
Dictionaries: Hashing, 
Amortization, and other magic

(there is no magic)

Ilia Lebedev
ilebedev@mit.edu



Bio Context
Part of a data structure - 
centric Algorithms course

(mid-semester)

Prerequisites:

- Basic data structures
- Basic complexity

Hello!

Handout: http://people.csail.mit.edu/ilebedev/facebook



Big picture

1. Dictionary ADT
2. Hashing
3. Amortized complexity
.. as illustrated by table doubling

Open addressing
Rolling hashes
Crypto hashing

TODAY!

Cryptography
Distributed systems
Databases
Image search
etc. (much of CS!)

if time permits:

important for:

Build a data structure with:
O(lg n) insert, delete
Ө(1) : current 5 median values

Too 
easy?



Data structures cheat sheet
Insert Delete Search

Array Ө(n) Ө(n) Ө(1)
List Ө(1) O(n) O(n)
Sorted array list* O(log n) O(n) O(log  n)
Min/Max heap O(log n) O(n) O(n)
Balanced BST O(log n) O(log n)   O(log n)

Today: Dictionary Ө(1) Ө(1) Ө(1)



Motivating problem
Given a “document” (list of words),
 find the most often-occurring word. 

*Also Facebook could not possibly work without hash tables!



Ready? Set. Code! (1/3)
def common_word( W ):
  counts = []
  best = [None, 0]
  for w in W:
    for pair in counts:
      if pair[0] == w:
        pair[1] = pair[1] + 1
        if pair[1]>best[1]:

best=pair
        break
    counts.append( [w, 1] )
  return best[0]

O(n2)



Ready? Set. Code! (2/3)
def common_word( W ):
  SW = sorted(W)
  best = [None, 0]
  current = [None, 0]
  for w in SW:
    if w != current[0]:
      if current[1]>best[1]:
        best=current
      current = [w, 0]
    current[1] = current[1]+1
  return best[0]

O(n log n)



Ready? Set. Code! (3/3)
Use a heap to store counts?

→ O(n2)

Use a  BST?  **(augmented to store words)

→ O(n log n)

Can we do any better?



Finding the bottleneck
Output is a reduction of entire input

 → Ω(n) complexity

To find most often occurring word,

we count all the words 

So far, O(n log n) at best.

                               (we can do better)

Given the counts, can find largest in O(n)



The dictionary ADT
def count( W ):
  counts = {}
  for w in W:
    count = counts[w]
    if not count: count = 0
    counts[w] = count + 1
  return counts

search (key) → value

insert (key, value)

delete (key)

All can be 
implemented 
in Ө(1)*



Pre-hash functions (all keys are now ints)

Ideally:
  == for “same”
  not == otherwise

not injective!
hash(“\0B”) ==   
         hash(“\0\0C”)
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int



An unbounded array “dictionary”
- all keys are

 ints ∊ Z+

- keys index into ∞ 
array A

search: A[k] → v

insert: A[k] = v

delete: A[k] = None



Hashing to “compress” key space
Key space is large and sparse.

Map to dense array!

h: key space → array indexes (mod 
m)

search: A[h(k)] → v

insert: A[h(k)] = v

delete: A[h(k)] = None



Key collision
Pigeonhole principle

Key space is large,  but {0,1, .. m-1} is small

There must

exist some (many)

k
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)

Augment a dictionary such 
that it maintains a list of its 
elements

Too 
easy?



A hash table with chaining
Collisions will happen!

Chaining:

  store lists (key, value)

*other solutions are very cool!

- Open addressing, Cuckoo hashing, ...



Chaining example (1/6)

Insert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete   (11,11)
h(k) = k%5

(1,1)



Chaining example (2/6)

Insert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete   (11,11)
h(k) = k%5

(1,1)
(21,21)



Chaining example (3/6)

Insert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete   (11,11)
h(k) = k%5

(1,1)
(21,21)

(33,33)



Chaining example (4/6)

Insert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete   (11,11)
h(k) = k%5

(1,1)

(11,11)
(21,21)

(33,33)



Chaining example (5/6)

Insert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete   (11,11)
h(k) = k%5

(1,1)

(11,11)
(21,21)

(33,33)

(31,31)



Chaining example (6/6)

Insert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete   (11,11)
h(k) = k%5

(1,1)

(31,31)
(21,21)

(33,33)



Time complexity with chaining
O(L

i
) time to traverse the list, where L

i
 is |chain

i
|

Best case : all L
i
 are the same

chains have N/M pairs

      L
i
 should be kept short!

             

                      Ө(1) search → M = Ө(N)



The worst case
What is the worst h?

O(N) worst case?!

Pick h such that this is

unlikely. Best we can do,

but it works out.

With SUH, the 
likelihood of this 
happening is 1/
(M(n-1)) - tiny!



Many simple hash functions do well
- division method: h(k) = k mod m
- multiplication method: h(k) = (k*a mod 2w) >> (w-r),

        where  w is the word width, and m = 2r

- universal hashing:  h(k) = ((a*k+b) mod p ) mod m

Demo!                                                    (random)       (prime)

Various simple hash functions perform well against biased 
distributions. (not crypto-quality but good enough).



Taking stock
what’s missing?

any solutions

  to challenges?



Resizing M
Recall M = Θ(N).  If N = M2, then L=Θ(√N), not const!
We need to resize the array as N grows!

Resizing:
1). Make a new (bigger/smaller) array
2). Make a new hash function
3). Re-hash everything

How long does this take?



Amortized time complexity
Resizing takes O(N) time.

Use amortization
keep expected (average) time low.

( O(1)Ө(M)  + O(N) ) / Ө(M) 
     = Θ(M+N)/Ө(M) = Ө(1)
Spread out expensive ops (amortize them)



When to resize on insert and by how much?
Let’s resize when n > m

m → m+1?

No, Ө(M) inserts must happen before next resize.

m → 2m

at least m/2 inserts before next resize



Resizing on deletions
Tricky case: [ins, del, ins, del, … ] 
at threshold

a resizing del must allow Ө(M) ins 
before resizing

m → m/2

when n < m/2

is BAD!

m → m/2

when n < m/4



Hash table with chaining (1/5)
Now, lets put it all together!

class HashTable:
  def __init__(self):
    self.min_m = 4
    self.m = self.min_m
    self.n = 0
    self.D = [ [] ] * self.m
    self.h =
     lambda k : ((k*73+37)%91)%self.m



Hash table with chaining (2/5)
def search ( self, k ):
  chain = self.D[self.h(k)]
  for (Dk, Dv) in chain:
    if Dk == k:
      return Dv
  return None  



Hash table with chaining (3/5)
def insert ( self, k, v ):
  chain = self.D[self.h(k)]
  for pair in chain:
    if pair[0] == k:
      pair[1] = v
      return
  chain.append( [k, v] )
  self.n = self.n + 1
  if self.n > self.m:
    self._resize( 2*self.m )

  



Hash table with chaining (4/5)
def delete ( self, k ):
  chain = self.D[self.h(k)]
  m = self.m
  for pair in chain:
    if pair[0] == k:
      pair[0] = chain[-1][0]
      pair[1] = chain[-1][1]
      chain.pop()
      self.n = self.n - 1
      if (m > self.min_m) and (self.n < m/4):
        self._resize( m/2 )
      return



Hash table with chaining (5/5)
def resize ( self, new_m ):
  elements = []

for chain in self.D:
for element in chian:

elements.append( element )
  self.D = [ []*new_m ]
  self.m = new_m
  for (k,v) in elements:

self.insert( k, v )



wow

wow

wow

wow

much table

any questions?

such complexity

so hash


