has to do with the order of quantifiers: A priori, it may seem that the
above order of quantifiers is too restrictive, and a formulation where S may depend on E would suffice
for guaranteeing basic security. It turns out, though, that the two formulations are equivalent (the proof is
similar to that in [C01]). We use the present formulation since it seems more natural, and furthermore it
simplifies proving composability results, discussed in later sections.

Secure evaluation vs. observational equivalence. Finally, we compare this definition of security with the
notion of observational equivalence of Milner [M89, M99], used in the π-calculus formalism and elsewhere.
(This notion is sometimes called also bi-simulatability.) The two notions have somewhat of the same flavor,
in the sense that both notions require that an external environment (or, context) will be unable to tell whether
it is interacting with one process or with another. However, the present notion is significantly weaker, since it
allows the additional “leeway” of constructing an appropriate simulator S that will help “fool” the external
environment. This extra “intentional weakness” of the present notion is in fact the core of what makes
it realizable for interesting cryptographic tasks, while maintaining much of the meaningfulness. Another
difference is that the present notion is not symmetric, whereas observational equivalence is. We note that
the more general formulations of the notion of security, presented in subsequent sections, appear even closer
in spirit to observational equivalence. Still, the main difference is the same as here.

3.3 Examples

To exemplify the use of Definition 1 for capturing the security requirements of cryptographic tasks, we use
it to capture the security requirements of three quite different tasks. In fact, all that remains to be done in
order to define protocols that realize a task is to formulate an appropriate two-party function:

18

Zero Knowledge. Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a binary relation, and consider the bivariate
function fR

ZK((x,w),−) = (−, (x,R(x,w))). That is, the first party (the “prover”) has input (x,w), while
the second party (the “verifier”) has empty input. The verifier should learn x plus the one-bit value R(x,w),
and nothing else. The prover should learn nothing from the interaction. In particular, when R is the relation
associated with an NP language L (that is, L = LR

def= {x|∃w s.t. R(x,w) = 1}), these requirements are
very reminiscent of the requirements from a Zero-Knowledge protocol for L: The verifier is guaranteed that
it accepts, or outputs (x, 1), only when x ∈ L (soundness), and the prover is guaranteed that the verifier
learns nothing more other than whether x ∈ L (zero-knowledge).

It might be tempting to conclude that a protocol is Zero-Knowledge for language LR as in [GMRa89]
if and only if it securely realizes fR

ZK. This statement is true “in spirit”, but some caveats exist. First,
[GMRa89] define Zero Knowledge so that both parties receive x as input, whereas here the verifier learns x
only via the protocol. This difference, however, is only “cosmetic” and can be resolved via simple syntactic
transformations between protocols.

The remaining two differences are more substantial: First, securely realizing fR
ZK only guarantees “com-

putational soundness”, namely soundness against PT adversarial provers. Second, securely realizing fR
ZK

implies an additional, somewhat implicit requirement: When the adversary plays the role of a potentially
misbehaving prover, the definition requires the simulator to explicitly hand the input x and the witness w
to the trusted party. To do this, the simulator should be able to “extract” these values from the messages
sent by the adversary. This requirement has the flavor of a proof of knowledge (see e.g. [G01]), albeit in a
slightly milder form that does not require a black-box extractor.

In conclusion, we have that a protocol securely realizes fR
ZK if and only if a slight modification of the

protocol is a computationally sound Zero-Knowledge Proof of Knowledge for LR (with potentially non
black-box extractors).

Database Intersection. As a second example, consider the following simple task: Two parties (say, two
databases), each having a list of items, wish to find out which items appear in both lists. This task is
somewhat more complex than the previous one, since both parties have private inputs and both have private
outputs which are different than, but related to, each other. Still, it can be formulated as a function in a
straightforward way: fDI((x1

1, ..., x
1
n), (x2

1, ..., x
2
m)) = ((b1

1, ..., b
1
n), (b2

1, ..., b
2
m)), where bi

j = 1 if xi
j equals

x3−i
j′ for some j′, and bi

j = 0 otherwise. This would mean that a party P which follows the protocol is
guaranteed to get a valid answer based on its own database x and some database x′, where x′ was determined
by the other party based only on the initial input of the other party. Furthermore, the information learned
by the other party is computed based on the same two values x and x′. Also, if there is reason to believe
that the other party used some concrete “real” database x′, then correctness is guaranteed with respect to
that specific x′. Recall, however, that the definition does not guarantee fairness. That is, the other party
may obtain the output value first, and based on that value decide whether P will obtain its output value. In
Section 4 we will see how to express fairness within an extended formalism.

Common Randomness. Finally, we consider a task that involves distributional requirements from the
outputs of the parties. Specifically, we consider the task of generating a common string that is guaranteed
to be taken from a pre-defined distribution, say the uniform distribution over the strings of some length:
fk

CR(−,−) = (r, r), where r is a random k-bit string. Here the parties are guaranteed that the output r is
distributed (pseudo)randomly over {0, 1}k. Furthermore, each party is guaranteed that the other party does
not have any “trapdoor information” on r that cannot be efficiently computed from r alone. As mentioned
in the Introduction, this guarantee becomes crucial in some cryptographic applications. Finally, as in the
previous case, fairness is not guaranteed.

19

4 Basic security: The general case

Section 3 provides a framework for defining security of a restricted class of protocols for a restricted class of
tasks: protocols that involve only two parties, and tasks that can be captured as two-party functions. While
this case captures much of the essence of the general notion, it leaves much to be desired in terms of the
expressibility and generality of the definitional paradigm.

This section generalizes the treatment of Section 3 in several ways, so as to capture a wider class of cryp-
tographic tasks. First we consider multi-party tasks, namely tasks where multiple (even unboundedly many)
parties contribute inputs and obtain outputs. This requires expressing various synchrony and scheduling
concerns. Next, we consider also tasks which require security against “the network”, namely against parties
that do not take legitimate part in the protocol but may have access to the communication. Third, we con-
sider also “reactive tasks,” where a party provides inputs and obtains outputs multiple times, and new inputs
may depend on previously obtained outputs. Fourth, we allow expressing situations where parties get “cor-
rupted”, or “broken into” in an adaptive way throughout the computation. Finally, we provide the ability to
formulate weaker requirements, which allows protocols where the legitimate outputs do not constitute any
pre-defined function of the inputs, and can be potentially influenced by the adversary in some limited way.
While we describe all the extensions together, many are independent of each other and could be considered
separately. We try to identify the effect of each individual extension as we go along.

Still, throughout this section we only consider the case of a single execution of a protocol, run in isola-
tion. Treatment of systems where multiple protocol executions co-exist is deferred to the next sections.

The necessary extensions to the basic system model are presented first, in Section 4.1. Section 4.2
presents the extensions to the definition of security, while Section 4.3 provides some additional examples.
Finally, Section 4.4 briefly reviews some basic feasibility results for this definition.

4.1 The system model

In many respects, the system model from Section 3.1 suffices for capturing general multi-party protocols
and their security. (In fact, some existing formalisms offer comparable generality, in the sense that they do
not include the extensions described below.) Still, that model has some limitations: First, it can only handle
a fixed number of interacting ITIs. This suffices for protocols where the number of participants is fixed.
However, it does not allow modeling protocols where the number of parties can grow in an adaptive way
based on the execution of the protocol, or even only as a function of a security parameter. Such situations
may indeed occur in real life, say in an on-line auction or gambling application. Another limitation is that
the addressing mechanism for external write requests is highly idealized, and does not allow for natural
modeling of routing and identity management issues. While this level of abstraction is sufficient for systems
with small number of participants that know each other in advance, it does not suffice for open systems,
where parties may learn about each other only via the protocol execution.

We thus extend the model of Section 3.1 in two ways. First, we allow for new ITIs to be added to the
system during the course of the computation. This is done via a special “invoke new ITI” instruction that
can be executed by a currently running ITI. The code of the new ITI should be specified in the invocation
instruction. The effect of the instruction is that a new ITI with the specified code is added to the system.
The externally writable tapes of the new ITI can now be written to by other ITIs. Note that, given the new
formalism, a system of ITMs can now be specified by a single ITM, the initial ITM, along with the control
function. All other ITIs in the system can be generated dynamically during the course of the execution. The
notion of PT ITMs from Section 3.1 remains valid, in the sense that it is still guaranteed that a system of
ITMs is guaranteed to complete each execution in polynomial time, as long as the initial ITM is PT and the
control function is polynomially computable.

20

The second change is to add a special identity tape to the description of an ITM. This tape will be
written to once, upon invocation, and will be readable by the ITM itself. This means that the behavior of the
ITM can depend on its identity (namely on the contents of its identity tape). Furthermore, an external write
instruction will now specify the target ITM via its identity, rather than via a “dedicated link” (represented
via some external index).

The identity of an ITI is determined by the ITI that invokes it. To guarantee unambiguous addressing,
we require that identities (often dubbed IDs) be unique. That is, an invocation instruction that specifies an
existing ID is rejected. (This rule can be implemented, say, by the control function.)

4.2 Definition of Security

We extend the definition of security in several steps. First, we extend the model of protocol execution. Next,
we extend the ideal process. Finally, we extend the notion of realizing a trusted party. As we’ll see, it often
turns out that taking a more general view actually simplifies some aspects of the formalism.

The protocol execution experiment. We describe the generalized protocol execution experiment. Let
π be a protocol to be executed. (π need not specify the number of participants in advance.) As before,
the model for executing a protocol π is parameterized by two additional ITMs, an environment E and an
adversary A.

The environment is the initial ITI. It first invokes the adversary A, and from then on can invoke as
many ITI as it wishes, as long as they all run the code of π. In particular, E can determine the identities of
these ITIs, or parties. In addition, E can write to the input tapes of the parties throughout the computation.
However, it cannot send further information to A after its invocation. Parties can write to the subroutine
output tapes of E . No other interaction between E and the system is allowed.

Once a party is activated, either with an input value, or with an incoming message (i.e., a value written
on the incoming communication tape), it follows its code and potentially generates an outgoing message or
an output. All outgoing messages are handed to the adversary (i.e., written to its incoming communication
tape), regardless of the stated destinations of the messages. Outputs are written on the subroutine output
tape of E . Parties may also invoke new ITIs, that may run either π or another code. However, these ITIs are
not allowed to directly communicate with E (i.e., they cannot write to the tapes of E).

Once the adversary is activated, it can deliver a message to a party, i.e. write the message on the party’s
incoming communication tape. In its last activation it can also generate an output, i.e. write the output value
on the incoming communication tape of E .

As before, the final output of the execution is the (one bit) output of the environment. With little chance
of confusion, we re-define the notation EXECπ,A,E to refer to the present modeling.

The ideal process. The main difference from the ideal process in Section 3 is that, instead of considering
only trusted parties that perform a restricted set of operations (such as evaluating a function), we let the
trusted party run arbitrary code, and in particular to repeatedly interact with the parties, as well as directly
with the adversary. In addition, the richer system model allows us to simplify the presentation somewhat by
formulating the ideal process as a special case of the general protocol execution experiment.

That is, the security requirements of a cryptographic task should first be formalized in terms of code for
a trusted party, called an ideal functionality (some examples appear below). Given an ideal F , we define an
ideal protocol IF as follows: When a party running IF obtains an input value, it immediately copies this
value to the input of F . (The first party to do so will also invoke F .) When a party receives an output from

21

F (on its subroutine output tape), it immediately outputs this value (i.e., copies it to the subroutine output
tape of E). All other activations are ignored.

The notation IDEALF ,A,E from Section 3.2 is no longer needed; it is replaced by EXECIF ,A,E .

Protocol emulation and secure realization. The notion of realizing an ideal process remains essentially
the same. Yet, formalizing the ideal process as an execution of a special type of a protocol allows formalizing
the definition of realizing an ideal functionality as a special case of the more general notion of emulating
one protocol by another. That is:

Definition 2 (Protocol emulation with basic security) A protocol π emulates protocol φ if for any PT
adversary A there exists a PT adversary S such that for all PT environments E that output only one bit:

EXECφ,S,E ≈ EXECπ,A,E (2)

Definition 3 (Realizing functionalities with basic security) A protocol π realizes an ideal functionality
F if π emulates IF , the ideal protocol for F .

4.2.1 Discussion

Some modeling decisions. We highlight some characteristics of the extended model of protocol execution.
First, the present model continues to model the environment and adversary as centralized entities that have
global views of the distributed computation. While in the two-party case this was a natural choice, in the
multi-party case this modeling becomes an abstraction of reality. This modeling seems instrumental for
capturing security in an appropriate way, since we would want security to hold even when the adversarial
entities do have global view of the computation. Still, it introduces some “slack” to the definition of security,
in that it allows the simulator to be centralized even when the adversarial activity is not.

Another point is the restricted communication between E and A. Recall that E cannot directly provide
information to A other than at invocation time, and A can directly provide information to E only at the end
of its execution. (Of course, E and A can exchange information indirectly, via the parties, but this type
of exchange is limited by the properties of the specific protocol π in question.) This restriction is indeed
natural in a stand-alone setting, since there is no reason to let the adversarial activity against the protocol
depend in an artificial way on the local inputs and outputs of the non-corrupted parties. Furthermore, it is
very important technically, since it allows proving security of protocols that are intuitively secure. See more
discussion in Section 3.3.

Also, note that the present modeling of asynchronous scheduling of events, while typical in cryptogra-
phy, is different than the standard modeling of asynchronous scheduling in general distributed systems, such
as those mentioned in Section 3.1. In particular, there asynchrony is typically captured via non-deterministic
scheduling, where the non-determinism is resolved by an all-powerful scheduler that has access to the entire
current state of the system. Here, in contrast, the scheduling is determined by the environment and ad-
versary, namely in an algorithmic and computationally bounded way. This modeling of asynchrony, while
admittedly weaker, seems essential for capturing security that holds only against computationally bounded
attacks. Combining non-deterministic and adversarial scheduling is an interesting challenge.

Modeling various corruption and communication methods. The simplified model of Section 3 essen-
tially postulates that one of the two parties is “corrupted,” that is it runs arbitrary code irrespective of the
protocol instructions. Furthermore, and this party is corrupted in advance, before the protocol starts. In
contrast, the extended model postulates that all parties follow the specified protocol π; no deviations are

22

allowed. Instead, deviations from the original protocol are captured as additional protocol instructions that
“get activated” upon receiving special corruption messages from the adversary. For instance, to capture
arbitrary deviation from the protocol, instruct a party to follow the adversary’s instructions once it receives a
corruption messages. To capture parties that continue following the protocol but pool all their information
together (aka honest-but-curious corruptions, a party that receives a corruption message will send all its
internal state to the adversary, and otherwise continue to follow the protocol. Other types of corruptions
can be captured analogously. This way of modeling corruptions has two advantages: first it simplifies the
description of the basic model, and second it provides flexibility in considering multiple types of corruptions
within the same model, and even within the same execution.

The above experiment gives the adversary full control over the communication, thus representing com-
pletely asynchronous, unreliable and unauthenticated communication. More abstract communication mod-
els, providing various levels of authentication, secrecy, reliability and synchrony, can be captured by appro-
priately restricting the adversary. (For instance, to model authenticated communication, restrict the adver-
sary to deliver only messages that were previously sent by parties, and include the identity of the source
within each message.) In addition, as will be seen in subsequent sections, all these communication models
can be captured as different abstractions within the same basic model, rather than having to re-define the
underlying model for each one.

On the generalized modeling of the ideal process. Modeling the trusted party as a general ITM greatly
enhances the expressibility of the definitional framework, in terms of the types of concerns and levels of
security that can be captured. Indeed, it becomes possible to “fine-tune” the requirements at wish. The
down side of this generality is that the exact security implication of a given ideal functionality (or, “code for
the trusted party”) is not always immediately obvious, and small changes in the formulation often result in
substantial changes in the security requirements. Here we very briefly try to highlight some salient aspects
of the formalism, as well as useful “programming techniques” for ideal functionalities.

Two obvious aspects of the general formulation are that it is now possible to formulate multi-party and
reactive tasks. In addition, letting the ideal functionality interact directly with the adversary in the ideal
process (namely, with the “simulator”) has two main effects. First, providing information to the adversary
can be naturally used to capture the “allowed leakage of information” by protocols that realize the task. For
instance, if some partial information on the output value can be leaked without violating the requirements,
then the ideal functionality might explicitly hand this partial information to the adversary.

Receiving information directly from the adversary is useful in capturing the “allowed influence” of
the adversary on the computation. For instance, if the timing of a certain output event is allowed to be
adversarially controlled (say, within some limits), then the ideal functionality might wait for a trigger from
the adversary before generating that output. Alternatively, if several different output values are legitimate
for a given set of inputs, the ideal functionality might let the adversary choose the actual output within the
given constraints. In some cases it might even be useful to let the adversary hand some arbitrary code to
be executed by the ideal functionality in a “monitored way,” namely subject to constraints set by the ideal
functionality.

In either case, since the direct communication between the ideal functionality and the adversary is not
part of the input-output interface of the actual parties, the effect of this communication is always only to
relax the security requirements of the task.

An example of the use of direct communication between the adversary and the ideal functionality is the
modeling of the allowable information leakage and adversarial influence upon party corruption. In the ideal
process, party corruption is captured via a special message from the adversary to the ideal functionality. In
response to that message, the ideal functionality might provide the adversary with appropriate information

23

(such as past inputs and outputs of the corrupted party), allow the adversary to change the contributed input
values of the corrupted parties, or even change its behavior in more global ways (say, when the number of
corrupted parties exceeds some threshold).

Finally, recall that the ideal functionality receives input directly from the environment, and provides
outputs directly to the environment, without intervention of the adversary. This has the effect that an ideal
protocol can guarantee delivery of messages, as well as concerns like fairness, in the sense that one party
obtains output if and only if another party does. In fact, special care should be taken, when writing an ideal
functionality, to make sure that the functionality allows the adversary to delay delivery of outputs (say, by
waiting for a trigger from the adversary before actually writing to the subroutine output tape of the recipient
party); otherwise the specification may be too strong and unrealizable by a distributed protocol.

4.3 More examples

Definition 3 allows capturing the security and correctness requirements of practically any distributed task,
in a stand-alone setting. This includes, e.g., all the tasks mentioned in the introduction. Here we sketch
ideal functionalities that capture the security requirements of two basic tasks. Each example is intended to
highlight different aspects of the formalism.

As stipulated in the system model, each input to an ideal functionality has to include the identity. For
brevity, we omit these identities from the description. Indeed, for security in a stand-alone setting it is not
essential that the functionality’s identity will be available to the protocol. In contrast, for security in a multi-
instance system, considered in subsequent sections, making the identity available to the protocol is often
essential for meaningful realizations.

Commitment. First we formulate an ideal functionality that captures the security requirements from a
commitment protocol, as informally sketched in the introduction. Commitment is inherently a two step
process, namely commitment and opening. Thus it cannot be naturally captured within the formalism of
Section 3, in spite of the fact that it is a two-party functionality.

The ideal commitment functionality, FCOM, formalizes the “sealed envelope” intuition in a straightfor-
ward way. That is, when receiving from the committer C an input requesting to commit to value x to a
receiver R, FCOM records (x, R) and notifies R and the adversary that C has committed to some value. (No-
tifying the adversary means that the fact that a commitment took place need not be hidden.) The opening
phase is initiated by the committer inputting a request to open the recorded value. In response, FCOM outputs
x to R and the adversary. (Giving x to the adversary means that the opened value can be publicly available.)

In order to correctly handle adaptive corruption of the committer during the course of the execution,
FCOM responds to a request by the adversary to corrupt C by first outputting a corruption output to C, and
then revealing the recorded value x to the adversary. In addition, if the Receipt value was not yet delivered
to R, then FCOM allows the adversary to modify the committed value. This last stipulation captures the fact
that the committed value is fixed only at the end of the commit phase, thus if the committer is corrupted
during that phase then the adversary might still be able to modify the committed value.
FCOM is described in Figure 1. For brevity, we use the following terminology: The instruction “send

a delayed output x to party P ” should be interpreted as “send (x, P) to the adversary; when receiving ok
from the adversary, output x to P .”

Realizing FCOM is a stronger requirement than the basic notions of commitment in the literature (see
e.g. [G01]). In particular, this notion requires both “extractability” and “equivocality” for the committed
value. These notions (which are left undefined here) become important when using commitment within other
protocols; they are discussed in subsequent sections, as well as in [CF01, C01]. Still, FCOM is realizable by

24

Functionality FCOM

1. Upon receiving an input (Commit, x) from party C, record (C,R, x) and generate a delayed output
(Receipt) to R. Ignore any subsequent (Commit...) inputs.

2. Upon receiving an input (Open) from C, do: If there is a recorded value x then generate a delayed
output (Open, x) to R. Otherwise, do nothing.

3. Upon receiving a message (Corrupt, C) from the adversary, output a Corrupted value to C, and
send x to the adversary. Furthermore, if the adversary now provides a value x′, and the (Receipt)
output was not yet written on R’s tape, then change the recorded value to x′.

Figure 1: The Ideal Commitment functionality, FCOM

standard constructions, assuming authenticated communication channels.

Key Exchange. Key exchange (KE) is a task where two parties wish to agree on a random value (a “key”)
that will remain secret from third parties. Typically, the key is then used to encrypt and authenticate the
communication between the two parties. Key exchange may seem reminiscent of the coin-tossing task,
discussed in Section 3.3. However, it is actually quite different: Essentially, in the case of key exchange the
two parties wish to jointly thwart an external attacker, whereas in coin-tossing the parties wish to protect
themselves from each other. More precisely, for key exchange we only care about the fact that the key
is random when both parties follow their protocol. On the other hand, for coin-tossing the agreed value
need not be kept secret from third parties (embodied by the adversary). Furthermore, since key exchange
is usually carried out in a multi-party environment with asynchronous and unauthenticated communication,
issues such as precise timing of events and binding of the output key to specific identities become crucial.
Thus, modeling of key exchange naturally involves an interactive interface, as well communicating directly
with the adversary.

Functionality FKE, presented in Figure 2, proceeds as follows. Upon receiving an (Initiate, I, R)
input from some party I (called the initiator), FKE sends a delayed output (Initiate, I) to R. Upon
receiving the input (Respond) from R, FKE forwards this input to the adversary. Now, when receiving a
value (Key, P, k̃) from the adversary, FKE first verifies that P ∈ {I,R}, else P gets no output. If the two
peers are currently uncorrupted, then P obtains a truly random and secret key κ for that session. If any of
the peers is corrupted then P receives the key k̃ determined by the adversary.

Functionality FKE

1. Upon receiving an input (Initiate, I, R) from party I , send a delayed output (Initiate, I) to
R. Upon receiving (Respond) from party R, send (Respond) to the adversary.

2. Upon receiving a message (Corrupt, P) from the adversary, for P ∈ {I, R}, mark P as corrupted
and output (Corrupted) to P .

3. Upon receiving a message (Key, P, k̃) from the adversary, for P ∈ {I,R} do:

(a) If there is no recorded key κ then choose κ
R← {0, 1}k and record κ.

(b) If neither I nor R are corrupted then output (Key, κ) to P . Else, output (Key, k̃) to P .

Figure 2: The Key Exchange functionality, FKE

25

FKE Attempts to make only a minimal set of requirements from a candidate protocol. In particular, it
attempts o allow the adversary maximum flexibility in determining the order in which the parties obtain their
outputs. Also, the fact that there is no requirement on the key when one of the parties is corrupted is captured
by allowing the adversary to determine the key in this case. Still, FKE guarantees that if two uncorrupted
parties locally obtain a key, then they obtain the same value, and this value is uniformly generated and
independent from the adversary’s view.

Key Exchange is impossible to realize without some form of authentication set-up, say pre-shared keys,
authentication servers, or public-key infrastructure. Still, the formulation of FKE is agnostic to the particular
set-up in use. It only specifies the desired overall functionality. In each of these cases, FKE is realizable
by standard protocols, both with respect to basic security and with respect to UC security, discussed in the
second part of this tutorial.

Byzantine Agreement. Next we formulate an ideal functionality that captures (one variant of) the Byzan-
tine Agreement task. Here each party has binary input, and the parties wish to output a common value with
the only restriction that if all parties have the same input value then they output that value. The functionality,
FBA, is presented in Figure 3. Let us highlight some aspects of its formulation. First, the number of parties
(which is a parameter to FBA) can depend on the environment. Also the identities of the participants can
be determined adaptively as they join the protocol. Second, the fact that the adversary is notified on any
new input captures the fact that privacy of the inputs of the parties is not guaranteed. Third, FBA allows the
output value to take any adversarially chosen value, unless all parties have the same input. (In particular,
the parties are not guaranteed to compute any pre-determined function of their inputs.) Four, FBA captures
a blocking primitive, namely no party obtains output unless all parties provide inputs. It also guarantees
fair output delivery: As soon as one party obtains its output, all parties who ask for their output receive it
without delay. (Note that if FBA would have simply sent the outputs to all parties, then fairness would not
have been guaranteed since the adversary could have prevented the delivery to some parties by not returning
control to FBA.) Finally, FBA does not have a postulation for the case of party corruption. This captures the
fact that corrupting a party should give no advantage to the adversary.

Functionality FBA

FBA proceeds as follows, when parameterized by the number n of participants. A set P of participant identi-
ties is initialized to empty. Then:

1. Upon receiving input (Input, v) from some new party P /∈ P , where v ∈ {0, 1}, add P to P , set
xP = v, and send a message (Input, P, v) to the adversary. As soon as |P| = n, ignore additional
(Input...) inputs.

2. Upon receiving input (Output) from a party P ∈ P , if |P| < n then do nothing. Else:

(a) If the output value y is not yet determined then determine y as follows: If there exists a value
b ∈ {0, 1} such that xP = b for all parties P ∈ P , then set y = b. Else, obtain a value y from
the adversary.

(b) Output y to P .

Figure 3: The Byzantine Agreement functionality, FBA

Note that FBA is agnostic to the specific model of computation in which it is realized. Naturally, real-
izing FBA requires different techniques in different settings (depending e.g. on the level of synchrony and
the specific authentication set-up). We conjecture that, in each such setting, realizing FBA is essentially

26

equivalent to the standard definition of the primitive in that model. (In particular, it is easy to see that if half
or more of the parties are corrupted then FBA becomes unrealizable in any computational model. Indeed, in
such settings the Byzantine Broadcast formulation, where only one party has input, is preferable.)

4.4 Feasibility

We very briefly mention some of the basic feasibility results for cryptographic protocols, which establish
a remarkable fact: Practically any cryptographic task can be realized, in principle, by a polynomial-time
interactive protocol.

The first work to provide a general feasibility result is Yao [Y86], which showed how to securely evaluate
any two-party function by a two-party protocol, in a setting which corresponds to that of Section 3, in the
case of “honest-but-curious corruptions” where even corrupted parties continue to follow the protocol.

The basic idea is as follows. Given a function f , first have one party, X , with input x, prepare a binary
circuit Cf

x such that for any y, Cf
x (y) = f(x, y). Then X sends to the other party, Y , an “obfuscated version”

of Cf
x , so that Y can only evaluate Cf

x on a single input of its choice, without learning any additional
information on the “internals” of Cf

x . The obfuscation method involves preparing a “garbled version” of
each gate in the circuit, plus allowing Y to obtain a matching “garbled version” of one of the possible two
values of each input line. Given this information, Y will be able to evaluate the circuit in a gate by gate
fashion, and obtain a “garbled version” of the output line of the circuit. Finally, X will send Y a table that
maps each possible garbled value of the output line to the corresponding real value.

Goldreich, Micali and Wigderson [GMW87] generalize [Y86] in two main respects. First, they generalize
Yao’s “obfuscated circuit” technique to multi-party functions. Here all parties participate in evaluating the
“garbled gates”. Further generalization to reactive functionalities can be done in a straightforward way, as
demonstrated in [CLOS02].

Perhaps more importantly, [GMW87] generalize Yao’s paradigm to handle also Byzantine corruptions,
where corrupted parties may deviate from the protocol in arbitrary ways. This is done via a generic and
powerful application of Zero-Knowledge protocols. A somewhat over-simplified description of the idea
follows: In order to obtain a protocol π that realizes some task for Byzantine corruptions, first design a
protocol π′ that realizes the task for honest-but-curious corruptions. Now, in protocol π each party P runs
the code of π′, and in addition, along with each message m sent by π′, P sends a Zero-Knowledge proof
that the message m was computed correctly, according to π′, based on some secret input and the (publicly
available) messages that P received. The protocols of [GMW87] withstand any number of faults, without
providing fairness in output generation. Fairness is guaranteed only if the corrupted parties are a minority.

Ben-Or, Goldwasser and Wigderson [BGW88] demonstrate, using algebraic techniques, that if the parties
are equipped with ideally secret pairwise communication channels, then it is possible to securely evaluate
any multi-party function in a perfect way (see discussion following Definition 1), in the presence of honest-
but-curious corruption of any minority of the parties. The same holds even for Byzantine corruptions, as
long as less only less than a third of the parties are corrupted. Rabin and Ben Or [RB89] later improved the
bound from a third to any minority, assuming a broadcast channel. These bounds are tight. A nice feature of
the [BGW88] protocols is that, in contrast to the [GMW87] protocols, they are secure even against adaptive
corruptions.

All the above results assume ideally authenticated communication. If an authenticated set-up stage
is allowed, then obtaining authenticated communication is simple, say by digitally signing each message
relative to pre-distributed verification keys. When no authenticated set-up is available, however, then no
task that requires some form of authentication of the participants can be realized. Still, as shown in Barak
et.al. [B+05], an “unauthenticated variant” of any cryptographic task can still be realized, much in the

27

spirit of [Y86, GMW87], even without any authenticated set-up. Interestingly, the proof of this result uses
in an essential way protocols that are securely composable, namely retain their security properties even
when running together in the same system. This can be seen as a demonstration of the fact that secure
composability, discussed next, is in fact a very basic security requirement for cryptographic protocols.

Acknowledgments. My thinking and understanding of cryptographic protocols has been shaped over the
years by discussions with many insightful researchers, too numerous to mention here. I thank you all.
Oded Goldreich and Hugo Krawczyk were particularly influential, with often conflicting (complementary?)
views of the field. I’m also grateful to the editor, Sergio Rajsbaum, for his effective blend of flexibility and
persistence.

References

[BPW04] M. Backes, B. Pfitzmann, and M. Waidner. Secure Asynchronous Reactive Systems. Eprint archive,
http://eprint.iacr.org/2004/082, March 2004.

[B+05] B. Barak, R. Canetti, Y. Lindell, R. Pass and T. Rabin. Secure Computation Without Authentication. In
Crypto’05, 2005.

[B91] D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating a Faulty Minority. J.
Cryptology, (1991) 4: 75-122.

[BCG93] M. Ben-Or, R. Canetti and O. Goldreich. Asynchronous Secure Computations. 25th Symposium on Theory
of Computing (STOC), ACM, 1993, pp. 52-61.

[BGW88] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-
Tolerant Distributed Computation. 20th Symposium on Theory of Computing (STOC), ACM, 1988, pp. 1-10.

[B82] M. Blum. Coin flipping by telephone. IEEE Spring COMPCOM, pp. 133-137, Feb. 1982.

[BCC88] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS, Vol. 37, No. 2,
pages 156–189, 1988.

[C00] R. Canetti. Security and composition of multi-party cryptographic protocols. Journal of Cryptology, Vol. 13,
No. 1, winter 2000.

[C01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. (Earlier version of
the present work.) Available at http://eccc.uni-trier.de/eccc-reports/2001/TR01-016/revision01.ps. Extended
abstract in 42nd FOCS, 2001.

[C+06] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Task-Structured Proba-
bilistic I/O Automata. In Workshop on discrete event systems (WODES), 2006.

[CF01] R. Canetti and M. Fischlin. Universally Composable Commitments. Crypto ’01, 2001.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally composable two-party and multi-party secure
computation. 34th STOC, pp. 494–503, 2002.

[CGKS95] B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan. Private Information Retrieval. 36th FOCS, 1995, pp.
41-50.

[DM00] Y. Dodis and S. Micali. Secure Computation. CRYPTO ’00, 2000.

[G01] O. Goldreich. Foundations of Cryptography. Cambridge Press, Vol 1 (2001) and Vol 2 (2004).
NP.

[GMW87] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game. 19th Symposium on Theory of
Computing (STOC), ACM, 1987, pp. 218-229.

28

[GL90] S. Goldwasser, and L. Levin. Fair Computation of General Functions in Presence of Immoral Majority.
CRYPTO ’90, LNCS 537, 1990.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, Vol. 28, No 2, April 1984, pp. 270-299.

[GMRa89] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems. SIAM
Journal on Comput., Vol. 18, No. 1, 1989, pp. 186-208.

[HM00] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure multi-party computation.
Journal of Cryptology, Vol 13, No. 1, 2000, pp. 31-60. Preliminary version in 16th Symp. on Principles of
Distributed Computing (PODC), ACM, 1997, pp. 25–34.

[H85] C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer Science, Prentice Hall,
1985.

[LMMS98] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov. A Probabilistic Poly-time Framework for Protocol Anal-
ysis. 5th ACM Conf. on Computer and Communication Security, 1998, pp. 112-121.

[Ly96] N. Lynch. Distributed Algorithms. Morgan Kaufman, San Francisco, 1996.

[LSV03] N. Lynch, R. Segala and F. Vaandrager. Compositionality for Probabilistic Automata. 14th CONCUR, LNCS
vol. 2761, pages 208-221, 2003. Fuller version appears in MIT Technical Report MIT-LCS-TR-907.

[MMS03] P. Mateus, J. C. Mitchell and A. Scedrov. Composition of Cryptographic Protocols in a Probabilistic
Polynomial-Time Process Calculus. CONCUR, pp. 323-345. 2003.

[MR91] S. Micali and P. Rogaway. Secure Computation. unpublished manuscript, 1992. Preliminary version in
CRYPTO ’91, LNCS 576, 1991.

[M89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[M99] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press, 1999.

[MRST01] J. Mitchell, A. Ramanathan, A. Scedrov, V. Teague. A probabilistic polynomial-time calculus for analysis
of cryptographic protocols (Preliminary report). 17-th Annual Conference on the Mathematical Foundations
of Programming Semantics, Arhus, Denmark, May, 2001, ENTCS Vol. 45 (2001).

[PW94] B. Pfitzmann and M. Waidner. A general framework for formal notions of secure systems. Hildesheimer
Informatik-Berichte 11/94, Universitat Hildesheim, 1994. Available at http://www.semper.org/sirene/lit.

[PW00] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems. 7th ACM
Conf. on Computer and Communication Security, 2000, pp. 245-254.

[PW01] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to se-
cure message transmission. IEEE Symposium on Security and Privacy, May 2001. Preliminary version in
http://eprint.iacr.org/2000/066 and IBM Research Report RZ 3304 (#93350), IBM Research, Zurich, Decem-
ber 2000.

[RB89] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols with Honest Majority. 21st
Symposium on Theory of Computing (STOC), ACM, 1989, pp. 73-85.

[Y82A] A. Yao. Protocols for Secure Computation. In Proc. 23rd Annual Symp. on Foundations of Computer Science
(FOCS), pages 160–164. IEEE, 1982.

[Y86] A. Yao, How to generate and exchange secrets, In Proc. 27th Annual Symp. on Foundations of Computer
Science (FOCS), pages 162–167. IEEE, 1986.

29

