‘li%\\//

,\,a\\ke/:
\\,// /,\\
/’\\ S
o= J

Dictionaries: Hashmg,
Amortization, and other magic

(there is no magic)

llia Lebedev
T CSAIL ilebedev@mit.edu

Bio Gontext

Part of a data structure -
centric Algorithms course

(mid-semester)

Prerequisites: $tey

- Basicdata structures
- Basic complexity

Handout: http://people.csail.mit.edu/ilebedev/facebook

Big picture

TODAY!

(1. Dictionary ADT)
2. Hashing

3. Amortized complexity

|mp0rtantf0r ..\~ asillustrated by table doubling ,
-Cryptography E e -
. Distributed systems - 'f F!U‘.‘?.P?!’W.”E?;
- Databases ;4/ *Open addressing
‘Image search : :Rolling hashes -

.etc. (muchof CS!) - :Crypto hashing

Too
easy?

Data structures cheat sheet

Insert Delete Search
Array O(n) O(n) O(1)
List O(1) O(n) O(n)
Sorted array list* Of(log n) (n) Oflog n)
Min/Max heap O(log n) (n) O(n)
Balanced BST O(log n) n) O(logn)

ONONG®,

ﬁé
‘QOQ

Today: Dictionary O(1) O(1) O(1)

Motivating problem

Given a “document” (list of words),
find the most often-occurring word.

*Also Facebook could not possibly work without hash tables!

Ready? Set. Gode! (1/3)

common word(W):
counts = []
O(nZ) best = [None, 0]
for w 1n W:
for pair 1in counts:
1f pair[0] == w:
pair[l] = pair[l] + 1
1f pair[l]>best[1]:
best=pailr
break
counts.append([w, 1])
return best[0]

Cooooode !

Ready? Set. Code! (2/3)

O(nlogn)

A\

Armm ..

def common word(W):

SW = sorted (W)

best = [None, 0]
current = [None, O]
for w in SW:

if w != current[0]:

1f current|[l]>best[1l]:
best=current
current = [w, O]
current|[l] = current[l]+1
return best[0]

Ready? Set. Code! (3/3) 117

Use a heap to store counts? g\
0 \/

Use a BST? **(augmented to store words)
— O(n log n)

Can we do any better?

Finding the hottleneck

Output is a reduction of entire input

— Q(n) complexity
To find most often occurring word, B

we count all the words
So far, O(n log n) at best.

7’ -(we can do better) —
Given the counts, can find largest in O(n)

The dictionary ADT search (key) — value

dof count (W) : einsert (key, value)
counts = {] delete (key)
for w in W:
count = counts[w] A
1f not count: count = 0
counts[w] |= count + 1
return counts All can be

implemented
inO(1)*

Pre-hash functions (all keys are now mts)

— (pre-hash) —
|d85||y:

== for “same”
not == otherwise

not injective!
hash(“\OB”) ==
hash(“\O\OC”)

Milk Dudsfes

-—v—-_‘n.-l-

;,T ""T'

mig

V‘”T'“L

B HERSHEYS' @. g
° . JUJUBESHS -

Tkoe @B ED 6

N ————————

CHARLE

g2 v >3
Euugg ’3°“"
(53 ma poca =

: 4 ;
D) a5 e
p SO ¢ e -
; ' \ ' '\. ")¢
= a.._.*_...._,_,___ e LGS
A [+ { |

-
m ——— (T

RN TIGC TP A RS Y

=)

3
LICHEW, N
p—— - ——
i

e
\a-_r "'*,:
] ot

MRS A N (an Y =

An unbounded array “dictionary”

- all keys are search: Alk] —v
ints € Z* insert: Alk]=v
- keys index into « delete: A[k]=None
array A
Fe 2o > Ve
oyl 5V e e 5

Hashing to “compress™ key space (%" ™

Key space is large and sparse. _ lf
Map to dense array! #u\i’ | S§§
h: key space — array indexes (mod

m) (ézn%)

=\ search: Alh(k)] — v
= insert: Alh(k)]=v
X delete: Alh(k)] = None

Key collision

Pigeonhole principle

A
Key space is large, but{0,1,..m-1}is small

-
Too
easy?
There must \ (/ﬁ
existsome (many) {\3 . Oh no,
f(2,

7 ")

' N Sai=
€\ v { Cyan o
Y Py el dl

A hash table with chaining

Collisions will happen! (ke‘jﬂ“\“")

Chaining: :
store lists (key, value) " j\

D OQ[[3

*other solutions are very cool!

—0

R s

R chaww

- Open addressing, Cuckoo hashing, ...

Chaining example (1/6)

nsert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete (11,11)
(k) = k%5

(1,1)

Chaining example (2/6)

nsert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete (11,11)
(k) = k%5

(21,21)
(1,1)

Chaining example (3/6)

nsert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete (11,11)
N(k) = k%5

(21,21)
(1,1) (33,33)

Chaining example (4/6)

nsert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete (11,11)
N(k) = k%5

(11,11)
(21,21)
(1,1) (33,33)

Chaining example (5/6)

nsert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete (11,11)
(k) = k%5

(31,31)
(11,11)
(21,21)
(1,1) (33,33)

Chaining example (6/6)

nsert (1,1),(21,21),(33,33),(11,11),(31,31)
Delete (11,11)
(k) = k%5

(31,31)
(21,21)
(1,1) (33,33)

Time complexity with chaining

O(L) time to traverse the list, where L. is |chain |

Best case : all Li are the same

, =3
chains have N/M pairs =Q-\1
- L.should be kept short! M |
~ @l .
/',//, ' \" ‘—\3
N _

O(1) search —» M = 6(N) M

The worst case

What is the worst h?
O(N) worst case?!

—\}\}—\}\1—0——\3

\ ‘N___—J

[

WA

: . With SUH, the
Pick h such that this is ikelihood of this

unlikely. Best we can do, happening is 1/
but it works out. (M-2) - tiny!

(11

Many simple hash functions do well

- division method: h(k) =k mod m

- multiplication method: h(k) = (k*a mod 2%) >> (w-r),
where wis the word width,and m = 2f

- universal hashing: h(k) = ((a*k+b) mod p) mod m

Demo! (random) (prime)

Various simple hash functions perform well against biased
distributions. (not crypto-quality but good enough).

ing stock

Tak

.
o0
=
(Vg
L
=
wm
<+
4]
L
=

any solutions

to challenges?

Resizing M

Recall M = @(N). If N = M2 then L=0@(¥N), not const!
We need toresize the array as N grows!

Resizing:

1). Make a new (bigger/smaller) array
2). Make a new hash function On Y-
3). Re-hash everything q%‘

Amortized time complexity

Resizing takes O(N) time. 44 35'%8 W:é;g} I
At ~
020 [\T

Use amortization §/4nal i -39

keep expected (average) time Io%

(O(1)6(M) + O(N))/ 6(M)
=@(M+N)/6(M) = ©(1)
Spread out expensive ops (amortize them)

When to resize on insert and by how much?

lLet’s resize whenn >m

A\
.,

m E m 1. ;i : o=
/~ o

No, ©(M) inserts must happen before next resize.
m— 2m
at least m/2 inserts before next resize

Resizing on deletions m — m/2

whenn < m/2

Tricky case: [ins, del, ins, del, ...] ,
is BAD!

at threshold
a resizing del must allow ©6(M) ins
before resizing if

m—m/2 2 ‘47

when n < m/4 i\

Hash table with chaining (1/5)

Now, lets put it all together!

class HashTable:
def 1nit (self):

self.min m = 4

self.m = self.min m
self.n = 0

self.D = [[]] * self.m
self.h =

lambda k : ((k*73+37)%91)%self.m

Hash table with chaining (2/5)

def search (self, k):
chain = self.D[self.h (k)]
for (Dk, Dv) 1n chain:
1f Dk ==
return Dv
return None

Hash table with chaining (3/5)

def insert (self, k, v):
chain = self.D[self.h (k)]
for pair in chain:
1f pair[0] ==
palir[l] = v
return
chain.append([k, v])
self.n = self.n + 1
1f self.n > self.m:
self. resize(2*self.m)

Hash tahle W|th chammg (4/5)

def delete self,
chain = self.D[self.h(k)]

m = self.m
for pair in chain:
1f pair[0] ==
pair[0] = chain[-1][0]
palir[1l] = chain[-1][1]

chain.pop ()

self.n = self.n - 1

if (m > self.min m) and (self.n < m/4):
self. resize(m/2)

return

Hash table with chaining (5/5)

def resize (self, new m):
elements = []
for chain in self.D:
for element 1in chian:
elements.append(element)
self.D = [[]*new m]
self.m = new m
for (k,v) 1n elements:
self.insert(k, v)

so hash

