
Secure Processors Part I:
Background, Taxonomy for
Secure Enclaves and Intel

SGX Architecture

Secure Processors Part I:
Background, Taxonomy for
Secure Enclaves and Intel

SGX Architecture

Victor Costan, Ilia Lebedev and Srinivas Devadas
victor@costan.us, ilebedev@mit.edu and devadas@mit.edu
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Boston — Delft

Foundations and Trends R© in
Electronic Design Automation
Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

V. Costan, I. Lebedev, and S. Devadas. Secure Processors Part I:
Background, Taxonomy for Secure Enclaves and Intel SGX Architecture.
Foundations and TrendsR© in Electronic Design Automation, vol. 11, no. 1-2,
pp. 1–248, 2017.

This Foundations and TrendsR© issue was typeset in LATEX using a class file de-
signed by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-300-3
c© 2017 V. Costan, I. Lebedev, and S. Devadas
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copying,
such as that for general distribution, for advertising or promotional purposes, for creat-
ing new collective works, or for resale. In the rest of the world: Permission to photocopy
must be obtained from the copyright owner. Please apply to now Publishers Inc., PO
Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Foundations and Trends R© in
Electronic Design Automation

Volume 11, Issue 1-2, 2017
Editorial Board

Editor-in-Chief

Radu Marculescu
Carnegie Mellon University
United States

Editors

Robert K. Brayton
UC Berkeley
Raul Camposano
Nimbic
K.T. Tim Cheng
UC Santa Barbara
Jason Cong
UCLA
Masahiro Fujita
University of Tokyo
Georges Gielen
KU Leuven
Tom Henzinger
Institute of Science and Technology
Austria
Andrew Kahng
UC San Diego

Andreas Kuehlmann
Coverity
Sharad Malik
Princeton University
Ralph Otten
TU Eindhoven
Joel Phillips
Cadence Berkeley Labs
Jonathan Rose
University of Toronto
Rob Rutenbar
University of Illinois
at Urbana-Champaign
Alberto Sangiovanni-Vincentelli
UC Berkeley
Leon Stok
IBM Research

Editorial Scope

Topics

Foundations and Trends R© in Electronic Design Automation publishes
survey and tutorial articles in the following topics:

• System level design

• Behavioral synthesis

• Logic design

• Verification

• Test

• Physical design

• Circuit level design

• Reconfigurable systems

• Analog design

• Embedded software and
parallel programming

• Multicore, GPU, FPGA, and
heterogeneous systems

• Distributed, networked
embedded systems

• Real-time and cyberphysical
systems

Information for Librarians

Foundations and Trends R© in Electronic Design Automation, 2017, Volume 11,
4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also
available as a combined paper and online subscription.

Foundations and TrendsR© in Electronic Design
Automation

Vol. 11, No. 1-2 (2017) 1–248
c© 2017 V. Costan, I. Lebedev, and S. Devadas
DOI: 10.1561/1000000051

Secure Processors Part I:
Background, Taxonomy for Secure Enclaves and

Intel SGX Architecture

Victor Costan, Ilia Lebedev and Srinivas Devadas
victor@costan.us, ilebedev@mit.edu and devadas@mit.edu
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Contents

1 Introduction 3
1.1 Secure Remote Computation 4
1.2 SGX Lightning Tour . 8
1.3 Outline . 10

2 A Primer on Computer System Architecture 11
2.1 Overview . 12
2.2 Computational Model . 14
2.3 Software Privilege Levels 19
2.4 Address Spaces . 20
2.5 Address Translation . 23
2.6 Execution Contexts . 30
2.7 Segment Registers . 32
2.8 Privilege Level Switching 35
2.9 An Overview of a Modern Computer System 39
2.10 Out-of-Order and Speculative Execution 45
2.11 Memory Cache Subsystem 50
2.12 Interrupts . 63
2.13 Platform Initialization (Booting) 65
2.14 CPU Microcode . 70

ix

x

3 A Primer on Security for Trusted Processors 81
3.1 Cryptographic Primitives 82
3.2 Cryptographic Constructs 96
3.3 Software Attestation Overview 103
3.4 Physical Attacks . 108
3.5 Privileged Software Attacks 113
3.6 Software Attacks on Peripherals 114
3.7 Address Translation Attacks 119
3.8 Cache Timing Attacks . 124

4 A Survey of Secure Processors 131
4.1 The IBM 4765 Secure Coprocessor 131
4.2 ARM TrustZone . 135
4.3 The XOM Architecture 138
4.4 The Trusted Platform Module (TPM) 139
4.5 Intel’s Trusted Execution Technology (TXT) 142
4.6 The Aegis Secure Processor 143
4.7 The Bastion Architecture 145
4.8 Intel SGX . 146
4.9 Sanctum . 147
4.10 Ascend and Phantom . 148

5 The Software Isolation Container (As Exemplified by Intel’s
SGX) 151
5.1 SGX Physical Memory Organization 153
5.2 The Memory Layout of an SGX Enclave 157
5.3 The Life Cycle of an SGX Enclave 165
5.4 The Life Cycle of an SGX Thread 169
5.5 EPC Page Eviction . 179
5.6 SGX Enclave Measurement 192
5.7 SGX Enclave Versioning Support 199
5.8 SGX Software Attestation 212
5.9 SGX Enclave Launch Control 224

6 Conclusion 235

xi

Acknowledgments 237

References 239

Abstract

This manuscript is the first in a two part survey and analysis of the state
of the art in secure processor systems, with a specific focus on remote
software attestation and software isolation. This manuscript first exam-
ines the relevant concepts in computer architecture and cryptography,
and then surveys attack vectors and existing processor systems claim-
ing security for remote computation and/or software isolation. This
work examines in detail the modern isolation container (enclave) prim-
itive as a means to minimize trusted software given practical trusted
hardware and reasonable performance overhead. Specifically, this work
examines in detail the programming model and software design con-
siderations of Intel’s Software Guard Extensions (SGX), as it is an
available and documented enclave-capable system.

Part II of this work is a deep dive into the implementation and se-
curity evaluation of two modern enclave-capable secure processor sys-
tems: SGX and MIT’s Sanctum. The complex but insufficient threat
model employed by SGX motivates Sanctum, which achieves stronger
security guarantees under software attacks with an equivalent pro-
gramming model.

This work advocates a principled, transparent, and well-scrutinized
approach to secure system design, and argues that practical guarantees
of privacy and integrity for remote computation are achievable at a
reasonable design cost and performance overhead.

V. Costan, I. Lebedev, and S. Devadas. Secure Processors Part I:
Background, Taxonomy for Secure Enclaves and Intel SGX Architecture.
Foundations and TrendsR© in Electronic Design Automation, vol. 11, no. 1-2,
pp. 1–248, 2017.
DOI: 10.1561/1000000051.

1
Introduction

A user wishing to perform computation remotely faces a complex trade-
off: how much trust can be placed in the remote system? How much
of a performance overhead is considered acceptable for the given se-
curity properties? How strong an adversary can the remote system
defend against? An ideal system would offer overhead-free trustwor-
thy private remote computation with no assumptions of trust at all,
yet no such system exists.

At one extreme, expensive cryptographic techniques including gar-
bled circuits [Yao, 1986] and fully homomorphic encryption [Gentry,
2009] offer trust-free computation at prohibitive cost. A typical cloud
computing scenario lies much closer to the opposite extreme: weak se-
curity guarantees achievable with minimal overhead assuming nearly
unchecked trust in the remote system. This work aims to illustrate
that significant security properties can be achieved given very modest
trust in the remote system. A long lineage of secure processors explore
the space of trusted hardware enabling inexpensive remote computa-
tion robust against a variety of threat models.

A rigorous conversation about security requires a precisely stated
thread model: trusted hardware must be secure, meaning it must show

3

4 Introduction

resilience against a well-specified threat model. For example, few sys-
tems can offer meaningful guarantees against an adversary capable of
physically tampering with the system’s hardware. While the space of
projects fitting the description of “secure processor” is large indeed,
this work focuses on systems enabling secure remote computation, de-
fined in § 1.1. Specifically, this work aims to illuminate the program-
ming model, historical context, design decisions, and threat models
relevant to secure software enclaves − the latest and so far the most
capable paradigm for secure remote computation. We survey Intel’s
Software Guard Extensions (SGX) and MIT’s Sanctum systems to
exemplify enclave-capable systems.

This work is presented in two parts, the first covering the technical
background and taxonomy of computer architecture (§ 2) and security
concepts (§ 3) as relevant to an in-depth discussion of secure processors.
This same part presents a survey of prior work (§ 4) and an in-depth
discussion of the programming model presented by secure software en-
claves, as exemplified by Intel’s Software Guard Extensions (§ 5).

Part II [Costan et al., 2017] of this review is a deep dive into the
implementation and security properties of two modern enclave-capable
secure processor systems: SGX and MIT’s Sanctum. This work aims
to rigorously analyze the security properties and trade-offs employed
buy the secure properties to achieve their stated goals.

1.1 Secure Remote Computation

Secure remote computation (Figure 1.1) is the problem of executing
software on a remote computer owned and maintained by an un-
trusted party, with some integrity and confidentiality guarantees. In
the general setting, secure remote computation is an unsolved problem.
Fully Homomorphic Encryption [Gentry, 2009] addresses the problem
for a limited family of computations, but has an impractical perfor-
mance overhead [Naehrig et al., 2011].

Intel’s Software Guard Extensions (SGX) is the latest iteration in
a long line of trusted computing (Figure 1.2) designs, which aim to
solve the secure remote computation problem by leveraging trusted

1.1. Secure Remote Computation 5

Data Owner’s
Computer

Remote Computer

Container

Data Owner Software
Provider

Infrastructure
Owner

Manages

Private Data

Owns
Trusts

Private Code

Computation
Dispatcher

Setup

Verification

Authors

Trusts

Untrusted Software

Setup
Computation

Receive
Encrypted

Results

Figure 1.1: Secure remote computation. A user relies on a remote computer, owned
by an untrusted party, to perform some computation on her data. The user has some
assurance of the computation’s integrity and confidentiality.

hardware in the remote computer. The trusted hardware establishes a
secure container, and the remote computation service user uploads the
desired computation and data into the secure container. The trusted
hardware protects the confidentiality and integrity of data while the
computation is being performed on it.

SGX, Sanctum, and similar work rely on software attestation, like
their predecessors, the TPM [TCG, 2003] and TXT [Grawrock, 2009].
Attestation (Figure 1.3) proves to a user that she is communicat-
ing with a specific piece of software running in a secure container
hosted by the trusted hardware. The proof is a cryptographic signa-
ture that certifies the hash of the secure container’s contents. It fol-
lows that the remote computer’s owner can load any software in a
secure container, but the remote computation service user is able to
refuse to send private data to a secure container with a hash that
does not match an expected value.

The remote computation service user verifies the attestation key
used to produce the signature against an endorsement certificate cre-

6 Introduction

Trusted Hardware

Data Owner’s
Computer

Remote Computer

Secure Container

Data Owner Software
Provider

Infrastructure
Owner

Manages

Private Data

Owns
Trusts

Private Code

Computation
Dispatcher

Setup

Verification

Authors

Trusts

Untrusted Software

Setup
Computation

Receive
Encrypted

Results

Public Loader

Manufacturer

Builds

Trusts

Figure 1.2: Trusted computing. The user trusts the manufacturer of a piece of
hardware in the remote computer, and entrusts her data to a secure container hosted
by the secure hardware.

Trusted Platform

Secure Container

Data Owner’s Computer

Initial State
Public Code + Data

Key exchange: B, gA

Shared key: K = gAB

Key exchange: A, gA

gA

gB, SignAK(gA, gB, M)
M = Hash(Initial State)

Shared key: K = gAB
EncK(secret code/data)

Secret Code + Data

Computation Results
EncK(results)

Computation Results

AK: Attestation Key

Endorsement Certificate

Figure 1.3: Software attestation proves to a remote computer that it is communi-
cating with a specific secure container hosted by a trusted platform. The proof is an
attestation signature produced by the platform’s secret attestation key. The signa-
ture covers the container’s initial state, a challenge nonce produced by the remote
computer, and a message produced by the container.

1.1. Secure Remote Computation 7

ated by the trusted hardware’s manufacturer. The certificate states
that the attestation key is only known to the trusted hardware, and
only used for the purpose of attestation.

SGX stands out from its predecessors by the amount of code cov-
ered by the attestation, which is in the Trusted Computing Base (TCB)
for the system using hardware protection. The attestations produced
by the original TPM design covered the whole of the software run-
ning on a computer, and TXT attestations covered the code inside
a VMX [Uhlig et al., 2005] virtual machine. In SGX, an enclave (se-
cure container) only contains the private data in a computation, and
the code that operates on it.

For example, a cloud service that performs image processing on
confidential medical images could be implemented by having users up-
load encrypted images. The users would send the encryption keys to
software running inside an enclave. The enclave would contain the code
for decrypting images, the image processing algorithm, and the code
for encrypting the results. The code that receives the uploaded en-
crypted images and stores them would be left outside the enclave.
This example is illustrated in Figure 1.4.

attestation

memcopy

memcopy

decrypt

encrypt

analyze
medical
image

enclave

untrusted
software

app

network
stack

remote party

Figure 1.4: An example software application that uses SGX to implement a private
function analyzing a medical image.

An SGX-enabled processor protects the integrity and confidential-
ity of the computation inside an enclave by isolating the enclave’s code

8 Introduction

and data from other software, including the operating system and hy-
pervisor, and hardware devices attached to the system bus. At the
same time, the SGX model remains compatible with the traditional
software layering in the Intel architecture, where the OS kernel and
hypervisor manage the computer’s resources.

This work discusses the original version of SGX, also referred to
as SGX 1. While SGX 2 brings very useful improvements for enclave
authors, it is a small incremental improvement, from a design and im-
plementation standpoint. After understanding the principles behind
SGX 1 and its security properties, the reader should be well equipped
to face Intel’s reference documentation and learn about the changes
brought by SGX 2 and more recent work.

1.2 SGX Lightning Tour

While this manuscript seeks to educate the reader of the challenges,
history, and state of the art in secure processors for remote compu-
tation, this discussion is grounded in the example of Intel’s Software
Guard Extensions (SGX), as it is an available, documented, and mod-
ern system that aims to offer useful security guarantees to remotely
executed programs. This section presents a brief overview of the SGX
platform, directing the reader to other sections of the manuscript for
a deeper look at each aspect of SGX.

SGX sets aside a memory region, called the Processor Reserved
Memory (PRM, § 5.1). The CPU protects the PRM from all non-
enclave memory accesses, including kernel, hypervisor and manage-
ment engine (SMM, § 2.3) accesses, and DMA accesses (§ 2.9.1)
from peripherals.

The PRM holds the Enclave Page Cache (EPC, § 5.1.1), which
consists of 4 KB pages that store enclave code and data. The system
software, which is untrusted, is in charge of assigning EPC pages to
enclaves. The CPU tracks each EPC page’s state in the Enclave Page
Cache Metadata (EPCM, § 5.1.2), to ensure that each EPC page is
assigned exclusively, belonging to exactly one enclave.

1.2. SGX Lightning Tour 9

The initial code and data in an enclave is loaded by untrusted sys-
tem software. During loading (§ 5.3), system software asks the CPU to
copy data from unprotected memory (outside PRM) into EPC pages,
and assigns the pages to the enclave being setup (§ 5.1.2). It follows
that the initial enclave state is known to the system software.

After the enclave’s pages are loaded into EPC, the system soft-
ware asks the CPU to mark the enclave as initialized (§ 5.3), at which
point application software may execute code inside the enclave. Af-
ter an enclave is initialized, the loading mechanism briefly described
above is no longer available to system software.

While an enclave is loaded, its contents and configuration are cryp-
tographically hashed by the CPU. When the enclave is initialized, this
hash is finalized, and becomes the enclave’s measurement hash (§ 5.6).

A remote party can communicate with the enclave to perform soft-
ware attestation (§ 5.8) to convince itself that it is communicating
with an enclave that has a specific measurement hash, and is run-
ning in a secure environment.

Execution flow can only enter an enclave via special CPU instruc-
tions (§ 5.4), similar to the mode switching mechanism for transitioning
between user and kernel modes of execution in a typical system. An
enclave must execute in protected mode, at ring 3, and uses virtual
address translation as set up by the OS kernel and hypervisor.

To avoid leaking private information, a CPU executing enclave code
does not directly service any interrupt, fault (e.g., a page fault) or VM
exit. Instead, the CPU first performs an Asynchronous Enclave Exit
(§ 5.4.3) to switch from enclave code to ring 3 code, and then services
the interrupt, fault, or VM exit given scrubbed fault information. The
CPU performs an AEX by saving the CPU state into a predefined
area inside the enclave and transferring control to a predefined address
outside of the enclave, replacing CPU registers with synthetic values.

The allocation of EPC pages to enclaves is delegated to the OS ker-
nel (or hypervisor). The OS communicates its allocation decisions to the
SGX platform via special ring 0 CPU instructions (§ 5.3). The OS can
also evict EPC pages into untrusted DRAM and later load them back,
again using dedicated CPU instructions. SGX uses a cryptographic

10 Introduction

mechanism to enforce the confidentiality, integrity and freshness of the
evicted EPC pages while they are stored in untrusted memory.

1.3 Outline

Reasoning about the security properties of Intel’s SGX requires a sig-
nificant amount of background information that is currently scattered
across many sources. For this reason, a significant portion of this work
is dedicated to summarizing this prerequisite knowledge.

§ 2 summarizes the relevant subset of modern computer architecture
and the micro-architectural properties of recent Intel processors. § 3
outlines the landscape of trusted hardware systems, including crypto-
graphic tools and relevant classes of attacks. Lastly, § 4 briefly describes
other trusted hardware systems as context in which SGX was created.

Following this background information, § 5 provides a (sometimes
painstakingly) detailed description of SGX’s programming model,
largely drawing from Intel’s Software Development Manual.

A deep analysis of Intel’s enclave infrastructure is deferred to part
II of this publication (§ II.2), and will analyze other public sources of
information, such as Intel’s patents relevant to SGX, in order to fill
in some of the missing detail in the SGX specification. This discus-
sion is organized into an overview of Intel’s implementation of SGX
(§ II.2.1), a discussion and analysis of the mechanism by which SGX
offers memory access protection to an enclave (§ II.2.2, § II.2.3), and
examines SGX as a system for remote attestation (§ II.2.5, § II.2.6).
Finally, part II presents a security analysis of SGX overall, and dis-
cusses the classes of attacks against which SGX does not offer guaran-
tees(§ II.2.7). The main focus of part II is a detailed review of SGX’s
security properties to motivate and give context to the MIT Sanc-
tum project (§ II.3) − a flexible, secure, and open source implementa-
tion of enclave-capable hardware that offers strong security guarantees
against an insidious software adversary.

2
A Primer on Computer System Architecture

Analyzing the security of a software system requires understanding the
interactions between all parts of the software’s execution environment.
This section attempts to summarize the architectural principles behind
a modern processor, grounded in the specific example of the Intel Core
architecture1 (the widely accessible high-end computer system at the
time of publication), which offers a complex tapestry of interacting sub-
systems, subsets of which exemplify all architectural concepts required
to reason about the security concepts in this survey.

In an effort to present an accessible view of the relevant aspects of
computer architecture, this section presents each part of the computer
system in introductory terms before refining these with the details of
modern CPUs. Unless specified otherwise, the information here is sum-
marized from Intel’s Software Development Manual (SDM) [Int, 2015g].

1In this paper, the term Intel architecture refers to the x86 architecture as de-
scribed in Intel’s SDM. The entire x86 architecture is very complex, in part due to
its native support for legacy software dating back to 1990. This work considers a
subset - the microarchitecture as used by modern 64-bit software only.

11

12 A Primer on Computer System Architecture

2.1 Overview

A computer’s main resources (§ 2.2) are memory and processors. On
Intel computers, Dynamic Random-Access Memory (DRAM) mod-
ules (§ 2.9.1) provide the memory, and one or more CPU packages
expose logical processors (§ 2.9.4). These resources are managed by
system software. An Intel computer typically runs two kinds of system
software, namely operating systems and hypervisors.

The Intel architecture was designed to support multiple concur-
rent application software instances, called processes. An operating sys-
tem (§ 2.3), allocates the computer’s resources to the running processes.
Server computers, especially in cloud environments, may host multiple
operating system instances concurrently. This is accomplished via a
hypervisor (§ 2.3) scheduling the computer’s resources among the op-
erating system instances running on the computer.

System software uses virtualization techniques to isolate each piece
of software that it manages (process or operating system) from the
rest of the software running on the computer. This isolation is a key
tool for keeping software complexity at manageable levels, as it allows
application and OS developers to focus on their software, and ignore
the interactions with other software that may run on the computer.

A key component of virtualization is address translation (§ 2.5),
which is used to give software the impression that it owns all memory
on the computer. Address translation provides isolation that prevents
a piece of buggy or malicious software from directly damaging other
software, by modifying its memory contents.

The other key component of virtualization is the set of software
privilege levels (§ 2.3) enforced by the CPU. Hardware privilege sep-
aration ensures that a piece of buggy or malicious software cannot
damage other software directly, or by interfering with the system
software managing it.

Processes express their computing requirements by creating exe-
cution threads, which are assigned by the operating system to the
computer’s logical processors. A thread contains an execution con-
text (§ 2.6), which is the information necessary to perform a com-

2.1. Overview 13

putation. For example, an execution context stores the address of the
next instruction that will be executed by the processor.

Operating systems give each process the illusion that it has an un-
bounded quantity of logical processors at its disposal, and multiplex
the physically available logical processors between the threads created
by each process. Modern operating systems implement preemptive mul-
tithreading, where the logical processors are rotated between all threads
on a system every few milliseconds. Changing the thread assigned to a
logical processor is accomplished by a context switch (§ 2.6).

Hypervisors expose a fixed number of virtual processors (vCPUs)
to each operating system, and also use context switching to sched-
ule the physical cores of a computer among the vCPUs presented
to the guest operating systems.

The execution core in a logical processor can execute instructions
and consume data at a much faster rate than DRAM can supply
them. Many of the complexities in modern computer architectures stem
from architectural mechanisms to close this gap. Recent Intel CPUs
rely on hyper-threading (§ 2.9.4), out-of-order execution (§ 2.10), and
caching (§ 2.11) to efficiently utilize available memory bandwidth, all
of which have security implications.

An Intel processor contains many hierarchical levels of intermedi-
ate memory that are much faster than DRAM, but are also orders of
magnitude smaller. The fastest of these is the logical processor’s regis-
ter file (§ 2.2, § 2.4, § 2.6). Other intermediate memory structures are
various caches (§ 2.11). The Intel architecture requires application soft-
ware to explicitly manage the register file, which serves as a high-speed
scratch space, while caches transparently reduce expected latency of a
given DRAM request, and are largely invisible to software.

Intel computers have multiple logical processors. As a consequence,
they also have multiple caches distributed across the processor die.
On multi-socket systems, the caches are distributed across multiple
CPU packages. Therefore, Intel systems use a cache coherence mecha-
nism (§ 2.11.3) to ensure that all caches have the same view of DRAM,
allowing programmers to build software that is unaware of caching.
However, cache coherence does not cover function-specific caches used

14 A Primer on Computer System Architecture

by address translation (TLBs, § 2.11.5), and system software must
take special measures to keep these caches consistent.

CPUs communicate with the outside world via I/O devices (also
known as peripherals), such as network interface cards and display
adapters (§ 2.9). Conceptually, the CPU communicates with the
DRAM modules and the I/O devices via a system bus that con-
nects all these components.

Software written for the Intel architecture communicates with I/O
devices via the I/O address space (§ 2.4) and via the memory address
space, which is primarily used to access DRAM. System software must
configure the CPU’s caches (§ 2.11.4) to recognize the memory ad-
dress ranges used by I/O devices. Devices can notify the CPU of the
occurrence of events by dispatching interrupts (§ 2.12), which cause
a logical processor to stop executing its current thread, and invoke a
special handler in the system software (§ 2.8.2).

Intel systems have a highly complex computer initialization se-
quence (§ 2.13), due to the need to support a large variety of periph-
erals, as well as a multitude of operating systems targeting different
versions of the architecture. This initialization sequence poses numer-
ous challenges to building a secure system around an Intel CPU, and
has facilitated many security compromises (§ 2.3).

Intel’s engineers use the processor’s microcode facility (§ 2.14) to
implement the more complicated aspects of the Intel architecture,
which greatly helps manage hardware complexity. The microcode is
completely transparent to software developers, and its design is largely
undocumented. However, in order to reason about the feasibility of
any proposals to alter the Intel platform, one must be aware of the
limits of microcode, and understand the space of changes that can be
implemented without modifying the underlying hardware.

2.2 Computational Model

A simplified model presented in Figure 2.1 frames this work. Fol-
lowing sections refine this model into a detailed description of the
Intel architecture.

2.2. Computational Model 15

I/O device

Memory (DRAM)

Processor

System Bus

Register file

…
0

Execution
logic

Processor

Register file

Execution
logic interface to

outside
world

Figure 2.1: A high-level view of the architected memory resources of a CPU. The
system bus also links memory-mapped and I/O devices, such as keyboards, which
are also connected to the processor via the system bus.

The building blocks for the model presented here come from the
book [Saltzer and Kaashoek, 2009], which introduces the key abstrac-
tions in a computer system, and then focuses on the techniques used
to build software systems on top of these abstractions.

The memory is an array of individually addressable storage loca-
tions, indexed via natural numbers, and implements the abstraction
depicted in Figure 2.2. Its salient feature is that the result of reading
a memory cell at an address must equal the most recent value written
to that memory cell by a given program.

write(addr, value) → ∅
Store value in the storage cell identified by addr.
read(addr) → value
Return the value argument to the most recent write call referencing
addr.

Figure 2.2: The memory abstraction

A logical processor repeatedly reads instructions from the com-
puter’s memory and executes them, according to the flowchart in
Figure 2.3.

The processor has an internal memory, referred to as the register
file. The register file consists of Static Random Access Memory (SRAM)

16 A Primer on Computer System Architecture

IP Generation

Commit

Register Read

Execute

Exception HandlingIP Generation

Exception Handling

Execute the current instruction

Read the current instruction’s
input registers

Did a fault occur?

Write the execution results to
the current instruction’s output

registers

NO

Increment RIP by the size of
the current instruction

Write fault data to the
exception registersYES

Interrupted?

NO

Write interrupt
data to exception

registers

Write the exception
handler address to RIP

Locate the current
exception’s handler

YES

Push RSP and RIP to
the exception stack

Write the exception
stack top to RSP and

Decode
Identify the desired operation,

inputs, and outputs

Output registers
include RIP?

NO

YES

Locate the handler’s
exception stack top

Fetch
Read the current instruction

from the memory at RIP

Figure 2.3: A processor fetches instructions from the memory and executes them.
The RIP register holds the address of the instruction to be executed.

2.2. Computational Model 17

cells, generally known as registers, which are significantly faster than
DRAM cells, but also a lot more expensive.

An instruction performs a simple computation on its inputs and
stores the result in an output location. The processor’s registers make
up an execution context that provides the inputs and stores the outputs
for most instructions. For example, ADD RDX, RAX, RBX performs an
integer addition, where the inputs are the registers RAX and RBX,
and the result is stored in the output register RDX.

The registers mentioned in Figure 2.3 are the instruction
pointer (RIP), which stores the memory address of the next instruction
to be executed by the processor, and the stack pointer (RSP), which
stores the memory address of the topmost element in the call stack
used by the processor’s procedural programming support. The other
execution context registers are described in § 2.4 and § 2.6.

Under normal circumstances, the processor repeatedly reads an in-
struction from the memory address stored in RIP, executes the instruc-
tion, and updates RIP to point to the following instruction. Unlike
many RISC architectures, the Intel architecture uses a variable-size
instruction encoding, so the size of an instruction is not known until
the instruction has been read from memory.

While executing an instruction, the processor may encounter a fault,
which is a situation where the instruction’s preconditions are not met.
When a fault occurs, the instruction does not store a result in the
output location. Instead, the instruction’s result is considered to be
the fault that occurred. For example, an integer division instruction
DIV where the divisor is zero results in a Division Fault (#DIV).

When an instruction results in a fault, the processor stops its normal
execution flow, and performs the fault handler process documented in
§ 2.8.2. In a nutshell, the processor first looks up the address of the
code that will handle the fault, based on the fault’s nature, and sets up
the execution environment in preparation to execute the fault handler.

The processors are connected to each other and to the memory
via a system bus, which is a broadcast network that implements the
abstraction in Figure 2.4.

18 A Primer on Computer System Architecture

send(op, addr, data) → ∅
Place a message containing the operation code op, the bus address
addr, and the value data on the bus.
read() → (op, addr, value)
Return the message that was written on the bus at the beginning of
this clock cycle.

Figure 2.4: The system bus abstraction.

During each clock cycle, at most one of the devices connected to
the system bus can send a message, which is received by all other
devices connected to the bus. Each device attached to the bus decodes
the operation codes and addresses of all messages sent on the bus and
ignores the messages that do not require its involvement.

For example, when the processor wishes to read a memory loca-
tion, it sends a message with the operation code read-request and
the bus address corresponding to the desired memory location. The
memory sees the message on the bus and performs the read opera-
tion. At a later time, the memory responds by sending a message with
the operation code read-response, the same address as the request,
and the data value set to the result of the read operation.

The computer communicates with the outside world via I/O de-
vices, such as keyboards, displays, and network cards, which are con-
nected to the system bus. Devices mostly respond to requests issued
by the processor. However, devices also have the ability to issue in-
terrupt requests that notify the processor of outside events, such as
the user pressing a key on a keyboard.

Interrupt triggering is discussed in § 2.12. On modern systems, de-
vices send interrupt requests by issuing writes to special bus addresses.
Interrupts are considered to be hardware exceptions, just like faults,
and are handled in a similar manner.

2.3. Software Privilege Levels 19

2.3 Software Privilege Levels

In an Infrastructure-as-a-Service (IaaS) cloud environment, such as
Amazon EC2, commodity CPUs run software at four different priv-
ilege levels, shown in Figure 2.5.

VMX
Root

Ring 1
Ring 2
Ring 3

VMX
Non-Root

Ring 0 Hypervisor

Ring 1
Ring 2

Ring 0 OS Kernel

Ring 3
Application

SMM BIOS

SGX Enclave

System
 Softw

are

Less Privileged

More Privileged

Figure 2.5: The privilege levels in the x86 architecture, and the software that
typically runs at each security level.

Each privilege level is strictly more powerful than the ones below
it, so a piece of software can freely read and modify the code and data
running at less privileged levels. Therefore, a software module can be
compromised by any piece of software running at a higher privilege
level. It follows that a software module implicitly trusts all software
running at more privileged levels, and a system’s security analysis must
take into account the software at all privilege levels.

System Management Mode (SMM) is intended for use by the moth-
erboard manufacturers to implement features such as fan control and
deep sleep, and/or to emulate missing hardware. Therefore, the boot-
strapping software (§ 2.13) in the computer’s firmware is responsible
for setting up a continuous subset of DRAM as System Management
RAM (SMRAM), and for loading all of the code that needs to run in
SMM mode into SMRAM. The SMRAM enjoys special hardware pro-
tections that prevent less privileged software from accessing the SMM

20 A Primer on Computer System Architecture

code. IaaS cloud providers allow their customers to run their operat-
ing system of choice in a virtualized environment. Hardware virtual-
ization [Uhlig et al., 2005], called Virtual Machine Extensions (VMX)
by Intel, adds support for a hypervisor, also called a Virtual Machine
Monitor (VMM) in the Intel documentation. The hypervisor runs at a
higher privilege level (VMX root mode) than the operating system, and
is responsible for allocating hardware resources across multiple operat-
ing systems that share the same physical machine. The hypervisor uses
the CPU’s hardware virtualization features to make each operating sys-
tem believe it is running in its own computer, called a virtual machine
(VM). Hypervisor code generally runs at ring 0 in VMX root mode.
Hypervisors that run in VMX root mode and take advantage of hard-
ware virtualization generally have better performance and a smaller
codebase than hypervisors based on binary translation [Rosenblum and
Garfinkel, 2005]. The systems research literature recommends breaking
up an operating system into a small kernel, which runs at a high privi-
lege level, known as the kernel mode or supervisor mode and, in the Intel
architecture, as ring 0. The kernel allocates the computer’s resources
to the other system components, such as device drivers and services,
which run at lower privilege levels. However, for performance reasons2,
mainstream operating systems have large amounts of code running at
ring 0. Their monolithic kernels include device drivers, filesystem code,
networking stacks, and video rendering functionality. Application code,
such as a Web server or a game client, runs at the lowest privilege level,
referred to as user mode (ring 3 in the Intel architecture). In IaaS cloud
environments, the virtual machine images provided by customers run
in VMX non-root mode, so the kernel runs in VMX non-root ring 0,
and the application code runs in VMX non-root ring 3.

2.4 Address Spaces

Software written for the Intel architecture accesses the computer’s re-
sources using four distinct physical address spaces, shown in Figure 2.6.

2Calling a procedure in a different ring is much slower than calling code at the
same privilege level.

2.4. Address Spaces 21

The address spaces overlap partially, in both purpose and contents,
which can lead to confusion. This section gives a high-level overview of
the physical address spaces defined by the Intel architecture, with an
emphasis on their purpose and the methods used to manage them.

System Buses

CPU

DeviceDRAM

Registers MSRs
(Model-Specific Registers)

Memory Addresses I/O Ports

Device

Software

Figure 2.6: The four physical address spaces used by an Intel CPU. The registers
and MSRs are internal to the CPU, while the memory and I/O address spaces are
used to communicate with DRAM and other devices via system buses.

The register space consists of names that are used to access the
CPU’s register file, which is the only memory that operates at the
CPU’s clock frequency and can be used without any latency penalty.
The register space is defined by the CPU’s architecture, and docu-
mented in the SDM.

Some registers, such as the Control Registers (CRs) play specific
roles in configuring the CPU’s operation. For example, CR3 plays a
central role in address translation (§ 2.5). These registers can only
be accessed by system software. The rest of the registers make up
an application’s execution context (§ 2.6), which is essentially a high-
speed scratch space. These registers can be accessed at all privilege
levels, and their allocation is managed by the software’s compiler.
Many CPU instructions only operate on data in registers, and only
place their results in registers.

22 A Primer on Computer System Architecture

The memory space, generally referred to as the address space, or
the physical address space, consists of 236 (64 GB) - 240 (1 TB) ad-
dresses. The memory space is primarily used to access DRAM, but it
is also used to communicate with memory-mapped devices that read
memory requests off a system bus and write replies for the CPU. Some
CPU instructions can read their inputs from the memory space, or
store the results using the memory space.

A better-known example of memory mapping is that at computer
startup, memory addresses 0xFFFFF000 - 0xFFFFFFFF (the 64 KB of
memory right below the 4 GB mark) are mapped to a flash memory de-
vice that holds the first stage of the code that bootstraps the computer.

The memory space is partitioned between devices and DRAM
by the computer’s firmware during the bootstrapping process. Some-
times, system software includes motherboard-specific code that mod-
ifies the memory space partitioning. The OS kernel relies on address
translation, described in § 2.5, to control the applications’ access to
the memory space. The hypervisor relies on the same mechanism to
control the guest OSs.

The input/output (I/O) space consists of 216 I/O addresses, usually
called ports. The I/O ports are used exclusively to communicate with
devices. The CPU provides specific instructions for reading from and
writing to the I/O space. I/O ports are allocated to devices by formal or
de-facto standards. For example, ports 0xCF8 and 0xCFC are always
used to access the PCI express (§ 2.9.1) configuration space.

The CPU implements a mechanism for system software to provide
fine-grained I/O access to applications. However, all modern kernels
restrict application software from accessing the I/O space directly, in
order to limit the damage potential of application bugs.

The Model-Specific Register (MSR) space consists of 232 MSRs,
which are used to configure the CPU’s operation. The MSR space
was initially intended for the use of CPU model-specific firmware, but
some MSRs have been promoted to architectural MSR status, mak-
ing their semantics a part of the Intel architecture. For example, ar-
chitectural MSR 0x10 holds a high-resolution monotonically increas-
ing time-stamp counter.

2.5. Address Translation 23

The CPU provides instructions for reading from and writing to
the MSR space. The instructions can only be used by system soft-
ware. Some MSRs are also exposed by instructions accessible to appli-
cations. For example, applications can read the time-stamp counter via
the RDTSC and RDTSCP instructions, which are very useful for bench-
marking and optimizing software.

2.5 Address Translation

System software relies on the CPU’s address translation mechanism
for implementing isolation among less privileged pieces of software
(applications or operating systems). Virtually all secure architecture
designs bring changes to address translation. We summarize the In-
tel architecture’s address translation features that are most relevant
when establishing a system’s security properties, and refer the reader
to [Jacob and Mudge, 1998] for a more general presentation of ad-
dress translation concepts and its other uses.

2.5.1 Address Translation Concepts

From a systems perspective, address translation is a layer of indirec-
tion (shown in Figure 2.7) between the virtual addresses, which are used
by a program’s memory load and store instructions, and the physical
addresses, which reference the physical address space (§ 2.4). The map-
ping between virtual and physical addresses is defined by page tables,
which are managed by the system software.

Operating systems use address translation to implement the vir-
tual memory abstraction, illustrated by Figure 2.8. The virtual memory
abstraction exposes the same interface as the memory abstraction in
§ 2.2, but each process uses a separate virtual address space that only
references the memory allocated to that process. From an application
developer standpoint, virtual memory can be modeled by pretending
that each process runs on a separate computer and has its own DRAM.

Address translation is used by the operating system to multiplex
DRAM among multiple application processes, isolate the processes
from each other, and prevent application code from accessing memory-

24 A Primer on Computer System Architecture

Virtual
Address

Physical
AddressMapping

Page
Tables

Virtual
Address Space

Physical
Address Space

Address
Translation

Software DRAM

System bus

Figure 2.7: Virtual addresses used by software are translated into physical memory
addresses using a mapping defined by the page tables.

Process 1’s
address space

Computer’s physical address space

Process 2’s
address space

Process 3’s
address space

Memory page

Figure 2.8: The virtual memory abstraction gives each process its own virtual
address space. The operating system multiplexes the computer’s DRAM between
the processes, while application developers build software as if it owns the entire
computer’s memory.

2.5. Address Translation 25

mapped devices directly. The latter two protection measures prevent
an application’s bugs from impacting other applications or the OS
kernel itself. Hypervisors also use address translation, to divide the
DRAM among operating systems that run concurrently, and to vir-
tualize memory-mapped devices.

The address translation mode used by 64-bit operating systems,
called IA-32e by Intel’s documentation, maps 48-bit virtual addresses
to physical addresses of at most 52 bits3. The translation process, il-
lustrated in Figure 2.9, is carried out by dedicated hardware in the
CPU, which is referred to as the address translation unit or the mem-
ory management unit (MMU).

The bottom 12 bits of a virtual address are not changed by the
translation. The top 36 bits are grouped into four 9-bit indexes, which
are used to index into the page tables. Despite its name, the page tables
data structure closely resembles a full 512-ary search tree where nodes
have fixed keys. Each node is represented in DRAM as an array of
512 8-byte entries that contain the physical addresses of the next-level
children as well as some flags. The physical address of the root node is
stored in the CR3 register. The arrays in the last-level nodes contain
the physical addresses that are the result of the address translation.

The address translation function, which does not change the bot-
tom bits of addresses, partitions the memory address space into pages.
A page is the set of all memory locations that only differ in the bot-
tom bits which are not impacted by address translation, so all memory
addresses in a virtual page translate to corresponding addresses in the
same physical page. From this perspective, the address translation func-
tion can be seen as a mapping between Virtual Page Numbers (VPN)
and Physical Page Numbers (PPN), as shown in Figure 2.10.

In addition to isolating application processes, operating systems
also use the address translation feature to run applications whose col-
lective memory demands exceed the amount of DRAM installed in
the computer. The OS evicts infrequently used memory pages from
DRAM to a larger (but slower) memory, such as a hard disk drive

3The size of a physical address is CPU-dependent, and is 40 bits for recent desktop
CPUs and 44 bits for recent high-end server CPUs.

26 A Primer on Computer System Architecture

Virtual
Address

11…0
Page
Offset

20…12
PTE
Index

29…21
PDE
Index

38…30
PDPTE
Index

47…39
PML4
Index

64…48
Must

match
bit 48

Page Map Level 4 (PML4)

PML4 Entry: PDPT address

Page-Directory-Pointer Table
(PDPT)

PDPT Entry: PD address

Page-Directory (PD)

PD Entry: PT address

Page Table (PT)

PT Entry: Page address

CR3 Register:
PML4 address

+

Physical Address

Physical Page Number (PPN)

Vi
rtu

al
Pa

ge
 N

um
be

r (
VP

N)

Figure 2.9: IA-32e address translation takes in a 48-bit virtual address and outputs
a 52-bit physical address.

2.5. Address Translation 27

Address Translation Unit

Page OffsetVirtual Page Number (VPN)
111263

12
Physical Page Number (PPN)

43
Page Offset

0

11 0

Virtual address

Physical address

must match bit 47
4748

Figure 2.10: Address translation can be seen as a mapping between virtual page
numbers and physical page numbers.

(HDD) or solid-state drive (SSD). For historical reason, this slower
memory is referred to as the disk.

The operating system’s ability to over-commit DRAM is often
called page swapping, for the following reason. When an application
process attempts to access a page that has been evicted, the OS “steps
in” and reads the missing page back into DRAM. In order to do this, the
OS may need to evict a different page from DRAM, effectively swap-
ping the contents of a DRAM page with a page from disk. The details
behind this high-level description are covered in the following sections.

The CPU’s address translation is also referred to as “paging”, which
is a shorthand for “page swapping”.

2.5.2 Address Translation and Virtualization

Computers that take advantage of hardware virtualization use a hy-
pervisor to host multiple operating systems simultaneously. This cre-
ates some tension, because each operating system was written un-
der the assumption that it owns the entire computer’s DRAM. The
tension is solved by a second layer of address translation, illustrated
in Figure 2.11.

When a hypervisor is active, the page tables set up by an oper-
ating system map between virtual addresses and guest-physical ad-
dresses in a guest-physical address space. The hypervisor multiplexes
the computer’s DRAM between the operating systems’ guest-physical
address spaces via the second layer of address translations, which

28 A Primer on Computer System Architecture

Virtual Address

Guest-Physical Address

MappingPage Tables

Physical Address

MappingExtended Page
Tables (EPT)

Guest OS
Address Space

Physical
Address Space

Virtual
Address Space

Figure 2.11: Virtual addresses used by software are translated into physical mem-
ory addresses using a mapping defined by the page tables.

uses extended page tables (EPT) to map guest-physical addresses to
physical addresses.

The EPT uses the same data structure as the page tables, so the
process of translating guest-physical addresses to physical addresses fol-
lows the same steps as IA-32e address translation. The main difference
is that the physical address of the data structure’s root node is stored
in the extended page table pointer (EPTP) field in the Virtual Machine
Control Structure (VMCS) for the guest OS. Figure 2.12 illustrates the
address translation process in the presence of hardware virtualization.

2.5.3 Page Table Attributes

Each page table entry contains a physical address, as shown in Fig-
ure 2.9, and some Boolean values that are referred to as flags or at-
tributes. The following attributes are used to implement page swap-
ping and software isolation.

The present (P) flag is set to 0 to indicate unused parts of the ad-
dress space, which do not have physical memory associated with them.
The system software also sets the P flag to 0 for pages that are evicted
from DRAM. When the address translation unit encounters a zero P
flag, it aborts the translation process and issues a hardware exception,
as described in § 2.8.2. This hardware exception gives system software
an opportunity to step in and bring an evicted page back into DRAM.

2.5. Address Translation 29

Virtual
Address

EPT
PD

EPT
PT

EPT
PDPT

EPT
PML4

PDPT
(Physical)

PDPT
(Guest)

EPTP in
VMCS

EPT
PD

EPT
PT

EPT
PDPT

EPT
PML4

PD
(Physical)

PD
(Guest)

EPT
PD

EPT
PT

EPT
PDPT

EPT
PML4

PT
(Physical)

PT
(Guest)

EPT
PD

EPT
PT

EPT
PDPT

EPT
PML4

Physical
Address

Guest
Physical
Address

EPT
PD

EPT
PT

EPT
PDPT

EPT
PML4

PML4
(Physical)

CR3:
PML4

(Guest)

Figure 2.12: Address translation when hardware virtualization is enabled. The
kernel-managed page tables contain guest-physical addresses, so each level in the ker-
nel’s page table requires a full walk of the hypervisor’s extended page table (EPT).
A translation requires up to 20 memory accesses (the bold boxes), assuming the
physical address of the kernel’s PML4 is cached.

The accessed (A) flag is set to 1 by the CPU whenever the address
translation machinery reads a page table entry, and the dirty (D) flag
is set to 1 by the CPU when an entry is accessed by a memory write
operation. The A and D flags give the hypervisor and kernel insight
into application memory access patterns and inform the algorithms
that select the pages that get evicted from RAM.

The main attributes supporting software isolation are the
writable (W) flag, which can be set to 0 to prohibit4 writes to any
memory location inside a page, the disable execution (XD) flag, which
can be set to 1 to prevent instruction fetches from a page, and the
supervisor (S) flag, which can be set to 1 to prohibit any accesses
from application software running at ring 3.

4Writes to non-writable pages result in #GP exceptions (§ 2.8.2).

30 A Primer on Computer System Architecture

2.6 Execution Contexts

Application software targeting the 64-bit Intel architecture uses a va-
riety of CPU registers to interact with the processor’s features, shown
in Figure 2.13 and Table 2.1. The values in these registers make up
an application thread’s state, or execution context.

OS kernels multiplex each logical processor (§ 2.9.4) between mul-
tiple software threads by context switching, namely saving the values
of the registers that make up a thread’s execution context, and re-
placing them with another thread’s previously saved context. Context
switching also plays a part in executing code inside secure contain-
ers, so its design has security implications.

RAX RBX RCX RDX

RSI RDI RBP RSP - stack pointer

RIP - instruction pointer

R8 R9 R10 R11

R12 R13 R14 R15

64-bit integers / pointers 64-bit special-purpose registers

RFLAGS - status / control bits

ignored segment registers
CS DS ES SS

segment registers
FS

64-bit FS base
GS

64-bit GS base

RSP

Figure 2.13: CPU registers in the 64-bit Intel architecture. RSP can be used as a
general-purpose register (GPR), e.g., in pointer arithmetic, but it always points to
the top of the program’s stack. Segment registers are covered in § 2.7.

Integers and memory addresses are stored in 16 general-purpose reg-
isters (GPRs). The first 8 GPRs have historical names: RAX, RBX,
RCX, RDX, RSI, RDI, RSP, and RBP, because they are extended ver-
sions of the 32-bit Intel architecture’s GPRs. The other 8 GPRs are
simply known as R9-R16. RSP is designated for pointing to the top
of the procedure call stack, which is simply referred to as the stack.
RSP and the stack that it refers to are automatically read and mod-
ified by the CPU instructions that implement procedure calls, such
as CALL and RET (return), and by specialized stack handling instruc-
tions such as PUSH and POP.

All applications also use the RIP register, which contains the ad-
dress of the currently executing instruction, and the RFLAGS register,

2.6. Execution Contexts 31

whose bits (e.g., the carry flag - CF) are individually used to store
comparison results and control various instructions.

Software may use other registers to interact with specific processor
features, some of which are shown in Table 2.1.

Table 2.1: Sample feature-specific Intel architecture registers.

Feature Registers XCR0 bit
FPU FP0 - FP7, FSW, FTW 0
SSE MM0 - MM7, XMM0 - XMM15, XMCSR 1
AVX YMM0 - YMM15 2
MPX BND0 - BND 3 3
MPX BNDCFGU, BNDSTATUS 4
AVX-512 K0 - K7 5
AVX-512 ZMM0_H - ZMM15_H 6
AVX-512 ZMM16 - ZMM31 7
PK PKRU 9

The Intel architecture provides a future-proof method for an OS ker-
nel to save the values of feature-specific registers used by an application.
The XSAVE instruction takes in a requested-feature bitmap (RFBM), and
writes the registers used by the features whose RFBM bits are set to
1 in a memory area. The memory area written by XSAVE can later
be used by the XRSTOR instruction to load the saved values back into
feature-specific registers. The memory area includes the RFBM given
to XSAVE, so XRSTOR does not require an RFBM input.

Application software declares the features that it plans to use to
the kernel, so the kernel knows what XSAVE bitmap to use when
context-switching. When receiving the system call, the kernel sets the
XCR0 register to the feature bitmap declared by the application. The
CPU generates a fault if application software attempts to use fea-
tures that are not enabled by XCR0, so applications cannot modify
feature-specific registers that the kernel wouldn’t take into account
when context-switching. The kernel can use the CPUID instruction to
learn the size of the XSAVE memory area for a given feature bitmap,

32 A Primer on Computer System Architecture

and compute how much memory it needs to allocate for the context
of each of the application’s threads.

2.7 Segment Registers

The Intel 64-bit architecture gained widespread adoption thanks to its
ability to run software targeting the older 32-bit architecture side-by-
side with 64-bit software [Shankland, 2005]. This ability comes at the
cost of some warts. While most of these warts can be ignored while
reasoning about the security of 64-bit software, the segment registers
and vestigial segmentation model must be understood. The semantics
of the Intel architecture’s instructions include the implicit use of a few
segments which are loaded into the processor’s segment registers shown
in Figure 2.13. Code fetches use the code segment (CS). Instructions
that reference the stack implicitly use the stack segment (SS). Mem-
ory references implicitly use the data segment (DS) or the destination
segment (ES). Via segment override prefixes, instructions can be mod-
ified to use the unnamed segments FS and GS for memory references.
Modern operating systems effectively disable segmentation by covering
the entire addressable space with one segment, which is loaded in CS,
and one data segment, which is loaded in SS, DS and ES. The FS and
GS registers store segments covering thread-local storage (TLS). Due to
the Intel architecture’s 16-bit origins, segment registers are exposed as
16-bit values, called segment selectors. The top 13 bits in a selector are
an index in a descriptor table, and the bottom 2 bits are the selector’s
ring number, which is also called requested privilege level (RPL) in the
Intel documentation. Also, modern system software only uses rings 0
and 3 (see § 2.3). Each segment register has a hidden segment descrip-
tor, which consists of a base address, limit, and type information, such
as whether the descriptor should be used for executable code or data.
Figure 2.14 shows the effect of loading a 16-bit selector into a segment
register. The selector’s index is used to read a descriptor from the de-
scriptor table and copy it into the segment register’s hidden descriptor.

In 64-bit mode, all segment limits are ignored. The base addresses
in most segment registers (CS, DS, ES, SS) are ignored. The base ad-

2.7. Segment Registers 33

Descriptor Table

Register Selector

Index Ring

Register Descriptor

Base Limit Type

 ⋮

TypeLimitBase
 ⋮

Base Limit Type

TypeBase Limit

TypeBase Limit

GDTR

Base Limit

Input Value

Index Ring

+

Figure 2.14: Loading a segment register. The 16-bit value loaded by software is a
selector consisting of an index and a ring number. The index selects a GDT entry,
which is loaded into the descriptor part of the segment register.

dresses in FS and GS are used, in order to support thread-local storage.
Figure 2.15 outlines the address computation in this case. The instruc-
tion’s address, named logical address in the Intel documentation, is
added to the base address in the segment register’s descriptor, yielding
the virtual address, also named linear address. The virtual address is
then translated (§ 2.5) to a physical address.

+

FS Register Descriptor

Base Limit Type

GPRsRSI

Linear Address
(Virtual Address)

Physical
Address

Address
Translation

Figure 2.15: Example address computation process for MOV FS:[RDX], 0. The
segment’s base address is added to the address in RDX before address translation
(§ 2.5) takes place.

Outside the special case of using FS or GS to reference thread-local
storage, the logical and virtual (linear) addresses match. Therefore,
most of the time, we can get away with completely ignoring segmen-

34 A Primer on Computer System Architecture

tation. In these cases, we use the term “virtual address” to refer to
both the virtual and the linear address. Even though CS is not used
for segmentation, 64-bit system software needs to load a valid selector
into it. The CPU uses the ring number in the CS selector to track the
current privilege level, and uses one of the type bits to know whether
it’s running 64-bit code, or 32-bit code in compatibility mode.

The DS and ES segment registers are completely ignored, and can
have null selectors loaded in them. The CPU loads a null selector in
SS when switching privilege levels, discussed in § 2.8.2.

Modern kernels only use one descriptor table, the Global Descriptor
Table (GDT), whose virtual address is stored in the GDTR register.
Table 2.2 shows a typical GDT layout that can be used by 64-bit kernels
to run both 32-bit and 64-bit applications.

Table 2.2: A typical GDT layout in the 64-bit Intel Architecture.

Descriptor Selector
Null (must be unused) 0
Kernel code 0x08 (index 1, ring 0)
Kernel data 0x10 (index 2, ring 0)
User code 0x1B (index 3, ring 3)
User data 0x1F (index 4, ring 3)
TSS 0x20 (index 5, ring 0)

The last entry in Table 2.2 is a descriptor for the Task State Segment
(TSS), which was designed to implement hardware context switching,
named task switching in the Intel documentation. The descriptor is
stored in the Task Register (TR), which behaves like the other seg-
ment registers described above. Task switching was removed from the
64-bit architecture, but the TR segment register was preserved, and
it points to a repurposed TSS data structure. The 64-bit TSS con-
tains an I/O map, which indicates what parts of the I/O address space
can be accessed directly from ring 3, and the Interrupt Stack Table
(IST), which is used for privilege level switching (§ 2.8.2). Modern
operating systems do not allow application software any direct access
to the I/O address space, so the kernel sets up a single TSS that is

2.8. Privilege Level Switching 35

loaded into TR during early initialization, and used to represent all
applications running under the OS.

2.8 Privilege Level Switching

Any architecture that implements software privilege levels must provide
a method for less privileged software to invoke the services of software
with higher privilege. For example, application software needs the OS
kernel’s assistance to perform network or disk I/O, as that requires
access to privileged memory or to the I/O address space.

At the same time, less privileged software cannot be offered the
ability to jump arbitrarily into more privileged code, as that would
compromise the privileged software’s ability to enforce security and
isolation invariants. In our example, when an application wishes to
write a file to the disk, the kernel must check if the application’s user
has access to that file. If the ring 3 code could perform an arbitrary
jump in kernel space, it would be able to skip the access check.

For these reasons, the Intel architecture includes privilege-switching
mechanisms used to transfer control from less privileged software to
well-defined entry points in more privileged software. As suggested
above, an architecture’s privilege-switching mechanisms have deep im-
plications for the security properties of its software. Furthermore, se-
curely executing the software inside a protected container requires the
same security considerations as privilege level switching.

Due to historical factors, the Intel architecture has a vast number
of execution modes, and an intimidating amount of transitions between
them. We focus on the privilege level switching mechanisms used by
modern 64-bit software, summarized in Figure 2.16.

2.8.1 System Calls

On modern processors, application software uses the SYSCALL instruc-
tion to invoke ring 0 code, and the kernel uses SYSRET to switch
the privilege level back to ring 3. SYSCALL jumps into a predefined
kernel location, which is specified by writing to a pair of architec-
tural MSRs (§ 2.4).

36 A Primer on Computer System Architecture

Ring 3Ring 0VMX
Root

SYSCALL

SYSRET

VMEXIT
VMFUNC

VMLAUNCH
VMRESUME

Fault
Interrupt

IRET

VM
exit

VM exit

Figure 2.16: Modern privilege switching methods in the 64-bit Intel architecture.

All MSRs can only be read or written by ring 0 code. This is a
crucial security property, because it entails that application software
cannot modify SYSCALL’s MSRs. If that was the case, a rogue applica-
tion could abuse the SYSCALL instruction to execute arbitrary kernel
code, potentially bypassing security checks.

The SYSRET instruction switches the current privilege level from
ring 0 back to ring 3, and jumps to the address in RCX, which is
set by the SYSCALL instruction. The SYSCALL / SYSRET pair does
not perform any memory access, so it out-performs the Intel archi-
tecture’s previous privilege switching mechanisms, which saved state
on a stack. The design can get away without referencing a stack be-
cause kernel calls are not recursive.

2.8.2 Faults

The processor also performs a switch from ring 3 to ring 0 when a
hardware exception occurs while executing application code. Some ex-
ceptions indicate bugs in the application, whereas other exceptions
require kernel action.

A general protection fault (#GP) occurs when software attempts
to perform a disallowed action, such as setting the CR3 register
from ring 3.

A page fault (#PF) occurs when address translation encounters a
page table entry whose P flag is 0, or when the memory inside a page is
accessed in way that is inconsistent with the access bits in the page table
entry. For example, when ring 3 software accesses the memory inside a
page whose S bit is set, the result of the memory access is #PF.

2.8. Privilege Level Switching 37

When a hardware exception occurs in application code, the CPU
performs a ring switch, and calls the corresponding exception handler.
For example, the #GP handler typically terminates the application’s
process, while the #PF handler reads the swapped out page back into
RAM and resumes the application’s execution.

The exception handlers are a part of the OS kernel, and their lo-
cations are specified in the first 32 entries of the Interrupt Descriptor
Table (IDT), whose structure is shown in Table 2.3. The IDT’s physi-
cal address is stored in the IDTR register, which can only be accessed
by ring 0 code. Kernels protect the IDT memory using page tables,
so that ring 3 software cannot access it.

Table 2.3: The essential fields of an IDT entry in 64-bit mode. Each entry points
to a hardware exception or interrupt handler.

Field Bits
Handler RIP 64
Handler CS 16
Interrupt Stack Table (IST) index 3

Each IDT entry has a 3-bit index pointing into the Interrupt
Stack Table (IST), which is an array of 8 stack pointers stored in
the TSS described in § 2.7.

When a hardware exception occurs, the execution state may be
corrupted, and the current stack cannot be relied on. Therefore, the
CPU first uses the handler’s IDT entry to set up a known good stack.
SS is loaded with a null descriptor, and RSP is set to the IST value
to which the IDT entry points. After switching to a reliable stack,
the CPU pushes the snapshot in Table 2.4 on the stack, then loads
the IDT entry’s values into the CS and RIP registers, which trigger
the execution of the exception handler.

After the exception handler completes, it uses the IRET (interrupt
return) instruction to load the registers from the on-stack snapshot
and switch back to ring 3.

The Intel architecture gives the fault handler complete control over
the execution context of the software that incurred the fault. This priv-
ilege is necessary for handlers (e.g., #GP) that must perform context

38 A Primer on Computer System Architecture

Table 2.4: The snapshot pushed on the handler’s stack when a hardware exception
occurs. IRET restores registers from this snapshot.

Field Bits
Exception SS 64
Exception RSP 64
RFLAGS 64
Exception CS 64
Exception RIP 64
Exception code 64

switches (§ 2.6) as a consequence of terminating a thread that encoun-
tered a bug. It follows that all fault handlers must be trusted to not leak
or tamper with the information in an application’s execution context.

2.8.3 VMX Privilege Level Switching

Intel systems that take advantage of the hardware virtualization sup-
port to host multiple operating systems concurrently use a hypervi-
sor to manage the VMs. The hypervisor creates a Virtual Machine
Control Structure (VMCS) for each operating system instance that
it wishes to run, and uses the VMENTER instruction to assign a log-
ical processor to the VM.

When a logical processor encounters a fault that must be handled by
the hypervisor, the logical processor performs a VM exit. For example,
if the address translation process encounters an EPT entry with the
P flag set to 0, the CPU performs a VM exit, and the hypervisor has
an opportunity to bring the page into RAM.

The VMCS shows a great application of the encapsulation prin-
ciple [Liskov and Zilles, 1974], which is generally used in high-level
software, to computer architecture. The Intel architecture specifies
that each VMCS resides in DRAM and is 4 KB in size. However,
the architecture does not specify the VMCS format, and instead re-
quires the hypervisor to interact with the VMCS via CPU instruc-
tions such as VMREAD and VMWRITE.

2.9. An Overview of a Modern Computer System 39

This approach allows Intel to add VMX features that require
VMCS format changes, without the burden of having to maintain back-
wards compatibility. This is no small feat, given that huge amounts
of complexity in the Intel architecture were introduced due to com-
patibility requirements.

2.9 An Overview of a Modern Computer System

This section outlines the hardware components that make up a com-
puter system based on the Intel architecture5.

§ 2.9.1 summarizes the structure of a motherboard relevant for a
discussion of cost and impact of physical attacks against a computing
system. § 2.9.2 describes Intel’s Management Engine, which plays a role
in the computer’s bootstrap process, and has significant security impli-
cations. § 2.9.3 presents the major components of an Intel processor,
and § 2.9.4 abstractly models an Intel execution core.

A thorough understanding of the above systems is instrumental
not only for reasoning about physical attacks. More importantly, un-
derstanding the way resources are partitioned and shared by mutually
distrusting parties is necessary to reason about software attacks based
on information leakage, such as timing attacks.

2.9.1 The Motherboard

A computer’s components are connected by a printed circuit board
called a motherboard, shown in Figure 2.17, which consists of sock-
ets connected by buses. Sockets connect chip-carrying packages to the
board. The Intel documentation uses the term “package” to specif-
ically refer to a CPU.

The CPU (described in § 2.9.3) hosts the execution cores that
run the software stack shown in Figure 2.5 and described in § 2.3,
namely the SMM code, the hypervisor, operating systems, and applica-
tion processes. The computer’s main memory is provided by Dynamic
Random-Access Memory (DRAM) modules.

5The information in here is drawn either from the SDM or in Intel’s Optimization
Reference Manual [Int, 2014c].

40 A Primer on Computer System Architecture

CPU CPU

CPU CPU

CPU CPU

CPU CPU

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

QPI DDR

NIC / PHY

PCIe

PCH

USB SATA

DMI

ME

FLASH
UEFI

ME FW

SPI

Figure 2.17: The motherboard structures that are most relevant in a system secu-
rity analysis.

The Platform Controller Hub (PCH) houses (relatively) low-speed
I/O controllers driving the slower buses in the system, like SATA,
used by storage devices, and USB, used by input peripherals. The
PCH is also known as the chipset. At a first approximation, the
south bridge term in older documentation can also be considered as
a synonym for PCH.

Motherboards also have a non-volatile (flash) memory module
storing firmware which implements the Unified Extensible Firmware
Interface (UEFI) specification [UEF, 2015]. The firmware contains
the boot code and the code that executes in System Management
Mode (SMM, § 2.3).

The components we care about are connected by the follow-
ing buses: the Quick-Path Interconnect (QPI [Int, 2010a]), a net-
work of point-to-point links that connect processors, the double data
rate (DDR) bus that connects a CPU to DRAM, the Direct Me-
dia Interface (DMI) bus that connects a CPU to the PCH, the Pe-
ripheral Component Interconnect Express (PCIe) bus that connects
a CPU to peripherals such as a Network Interface Card (NIC), and
the Serial Programming Interface (SPI) used by the PCH to com-
municate with the flash memory.

2.9. An Overview of a Modern Computer System 41

The PCIe bus is an extended, point-to-point version of the PCI
standard, which provides a method for any peripheral connected to the
bus to perform Direct Memory Access (DMA), transferring data to and
from DRAM without involving an execution core and spending CPU
cycles. The PCI standard includes a configuration mechanism that as-
signs a range of DRAM to each peripheral, but makes no provisions for
restricting a peripheral’s DRAM accesses to its assigned range.

Network interfaces consist of a physical (PHY) module that converts
the analog signals on the network media to and from digital bits, and a
Media Access Control (MAC) module that implements a network-level
protocol. Modern Intel-based motherboards forego a full-fledged NIC,
and instead include an Ethernet [IEE, 2012] PHY module.

2.9.2 The Intel Management Engine (ME)

Intel’s Management Engine (ME) is an embedded computer that was
initially designed for remote system management and troubleshooting
of server-class systems that are often hosted in data centers. However,
all of Intel’s recent PCHs contain an ME [Hofemeier, 2013], and it
currently plays a crucial role in platform bootstrapping, which is de-
scribed in detail in § 2.13. Most of the information in this section is
obtained from an Intel-sponsored book [Ruan, 2014].

The ME is part of Intel’s Active Management Technology (AMT),
which is marketed as a convenient way for IT administrators to trou-
bleshoot and fix situations such as failing hardware, or a corrupted
OS installation, without having to gain physical access to the im-
pacted computer.

The Intel ME, shown in Figure 2.18, remains functional during most
hardware failures because it is an entire embedded computer featuring
its own execution core, bootstrap ROM, and internal RAM. The ME
can be used for troubleshooting effectively thanks to an array of abilities
that include overriding the CPU’s boot vector and a DMA engine that
can access the computer’s DRAM. The ME provides remote access to
the computer without any CPU support because it can use the System
Management bus (SMBus) to access the motherboard’s Ethernet PHY
or an AMT-compatible NIC [Int, 2015a].

42 A Primer on Computer System Architecture

Intel PCH

Intel ME

I-Cache
D-Cache

DMA
Engine

Internal
SRAM

DRAM
Access

Execution
Core

HECI
Controller

Internal Bus

SMBus
Controller

SPI
Controller

Interrupt
Controller

Boot
ROM

Watchdog
Timer

Crypto
Accelerator

Ethernet
MAC

PCIe
Controller

USB
Controller

Audio
Controller

Ethernet
PHY

PCIe
lanes

Audio, MIC
Bluetooth

USB
PHY

Integrated
Sensor Hub

SPI
Bus

I2C
UART

Figure 2.18: The Intel Management Engine (ME) is an embedded computer hosted
in the PCH. The ME has its own execution core, ROM and SRAM. The ME can
access the host’s DRAM via a memory controller and a DMA controller. The ME
is remotely accessible over the network, as it has direct access to an Ethernet PHY
via the SMBus.

The Intel ME is connected to the motherboard’s power supply
using a power rail that remains available even while the host com-
puter is in the Soft Off mode [Int, 2015a] (otherwise known as ACPI
G2/S5, where most of the computer’s components are powered off
[Int, 2010d], including the CPU and DRAM). For all practical pur-
poses, this means that the ME is active as long as the power supply
is still connected to a power source.

In S5, the ME cannot access the DRAM, but it can use its own
internal memories. The ME can also still communicate with a remote
party, as it can access the motherboard’s Ethernet PHY via SMBus.
This enables applications such as AMT’s theft prevention, where a
laptop equipped with a cellular modem can be tracked and permanently
disabled as long as it has power and is in range of a cellular network.

As the ME remains active in deep power-saving modes, its design
must rely on low-power components. The execution core is an Argonaut

2.9. An Overview of a Modern Computer System 43

RISC Core (ARC) clocked at 200-400MHz, which is typically used in
low-power embedded designs. On a very recent PCH [Int, 2015a], the
internal SRAM has 640KB, and is shared with the Integrated Sensor
Hub (ISH)’s core. The SMBus runs at 1MHz and, without CPU sup-
port, the motherboard’s Ethernet PHY runs at 10Mpbs.

When the host computer is powered on, the ME’s processor be-
gins executing code from the ME’s bootstrap ROM. The bootstrap
code loads the ME’s software stack from the same flash module that
stores the host computer’s firmware. The ME accesses the flash mem-
ory module an embedded SPI controller.

2.9.3 The Processor Die

An Intel processor’s die, illustrated in Figure 2.19, is divided into
two broad areas: the core area implements the instruction execu-
tion pipeline typically associated with CPUs, while the uncore pro-
vides functions that were traditionally hosted in separate packages,
but are currently integrated on the CPU die to reduce latency and
power consumption.

Chip Package
Core Core

Core Core

L3 Cache

Graphics
Unit

Memory
Controller

Home Agent

I/O Controller

I/O to Ring

QPI
Packetizer

QPI Router

DRAM

DDR3

Platform Controller Hub NIC

DMIPCI-X

CPU

QPI

IOAPIC

CPU
Config

Power
Unit

Figure 2.19: The major components in a modern CPU package. § 2.9.3 gives an
uncore overview. § 2.9.4 describes execution cores. § 2.11.3 takes a deeper look at
the uncore.

44 A Primer on Computer System Architecture

At a conceptual level, the uncore of modern processors includes an
integrated memory controller (iMC) that interfaces with the DDR bus,
an integrated I/O controller (IIO) that implements PCIe bus lanes and
interacts with the DMI bus, and a growing number of integrated periph-
erals, such as a Graphics Processing Unit (GPU). The uncore structure
is described in some processor family datasheets [Int, 2014b,a], and in
the overview sections in Intel’s uncore performance monitoring docu-
mentation [Corporation, 2014, Int, 2012b, 2010f].

Security extensions to the Intel architecture, such as Trusted Ex-
ecution Technology (TXT) [Grawrock, 2009] and Software Guard Ex-
tensions (SGX) [McKeen et al., 2013, Anati et al., 2013], rely on the
fact that the processor die includes the memory and I/O controller,
and thus can prevent any device from accessing protected memory
areas via Direct Memory Access (DMA) transfers. § 2.11.3 takes a
deeper look at the uncore organization and at the machinery used
to prevent unauthorized DMA transfers.

2.9.4 The Core

Virtually all modern Intel processors have core areas consisting of mul-
tiple copies of the execution core circuitry, each of which is called a core.
At the time of this writing, desktop-class Intel CPUs have 4 cores, and
server-class CPUs have as many as 18 cores.

Most Intel CPUs feature hyper-threading, which means that a core
(shown in Figure 2.20) has two copies of the register files backing
the execution context described in § 2.6, and can execute two sepa-
rate streams of instructions simultaneously. Hyper-threading reduces
the impact of memory stalls on the utilization of the fetch, decode
and execution units.

A hyper-threaded core is exposed to system software as two logical
processors (LPs), also named hardware threads in the Intel documen-
tation. The logical processor abstraction allows the code used to dis-
tribute work across processors in a multi-processor system to function
without any change on multi-core hyper-threaded processors.

The high level of resource sharing introduced by hyper-threading
introduces a security vulnerability. Software running on one logical pro-

2.10. Out-of-Order and Speculative Execution 45

Execution Units

FP

INT INTINT

FP SSE

MEM

SSE

L1
I-Cache

Instruction Scheduler

Decode

L1
D-Cache

L2
Cache

Logical CPU

LAPIC

Registers L1
I-TLB

Logical CPU

LAPIC

Registers

L1
D-TLB

Page Miss Handler (PMH)

Fetch

Microcode

L2
TLB

Figure 2.20: CPU core with two logical processors. Each logical processor has its
own execution context and LAPIC (§ 2.12). All other core resources are shared.

cessor can use the high-resolution performance counter (RDTSCP, § 2.4)
[Petters and Farber, 1999] to get information about the instructions
and memory access patterns of another piece of software that is exe-
cuted on the other logical processor on the same core.

That being said, the biggest downside of hyper-threading may be
the fact that writing about Intel processors in a rigorous manner re-
quires the use of the cumbersome term Logical Processor instead of
the shorter and more intuitive “CPU core”, or “core”.

2.10 Out-of-Order and Speculative Execution

CPU cores can execute instructions orders of magnitude faster than
DRAM can read data. Computer architects attempt to bridge this gap
by using hyper-threading (§ 2.9.3), out-of-order and speculative exe-
cution, and caching, which is described in § 2.11. In CPUs that use
out-of-order execution, the order in which the CPU carries out a pro-
gram’s instructions (execution order) is not necessarily the same as
the order in which the instructions would be executed by a sequen-
tial evaluation system (program order).

An analysis of a system’s information leakage must take out-of-
order execution into consideration. Any CPU actions observed by an

46 A Primer on Computer System Architecture

attacker match the execution order, so the attacker may learn some
information by comparing the observed execution order with a known
program order. At the same time, attacks that try to infer a victim’s
program order based on actions taken by the CPU must account for
out-of-order execution as a source of noise.

This section summarizes the out-of-order and speculative execution
concepts used when reasoning about a system’s security properties.
[Patterson and Hennessy, 2013] and [Hennessy and Patterson, 2012]
cover the concepts in great depth, while Intel’s optimization manual
[Int, 2014c] provides details specific to Intel CPUs.

Figure 2.21 provides a more detailed view of the CPU core com-
ponents involved in out-of-order execution, and omits some less rel-
evant details from Figure 2.20.

The Intel architecture defines a complex instruction set (CISC).
However, virtually all modern CPUs are architected following reduced
instruction set (RISC) principles. This is accomplished by having the
instruction decode stages break down each instruction into micro-ops,
which resemble RISC instructions. The other stages of the execution
pipeline work exclusively with micro-ops.

2.10.1 Out-of-Order Execution

Different types of instructions require different logic circuits, called
functional units. For example, the arithmetic logic unit (ALU), which
performs arithmetic operations, is completely different from the load
and store unit, which performs memory operations. Different circuits
can be used at the same time, so each CPU core can execute mul-
tiple micro-ops in parallel.

The core’s out-of-order engine receives decoded micro-ops, identifies
the micro-ops that can execute in parallel, assigns them to functional
units, and combines the outputs of the units so that the results are
equivalent to having the micro-ops executed sequentially in the order
in which they come from the decode stages.

2.10. Out-of-Order and Speculative Execution 47

Memory

Execution

Out of Order Engine

Instruction
Fetch Unit

Branch
Predictors

L1 I-TLB

Reservation Station

Integer ALU
Shift

Integer ALU
LEA

FMA
FP Multiply

Vector
Logicals

Branch

Divide

Vector Shift

Integer
Vector
Multiply

FMA
FP Multiply

Integer
Vector
ALU

Vector
Logicals

FP Addition

Load &
Store

Address

Store
Data

Integer ALU
LEA

Vector
Shuffle

Vector
Logicals

Integer ALU
Shift

Branch

Store
Address

Port 0 Port 1 Ports 2, 3 Port 4 Port 5 Port 6 Port 7

L1 I-Cache

Pre-Decode Fetch Buffer

Instruction Queue

Simple
Decoders

Complex
Decoder

Micro-op Decode Queue

Microcode
ROM

Micro-op
Cache

Renamer

Register
Files

Reorder
Buffer

Load
Buffer

Store
Buffer

Scheduler

L1 D-Cache L2 D-Cache

Integer
Vector
ALU

Memory Control

Instruction Decode

L1 D-TLB

Fill Buffers

Figure 2.21: The structures in a CPU core that are relevant to out-of-order and
speculative execution. Instructions are decoded into micro-ops, which are sched-
uled on one of the execution unit’s ports. The branch predictor enables speculative
execution when a branch is encountered.

48 A Primer on Computer System Architecture

For example, consider the sequence of pseudo micro-ops6 in Ta-
ble 2.5 below. The OR uses the result of the LOAD, but the ADD does not.
Therefore, a good scheduler can have the load store unit execute the
LOAD and the ALU execute the ADD, all in the same clock cycle.

Table 2.5: Pseudo micro-ops for the out-of-order execution example.

Micro-op Meaning
1 LOAD RAX, RSI RAX ← DRAM[RSI]
2 OR RDI, RDI, RAX RDI ← RDI ∨ RAX
3 ADD RSI, RSI, RCX RSI ← RSI + RCX
4 SUB RBX, RSI, RDX RBX ← RSI - RDX

The out-of-order engine in recent Intel CPUs works roughly as fol-
lows. Micro-ops received from the decode queue are written into a
reorder buffer (ROB) while they are in-flight in the execution unit.
The register allocation table (RAT) matches each register with the
last reorder buffer entry that updates it. The renamer uses the RAT
to rewrite the source and destination fields of micro-ops when they
are written in the ROB, as illustrated in Tables 2.6 and 2.7. Note
that the ROB representation makes it easy to determine the depen-
dencies between micro-ops.

Table 2.6: Data written by the renamer into the reorder buffer (ROB), for the
micro-ops in Table 2.5.

Op Source 1 Source 2 Destination
1 LOAD RSI ∅ RAX
2 OR RDI ROB #1 RSI
3 ADD RSI RCX RSI
4 SUB ROB # 3 RDX RBX

The scheduler decides which micro-ops in the ROB get executed,
and places them in the reservation station. The reservation station
has one port for each functional unit that can execute micro-ops inde-

6The set of micro-ops used by Intel CPUs is not publicly documented. The fic-
tional examples in this section suffice for illustration purposes.

2.10. Out-of-Order and Speculative Execution 49

Table 2.7: Relevant entries of the register allocation table after the micro-ops in
Table 2.5 are inserted into the ROB.

Register RAX RBX RCX RDX RSI RDI
ROB # #1 #4 ∅ ∅ #3 #2

pendently. Each reservation station port port holds one micro-op from
the ROB. The reservation station port waits until the micro-op’s de-
pendencies are satisfied and forwards the micro-op to the functional
unit. When the functional unit completes executing the micro-op, its
result is written back to the ROB, and forwarded to any other reser-
vation station port that depends on it.

The ROB stores the results of completed micro-ops until they are
retired, meaning that the results are committed to the register file and
the micro-ops are removed from the ROB. Although micro-ops can
be executed out-of-order, they must be retired in program order, in
order to handle exceptions correctly. When a micro-op causes a hard-
ware exception (§ 2.8.2), all of the following micro-ops in the ROB
are squashed, and their results are discarded.

In the example above, the ADD can complete before the LOAD, be-
cause it does not require a memory access. However, the ADD’s result
cannot be committed before LOAD completes. Otherwise, if the ADD
is committed and the LOAD causes a page fault, software will ob-
serve an incorrect value for the RSI register.

The ROB is tailored for discovering register dependencies between
micro-ops. However, micro-ops that execute out-of-order can also have
memory dependencies. For this reason, out-of-order engines have a load
buffer and a store buffer that keep track of in-flight memory operations
and are used to resolve memory dependencies.

2.10.2 Speculative Execution

Branch control flow instructions, also called branches, change the in-
struction pointer (RIP, § 2.6), if a condition is met (the branch is
taken). They implement conditional statements (if) and looping state-
ments (such as while and for). The most well-known branching in-

50 A Primer on Computer System Architecture

structions in the Intel architecture are in the jcc family, such as
je (jump if equal).

Branches pose a challenge to the decode stage, because the instruc-
tion that should be fetched after a branch is not known until the branch-
ing condition is evaluated. In order to avoid stalling the decode stage,
modern CPU designs include branch predictors that use historical in-
formation to guess whether a branch will be taken or not.

When the decode stage encounters a branch instruction, it asks the
branch predictor for a guess as to whether the branch will be taken or
not. The decode stage bundles the branch condition and the predic-
tor’s guess into a branch check micro-op, and then continues decoding
on the path indicated by the predictor. The micro-ops following the
branch check are marked as speculative.

When the branch check micro-op is executed, the branch unit checks
whether the branch predictor’s guess was correct. If that is the case,
the branch check is retired successfully. The scheduler handles mispre-
dictions by squashing all micro-ops following the branch check, and by
signaling the instruction decoder to flush the micro-op decode queue
and start fetching the instructions that follow the correct branch.

Modern CPUs also attempt to predict memory read patterns, so
they can prefetch the memory locations that are about to be read
into the cache. Prefetching minimizes the latency of successfully pre-
dicted read operations, as their data will already be cached. This is
accomplished by exposing circuits called prefetchers to memory ac-
cesses and cache misses. Each prefetcher can recognize a particular
access pattern, such as sequentially reading an array’s elements. When
memory accesses match the pattern that a prefetcher was built to rec-
ognize, the prefetcher loads the cache line corresponding to the next
memory access in its pattern.

2.11 Memory Cache Subsystem

At the time of this writing, CPU cores can process data ≈ 200× faster
than DRAM can supply it. This gap is bridged by an hierarchy of cache
memory modules, which are orders of magnitude smaller and an order

2.11. Memory Cache Subsystem 51

of magnitude faster than DRAM. While caching is transparent to ap-
plication software, the system software is responsible for managing and
coordinating the caches that store address translation (§ 2.5) results.

Caches impact the security of a software system in two ways. First,
the Intel architecture relies on system software to manage address
translation caches, which becomes an issue in a threat model where
the system software is untrusted. Second, caches in the Intel architec-
ture are shared by all software running on the computer. This opens
up the way for cache timing attacks, an entire class of software attacks
that rely on observing the time differences between accessing a cached
memory location and an uncached memory location.

This section summarizes the caching concepts and implementation
details needed to reason about both classes of security problems men-
tioned above. [Smith, 1982], [Patterson and Hennessy, 2013] and [Hen-
nessy and Patterson, 2012] provide a good background on low-level
cache implementation concepts. § 3.8 describes cache timing attacks.

2.11.1 Caching Principles

At a high level, caches exploit the high locality in the memory access
patterns of most applications to hide the main memory’s (relatively)
high latency. By caching (storing a copy of) the most recently accessed
code and data, these relatively small memory structures can be used
to satisfy 90%-99% of an application’s memory accesses.

In an Intel processor, the first-level (L1) cache consists of a separate
data cache (D-cache) and an instruction cache (I-cache). The instruc-
tion fetch and decode stage is directly connected to the L1 I-cache,
and uses it to read the streams of instructions for the core’s logical
processors. Micro-ops that read from or write to memory are executed
by the memory unit (MEM in Figure 2.20), which is connected to the
L1 D-cache and forwards memory accesses to it.

Figure 2.22 illustrates the steps taken by a cache when it receives a
memory access. First, a cache lookup uses the memory address to deter-
mine if the corresponding data exists in the cache. A cache hit occurs
when the address is found, and the cache can resolve the memory access
quickly. Conversely, if the address is not found, a cache miss occurs,

52 A Primer on Computer System Architecture

and a cache fill is required to resolve the memory access. When doing
a fill, the cache forwards the memory access to the next level of the
memory hierarchy and caches the response. Under most circumstances,
a cache fill also triggers a cache eviction, in which some data is removed
from the cache to make room for the data coming from the fill. If the
data that is evicted has been modified since it was loaded in the cache,
it must be written back to the next level of the memory hierarchy.

Cache
Lookup

Cache
Eviction

Cache
Fill

Look for a cache
line storing A

Found?

Return data
associated with A

Get A from the
next memory level

Choose a cache line
that can store A

Found?

Write the cache line
to the next level

Store the data at A
in the free line

NO
miss

NO

YES
hit

YES

Is the line dirty?

Mark the line
available

YES

NO

Look for a free cache
line that can store A

Figure 2.22: The steps taken by a cache memory to resolve an access to a memory
address A. A normal memory access (to cacheable DRAM) always triggers a cache
lookup. If the access misses the cache, a fill is required, and a write-back may be
required.

2.11. Memory Cache Subsystem 53

Table 2.8 shows the key characteristics of the memory hierarchy
implemented by modern Intel CPUs. Each core has its own L1 and L2
cache (see Figure 2.20), while the L3 cache is in the CPU’s uncore (see
Figure 2.19), and is shared by all cores in the package.

Table 2.8: Approximate sizes and access times for each level in the memory hier-
archy of an Intel processor, from [Levinthal, 2010]. Memory sizes and access times
differ by orders of magnitude across the different levels of the hierarchy. This table
does not cover multi-processor systems.

Memory Size Access Time
Core Registers 1 KB no latency
L1 D-Cache 32 KB 4 cycles
L2 Cache 256 KB 10 cycles
L3 Cache 8 MB 40-75 cycles
DRAM 16 GB 60 ns

The numbers in Table 2.8 suggest that cache placement can have
a large impact on an application’s execution time. Because of this,
the Intel architecture includes an assortment of instructions that give
performance-sensitive applications some control over the caching of
their working sets. PREFETCH instructs the CPU’s prefetcher to cache
a specific memory address, in preparation for a future memory access.
The memory writes performed by the MOVNT instruction family bypass
the cache if a fill would be required. CLFLUSH evicts any cache lines
storing a specific address from the entire cache hierarchy.

The methods mentioned above are available to software running at
all privilege levels, because they were designed for high-performance
workloads with large working sets, which are usually executed at ring
3 (§ 2.3). For comparison, the instructions used by system software
to manage the address translation caches, described in § 2.11.5 be-
low, can only be executed at ring 0.

2.11.2 Cache Organization

In the Intel architecture, caches are completely implemented in hard-
ware, meaning that the software stack has no direct control over the
eviction process. However, software can gain some control over which

54 A Primer on Computer System Architecture

data gets evicted by understanding how the caches are organized, and
by cleverly placing its data in memory.

The cache line is the atomic unit of cache organization. A cache
line has data, a copy of a continuous range of DRAM, and a tag,
identifying the memory address that the data comes from. Fills and
evictions operate on entire lines.

The cache line size is the size of the data, and is always a power
of two. Assuming n-bit memory addresses and a cache line size of
2l bytes, the lowest l bits of a memory address are an offset into a
cache line, and the highest n − l bits determine the cache line that
is used to store the data at the memory location. All recent proces-
sors have 64-byte cache lines.

The L1 and L2 caches in recent processors are multi-way set-
associative with direct set indexing, as shown in Figure 2.23. A W -way
set-associative cache has its memory divided into sets, where each set
has W lines. A memory location can be cached in any of the w lines
in a specific set that is determined by the highest n − l bits of the
location’s memory address. Direct set indexing means that the S sets
in a cache are numbered from 0 to S − 1, and the memory location at
address A is cached in the set numbered An−1...n−l mod S.

In the common case where the number of sets in a cache is a power
of two, so S = 2s, the lowest l bits in an address make up the cache line
offset, the next s bits are the set index. The highest n − s − l bits in
an address are not used when selecting where a memory location will
be cached. Figure 2.23 shows the cache structure and lookup process.

2.11.3 Cache Coherence

The Intel architecture was designed to support application software
that was not written with caches in mind. One aspect of this sup-
port is the Total Store Order (TSO) [Owens et al., 2009] memory
model, which promises that all logical processors in a computer see
the same order of DRAM writes.

The same memory location may be simultaneously cached by dif-
ferent cores’ caches, or even by caches on separate silicon dies, so
providing the TSO guarantees requires a cache coherence protocol

2.11. Memory Cache Subsystem 55

Line Offset
l-1…0

Address Tag
n-1…s+l

Set Index
s+l-1…l

Memory Address

…Set S-1, Way 1 Set S-1, Way W-1Set S-1, Way 0
⋮ ⋱ ⋮⋮

Set i, Way 1 Set i, Way W-1…Set i, Way 0

⋮⋮ ⋮ ⋱

Set 1, Way W-1Set 1, Way 0 …Set 1, Way 1

Set 0, Way W-1…Set 0, Way 1Set 0, Way 0

Way W-1…Way 1Way 0

Tag Line Tag Line Tag Line

Matched Line

Tag Comparator

Match? Matched Word

Figure 2.23: Cache organization and lookup, for a W -way set-associative cache
with 2l-byte lines and S = 2s sets. The cache works with n-bit memory addresses.
The lowest l address bits point to a specific byte in a cache line, the next s bytes
index the set, and the highest n − s − l bits are used to decide if the desired address
is in one of the W lines in the indexed set.

that synchronizes all cache lines in a computer that reference the
same memory address.

The cache coherence mechanism is not visible to software, so it is
only briefly mentioned in the SDM. Fortunately, Intel’s optimization
reference [Int, 2014c] and the datasheets referenced in § 2.9.3 provide
more information. Intel processors use variations of the MESIF [Good-
man and Hum, 2009] protocol, which is implemented in the CPU and
in the protocol layer of the QPI bus.

The SDM and the CPUID instruction output indicate that the L3
cache, also known as the last-level cache (LLC) is inclusive, meaning

56 A Primer on Computer System Architecture

that any location cached by an L1 or L2 cache must also be cached
in the LLC. This design decision reduces complexity in many imple-
mentation aspects. We estimate that the bulk of the cache coherence
implementation is in the CPU’s uncore, thanks to the fact that cache
synchronization can be achieved without having to communicate to
the lower cache levels that are inside execution cores.

The QPI protocol defines cache agents, which are connected to the
last-level cache in a processor, and home agents, which are connected
to memory controllers. Cache agents make requests to home agents for
cache line data on cache misses, while home agents keep track of cache
line ownership, and obtain the cache line data from other cache line
agents, or from the memory controller. The QPI routing layer supports
multiple agents per socket, and each processor has its own caching
agents, and at least one home agent.

Figure 2.24 shows that the CPU uncore has a bidirectional ring
interconnect, which is used for communication between execution cores
and the other uncore components. The execution cores are connected
to the ring by CBoxes, which route their LLC accesses. The routing is
static, as the LLC is divided into same-size slices (common slice sizes
are 1.5 MB and 2.5 MB), and an undocumented hashing scheme maps
each possible physical address to exactly one LLC slice.

Intel’s documentation states that the hashing scheme mapping
physical addresses to LLC slices was designed to avoid having a slice
become a hotspot, but stops short of providing any technical de-
tails. Fortunately, independent researches have reversed-engineered the
hash functions for recent processors [Inci et al., 2015, Maurice et al.,
2015, Yarom et al., 2015].

The hashing scheme described above is the reason why the L3 cache
is documented as having a “complex” indexing scheme, as opposed to
the direct indexing used in the L1 and L2 caches.

The number of LLC slices matches the number of cores in the CPU,
and each LLC slice shares a CBox with a core. The CBoxes imple-
ment the cache coherence engine, so each CBox acts as the QPI cache
agent for its LLC slice. CBoxes use a Source Address Decoder (SAD)
to route DRAM requests to the appropriate home agents. Conceptu-

2.11. Memory Cache Subsystem 57

L3
 C

ac
he

CBox

Core

L2 Cache

L3 Cache
Slice

L3 Cache
Slice

CBox

Core

L2 Cache

Home
Agent

CBox

Core

L2 Cache

L3 Cache
Slice

L3 Cache
Slice

CBox

Core

L2 Cache

QPI
Packetizer

Memory
Controller

DDR3
Channel

Ring to
QPI

Ring to
PCIeI/O Controller

UBox

QPI Link

PCIe Lanes

Figure 2.24: The stops on the ring interconnect used for inter-core and core-uncore
communication.

ally, the SAD takes in a memory address and access type, and out-
puts a transaction type (coherent, non-coherent, IO) and a node ID.
Each CBox contains a SAD replica, and the configurations of all SADs
in a package are identical.

The SAD configurations are kept in sync by the UBox, which is the
uncore configuration controller, and connects the System agent to the
ring. The UBox is responsible for reading and writing physically dis-
tributed registers across the uncore. The UBox also receives interrupts
from system and dispatches them to the appropriate core.

On recent Intel processors, the uncore also contains at least one
memory controller. Each integrated memory controller (iMC or MBox
in Intel’s documentation) is connected to the ring by a home agent (HA
or BBox in Intel’s datasheets). Each home agent contains a Target Ad-
dress Decoder (TAD), which maps each DRAM address to an address
suitable for use by the DRAM modules, namely a DRAM channel,
bank, rank, and a DIMM address. The mapping in the TAD is not doc-
umented by Intel, but it has been reverse-engineered [Pessl et al., 2015].

The integration of the memory controller on the CPU brings the
ability to filter DMA transfers. Accesses from a peripheral connected

58 A Primer on Computer System Architecture

to the PCIe bus are handled by the integrated I/O controller (IIO),
placed on the ring interconnect via the UBox, and then reach the
iMC. Therefore, on modern systems, DMA transfers go through both
the SAD and TAD, which can be configured to abort DMA trans-
fers targeting protected DRAM ranges.

2.11.4 Caching and Memory-Mapped Devices

Caches rely on the assumption that the underlying memory imple-
ments the memory abstraction in § 2.2. However, the physical addresses
that map to memory-mapped I/O devices often deviate from the mem-
ory abstraction. For example, some devices expose command registers
that trigger certain operations when written, and always return a zero
value. Caching addresses that map to such memory-mapped I/O de-
vices will lead to incorrect behavior.

Furthermore, even when the memory-mapped devices follow the
memory abstraction, caching their memory is sometimes undesirable.
For example, caching a graphic unit’s frame buffer could lead to visual
artifacts on the user’s display, because of the delay between the time
when a write is issued and the time when the corresponding cache
lines are evicted and written back to memory.

In order to work around these problems, the Intel architecture im-
plements a few caching behaviors, described below, and provides a
method for partitioning the memory address space (§ 2.4) into regions,
and for assigning a desired caching behavior to each region.

Uncacheable (UC) memory has the same semantics as the I/O ad-
dress space (§ 2.4). UC memory is useful when a device’s behavior is de-
pendent on the order of memory reads and writes, such as in the case of
memory-mapped command and data registers for a PCIe NIC (§ 2.9.1).
The out-of-order execution engine (§ 2.10) does not reorder UC mem-
ory accesses, and does not issue speculative reads to UC memory.

Write Combining (WC) memory addresses the specific needs of
frame buffers. WC memory is similar to UC memory, but the out-
of-order engine may reorder memory accesses, and may perform spec-
ulative reads. The processor stores writes to WC memory in a write

2.11. Memory Cache Subsystem 59

combining buffer, and attempts to group multiple writes into a (more
efficient) line write bus transaction.

Write Through (WT) memory is cached, but write misses do not
cause cache fills. This is useful for preventing large rarely read memory-
mapped device storage, such as frame buffers, from using cache mem-
ory. WT memory is covered by the cache coherence engine, may receive
speculative reads, and is subject to operation reordering.

DRAM is represented as Write Back (WB) memory, which is op-
timized under the assumption that all devices that need to observe
the memory operations implement the cache coherence protocol. WB
memory is cached as described in § 2.11, receives speculative reads,
and operations targeting it are subject to reordering.

Write Protected (WP) memory is similar to WB memory, with
the exception that every write is propagated to the system bus. It
is intended for memory-mapped buffers, where the order of oper-
ations does not matter, but the devices that need to observe the
writes do not implement the cache coherence protocol, in order to
reduce hardware costs.

On recent Intel processors, the cache’s behavior is mainly config-
ured by the Memory Type Range Registers (MTRRs) and by Page
Attribute Table (PAT) indices in the page tables (§ 2.5). The behavior
is also impacted by the Cache Disable (CD) and Not-Write through
(NW) bits in Control Register 0 (CR0, § 2.4), as well as by equiva-
lent bits in page table entries, namely Page-level Cache Disable (PCD)
and Page-level Write-Through (PWT).

The MTRRs were intended to be configured by the com-
puter’s firmware during the boot sequence. Fixed MTRRs cover pre-
determined ranges of memory, such as the memory areas that had
special semantics in the computers using 16-bit Intel processors. The
ranges covered by variable MTRRs can be configured by system soft-
ware. The representation used to specify the ranges is described be-
low, as it has some interesting properties that have proven useful
in other systems.

Each variable memory type range is specified using a range base
and a range mask. A memory address belongs to the range if comput-

60 A Primer on Computer System Architecture

ing a bitwise AND between the address and the range mask results
in the range base. This verification has a low-cost hardware imple-
mentation, shown in Figure 2.25.

AND
MTRR mask

Physical Address EQ
MTRR base

match

Figure 2.25: The circuit for computing whether a physical address matches a
memory type range. Assuming a CPU with 48-bit physical addresses, the circuit
uses 36 AND gates and a binary tree of 35 XNOR (equality test) gates. The circuit
outputs 1 if the address belongs to the range. The bottom 12 address bits are ignored,
because memory type ranges must be aligned to 4 KB page boundaries.

Each variable memory type range must have a size that is an
integral power of two, and a starting address that is a multiple of
its size, so it can be described using the base / mask representa-
tion described above. A range’s starting address is its base, and the
range’s size is one plus its mask.

Another advantage of this range representation is that the base and
the mask can be easily validated, as shown in Listing 2.1. The range is
aligned with respect to its size if and only if the bitwise AND between
the base and the mask is zero. The range’s size is a power of two if
and only if the bitwise AND between the mask and one plus the mask
is zero. According to the SDM, the MTRRs are not validated, but
setting them to invalid values results in undefined behavior.

constexpr bool is_valid_range(
size_t base, size_t mask) {

// Base is aligned to size.
return (base & mask) == 0 &&

// Size is a power of two.
(mask & (mask + 1)) == 0;

}

Listing 2.1: The checks that validate the base and mask of a memory-type range
can be implemented very easily.

No memory type range can partially cover a 4 KB page, which im-
plies that the range base must be a multiple of 4 KB, and the bottom 12

2.11. Memory Cache Subsystem 61

bits of range mask must be set. This simplifies the interactions between
memory type ranges and address translation, described in § 2.11.5.

The PAT is intended to allow the operating system or hypervisor to
tweak the caching behaviors specified in the MTRRs by the computer’s
firmware. The PAT has 8 entries that specify caching behaviors, and is
stored in its entirety in a MSR. Each page table entry contains a 3-bit
index that points to a PAT entry, so the system software that controls
the page tables can specify caching behavior at a very fine granularity.

2.11.5 Caches and Address Translation

Modern system software relies on address translation (§ 2.5). This
means that all memory accesses issued by a CPU core use virtual
addresses, which must undergo translation. Caches must know the
physical address for a memory access, to handle aliasing (multiple vir-
tual addresses pointing to the same physical address) correctly. How-
ever, address translation requires up to 20 memory accesses (see Fig-
ure 2.12), so it is impractical to perform a full address translation
for every cache access. Instead, address translation results are cached
in the translation look-aside buffer (TLB).

Table 2.9 shows the levels of the TLB hierarchy. Recent processors
have separate L1 TLBs for instructions and data, and a shared L2
TLB. Each core has its own TLBs (see Figure 2.20). When a virtual
address is not contained in a core’s TLB, the Page Miss Handler (PMH)
performs a page walk (page table / EPT traversal) to translate the
virtual address, and the result is stored in the TLB.

Table 2.9: Approximate sizes and access times for each level in the TLB hierarchy,
from [7zi, 2014].

Memory Entries Access Time
L1 I-TLB 128 + 8 = 136 1 cycle
L1 D-TLB 64 + 32 + 4 = 100 1 cycle
L2 TLB 1536 + 8 = 1544 7 cycles
Page Tables 236 ≈ 6 · 1010 18 cycles - 200ms

62 A Primer on Computer System Architecture

In the Intel architecture, the PMH is implemented in hardware,
so the TLB is never directly exposed to software and its implemen-
tation details are not documented. The SDM does state that each
TLB entry contains the physical address associated with a virtual
address, and the metadata needed to resolve a memory access. For
example, the processor needs to check the writable (W) flag on ev-
ery write, and issue a General Protection fault (#GP) if the write
targets a read-only page. Therefore, the TLB entry for each virtual
address caches the logical AND of all relevant W flags in the page
table structures leading up to the page.

The TLB is transparent to application software. However, kernels
and hypervisors must make sure that the TLBs do not get out of
sync with the page tables and EPTs. When changing a page table
or EPT, the system software must use the INVLPG instruction to
invalidate any TLB entries for the virtual address whose translation
changed. Some instructions flush the TLBs, meaning that they inval-
idate all TLB entries, as a side-effect.

TLB entries also cache the desired caching behavior (§ 2.11.4) for
their pages. This requires system software to flush the correspond-
ing TLB entries when changing MTRRs or page table entries. In re-
turn, the processor only needs to compute the desired caching behav-
ior during a TLB miss, as opposed to computing the caching behav-
ior on every memory access.

The TLB is not covered by the cache coherence mechanism de-
scribed in § 2.11.3. Therefore, when modifying a page table or EPT
on a multi-core / multi-processor system, the system software is re-
sponsible for performing a TLB shootdown, which consists of stop-
ping all logical processors that use the page table / EPT about to
be changed, performing the changes, executing TLB-invalidating in-
structions on the stopped logical processors, and then resuming exe-
cution on the stopped logical processors.

Address translation constrains the L1 cache design. On Intel pro-
cessors, the set index in an L1 cache only uses the address bits that are
not impacted by address translation, so that the L1 set lookup can be

2.12. Interrupts 63

done in parallel with the TLB lookup. This is critical for achieving a
low latency when both the L1 TLB and the L1 cache are hit.

Given a page size P = 2p bytes, the requirement above translates
to l + s ≤ p. In the Intel architecture, p = 12, and all recent processors
have 64-byte cache lines (l = 6) and 64 sets (s = 6) in the L1 caches,
as shown in Figure 2.26. The L2 and L3 caches are only accessed if
the L1 misses, so the physical address for the memory access is known
at that time, and can be used for indexing.

Line Offset
5…0

Address Tag
47…12

Set Index
11…6

L1 Cache Address Breakdown

PML4E Index
47…39

PDPTE Index
38…30

PDE Index
29…21

Page Offset
11…0

PTE Index
20…12

4KB Page Address Breakdown

Line Offset
5…0

Address Tag
47…16

Set Index
14…6

L2 Cache Address Breakdown

PML4E Index
47…39

PDPTE Index
38…30

PDE Index
29…21

Page Offset
20…0

2MB Page Address Breakdown

Line Offset
5…0

Address Tag
47…16

Set Index
18…6

L3 Cache Address Breakdown

Figure 2.26: Virtual addresses from the perspective of cache lookup and address
translation. The bits used for the L1 set index and line offset are not changed by
address translation, so the page tables do not impact L1 cache placement. The page
tables do impact L2 and L3 cache placement. Using large pages (2 MB or 1 GB) is
not sufficient to make L3 cache placement independent of the page tables, because
of the LLC slice hashing function (§ 2.11.3).

2.12 Interrupts

Peripherals use interrupts to signal the occurrence of an event that
must be handled by system software. For example, a keyboard triggers
interrupts when a key is pressed or depressed. System software also
relies on interrupts to implement preemptive multi-threading.

64 A Primer on Computer System Architecture

Interrupts are a kind of hardware exception (§ 2.8.2). Receiving an
interrupt causes an execution core to perform a privilege level switch
and to start executing the system software’s interrupt handling code.
Therefore, the security concerns in § 2.8.2 also apply to interrupts, with
the added twist that interrupts occur independently of the instructions
executed by the interrupted code, whereas most faults are triggered by
the actions of the application software that incurs them.

Given the importance of interrupts when assessing a system’s secu-
rity, this section outlines the interrupt triggering and handling pro-
cesses described in the SDM.

Peripherals use bus-specific protocols to signal interrupts. For ex-
ample, PCIe relies on Message Signaled Interrupts (MSI), which are
memory writes issued to specially designed memory addresses. The
bus-specific interrupt signals are received by the I/O Advanced Pro-
grammable Interrupt Controller (IOAPIC) in the PCH, shown in
Figure 2.17.

The IOAPIC routes interrupt signals to one or more Local Ad-
vanced Programmable Interrupt Controllers (LAPICs). As shown in
Figure 2.19, each logical CPU has a LAPIC that can receive inter-
rupt signals from the IOAPIC. The IOAPIC routing process assigns
each interrupt to an 8-bit interrupt vector that is used to identify the
interrupt sources, and to a 32-bit APIC ID that is used to identify
the LAPIC that receives the interrupt.

Each LAPIC uses a 256-bit Interrupt Request Register (IRR) to
track the unserviced interrupts that it has received, based on the in-
terrupt vector number. When the corresponding logical processor is
available, the LAPIC copies the highest-priority unserviced interrupt
vector to the In-Service Register (ISR), and invokes the logical pro-
cessor’s interrupt handling process.

At the execution core level, interrupt handling reuses many of the
mechanisms of fault handling (§ 2.8.2). The interrupt vector number in
the LAPIC’s ISR is used to locate an interrupt handler in the IDT, and
the handler is invoked, possibly after a privilege switch is performed.
The interrupt handler does the processing that the device requires, and

2.13. Platform Initialization (Booting) 65

then writes the LAPIC’s End Of Interrupt (EOI) register to signal the
fact that it has completed handling the interrupt.

Interrupts are treated like faults, so interrupt handlers have full
control over the execution environment of the application being inter-
rupted. This is used to implement preemptive multi-threading, which
relies on a clock device that generates interrupts periodically, and on
an interrupt handler that performs context switches.

System software can cause an interrupt on any logical processor by
writing the target processor’s APIC ID into the Interrupt Command
Register (ICR) of the LAPIC associated with the logical processor that
the software is running on. These interrupts, called Inter-Processor
Interrupts (IPI), are needed to implement TLB shoot-downs (§ 2.11.5).

2.13 Platform Initialization (Booting)

When a computer is powered up, it undergoes a bootstrapping process,
also called booting, for simplicity. The boot process is a sequence of steps
that collectively initialize all hardware components and load the system
software into DRAM. An analysis of a system’s security properties must
be aware of all pieces of software executed during the boot process,
and must account for the trust relationships that are created when
a software module loads another module.

This section outlines the details of the boot process needed to reason
about the security of a system based on the Intel architecture. [Int,
2010b] provides a good reference for many of the booting process’s
low-level details. While some specifics of the boot process depend on
the motherboard and components in a computer, this section focuses
on the high-level flow described by Intel’s documentation.

2.13.1 The UEFI Standard

The firmware in recent computers with Intel processors implements the
Platform Initialization (PI) process in the Unified Extensible Firmware
Interface (UEFI) specification [UEF, 2015]. The platform initialization
follows the steps shown in Figure 2.27 and described below.

66 A Primer on Computer System Architecture

Security (SEC)

Pre-EFI Initialization (PEI)

Driver eXecution Environment (DXE)

Boot Device Selection (BDS)

Transient System Load (TSL)

Run Time (RT)

measures

measures

measures

measures

measures

microcode
firmware

bootloader

OS

DRAM Initialized

Cache-as-RAM

Figure 2.27: The phases of the Platform Initialization process in the UEFI speci-
fication.

The computer powers up, reboots, or resumes from sleep in the
Security phase (SEC). The SEC implementation is responsible for es-
tablishing a temporary memory store and loading the next stage of
the firmware into it. As the first piece of software that executes on
the computer, the SEC implementation is the system’s root of trust,
and performs the first steps towards establishing the system’s de-
sired security properties.

For example, in a measured boot system (also known as trusted
boot), all software involved in the boot process is measured (crypto-
graphically hashed, and the measurement is made available to third
parties, as described in § 3.3). In such a system, the SEC implemen-
tation takes the first steps in establishing the system’s measurement,
namely resetting the special register that stores the measurement re-
sult, measuring the PEI implementation, and storing the measure-
ment in the special register.

SEC is followed by the Pre-EFI Initialization phase (PEI), which
initializes the computer’s DRAM, copies itself from the temporary
memory store into DRAM, and tears down the temporary storage.
When the computer is powering up or rebooting, the PEI imple-
mentation is also responsible for initializing all non-volatile storage

2.13. Platform Initialization (Booting) 67

units that contain UEFI firmware and loading the next stage of the
firmware into DRAM.

PEI hands off control to the Driver eXecution Environment phase
(DXE). In DXE, a loader locates and starts firmware drivers for the
various components in the computer. DXE is followed by a Boot Device
Selection (BDS) phase, which is followed by a Transient System Load
(TSL) phase, where an EFI application loads the operating system
selected in the BDS phase. Last, the OS loader passes control to the
operating system’s kernel, entering the Run Time (RT) phase.

When waking up from sleep, the PEI implementation first initial-
izes the non-volatile storage containing the system snapshot saved while
entering the sleep state. The rest of the PEI implementation may use
optimized re-initialization processes, based on the snapshot contents.
The DXE implementation also uses the snapshot to restore the com-
puter’s state, such as the DRAM contents, and then directly executes
the operating system’s wake-up handler.

2.13.2 SEC on Intel Platforms

Right after a computer is powered up, circuitry in the power supply and
on the motherboard starts establishing reference voltages on the power
rails in a specific order, documented as “power sequencing” [Venkatara-
mani, 2011] in chipset specifications such as [Int, 2015h]. The rail pow-
ering up the Intel ME (§ 2.9.2) in the PCH is powered up significantly
before the rail that powers the CPU cores.

When the ME is powered up, it starts executing the code in its
boot ROM, which sets up the SPI bus connected to the flash memory
module (§ 2.9.1) that stores both the UEFI firmware and the ME’s
firmware. The ME then loads its firmware from flash memory, which
contains the ME’s operating system and applications.

After the Intel ME loads its software, it sets up some of the mother-
board’s hardware, such as the PCH bus clocks, and then it kicks off the
CPU’s bootstrap sequence. Most of the details of the ME’s involvement
in the computer’s boot process are not publicly available, but initial-
izing the clocks is mentioned in a few public documents [Int, 2015b,
pur, 2014, Dice, 2011, fit, 2014], and is made clear in firmware bringup

68 A Primer on Computer System Architecture

guides, such as the leaked confidential guide [Int, 2012a] documenting
firmware bringup for Intel’s Series 7 chipset.

The beginning of the CPU’s bootstrap sequence is the SEC phase,
which is implemented in the processor circuitry. All logical processors
(LPs) on the motherboard undergo hardware initialization, which in-
validates the caches (§ 2.11) and TLBs (§ 2.11.5), performs a Built-In
Self Test (BIST), and sets all registers (§ 2.6) to pre-specified values.

After hardware initialization, the LPs perform the Multi-Processor
(MP) initialization algorithm, which results in one LP being selected
as the bootstrap processor (BSP), and all other LPs being classified
as application processors (APs).

According to the SDM, the details of the MP initialization algo-
rithm for recent CPUs depend on the motherboard and firmware. In
principle, after completing hardware initialization, all LPs attempt to
issue a special no-op transaction on the QPI bus. A single LP will
succeed in issuing the no-op, thanks to the QPI arbitration mecha-
nism, and to the UBox (§ 2.11.3) in each CPU package, which also
serves as a ring arbiter. The arbitration priority of each LP is based on
its APIC ID (§ 2.12), which is provided by the motherboard when
the system powers up. The LP that issues the no-op becomes the
BSP. Upon failing to issue the no-op, the other LPs become APs,
and enter the wait-for-SIPI state.

Understanding the PEI firmware loading process is unnecessarily
complicated by the fact that the SDM describes a legacy process con-
sisting of having the BSP set its RIP register to 0xFFFFFFF0 (16
bytes below 4 GB), where the firmware is expected to place a instruc-
tion that jumps into the PEI implementation.

Recent processors do not support the legacy approach at all [Rein-
auer, 2013]. Instead, the BSP reads a word from address 0xFFFFFFE8
(24 bytes below 4 GB) [Zimmer and Yao, 2012, Datta and Kumar,
2013], and expects to find the address of a Firmware Interface Table
(FIT) in the memory address space (§ 2.4), as shown in Figure 2.28. The
BSP is able to read firmware contents from non-volatile memory before
the computer is initialized, because the initial SAD (§ 2.11.3) and PCH

2.13. Platform Initialization (Booting) 69

(§ 2.9.1) configurations maps a region in the memory address space to
the SPI flash module (§ 2.9.1) that stores the computer’s firmware.

Legacy Reset Vector
FIT Pointer

Firmware Interface Table (FIT)

0xFFFFFFF0
0xFFFFFFE8

FIT Header
PEI ACM Entry

Pre-EFI Initialization ACM

TXT Policy Entry

Public Key
Signature

PEI Implementation

TXT Policy Configuration

DXE modules

0xFFFFFFFF

ACM Header

Figure 2.28: The Firmware Interface Table (FIT) in relation to the firmware’s
memory map.

The FIT [Qureshi and Nicholes, 2006] was introduced in the context
of Intel’s Itanium architecture, and its use in Intel’s current 64-bit ar-
chitecture is described in an Intel patent [Datta and Kumar, 2013] and
briefly documented in an obscure piece of TXT-related documentation
[Int, 2010e]. The FIT contains Authenticated Code Modules (ACMs)
that make up the firmware, and other platform-specific information,
such as the TPM and TXT configuration [Int, 2010e].

The PEI implementation is stored in an ACM listed in the FIT.
The processor loads the PEI ACM, verifies the trustworthiness of the
ACM’s public key, and ensures that the ACM’s contents matches its
signature. If the PEI passes the security checks, it is executed. Pro-
cessors that support Intel TXT only accept Intel-signed ACMs [Fu-
tral and Greene, 2013, p. 92].

2.13.3 PEI on Intel Platforms

[Int, 2010b] and [Coreboot, 2014] describe the initialization steps per-
formed by Intel platforms during the PEI phase, from the perspective

70 A Primer on Computer System Architecture

of a firmware programmer. A few steps provide useful context for rea-
soning about threat models involving the boot process.

When the BSP starts executing PEI firmware, DRAM is not yet
initialized. Therefore, the PEI code starts executing in a Cache-as-
RAM (CAR) mode, which only relies on the BSP’s internal caches,
at the expense of imposing severe constraints on the size of the
PEI’s working set.

One of the first tasks performed by the PEI implementation
is enabling DRAM, which requires discovering and initializing the
DRAM modules connected to the motherboard, and then configur-
ing the BSP’s memory controllers (§ 2.11.3) and MTRRs (§ 2.11.4).
Most firmware implementations use Intel’s Memory Reference Code
(MRC) for this task.

After DRAM becomes available, the PEI code is copied into DRAM
and the BSP is taken out of CAR mode. The BSP’s LAPIC (§ 2.12)
is initialized and used to send a broadcast Startup Inter-Processor In-
terrupt (SIPI, § 2.12) to wake up the APs. The interrupt vector in
a SIPI indicates the memory address of the AP initialization code
in the PEI implementation.

The PEI code responsible for initializing APs is executed when the
APs receive the SIPI wake-up. The AP PEI code sets up the AP’s
configuration registers, such as the MTRRs, to match the BSP’s con-
figuration. Next, each AP registers itself in a system-wide table, using
a memory synchronization primitive such as a semaphore, in order to
avoid two APs accessing the table concurrently. After the AP initial-
ization completes, each AP is suspended again, and waits to receive an
INIT Inter-Processor Interrupt from the OS kernel.

The BSP initialization code waits for all APs to register themselves
into the system-wide table, and then proceeds to locate, load and ex-
ecute the firmware module that implements DXE.

2.14 CPU Microcode

The Intel architecture features a large instruction set. Some instruc-
tions are used infrequently, and some instructions are very complex,

2.14. CPU Microcode 71

which makes it impractical for an execution core to handle all instruc-
tions in hardware. Intel CPUs use a microcode table to break down
rare and complex instructions into sequences of simpler instructions.
Architectural extensions that only require microcode changes are sig-
nificantly cheaper to implement and validate than extensions that re-
quire changes in the CPU’s circuitry.

It follows that a good understanding of what can be done in
microcode is crucial to evaluating the cost of security features that
rely on architecture extensions. Furthermore, the limitations of mi-
crocode are sometimes the reasoning behind seemingly arbitrary ar-
chitecture design decisions.

The first sub-section below presents the relevant facts pertaining
to microcode in Intel’s optimization reference [Int, 2014c] and SDM.
The following subsections summarize information gleaned from Intel’s
patents and other researchers’ findings.

2.14.1 The Role of Microcode

The frequently used instructions in the Intel architecture are handled
by the core’s fast path, which consists of simple decoders (§ 2.10) that
can emit at most 4 micro-ops per instruction. Infrequently used in-
structions and instructions that require more than 4 micro-ops use
a slower decoding path that relies on a sequencer to read micro-ops
from a microcode store ROM (MSROM).

The 4 micro-ops limitation can be used to guess intelligently
whether an architectural feature is implemented in microcode. For
example, it is safe to assume that XSAVE (§ 2.6), which was takes
over 200 micro-ops on recent CPUs [Fog, 2014], is most likely per-
formed in microcode, whereas simple arithmetic and memory accesses
are handled directly by hardware.

The core’s execution units handle common cases in fast paths im-
plemented in hardware. When an input cannot be handled by the
fast paths, the execution unit issues a microcode assist, which points
the microcode sequencer to a routine in microcode that handles the
edge cases. The most common cited example in Intel’s documenta-

72 A Primer on Computer System Architecture

tion is floating point instructions, which issue assists to handle de-
normalized inputs.

The REP MOVS family of instructions, also known as string instruc-
tions because of their use in strcpy-like functions, operate on variable-
sized arrays. These instructions can handle small arrays in hardware,
and issue microcode assists for larger arrays.

Modern Intel processors implement a microcode update facility. The
SDM describes the process of applying microcode updates from the per-
spective of system software. Each core can be updated independently,
and the updates must be reapplied on each boot cycle. A core can be
updated multiple times. The latest SDM at the time of this writing
states that a microcode update is up to 16 KB in size.

Processor engineers prefer to build new architectural features as
microcode extensions, because microcode can be iterated on much
faster than hardware, which reduces development cost [Wu and Bre-
ternitz, 2008, Wu et al., 2012]. The update facility further increases
the appeal of microcode, as some classes of bugs can be fixed af-
ter a CPU has been released.

Intel patents [McKeen et al., 2009, Johnson et al., 2010] describ-
ing Software Guard Extensions (SGX) disclose that SGX is entirely
implemented in microcode, except for the memory encryption engine.
A description of SGX’s implementation could provide great insights
into Intel’s microcode, but, unfortunately, the SDM chapters covering
SGX do not include such a description. We therefore rely on other
public information sources about the role of microcode in the security-
sensitive areas covered by previous sections, namely memory manage-
ment (§ 2.5, § 2.11.5), the handling of hardware exceptions (§ 2.8.2)
and interrupts (§ 2.12), and platform initialization (§ 2.13).

The use of microcode assists can be measured using the Precise
Event Based Sampling (PEBS) feature in recent Intel processors. PEBS
provides counters for the number of micro-ops coming from MSROM,
including complex instructions and assists, counters for the numbers of
assists associated with some micro-op classes (SSE and AVX stores and
transitions), and a counter for assists generated by all other micro-ops.

2.14. CPU Microcode 73

The PEBS feature itself is implemented using microcode assists
(this is implied in the SDM and confirmed by [Knauth and Irelan,
2014]) when it needs to write the execution context into a PEBS record.
Given the wide range of features monitored by PEBS counters, we
assume that all execution units in the core can issue microcode assists,
which are performed at micro-op retirement. This finding is confirmed
by an Intel patent [Boggs and Rodgers, 1997], and is supported by
the existence of a PEBS counter for the “number of microcode assists
invoked by hardware upon micro-op writeback.”

Intel’s optimization manual describes one more interesting as-
sist, from a memory system perspective. SIMD masked loads (using
VMASKMOV) read a series of data elements from memory into a vector
register. A mask register decides whether elements are moved or ig-
nored. If the memory address overlaps an invalid page (e.g., the P flag
is 0, § 2.5), a microcode assist is issued, even if the mask indicates that
no element from the invalid page should be read. The microcode checks
whether the elements in the invalid page have the corresponding mask
bits set, and either performs the load or issues a page fault.

The description of machine checks in the SDM mentions page as-
sists and page faults in the same context. We assume that the page
assists are issued in some cases when a TLB miss occurs (§ 2.11.5)
and the PMH has to walk the page table. The following section de-
velops this assumption and provides supporting evidence from Intel’s
assigned patents and published patent applications.

2.14.2 Microcode Structure

According to a 2013 Intel patent [Hughes et al., 2013], the avenues
considered for implementing new architectural features are a com-
pletely microcode-based implementation, using existing micro-ops, a
microcode implementation with hardware support, which would use
new micro-ops, and a complete hardware implementation, using fi-
nite state machines (FSMs).

The main component of the MSROM is a table of micro-ops [Wu
and Breternitz, 2008, Wu et al., 2012]. According to an example in a
2012 Intel patent [Wu et al., 2012], the table contains on the order

74 A Primer on Computer System Architecture

of 20,000 micro-ops, and a micro-op has about 70 bits. On embed-
ded processors, like the Atom, microcode may be partially compressed
[Wu and Breternitz, 2008, Wu et al., 2012].

The MSROM also contains an event ROM, which is an array of
pointers to event handling code in the micro-ops table [Rodgers et al.,
1999]. Microcode events are hardware exceptions, assists, and inter-
rupts [Boggs and Rodgers, 1997, Papworth et al., 1999, Cornaby and
Chaffin, 2007]. The processor described in a 1999 patent [Rodgers et al.,
1999] has a 64-entry event table, where the first 16 entries point to
hardware exception handlers and the other entries are used by assists.

The execution units can issue an assist or signal a fault by as-
sociating an event code with the result of a micro-op. When the
micro-op is committed (§ 2.10), the event code causes the out-of-order
scheduler to squash all micro-ops that are in-flight in the ROB. The
event code is forwarded to the microcode sequencer, which reads the
micro-ops in the corresponding event handler [Boggs and Rodgers,
1997, Papworth et al., 1999].

The hardware exception handling logic (§ 2.8.2) and interrupt han-
dling logic (§ 2.12) is implemented entirely in microcode [Papworth
et al., 1999]. Therefore, changes to this logic are relatively inexpensive
to implement on Intel processors. This is rather fortunate, as the Intel
architecture’s standard hardware exception handling process requires
that the fault handler is trusted by the code that encounters the ex-
ception (§ 2.8.2), and this assumption cannot be satisfied by a design
where the software executing inside a secure container must be isolated
from the system software managing the computer’s resources.

The execution units in modern Intel processors support microcode
procedures, via dedicated microcode call and return micro-ops [Corn-
aby and Chaffin, 2007]. The micro-ops manage a hardware data struc-
ture that conceptually stores a stack of microcode instruction point-
ers, and is integrated with out-of-order execution and hardware ex-
ceptions, interrupts and assists.

Asides from special micro-ops, microcode also employs special load
and store instructions, which turn into special bus cycles, to issue com-
mands to other functional units [Rodgers et al., 1997]. The memory

2.14. CPU Microcode 75

addresses in the special loads and stores encode commands and in-
put parameters. For example, stores to a certain range of addresses
flush specific TLB sets.

2.14.3 Microcode and Address Translation

Address translation (§ 2.5) is configured by CR3, which stores the phys-
ical address of the top-level page table, and by various bits in CR0 and
CR4, all of which are described in the SDM. Writes to these control reg-
isters are implemented in microcode, which stores extra information in
microcode-visible registers [George et al., 2009].

When a TLB miss (§ 2.11.5) occurs, the memory execution unit
forwards the virtual address to the Page Miss Handler (PMH), which
performs the page walk needed to obtain a physical address. In or-
der to minimize the latency of a page walk, the PMH is implemented
as a Finite-State Machine (FSM) [Hildesheim et al., 2014, Raikin
et al., 2014]. Furthermore, the PMH fetches the page table entries
from memory by issuing “stuffed loads”, which are special micro-ops
that bypass the reorder buffer (ROB) and go straight to the mem-
ory execution units (§ 2.10), thus avoiding the overhead associated
with out-of-order scheduling [Glew et al., 1997, Rodgers et al., 1997,
Hildesheim et al., 2014].

The FSM in the PMH handles the fast path of the entire address
translation process, which assumes no address translation fault (§ 2.8.2)
occurs [Glew et al., 1996, 1997, Papworth et al., 1999, Rodgers et al.,
1999], and no page table entry needs to be modified [Glew et al., 1997].

When the PMH FSM detects the conditions that trigger a Page
Fault or a General Protection Fault, it communicates a microcode event
code, corresponding to the detected fault condition, to the execution
unit (§ 2.10) responsible for memory operations [Glew et al., 1996, 1997,
Papworth et al., 1999, Rodgers et al., 1999]. In turn, the execution unit
triggers the fault by associating the event code with the micro-op that
caused the address translation, as described in the previous section.

The PMH FSM does not set the Accessed or Dirty at-
tributes (§ 2.5.3) in page table entries. When it detects that a page
table entry must be modified, the FSM issues a microcode event

76 A Primer on Computer System Architecture

code for a page walk assist [Glew et al., 1997]. The microcode han-
dler performs the page walk again, setting the A and D attributes
on page table entries when necessary [Glew et al., 1997]. This find-
ing was indirectly confirmed by the description for a PEBS event in
the most recent SDM release.

The patents at the core of our descriptions above [Glew et al.,
1996, Boggs and Rodgers, 1997, Glew et al., 1997, Papworth et al.,
1999, Rodgers et al., 1999] were all issued between 1996 and 1999,
which raises the concern of obsolescence. As Intel would not be able to
file new patents for the same specifications, we cannot present newer
patents with the information above. Fortunately, we were able to find
newer patents that mention the techniques described above, proving
their relevance to newer CPU models.

Two 2014 patents [Hildesheim et al., 2014, Raikin et al., 2014] men-
tion that the PMH is executing a FSM which issues stuffing loads to
obtain page table entries. A 2009 patent [George et al., 2009] men-
tions that microcode is invoked after a PMH walk, and that the mi-
crocode can prevent the translation result produced by the PMH from
being written to the TLB.

A 2013 patent [Hughes et al., 2013] and a 2014 patent [Raikin and
Valentine, 2014] on scatter / gather instructions disclose that the newly
introduced instructions use a combination of hardware in the execu-
tion units that perform memory operations, which include the PMH.
The hardware issues microcode assists for slow paths, such as gath-
ering vector elements stored in uncacheable memory (§ 2.11.4), and
operations that cause Page Faults.

A 2014 patent on APIC (§ 2.12) virtualization [Shanbhogue and
Robinson, 2014] describes a memory execution unit modification that
invokes a microcode assist for certain memory accesses, based on the
contents of some range registers. The patent also mentions that the
range registers are checked when the TLB miss occurs and the PMH is
invoked, in order to decide whether a fast hardware path can be used
for APIC virtualization, or a microcode assist must be issued.

The recent patents mentioned above allow us to conclude that the
PMH in recent processors still relies on an FSM and stuffed loads,

2.14. CPU Microcode 77

and still uses microcode assists to handle infrequent and complex op-
erations. This assumption plays a key role in estimating the imple-
mentation complexity of architectural modifications targeting the pro-
cessor’s address translation mechanism.

2.14.4 Microcode and Booting

The SDM states that microcode performs the Built-In Self Test (BIST,
§ 2.13.2), but does not provide any details on the rest of the CPU’s
hardware initialization.

In fact, the entire SEC implementation on Intel platforms is con-
tained in the processor microcode [Datta et al., 2010, Datta and Ku-
mar, 2013, Shanbhogue and Robinson, 2014]. This implementation has
desirable security properties, as it is significantly more expensive for
an attacker to tamper with the MSROM circuitry (§ 2.14.2) than it
is to modify the contents of the flash memory module that stores the
UEFI firmware. § 3.4.3 and § 3.6 describe the broad classes of attacks
that an Intel platform can be subjected to.

The microcode that implements SEC performs MP initialization
(§ 2.13.2), as suggested in the SDM. The microcode then places the BSP
into Cache-as-RAM (CAR) mode, looks up the PEI Authenticated Code
Module (ACM) in the Firmware Interface Table (FIT), loads the PEI
ACM into the cache, and verifies its signature (§ 2.13.2) [Datta et al.,
2010, Zimmer and Robinson, 2012, Zimmer and Yao, 2012, Natu et al.,
2012, Datta and Kumar, 2013]. Given the structure of ACM signatures,
we can conclude that Intel’s microcode contains implementations of
RSA decryption and of a variant of SHA hashing.

The PEI ACM is executed from the CPU’s cache, after it is loaded
by the microcode [Datta et al., 2010, Zimmer and Robinson, 2012,
Datta and Kumar, 2013]. This removes the possibility for an at-
tacker with physical access to the SPI flash module to change the
firmware’s contents after the microcode computes its cryptographic
hash, but before it is executed.

On motherboards compatible with LaGrande Server Extensions
(LT-SX, also known as Intel TXT for servers), the firmware implement-
ing PEI verifies that each CPU connected to motherboard supports

78 A Primer on Computer System Architecture

LT-SX, and powers off the CPU sockets that don’t hold processors
that implement LT-SX [Natu et al., 2012]. This prevents an attacker
from tampering with a TXT-protected VM by hot-plugging a CPU in a
running computer that is inside TXT mode. When a hot-plugged CPU
passes security tests, a hypervisor is notified that a new CPU is avail-
able. The hypervisor updates its internal state, and sends the new CPU
a SIPI. The new CPU executes a SIPI handler, inside microcode, that
configures the CPU’s state to match the state expected by the TXT
hypervisor [Natu et al., 2012]. This implies that the AP initialization
described in § 2.13.2 is implemented in microcode.

2.14.5 Microcode Updates

The SDM explains that the microcode on Intel CPUs can be updated,
and describes the process for applying an update. However, no de-
tail about the contents of an update is provided. Analyzing Intel’s mi-
crocode updates seems like a promising avenue towards discovering the
structure of microcode system. Unfortunately, the updates have so far
proven to be inscrutable [Chen and Ahn, 2014].

The microcode updates cannot be easily analyzed because they
are encrypted, hashed with a cryptographic hash function like SHA-
256, and signed using RSA or elliptic curve cryptography [Zimmer
and Robinson, 2012]. The update facility is implemented entirely in
microcode, including the decryption and signature verification [Zim-
mer and Robinson, 2012].

[Hawkes, 2012] independently used fault injection and timing anal-
ysis to conclude that each recent Intel microcode update is signed with
a 2048-bit RSA key and a (possibly non-standard) 256-bit hash algo-
rithm, which agrees with the findings above.

The microcode update implementation places the core’s cache into
No-Evict Mode (NEM, documented by the SDM) and copies the mi-
crocode update into the cache before verifying its signature [Zimmer
and Robinson, 2012]. The update facility also sets up an MTRR entry
to protect the update’s contents from modifications via DMA transfers
[Zimmer and Robinson, 2012] as it is verified and applied.

2.14. CPU Microcode 79

While Intel publishes the most recent microcode updates for each
of its CPU models, the release notes associated with the updates
are not publicly available. This is unfortunate, as the release notes
could be used to confirm guesses that certain features are imple-
mented in microcode.

However, some information can be inferred by reading through the
Errata section in Intel’s Specification Updates [Int, 2010c, 2015d,e].
The phrase “it is possible for BIOS7 to contain a workaround for
this erratum” generally means that a microcode update was issued.
For example, Errata AH in [Int, 2010c] implies that string instruc-
tions (REP MOV) are implemented in microcode, which was confirmed
by Intel [Abraham, 2006].

Errata AH43 and AH91 in [Int, 2010c], and AAK73 in [Int, 2015d]
imply that address translation (§ 2.5) is at least partially implemented
in microcode. Errata AAK53, AAK63, and AAK70, AAK178 in [Int,
2015d], and BT138, BT210, in [Int, 2015e] imply that VM entries and
exits (§ 2.8.2) are implemented in microcode, which is confirmed by
the APIC virtualization patent [Shanbhogue and Robinson, 2014].

7Basic Input/Output System (BIOS) is the predecessor of UEFI-based firmware.
Most Intel documentation, including the SDM, still uses the term BIOS to refer to
firmware.

3
A Primer on Security for Trusted Processors

Most systems rely on some cryptographic primitives for security. Un-
fortunately, these primitives employ many assumptions, and building
a secure system by composing existing primitives is a very challeng-
ing endeavor. It follows that a system’s security analysis should be
particularly interested in what cryptographic primitives are used, and
how they are integrated into the system.

§ 3.1 and § 3.2 lay the foundations for such an analysis by sum-
marizing the primitives used by the secure architectures of interest
to us, and by describing the most common constructs built using
these primitives. § 3.3 builds on these concepts and describes soft-
ware attestation, which is the most popular method for establishing
trust in a secure architecture.

After describing the cryptographic foundations for building secure
systems, we discuss the attacks that secure architectures must with-
stand. Asides from forming a security checklist for architecture de-
sign, these attacks build intuition for the design decisions in the ar-
chitectures of interest to us.

The attacks that can be performed on a computer system are
broadly classified into two general categories: software attacks and at-

81

82 A Primer on Security for Trusted Processors

tacks requiring physical access to the computer system. In physical
attacks, the attacker compromises aspects of a system’s physical im-
plementation to perform an operation that bypasses the limitations set
by the computer system’s software abstraction layers. In contrast, soft-
ware attacks are performed solely by executing software on the victim
computer. § 3.4 summarizes the main types of physical attacks.

The distinction between software and physical attacks is particu-
larly relevant in cloud computing scenarios, where gaining software ac-
cess to the computer running a victim’s software can be accomplished
with a credit card backed by modest funds [Ristenpart et al., 2009],
whereas physical access is a more difficult prospect that requires tres-
pass, coercion, or social engineering on the cloud provider’s employees.

However, the distinction between software and physical attacks is
blurred by the attacks presented in § 3.6, which exploit programmable
peripherals connected to the victim computer’s bus in order to carry
out actions that are normally associated with physical attacks.

While the vast majority of software attacks exploit a bug in a soft-
ware component, there are a few additional attack classes that deserve
attention from architecture designers. Attacks exploiting the system’s
virtual address translation mechanism, described in § 3.7, become rel-
evant on architectures where the system software is not trusted. Cache
timing attacks, summarized in § 3.8 exploit microarchitectural behav-
iors that are completely observable in software, but dismissed by the
security analyses of most systems.

3.1 Cryptographic Primitives

This section overviews the cryptosystems used by secure architectures.
We are interested in cryptographic primitives that guarantee confi-
dentiality, integrity, and freshness, and we treat these primitives as
black boxes, focusing on their use in larger systems. [Katz and Lin-
dell, 2014] covers the mathematics behind cryptography, while [Fer-
guson et al., 2011] covers the topic of building systems out of cryp-
tographic primitives. Tables 3.1 and 3.2 summarize the primitives
covered in this section.

3.1. Cryptographic Primitives 83

Table 3.1: Desirable security guarantees and primitives that provide them.

Guarantee Primitive
Confidentiality Encryption
Integrity MAC / Signatures
Freshness Nonces + integrity

Table 3.2: Popular cryptographic primitives that are considered to be secure
against today’s adversaries.

Guarantee Symmetric Asymmetric
Keys Keys

Confidentiality AES-GCM, RSA with
AES-CTR PKCS #1 v2.0

Integrity HMAC-SHA-2 DSS-RSA,
AES-GCM DSS-ECC

A message whose confidentiality is protected can be transmitted
over an insecure medium without an adversary being able to obtain
the information in the message. When integrity protection is used,
the receiver is guaranteed to either obtain a message that was trans-
mitted by the sender, or to notice that an attacker tampered with
the message’s content.

When multiple messages are transmitted over an untrusted
medium, a freshness guarantee assures the receiver that she will ob-
tain the latest message coming from the sender, or will notice an at-
tack. A freshness guarantee is stronger than the equivalent integrity
guarantee, because the latter does not protect against replay attacks
where the attacker replaces a newer message with an older message
coming from the same sender.

The following example further illustrates these concepts. Suppose
Alice is a wealthy investor who wishes to either buy or sell an item
every day. Alice cannot trade directly, and must relay her orders to her
broker, Bob, over a network connection owned by Eve.

A communication system with confidentiality guarantees would pre-
vent Eve from distinguishing between a buy and a sell order, as il-

84 A Primer on Security for Trusted Processors

lustrated in Figure 3.1. Without confidentiality, Eve would know Al-
ice’s order before it is placed by Bob, so Eve would presumably gain
a financial advantage at Alice’s expense.

Network
Message

Alice Bob

Eve NoSell
YesBuy

Eavesdrop

Figure 3.1: In a confidentiality attack, Eve sees the message sent by Alice to Bob
and can understand the information inside it. In this case, Eve can tell that the
message is a buy order, and not a sell order.

A system with integrity guarantees would prevent Eve from re-
placing Alice’s message with a false order, as shown in Figure 3.2.
In this example, without integrity guarantees, Eve could replace Al-
ice’s message with a sell-everything order, and buy Alice’s as-
sets at a very low price.

Network
Eve’s Message

Alice Bob

Eve Sell Everything

Send own
message

Drop
message

Figure 3.2: In an integrity attack, Eve replaces Alice’s message with her own. In
this case, Eve sends Bob a sell-everything order. In this case, Eve can tell that
the message is a buy order, and not a sell order.

Last, a communication system that guarantees freshness would en-
sure that Eve cannot perform the replay attack pictured in Figure 3.3,
where she would replace Alice’s message with an older message. With-
out freshness guarantees, Eve could mount the following attack, which
bypasses both confidentiality and integrity guarantees. Over a few days,
Eve would copy and store Alice’s messages from the network. When
an order would reach Bob, Eve would observe the market and de-

3.1. Cryptographic Primitives 85

termine if the order was buy or sell. After building up a database
of messages labeled buy or sell, Eve would replace Alice’s message
with an old message of her choice.

Network
Old Message

Alice Bob

Eve

Send old
message

Drop
message

BuyThu
Wed Sell

BuyTue
BuyMon

Figure 3.3: In a freshness attack, Eve replaces Alice’s message with a message
that she sent at an earlier time. In this example, Eve builds a database of labeled
messages over time, and is able to send Bob her choice of a buy or a sell order.

3.1.1 Cryptographic Keys

All cryptographic primitives that we describe here rely on keys, which
are small pieces of information that must only be disclosed according
to specific rules. A large part of a system’s security analysis focuses on
ensuring that the keys used by the underlying cryptographic primitives
are produced and handled according to the primitives’ assumptions.

Each cryptographic primitive has an associated key generation algo-
rithm that uses random data to produce a unique key. The random data
is produced by a cryptographically strong pseudo-random number gen-
erator (CSPRNG) that expands a small amount of random seed data
into a much larger amount of data, which is computationally indistin-
guishable from true random data. The random seed must be obtained
from a true source of randomness whose output cannot be predicted
by an adversary, such as the least significant bits of the temperature
readings coming from a hardware sensor.

Symmetric key cryptography requires that all parties in the sys-
tem establish a shared secret key, which is usually referred to as “the
key”. Typically, one party executes the key generation algorithm and
securely transmits the resulting key to the other parties, as illustrated

86 A Primer on Security for Trusted Processors

in Figure 3.4. The channel used to distribute the key must provide
confidentiality and integrity guarantees, which is a non-trivial logisti-
cal burden. The symmetric key primitives mentioned here do not make
any assumption about the key, so the key generation algorithm simply
grabs a fixed number of bits from the CSPRNG.

Hardware Sensor

Random Seed

Cryptographically Secure
Pseudo-Random Number

Generator (CSPRNG)

Key Generation
Algorithm

Bob Alice

Secret
Key

random data

Secret
Key

private
communication

Figure 3.4: In symmetric key cryptography, a secret key is shared by the parties
that wish to communicate securely.

The defining feature of asymmetric key cryptography is that it does
not require a private channel for key distribution. Each party executes
the key generation algorithm, which produces a private key and a pub-
lic key that are mathematically related. Each party’s public key is
distributed to the other parties over a channel with integrity guar-
antees, as shown in Figure 3.5. Asymmetric key primitives are more
flexible than their symmetric counterparts, but are more complex and
consume more computational resources.

3.1.2 Confidentiality

Many cryptosystems that provide integrity guarantees are built upon
block ciphers that operate on fixed-size message blocks. The sender
transforms a block using an encryption algorithm, and the receiver in-
verts the transformation using a decryption algorithm. The encryption
algorithms in block ciphers obfuscate the message block’s content in
the output, so that an adversary who does not have the decryption key
cannot obtain the original message block from the encrypted output.

3.1. Cryptographic Primitives 87

Key Generation
Algorithm

Bob

Alice
Private

Key

Bob’s Public
Key

tamper-proof
communication

Public
Key

Hardware Sensor

Random Seed

Cryptographically Secure
Pseudo-Random Number

Generator (CSPRNG)

random data

Figure 3.5: An asymmetric key generation algorithm produces a private key and
an associated public key. The private key is held confidential, while the public key
is given to any party who wishes to securely communicate with the private key’s
holder.

Symmetric key encryption algorithms use the same secret key for
encryption and decryption, as shown in Figure 3.6, while asymmetric
key block ciphers use the public key for encryption, and the correspond-
ing private key for decryption, as shown in Figure 3.7.

Network

Encrypted Block

Alice Bob

Secret Key

Message
Block

Encryption Decryption

Message
Block

Secret Key

Figure 3.6: In a symmetric key secure permutation (block cipher), the same secret
key must be provided to both the encryption and the decryption algorithm.

The most popular block cipher based on symmetric keys at the
time of this writing is the American Encryption Standard (AES) [Dae-
men and Rijmen, 1999, National Institute of Standards and Technology
(NIST), 2001], with two variants that operate on 128-bit blocks using
128-bit keys or 256-bit keys. AES is a secure permutation function,
as it can transform any 128-bit block into another 128-bit block. Re-
cently, the United States National Security Agency (NSA) required the

88 A Primer on Security for Trusted Processors

Network
Encrypted

Block

Alice Bob

Message
Block

Encryption Decryption

Message
Block

Bob’s
Public
Key

Bob’s
Private

Key

Figure 3.7: In an asymmetric key block cipher, the encryption algorithm operates
on a public key, and the decryption algorithm uses the corresponding private key.

use of 256-bit AES keys for protecting sensitive information [National
Security Agency (NSA) Central Security Service (CSS), 2015].

The most deployed asymmetric key block cipher is the Rivest-
Shamir-Adelman (RSA) [Rivest et al., 1978] algorithm. RSA has vari-
able key sizes, and 3072-bit key pairs are considered to provide the
same security as 128-bit AES keys [Barker et al., 2012].

A block cipher does not necessarily guarantee confidentiality, when
used on its own. A noticeable issue is that in our previous example,
a block cipher would generate the same encrypted output for any of
Alice’s buy orders, as they all have the same content. Furthermore,
each block cipher has its own assumptions that can lead to subtle vul-
nerabilities if the cipher is used directly.

Symmetric key block ciphers are combined with operating modes
to form symmetric encryption schemes. Most operating modes require
a random initialization vector (IV) to be used for each message, as
shown in Figure 3.8. When analyzing the security of systems based on
these cryptosystems, an understanding of the IV generation process is
as important as ensuring the confidentiality of the encryption key.

Counter (CTR) and Cipher Block Chaining (CBC) are examples of
operating modes recommended [Dworkin, 2001] by the United States
National Institute of Standards and Technology (NIST), which informs
the NSA’s requirements. Combining a block cipher, such as AES, with

3.1. Cryptographic Primitives 89

Network
Encrypted
Message

Alice Bob

Message

Encryption Decryption

Message

Secret
Key

Secret
Key

CSPRNG

Initialization
Vector (IV)

IV

Figure 3.8: Symmetric key block ciphers are combined with operating modes. Most
operating modes require a random initialization vector (IV) to be generated for each
encrypted message.

an operating mode, such as CTR, results in an encryption method, such
as AES-CTR, which can be used to add confidentiality guarantees.

In the asymmetric key setting, there is no concept equivalent to
operating modes. Each block cipher has its own assumptions, and re-
quires a specialized scheme for general-purpose usage.

The RSA algorithm is used in conjunction with padding methods,
the most popular of which are the methods described in the Public-
Key Cryptography Standard (PKCS) #1 versions 1.5 [Kaliski, 1998]
and 2.0 [Kaliski and Staddon, 1998]. A security analysis of a system
that uses RSA-based encryption must take the padding method into
consideration. For example, the padding in PKCS #1 v1.5 can leak the
private key under certain circumstances [Bleichenbacher, 1998]. While
PKCS #1 v2.0 solves this issue, it is complex enough that some imple-
mentations have their own security issues [Manger, 2001].

Asymmetric encryption algorithms have much higher computa-
tional requirements than symmetric encryption algorithms. Therefore,
when non-trivial quantities of data is encrypted, the sender generates
a single-use secret key that is used to encrypt the data, and securely

90 A Primer on Security for Trusted Processors

communicates that secret key by encrypting it with the receiver’s pub-
lic key, as shown in Figure 3.9.

Network
Encrypted
Secret Key

Alice Bob

Message

Asymmetric
Encryption

Asymmetric
Decryption

Message

Bob’s
Public
Key

Bob’s
Private

Key

CSPRNG

Symmetric Key
Generation
Algorithm

Secret Key

Symmetric
Encryption

Encrypted
Message

Secret Key

Symmetric
Decryption

Figure 3.9: Asymmetric key encryption is generally used to bootstrap a symmetric
key encryption scheme.

3.1.3 Integrity

Many cryptosystems that provide integrity guarantees are built upon
secure hashing functions. These hash functions operate on an un-
bounded amount of input data and produce a small fixed-size output.
Secure hash functions have a few guarantees, such as pre-image re-
sistance, which states that an adversary cannot produce input data
corresponding to a given hash output.

At the time of this writing, the most popular secure hashing func-
tion is the Secure Hashing Algorithm (SHA) [Eastlake and Jones,
2001]. However, due to security issues in SHA-1 [Stevens et al., 2015],
new software is recommended to use at least 256-bit SHA-2 [Barker
et al., 2015] for secure hashing.

The SHA hash functions are members of a large family of block
hash functions that consume their input in fixed-size message blocks,
and use a fixed-size internal state. A block hash function is used as

3.1. Cryptographic Primitives 91

shown in Figure 3.10. An initialize algorithm is first invoked to set
the internal state to its initial values. An extend algorithm is executed
for each message block in the input. After the entire input is consumed,
a finalize algorithm produces the hash output from the internal state.

Initialize

Intermediate State

ExtendMessage Block

Intermediate State

ExtendMessage Block

Intermediate State

…

Finalize

Output

…

Intermediate State

Figure 3.10: A block hash function operates on fixed-size message blocks and uses
a fixed-size internal state.

In the symmetric key setting, integrity guarantees are obtained us-
ing a Message Authentication Code (MAC) cryptosystem, illustrated
in Figure 3.11. The sender uses a MAC algorithm that reads in a sym-
metric key and a variable-length message, and produces a fixed-length,
short MAC tag. The receiver provides the original message, the sym-
metric key, and the MAC tag to a MAC verification algorithm that
checks the authenticity of the message.

The key property of MAC cryptosystems is that an adversary
cannot produce a MAC tag that will validate a message without
the secret key.

92 A Primer on Security for Trusted Processors

Network
Message

Alice Bob

Secret
Key

Message

MAC
Signing

MAC
Verification

Message

Secret
Key

MAC tag
Correct?

Accept
MessageYes

Reject
MessageNo

Figure 3.11: In the symmetric key setting, integrity is assured by computing a
Message Authentication Code (MAC) tag and transmitting it over the network
along the message. The receiver feeds the MAC tag into a verification algorithm
that checks the message’s authenticity.

Many MAC cryptosystems do not have a separate MAC verifica-
tion algorithm. Instead, the receiver checks the authenticity of the MAC
tag by running the same algorithm as the sender to compute the ex-
pected MAC tag for the received message, and compares the output
with the MAC tag received from the network.

This is the case for the Hash Message Authentication
Code (HMAC) [Krawczyk et al., 1997] generic construction, whose
operation is illustrated in Figure 3.12. HMAC can use any secure hash
function, such as SHA, to build a MAC cryptosystem.

Asymmetric key primitives that provide integrity guarantees are
known as signatures. The message sender provides her private key to
a signing algorithm, and transmits the output signature along with
the message, as shown in Figure 3.13. The message receiver feeds the
sender’s public key and the signature to a signature verification algo-
rithm, which returns true if the message matches the signature, and
false if the message has been tampered with.

Signing algorithms can only operate on small messages and are
computationally expensive. Therefore, in practice, the message to be
transmitted is first run through a cryptographically strong hash func-
tion, and the hash is provided as the input to the signing algorithm.

3.1. Cryptographic Primitives 93

Network

Message

Alice Bob

Secret
Key

Message

HMAC HMAC

Message

Secret
Key

HMAC tag
Equal?

Accept
MessageYes

Reject
MessageNo

Secure
Hash

Secure
Hash

Figure 3.12: In the symmetric key setting, integrity is assured by computing a
Hash-based Message Authentication Code (HMAC) and transmitting it over the
network along the message. The receiver re-computes the HMAC and compares it
against the version received from the network.

Network

Message

Alice Bob

Alice’s
Private Key

Message

Signing
Signature

Verification

Message

Alice’s
Public Key

Signature Correct?

Accept
MessageYes

Reject
MessageNo

Secure
Hashing

Hash

Secure
Hashing

Hash

Figure 3.13: Signature schemes guarantee integrity in the asymmetric key setting.
Signatures are created using the sender’s private key, and are verified using the cor-
responding public key. A cryptographically secure hash function is usually employed
to reduce large messages to small hashes, which are then signed.

94 A Primer on Security for Trusted Processors

At the time of this writing, the most popular choice for guaran-
teeing integrity in shared secret settings is HMAC-SHA, an HMAC
function that uses SHA for hashing.

Authenticated encryption, which combines a block cipher with an
operating mode that offers both confidentiality and integrity guar-
antees, is often an attractive alternative to HMAC. The most pop-
ular authenticated encryption operating mode is Galois/Counter op-
eration mode (GCM) [McGrew and Viega, 2004], which has earned
NIST’s recommendation [Dworkin, 2007] when combined with AES
to form AES-GCM.

The most popular signature scheme combines the RSA encryption
algorithms with padding schemes specified in PKCS #1, as illustrated
in Figure 3.14. Recently, elliptic curve cryptography (ECC) [Koblitz,
1987] has gained a surge in popularity, thanks to its smaller key sizes.
For example, a 384-bit ECC key is considered to be as secure as a
3072-bit RSA key [Barker et al., 2012, National Security Agency (NSA)
Central Security Service (CSS), 2015]. The NSA requires the Digital
Signature Standard (DSS) [National Institute of Standards and Tech-
nology (NIST), 2013], which specifies schemes based on RSA and ECC.

3.1.4 Freshness

Freshness guarantees are typically built on top of a system that al-
ready offers integrity guarantees, by adding a unique piece of informa-
tion to each message. The main challenge in freshness schemes comes
down to economically maintaining the trusted state needed to gener-
ate the unique pieces of information on the sender side, and verify
their uniqueness on the receiver side.

A popular solution for gaining freshness guarantees relies on nonces,
single-use random numbers. Nonces are attractive because the sender
does not need to maintain any state; the receiver, however, must store
the nonces of all received messages.

Nonces are often combined with a message timestamping and ex-
piration scheme, as shown in Figure 3.15. An expiration can greatly
reduce the receiver’s storage requirement, as the nonces for expired
messages can be safely discarded. However, the scheme depends on

3.1. Cryptographic Primitives 95

Little-Endian Integer

Private Key

Message

RSA
Decryption

256-bit
SHA-2

Hash0x00 0x01 PS 0x00 DER

DER-Encoded Hash Algorithm ID

30 31 30 0d 06 09 60 86 48 01
65 03 04 02 01 05 00 04 20

Padding String

ff ff ff ... ff

PKCS #1 v1.5
RSA Signature

This is a
signature

Figure 3.14: The RSA signature scheme with PKCS #1 v1.5 padding specified
in RFC 3447 combines a secure hash of the signed message with a DER-encoded
specification of the secure hash algorithm used by the signature, and a padding
string whose bits are all set to 1. Everything except for the secure hash output is
considered to be a part of the PKCS #1 v1.5 padding.

the sender and receiver having synchronized clocks. The message ex-
piration time is a compromise between the desire to reduce storage
costs, and the need to tolerate clock skew and delays in message
transmission and processing.

Alternatively, nonces can be used in challenge-response protocols, in
a manner that removes the storage overhead concerns. The challenger
generates a nonce and embeds it in the challenge message. The response
to the challenge includes an acknowledgment of the embedded nonce,
so the challenger can distinguish between a fresh response and a replay
attack. The nonce is only stored by the challenger, and is small in
comparison to the rest of the state needed to validate the response.

96 A Primer on Security for Trusted Processors

Network

Message

Alice Bob

Synchronized
Clock

Message

CSPRNG

Message

Nonce

Seen
Before? OKYes

Reject
ReplayNo

Timestamp

Synchronized
Clock

Recent?

OKYes

Reject
ExpiredNo

Recent
Nonces

Figure 3.15: Freshness guarantees can be obtained by adding timestamped nonces
on top of a system that already offers integrity guarantees. The sender and the
receiver use synchronized clocks to timestamp each message and discard unreason-
ably old messages. The receiver must check the nonce in each new message against
a database of the nonces in all unexpired messages that it has seen.

3.2 Cryptographic Constructs

This section summarizes two constructs that are built on the cryp-
tographic primitives described in § 3.1, and are used in the rest
of this work.

3.2.1 Certificate Authorities

Asymmetric key cryptographic primitives assume that each party has
the correct public keys for the other parties. This assumption is critical,
as the entire security argument of an asymmetric key system rests on
the fact that certain operations can only be performed by the owners
of the private keys corresponding to the public keys. More concretely,
if Eve can convince Bob that her own public key belongs to Alice, Eve
can produce message signatures that seem to come from Alice.

The introductory material in § 3.1 assumed that each party trans-
mits their public key over a channel with integrity guarantees. In prac-

3.2. Cryptographic Constructs 97

tice, this is not a reasonable assumption, and the secure distribution
of public keys is still an open research problem.

The most widespread solution to the public key distribution prob-
lem is the Certificate Authority (CA) system, which assumes the ex-
istence of a trusted authority whose public key is securely transmit-
ted to all other parties in the system.

The CA is responsible for securely obtaining the public key of each
party, and for issuing a certificate that binds a party’s identity (e.g.,
“Alice”) to its public key, as shown in Figure 3.16.

Secured
Storage

Certificate

Subject Identity

Subject Public Key

Certificate Policy

Certificate Signature

Certification
StatementValid From / Until

Certificate Usage

Issuer
Private Key

Issuer Public Key

Signing
Algorithm

Figure 3.16: A certificate is a statement signed by a certificate authority (issuer)
binding the identity of a subject to a public key.

A certificate is essentially a cryptographic signature produced by
the private key of the certificate’s issuer, who is generally a CA. The
message signed by the issuer states that a public key belongs to a sub-
ject. The certificate message generally contains identifiers that state
the intended use of the certificate, such as “the key in this certifi-
cate can only be used to sign e-mail messages”. The certificate message
usually also includes an identifier for the issuer’s certification policy,
which summarizes the means taken by the issuer to ensure the au-
thenticity of the subject’s public key.

A major issue in a CA system is that there is no obvious way
to revoke a certificate. A revocation mechanism is desirable to han-
dle situations where a party’s private key is accidentally exposed, to

98 A Primer on Security for Trusted Processors

avoid having an attacker use the certificate to impersonate the com-
promised party. While advanced systems for certificate revocation have
been developed, the first line of defense against key compromise is
adding expiration dates to certificates.

In a CA system, each party presents its certificate along with
its public key. Any party that trusts the CA and has obtained the
CA’s public key securely can verify any certificate using the process
illustrated in Figure 3.17.

Trusted
Issuer?

Valid
now?

Certificate

Subject Identity

Subject Public Key

Certificate Policy

Certificate Signature

Valid From / Until

Certificate Usage

Issuer Public Key

Expected
subject?

Yes

Valid
for expected

use?

Yes

Yes

Start

Valid
signature?

Yes

Accept
Public Key

Yes

Reject
Certificate

No

No

No

No

No

Figure 3.17: A certificate issued by a CA can be validated by any party that
has securely obtained the CA’s public key. If the certificate is valid, the subject
public key contained within can be trusted to belong to the subject identified by
the certificate.

3.2. Cryptographic Constructs 99

One of the main drawbacks of the CA system is that the CA’s
private key becomes a very attractive attack target. This issue is some-
what mitigated by minimizing the use of the CA’s private key, which
reduces the opportunities for its compromise. The authority described
above becomes the root CA, and their private key is only used to
produce certificates for the intermediate CAs who, in turn, are re-
sponsible for generating certificates for the other parties in the sys-
tem, as shown in Figure 3.18.

In hierarchical CA systems, the only public key that gets distributed
securely to all parties is the root CA’s public key. Therefore, when two
parties wish to interact, each party must present their own certificate,
as well as the certificate of the issuing CA. For example, given the hi-
erarchy in Figure 3.18, Alice would prove the authenticity of her public
key to Bob by presenting her certificate, as well as the certificate of
Intermediate CA 1. Bob would first use the steps in Figure 3.17 to
validate Intermediate CA 1’s certificate against the root CA’s public
key, which would assure him of the authenticity of Intermediate CA
1’s public key. Bob would then validate Alice’s certificate using Inter-
mediate CA 1’s public key, which he now trusts.

In most countries, the government issues ID cards for its citizens,
and therefore acts as as a certificate authority. An ID card, shown
in Figure 3.19, is a certificate that binds a subject’s identity, which
is a full legal name, to the subject’s physical appearance, which is
used as a public key.

The CA system is very similar to the identity document (ID card)
systems used to establish a person’s identity, and a comparison be-
tween the two may help further the reader’s understanding of the
concepts in the CA system.

Each government’s ID card issuing operations are regulated by laws,
so an ID card’s issue date can be used to track down the laws that make
up its certification policy. The security of ID cards does not (yet) rely
on cryptographic primitives. Instead, ID cards include physical security
measures designed to deter tampering and prevent counterfeiting.

100 A Primer on Security for Trusted Processors

Secure Storage

Secure Storage

Secure Storage

Intermediate CA 1’s
Certificate

Intermediate CA 1

CA 1’s Public Key

Certificate Signature

Usage: CA

Root CA’s Public Key

Root CA

Intermediate
CA 1

Root CA’s Public Key

Root CA’s Private Key

Sign

CA 1’s Public Key

CA 1’s Private Key

Alice

Alice’s Certificate

Alice

Alice’s Public Key

Certificate Signature

Usage: End-User

CA 1’s Public Key

Sign

Alice’s Public Key

Alice’s Private Key

Secure Storage

Secure Storage

Intermediate CA 2’s
Certificate

Intermediate CA 2

CA 2’s Public Key

Certificate Signature

Usage: CA

Root CA’s Public Key

Intermediate
CA 2

CA 2’s Public Key

CA 2’s Private Key

Bob

Bob’s Certificate

Bob

Bob’s Public Key

Certificate Signature

Usage: End-User

CA 2’s Public Key

Bob’s Public Key

Bob’s Private Key

Figure 3.18: A hierarchical CA structure minimizes the usage of the root CA’s
private key, reducing the opportunities for it to get compromised. The root CA only
signs the certificates of intermediate CAs, which sign the end users’ certificates.

3.2. Cryptographic Constructs 101

Alice Smith

Issued Expires
12/01/2015 12/01/2017

Valid From Valid Until

Issued by
Fictional City Card Office

Subject Public Key

Subject Identity

Issuer Public Key
is replaced by the
Issuer Name

Certificate Signature
is replaced by physical
security featuresFictional Country

Citizen ID Card Certificate Usage

Figure 3.19: An ID card is a certificate that binds a subject’s full legal name
(identity) to the subject’s physical appearance, which acts as a public key.

3.2.2 Key Agreement Protocols

The initial design of symmetric key primitives, introduced in § 3.1,
assumed that when two parties wish to interact, one party generates a
secret key and shares it with the other party using a communication
channel with confidentiality and integrity guarantees. In practice, a
pre-existing secure communication channel is rarely available.

Key agreement protocols are used by two parties to establish a
shared secret key, and only require a communication channel with in-
tegrity guarantees. Figure 3.20 outlines the Diffie-Hellman Key Ex-
change (DKE) [Diffie and Hellman, 1976] protocol, which should give
the reader an intuition for how key agreement protocols work.

This work is interested in using key agreement protocols to build
larger systems, so we will neither explain the mathematical details in
DKE, nor prove its correctness. We note that both Alice and Bob de-
rive the same shared secret key, K = gAB mod p, without ever trans-
mitting K. Furthermore, the messages transmitted in DKE, namely
gA mod p and gB mod p, are not sufficient for an eavesdropper Eve
to determine K, because efficiently solving for x in gx mod p is an
open problem assumed to be very difficult.

Key agreement protocols require a communication channel with
integrity guarantees. If an active adversary Eve can tamper with the

102 A Primer on Security for Trusted Processors

Alice Bob

Pre-established parameters: large prime p, g generator in Zp

Choose A randomly
between 1 and p

Transmit gA mod p

Choose B randomly
between 1 and p

Compute gB mod p

Receive gA mod pgA mod p

Shared key K =
= (gA mod p)B =
= gAB mod p

Compute gA mod p

Transmit gB mod pReceive gB mod p gB mod p

Shared key K =
= (gB mod p)A =
= gAB mod p

Figure 3.20: In the Diffie-Hellman Key Exchange (DKE) protocol, Alice and Bob
agree on a shared secret key K = gAB mod p. An adversary who observes gA

mod p and gB mod p cannot compute K.

messages transmitted by Alice and Bob, she can perform a man-in-
the-middle (MITM) attack, as illustrated in Figure 3.21.

In a MITM attack, Eve intercepts Alice’s first key exchange mes-
sage, and sends Bob her own message. Eve then intercepts Bob’s re-
sponse and replaces it with her own, which she sends to Alice. Eve
effectively performs key exchanges with both Alice and Bob, estab-
lishing a shared secret with each of them, with neither Bob nor Al-
ice being aware of her presence.

After establishing shared keys with both Alice and Bob, Eve can
choose to observe the communication between Alice and Bob, by for-
warding messages between them. For example, when Alice transmits
a message, Eve can decrypt it using K1, the shared key between her-
self and Alice. Eve can then encrypt the message with K2, the key

3.3. Software Attestation Overview 103

Alice BobEve

gA mod pgA mod p

gE1 mod p

gE2 mod p

gB mod p

K1 = gAE1 mod p K2 = gBE2 mod p

Figure 3.21: Any key agreement protocol is vulnerable to a man-in-the-middle
(MITM) attack. The active attacker performs key agreements and establishes shared
secrets with both parties. The attacker can then forward messages between the
victims, in order to observe their communication. The attacker can also send its
own messages to either, impersonating the other victim.

established between Bob and herself. While Bob still receives Alice’s
message, Eve has been able to see its contents.

Furthermore, Eve can impersonate either party in the communi-
cation. For example, Eve can create a message, encrypt it with K2,
and then send it to Bob. As Bob thinks that K2 is a shared se-
cret key established between himself and Alice, he will believe that
Eve’s message comes from Alice.

MITM attacks on key agreement protocols can be foiled by authen-
ticating the party who sends the last message in the protocol (in our ex-
amples, Bob) and having them sign the key agreement messages. When
a CA system is in place, Bob uses his public key to sign the messages in
the key agreement and also sends Alice his certificate, along with the
certificates for any intermediate CAs. Alice validates Bob’s certificate,
ensures that the subject identified by the certificate is whom she ex-
pects (Bob), and verifies that the key agreement messages exchanged
between herself and Bob match the signature provided by Bob.

In conclusion, a key agreement protocol can be used to bootstrap
symmetric key primitives from an asymmetric key signing scheme,
where only one party needs to be able to sign messages.

3.3 Software Attestation Overview

The security of systems that employ trusted processors hinges on soft-
ware attestation. The software running inside an isolated container es-

104 A Primer on Security for Trusted Processors

tablished by trusted hardware can ask the hardware to sign (§ 3.1.3)
a small piece of attestation data, producing an attestation signature.
Asides from the attestation data, the signed message includes a mea-
surement that uniquely identifies the software inside the container.
Therefore, an attestation signature can be used to convince a veri-
fier that the attestation data was produced by a specific piece of soft-
ware, which is hosted inside a container that is isolated by trusted
hardware from outside interference.

Each hardware platform discussed in this section uses a slightly
different software attestation scheme. Platforms differ by the amount
of software that executes inside an isolated container, by the isola-
tion guarantees provided to the software inside a container, and by
the process used to obtain a container’s measurement. The threat
model and security properties of each trusted hardware platform fol-
low directly from the design choices outlined above, so a good un-
derstanding of attestation is a prerequisite to discussing the differ-
ences between existing platforms.

3.3.1 Secure Remote Computation

Secure remote computation (Figure 1.1) is the problem of executing
software on a remote computer owned and maintained by an un-
trusted party, with some integrity and confidentiality guarantees. In
the general setting, secure remote computation is an unsolved prob-
lem. Fully Homomorphic Encryption [Gentry, 2009] solves the problem
for a limited family of computations, but has an impractical perfor-
mance overhead [Naehrig et al., 2011].

3.3.2 Authenticated Key Agreement

Software attestation can be combined with a key agreement proto-
col (§ 3.2.2), as software attestation provides the authentication re-
quired by the key agreement protocol. The resulting protocol can as-
sure a verifier that it has established a shared secret with a specific
piece of software, hosted inside an isolated container created by trusted
hardware. The next paragraph outlines the augmented protocol, us-

3.3. Software Attestation Overview 105

ing Diffie-Hellman Key Exchange (DKE) [Diffie and Hellman, 1976]
as an example of the key exchange protocol.

The verifier starts executing the key exchange protocol, and sends
the first message, gA, to the software inside the secure container. The
software inside the container produces the second key exchange mes-
sage, gB, and asks the trusted hardware to attest the cryptographic
hash of both key exchange messages, h(gA||gB). The verifier receives
the second key exchange and attestation signature, and authenticates
the software inside the secure container by checking all signatures along
the attestation chain of trust shown in Figure 3.22.

Tamper-Resistant
Hardware

Attestation Key

Manufacturer Root Key

Endorsement
Certificate

PrivAKPubAK Attestation
Signature

Manufacturer
Certificate Authority

PrivRKPubRK

Signs

Signs

Key Exchange
Message 1

Measurement

Data
Secure

Container

Verifier

Trusts
Hash of

Hash of

Key Exchange
Message 2

Figure 3.22: The chain of trust in software attestation. The root of trust is a man-
ufacturer key, which produces an endorsement certificate for the secure processor’s
attestation key. The processor uses the attestation key to produce the attestation
signature, which contains a cryptographic hash of the container and a message pro-
duced by the software inside the container.

The chain of trust used in software attestation is rooted at a sign-
ing key owned by the hardware manufacturer, which must be trusted
by the verifier. The manufacturer acts as a Certificate Authority (CA,
§ 3.2.1), and provisions each secure processor that it produces with
a unique attestation key, which is used to produce attestation signa-

106 A Primer on Security for Trusted Processors

tures. The manufacturer also issues an endorsement certificate for each
secure processor’s attestation key. The certificate indicates that the
key is meant to be used for software attestation. The certification pol-
icy generally states that, at the very least, the private part of the
attestation key be stored in tamper-resistant hardware, and only be
used to produce attestation signatures.

A secure processor identifies each isolated container by storing a
cryptographic hash of the code and data loaded inside the container.
When the processor is asked to sign a piece of attestation data, it uses
the cryptographic hash associated with the container as the measure-
ment in the attestation signature. After a verifier validates the pro-
cessor’s attestation key using its endorsement certificate, the verifier
ensures that the signature is valid, and that the measurement in the
signature belongs to the software with which it expects to communi-
cate. Having checked all links in the attestation chain, the verifier has
authenticated the other party in the key exchange, and is assured that
it now shares a secret with the software that it expects, running in
an isolated container on hardware that it trusts.

3.3.3 The Role of Software Measurement

The measurement that identifies the software inside a secure container
is always computed using a secure hashing algorithm (§ 3.1.3). Trusted
hardware designs differ in their secure hash function choices, and in
the data provided to the hash function. However, all designs share
the principle that each step taken to build a secure container con-
tributes data to its measurement hash.

The philosophy behind software attestation is that the computer’s
owner can load any software she wishes in a secure container. However,
the computer owner is assumed to have an incentive to participate in
a distributed system where the secure container she built is authen-
ticated via software attestation. Without the requirement to undergo
software attestation, the computer owner can build any container with-
out constraints, which would make it impossible to reason about the
security properties of the software inside the container.

3.3. Software Attestation Overview 107

By the argument above, a trusted hardware design based on soft-
ware attestation must assume that each container is involved in soft-
ware attestation, and that the remote party will refuse to interact with
a container whose reported measurement does not match the expected
value set by the distributed system’s author.

For example, a cloud infrastructure provider should be able to use
the secure containers provided by trusted hardware to run any software
she wishes on her computers. However, the provider makes money by
renting her infrastructure to customers. If security savvy customers are
only willing to rent containers provided by trusted hardware, and use
software attestation to authenticate the containers that they use, the
cloud provider will have a strong financial incentive to build the cus-
tomers’ containers according to their specifications, so that the con-
tainers pass the software attestation.

A container’s measurement is computed using a secure hashing al-
gorithm, so the only method of building a container that matches an
expected measurement is to follow the exact sequence of steps speci-
fied by the distributed system’s author. The cryptographic properties
of the secure hash function guarantee that if the computer’s owner
strays in any way from the prescribed sequence of steps, the mea-
surement of the created container will not match the value expected
by the distributed system’s author, so the container will be rejected
by the software attestation process.

Therefore, it makes sense to state that a trusted hardware de-
sign’s measurement scheme guarantees that a property has a certain
value in a secure container. The precise meaning of this phrase is that
the property’s value determines the data used to compute the con-
tainer’s measurement, so an expected measurement hash effectively
specifies an expected value for the property. All containers in a dis-
tributed system that correctly uses software attestation will have the
desired value for the given property.

For example, the measuring scheme used by trusted hardware de-
signed for cloud infrastructure should guarantee that the container’s
memory was initialized using the customer’s content, often referred
to as an image.

108 A Primer on Security for Trusted Processors

3.4 Physical Attacks

Physical attacks are generally classified according to their cost, which
factors in the equipment needed to carry out the attack and the at-
tack’s complexity. Joe Grand’s DefCon presentation [Grand, 2004]
provides a good overview with a large number of intuition-building
figures and photos.

The simplest type of physical attack is a denial of service attack
performed by disconnecting the victim computer’s power supply or
network cable. The threat models of most secure architectures ex-
clude this attack from consideration, because denial of service can
also be achieved by software attacks that compromise system soft-
ware such as the hypervisor.

3.4.1 I/O Port Attacks

Slightly more involved attacks rely on connecting a device to an existing
port on the victim computer’s case or motherboard (§ 2.9.1). A simple
example is a cold boot attack, where the attacker plugs in a USB flash
drive into the victim’s case and causes the computer to boot from
the flash drive loaded with malicious system software, which receives
unrestricted access to the computer’s peripherals.

More costly physical attacks that still require relatively little ef-
fort target the debug ports of various peripherals. The cost of these
attacks is generally dominated by the expense of acquiring the de-
velopment kits needed to connect to the debug ports. For example,
recent Intel processors include the Generic Debug eXternal Connec-
tion (GDXC) [Yuffe et al., 2011, Kurts et al., 2011], which collects,
filters, and exposes the data transferred by the uncore’s ring network
(§ 2.11.3), and reports it to an external debugger.

The threat models of secure architectures generally ignore debug
port attacks, under the assumption that devices sold for general con-
sumption have their debug ports irreversibly disabled. In practice, man-
ufacturers have strong incentives to preserve debugging ports in pro-
duction hardware, as this facilitates the diagnosis and repair of de-

3.4. Physical Attacks 109

fective units. Due to insufficient documentation on this topic, we do
not survey GDXC-based attacks in this work.

3.4.2 Bus Tapping Attacks

More complex physical attacks consist of installing a device that taps
a bus on the computer’s motherboard (§ 2.9.1). Passive attacks are
limited to monitoring the bus traffic, whereas active attacks can modify
the traffic, or even place new commands on the bus. Replay attacks are
a notoriously challenging class of active attacks, where the attacker
first records the bus traffic, and then selectively replays a subset of the
traffic. Replay attacks bypass systems that rely on static signatures or
HMACs, and generally aim to double-spend a limited resource.

The cost of bus tapping attacks is generally dominated by the cost
of the equipment used to tap the bus, which increases with bus speed
and complexity. For example, the flash module storing the computer’s
firmware is connected to the PCH via an SPI bus (§ 2.9.1), which
is simpler and much slower than the DDR bus connecting DRAM to
the CPU. Consequently, tapping the SPI bus is much cheaper than
tapping the DDR bus. For this reason, systems whose security relies
on a cryptographic hash of the firmware will first copy the firmware
into DRAM, hash the DRAM copy of the firmware, and then exe-
cute the firmware from DRAM.

Although the speed of the DDR DRAM link makes tapping very
difficult, there are well-publicized records of successful attempts. The
original Xbox console’s boot process was reverse-engineered via a pas-
sive tap on the DRAM bus [Huang, 2003], which showed that the
firmware used to boot the console was partially stored in its south-
bridge. The protection mechanisms of the PlayStation 3 hypervisor
were subverted by an active tap on its memory bus [Hotz, 2010] that
targeted the hypervisor’s page tables.

The Ascend secure processor (§ 4.10) demonstrated that concealing
the DRAM addresses accessed by a program is orders of magnitude
more expensive than protecting the data in memory. Therefore, we
are chiefly interested in analyzing attacks that tap the DRAM bus
and collect information on the address lines. These attacks use the

110 A Primer on Security for Trusted Processors

same equipment as normal DRAM bus tapping attacks, but require a
significantly more involved analysis to learn useful information from the
gathered data. One of the difficulties of such attacks stems from the fact
that the memory addresses observed on the DRAM bus are generally
very different from the application’s memory access patterns due to
the behavior of cache hierarchies and multiprogramming in modern
processors (§ 2.11). At the time of this writing, we are not aware of
any successful attack based on tapping the address lines of a DRAM
bus and analyzing the sequence of memory addresses.

3.4.3 Attacks on the Processor Package or Die

The most equipment-intensive physical attacks involve removing a
chip’s packaging and directly interacting with its electrical circuits.
These attacks generally take advantage of equipment and techniques
that were originally developed to diagnose design and manufactur-
ing defects in integrated circuits. [Beck, 1998] covers these tech-
niques in depth.

The cost of chip attacks is dominated by the required equipment,
although the reverse-engineering involved is also non-trivial. This cost
grows very rapidly as the circuit components shrink with advances in
fabrication technology. At the time of this writing, the latest widely
available state of-the-art processor systems have a 14nm feature size,
which requires ion beam microscopy for such analysis.

The least expensive classes of chip attacks are destructive, and only
require imaging the chip’s circuitry. These attacks rely on a micro-
scope capable of capturing the necessary details in each layer, and
equipment for mechanically removing each layer and exposing the
layer below it to the microscope.

Imaging attacks generally target global secrets shared by all de-
vices in a family, such as ROM masks that store global encryption
keys or secret boot code. They are also used to reverse-engineer un-
documented functionality, such as debugging backdoors. E-fuses and
polyfuses are particularly vulnerable to imaging attacks, because of
their relatively large sizes.

3.4. Physical Attacks 111

Non-destructive passive chip attacks include measuring the volt-
ages across a module at specific times while the chip is active. These
attacks are orders of magnitude more expensive than destructive imag-
ing attacks because the attacker must take care to maintain the in-
tegrity of the chip’s circuitry, and therefore cannot de-layer the chip
and has limited visibility and access.

The simplest active attacks on a chip create or destroy an elec-
tric connection between two components. For example, the debugging
functionality in many devices is disabled by “blowing” an e-fuse. Once
this e-fuse is located, an attacker can reconnect its two ends, effec-
tively undoing the “blowing” operation. More expensive attacks involve
changing voltages across a component as the chip is operating, and are
typically used to reverse-engineer complex circuits.

Surprisingly, active attacks are not significantly more expensive to
carry out than passive non-destructive attacks. This is because the
tools used to measure the voltage across specific components are not
very different from the tools that can tamper with the chip’s electric
circuits. Therefore, once an attacker develops a process for accessing
a module without destroying the chip’s circuitry, the attacker can use
the same process for both passive and active attacks.

At the architectural level, we cannot address physical attacks
against the CPU’s chip package. Active attacks on the CPU change
the computer’s execution semantics, leaving us without any hardware
that can be trusted to make security decisions. Passive attacks can
read the private data that the CPU is processing. Therefore, many
secure computing architectures assume that the processor chip pack-
age is invulnerable to physical attacks.

Thankfully, physical attacks can be deterred by reducing the value
that an attacker obtains by compromising an individual chip. As long
as this value is below the cost of carrying out the physical attack,
a system’s designer can hope that the processor’s chip package will
not be targeted by the physical attacks.

Architects can reduce the value of compromising an individual
system by avoiding shared secrets, such as global encryption keys.
Chip designers can increase the cost of a physical attack by not stor-

112 A Primer on Security for Trusted Processors

ing a platform’s secrets in hardware that is vulnerable to destruc-
tive attacks, such as e-fuses.

3.4.4 Power Analysis Attacks

An entirely different approach to physical attacks consists of indirectly
measuring the power consumption of a computer system or its com-
ponents. The attacker takes advantage of a known correlation between
power consumption and the computed data, and learns some property
of the data from the observed power consumption.

The earliest power analysis attacks have directly measured the pro-
cessor chip’s power consumption. For example, [Kocher et al., 1999]
describes a simple power analysis (SPA) attack that exploits the cor-
relation between the power consumed by a smart card chip’s CPU and
the type of instruction it executed, and learned a DSA key that the
smart card was supposed to safeguard.

While direct power analysis attacks necessitate some equipment,
their costs are dominated by the complexity of the analysis required
to learn the desired information from the observed power trace which,
in turn, is determined by the complexity of the processor’s circuitry.
Today’s smart cards contain special circuitry [Tiri et al., 2002] and
use hardened algorithms [Herbst et al., 2006] designed to frustrate
power analysis attacks.

Recent work demonstrated successful power analysis attacks against
a system as complex as a full-blown out-of-order Intel processor using
inexpensive off-the-shelf sensor equipment. [Genkin et al., 2013] ex-
tracts an RSA key from GnuPG running on a laptop using a micro-
phone that measures its acoustic emissions. [Genkin et al., 2014] and
[Genkin et al., 2015] extract RSA keys from power analysis-resistant
implementations using a voltage meter and a radio. All of these attacks
can be performed quite easily by a disgruntled data center employee.

Unfortunately, power analysis attacks can be extended to displays
and human input devices, which cannot be secured in any reason-
able manner. For example, [Van Eck, 1985] documented a very early
attack that measures the radiation emitted by a CRT display’s ion
beam to reconstitute the image on a computer screen in a different

3.5. Privileged Software Attacks 113

room. [Kuhn, 2005] extended the attack to modern LCD displays.
[Zhuang et al., 2009] used a directional microphone to measure the
sound emitted by a keyboard and learn the password that its oper-
ator typed. [Owusu et al., 2012] applied similar techniques to learn
a user’s input on a smartphone’s on-screen keyboard, based on data
from the device’s accelerometer.

In general, power attacks cannot be addressed at the architec-
tural level, as they rely on implementation details that are decided
during the manufacturing process. Therefore, it is unsurprising that
the secure computing architectures described in § 4 do not protect
against power analysis attacks.

3.5 Privileged Software Attacks

The rest of this section points to successful exploits that execute at
each of the privilege levels described in § 2.3, motivating the SGX de-
sign decision to assume that all privileged software on the computer
is malicious. [Rutkowska, 2015] describes all programmable hardware
inside Intel computers, and outlines the security implications of com-
promising the software running it.

SMM, the most privileged execution level, is only used to handle
a specific kind of interrupts (§ 2.12), namely System Management In-
terrupts (SMI). SMIs were initially designed exclusively for hardware
use, and were only triggered by asserting a dedicated pin (SMI#) in
the CPU’s chip package. However, in modern systems, system software
can generate an SMI by using the LAPIC’s IPI mechanism. This opens
up the avenue for SMM-based software exploits.

The SMM handler is stored in System Management RAM (SM-
RAM) which, in theory, is not accessible when the processor isn’t run-
ning in SMM. However, its protection mechanisms were bypassed multi-
ple times [Duflot et al., 2006, Rutkowska andWojtczuk, 2008, Wojtczuk
and Rutkowska, 2009a, Kallenberg et al., 2014], and SMM-based rootk-
its [Wecherowski, 2009, Embleton et al., 2010] have been demonstrated.
Compromising the SMM grants an attacker access to all software on
the computer, as SMM is the most privileged execution mode.

114 A Primer on Security for Trusted Processors

Xen [Zhang and Dong, 2008] is a very popular representative of the
family of hypervisors that run in VMX root mode and use hardware
virtualization. At 150,000 lines of code [xen, 2015], Xen’s codebase is
relatively small, especially when compared to a kernel. However, Xen
still has had over 40 security vulnerabilities patched in each of the
last three years (2012-2014) [cve, 2014b].

[McCune et al., 2010] proposes using a very small hypervisor
together with Intel TXT’s dynamic root of trust for measurement
(DRTM) to implement trusted execution. [Vasudevan et al., 2010] ar-
gues that a dynamic root of trust mechanism, like Intel TXT, is neces-
sary to ensure a hypervisor’s integrity. Unfortunately, the TXT design
requires an implementation complex enough that exploitable security
vulnerabilities have creeped in [Wojtczuk et al., 2009, Wojtczuk and
Rutkowska, 2011]. Furthermore, any SMM attack can be used to com-
promise TXT [Wojtczuk and Rutkowska, 2009b].

The monolithic kernel design leads to many opportunities for secu-
rity vulnerabilities in kernel code. Linux is by far the most popular ker-
nel for IaaS cloud environments. Linux has 17 million lines of code [An-
thony, 2014], and has had over 100 security vulnerabilities patched in
each of the last three years (2012-2014) [cve, 2014a, Chen et al., 2011].

3.6 Software Attacks on Peripherals

Threat models for secure architectures generally only consider software
attacks that directly target other components in the software stack run-
ning on the CPU. This assumption results in security arguments with
the very desirable property of not depending on implementation details,
such as the structure of the motherboard hosting the processor package.

The threat models mentioned above must classify attacks mounted
via motherboard components other than the CPU as physical attacks.
Unfortunately, these models miscategorize the attacks described in this
section, which can be carried out solely by executing software on the
victim processor. The incorrect classification matters a great deal in
cloud computing scenarios, where physical attacks often deemed out
of scope as prohibitively expensive to carry out.

3.6. Software Attacks on Peripherals 115

By way of specific example, this section discusses attacks primarily
in the context of Intel’s Core processors, which at the time of publi-
cation are by far the most widely available processor systems in their
class, and offer a well-studied target for type of attack.

3.6.1 PCI Express Attacks

The PCIe bus (§ 2.9.1) allows any device connected to the bus to
perform Direct Memory Access (DMA), reading from and writing to
blocks of addresses in the computer’s DRAM without the involvement
of a CPU core. Each device is assigned a range of DRAM addresses
via a standard PCI configuration mechanism, but can perform DMA
on DRAM addresses outside of that range.

Without any additional protection mechanisms, an attacker who
compromises system software can take advantage of programmable de-
vices to access any DRAM region, yielding capabilities that were tra-
ditionally associated with a DRAM bus tap. For example, an early
implementation of Intel TXT [Grawrock, 2009] was compromised by
programming a PCIe network interface card (NIC) to read TXT-
reserved DRAM via DMA transfers [Wojtczuk and Rutkowska, 2011].
Recent versions have addressed this attack by adding extra security
checks in the DMA bus arbiter. § 4.5 provides a more detailed de-
scription of Intel’s TXT.

3.6.2 DRAM Attacks

The rowhammer DRAM bit-flipping attack [Kim et al., 2014, Seaborn
and Dullien, 2015, Gruss et al., 2015] is an example of a different class
of software attacks that exploit design defects in the computer’s hard-
ware. Rowhammer took advantage of the fact that some mobile DRAM
devices (§ 2.9.1) refreshed the DRAM’s contents slowly enough that
repeatedly changing the contents of a memory cell could impact the
charge stored in a neighboring cell, which resulted in changing the bit
value obtained from reading the cell. By carefully targeting specific
memory addresses, the attackers caused bit flips in the page tables
used by the CPU’s address translation (§ 2.5) mechanism, and in other
data structures used to make security decisions.

116 A Primer on Security for Trusted Processors

The defect exploited by the rowhammer attack most likely stems
from an unfortunate and incorrect design assumption. The DRAM
engineers likely only considered non-malicious software and assumed
that an individual DRAM cell is not often accessed, as repeated ac-
cesses to the same memory address would be absorbed by the CPU’s
caches (§ 2.11). However, malicious software can take advantage of the
CLFLUSH instruction, which flushes the cache line that contains a given
DRAM address. CLFLUSH is intended as a method for applications to
extract more performance out of the cache hierarchy, and is there-
fore available to software running at all privilege levels. Rowhammer
exploited the combination of CLFLUSH’s availability and the DRAM en-
gineers’ incorrect assumptions, to obtain capabilities that are normally
associated with an active DRAM bus attack.

3.6.3 The Performance Monitoring Side Channel

Intel’s Software Development Manual (SDM) [Int, 2015g] and Opti-
mization Reference Manual [Int, 2014c] describe a vast array of per-
formance monitoring events exposed by recent Intel processors, such
as branch mispredictions (§ 2.10). The SDM also describes digital
temperature sensors embedded in each CPU core, whose readings are
exposed using Model-Specific Registers (MSRs) (§ 2.4) that can be
read by system software.

An attacker able to compromise a computer’s system software and
gain access to the performance monitoring events or the tempera-
ture sensors can obtain the information needed to carry out a power
analysis attack, which normally requires physical access to the vic-
tim computer and specialized equipment. Simpler yet, the attacker
may learn private information from various performance counters af-
fected by the victim’s execution.

3.6.4 Attacks on the Boot Firmware and Intel ME

Virtually all motherboards store the firmware used to boot the com-
puter in a flash memory module (§ 2.9.1) that can be written by sys-
tem software. This implementation strategy provides an inexpensive
avenue for deploying firmware bug fixes. On the other hand, an attack

3.6. Software Attacks on Peripherals 117

that compromises the system software can subvert the firmware up-
date mechanism to inject malicious code into the platform firmware.
The malicious code can be used to carry out a cold boot attack, which is
typically considered a physical attack. Furthermore, malicious firmware
can execute code at the highest software privilege level, System Man-
agement Mode (SMM, § 2.3). Last, malicious firmware can modify the
system software as it is loaded during the boot process. These av-
enues give the attacker many capabilities that have traditionally been
associated with DRAM bus tapping attacks.

The Intel Management Engine (ME) [Ruan, 2014] loads its firmware
from the same flash memory module as the main computer, which opens
up the possibility of compromising its firmware. Due to the vast man-
agement capabilities (§ 2.9.2) of a ME, if compromised, it would offer
an attacker similar capabilities to active probes on the DRAM bus, the
PCI bus, and the System Management bus (SMBus), as well as a wealth
of power meters. Thanks to its direct access to the motherboard’s Eth-
ernet PHY, the probe would be able to communicate with the attacker
while the computer is in the Soft-Off state, also known as S5, where
the computer is mostly powered off, but is still connected to a power
source. The ME has significantly less computational power than probe
equipment, however, as it uses low-power embedded components, such
as a 200-400MHz execution core, and about 600KB of internal RAM.

The computer and ME firmware are protected by a few security
measures. The first line of defense is a security check in the firmware’s
update service, which only accepts firmware updates that have been
digitally signed by a manufacturer key that is hard-coded in the
firmware. This protection can be circumvented with relative ease by
foregoing the firmware’s update services, and instead accessing the flash
memory chip directly, via the PCH’s SPI bus controller.

The deeper, more powerful, lines of defense against firmware attacks
are rooted in the CPU and ME’s hardware. The bootloader in the ME’s
ROM will only load flash firmware that contains a correct signature
generated by a specific Intel RSA key. The ME’s boot ROM contains
the SHA-256 cryptographic hash of the RSA public key, and uses it to
validate the full Intel public key stored in the signature. Similarly, the

118 A Primer on Security for Trusted Processors

microcode bootstrap process in recent CPUs will only execute firmware
in an Authenticated Code Module (ACM, § 2.13.2) signed by an Intel
key whose SHA-256 hash is hard-coded in the microcode ROM.

However, both the computer firmware security checks [Wojtczuk
and Tereshkin, 2010, Furtak et al., 2014] and the ME security checks
[Tereshkin and Wojtczuk, 2009] have been subverted in the past. While
the approaches described above are theoretically sound, the intricate
details and complex interactions in Intel-based systems make it very
likely that security vulnerabilities creep into implementations. Further
proving this point, a security analysis [Ververis, 2010] found that early
versions of Intel’s Active Management Technology (AMT), the flag-
ship ME application, contained assorted of security issues that allowed
an attacker to completely take over a computer whose ME firmware
contained the AMT application.

3.6.5 Software Attacks on Peripheral Devices

The attacks described in this section show that a system whose threat
model assumes no physical access attacks must be designed with an un-
derstanding of all of the system’s buses, and the programmable devices
that may be attached to them. The system’s security analysis must
argue that the devices cannot be used in physical-like attacks. The ar-
gument will rely on barriers that prevent untrusted software running
on the CPU from communicating with other programmable devices,
and on barriers that prevent compromised programmable devices from
tampering with sensitive buses or DRAM.

Unfortunately, at the time of publication, the ME, PCH and
DMI are proprietary in Intel’s processors and remain largely undoc-
umented. We therefore cannot assess the security of the measures set
in place to protect the ME from compromise, and we cannot rigor-
ously reason about the impact of a compromised ME on the secu-
rity of a computer system.

3.7. Address Translation Attacks 119

3.7 Address Translation Attacks

§ 3.5 argues that today’s system software is all but guaranteed to have
security vulnerabilities. This suggests that a cautious secure architec-
ture should avoid including the system software in the TCB.

However, removing the system software from the TCB requires the
architecture to provide a method for isolating sensitive application code
from the untrusted system software. This is typically accomplished by
designing a mechanism for loading application code into isolated con-
tainers whose contents can be certified via software attestation (§ 3.3).
One of the more difficult problems these designs face is that applica-
tion software relies on the memory management services provided by
the system software, which is now untrusted.

For example, Intel’s SGX [McKeen et al., 2013, Anati et al., 2013],
leaves the system software in charge of setting up the page tables (§ 2.5)
used by address translation, inspired by Bastion [Champagne and Lee,
2010], but instantiates access checks that prevent the system software
from directly accessing the isolated container’s memory.

This section discusses some attacks that become relevant when the
application software does not trust the system software, which is in
charge of the page tables. Understanding these attacks is a prerequisite
to reasoning about the security properties of architectures with this
threat model. For example, many of the mechanisms in Intel’s SGX
seek to prevent a subset of the attacks described here.

3.7.1 Passive Attacks

System software uses the CPU’s address translation feature (§ 2.5)
to implement page swapping, where infrequently used memory pages
are evicted from DRAM to a slower storage medium. Page swap-
ping relies the accessed (A) and dirty (D) page table entry attributes
(§ 2.5.3) to identify the DRAM pages to be evicted, and on a page
fault handler (§ 2.8.2) to bring evicted pages back into DRAM when
they are accessed.

Unfortunately, the features that support efficient page swapping
turn into a security liability when the system software managing the

120 A Primer on Security for Trusted Processors

page tables is not trusted by the application software using the page ta-
bles. The system software can be blocked from reading the application’s
memory directly by placing the application in an isolated container.
However, potentially malicious system software may infer partial infor-
mation about the application’s memory access patterns, by observing
the application’s page faults and page table attributes.

We consider this class of attacks to be passive attacks that ex-
ploit the CPU’s address translation feature. It may seem that the
page-level memory access patterns provided by these attacks are not
very useful. However, [Xu et al., 2015] describes how this attack can
be carried out against Intel’s SGX, and implements the attack in a
few practical settings. In one scenario, which is particularly concern-
ing for medical image processing, the outline of a JPEG image is in-
ferred while the image is decompressed inside a container protected
by SGX’s isolation guarantees.

3.7.2 Straightforward Active Attacks via Address Translation

We define active address translation attacks to be the class of at-
tacks where malicious system software modifies the page tables used
by an application in a way that breaks the virtual memory abstrac-
tion (§ 2.5). Memory mapping attacks do not include scenarios where
the system software breaks the memory abstraction by directly writ-
ing to the application’s memory pages.

We begin with an example of a straightforward active attack. In
this example, the application inside a protected container performs a
security check to decide whether to disclose some sensitive information.
Depending on the security check’s outcome, the enclave code either
calls a errorOut procedure, or a disclose procedure. The simplest
version of the attack assumes that each procedure’s code starts at a
page boundary, and takes up less than a page. These assumptions are
relaxed in more complex versions of the attack.

In the most straightforward setting, the malicious system software
directly modifies the page tables of the application inside the con-
tainer, as shown in Figure 3.23, so the virtual address intended to
store the errorOut procedure is actually mapped to a DRAM page

3.7. Address Translation Attacks 121

that contains the disclose procedure. Without any security mea-
sures in place, when the application’s code jumps to the virtual ad-
dress of the errorOut procedure, the CPU will execute the code of
the disclose procedure instead.

Application code written by
developer

Application code seen by CPU

errorOut():
write error
return

disclose():
write data
return

Security
Check

FAIL

PASS

Page
tables

0x41000

0x42000

errorOut():
write error
return

disclose():
write data
return

Security
Check

FAIL

PASS

0x41000

0x42000

Virtual
addresses DRAM pages

Altered

Figure 3.23: An example of an active memory mapping attack. The application’s
author intends to perform a security check, and only call the procedure that discloses
the sensitive information if the check passes. Malicious system software maps the
virtual address of the procedure that is called when the check fails, to a DRAM
page that contains the disclosing procedure.

3.7.3 Active Attacks Using Page Swapping

The most obvious active attacks on virtual memory can be defeated
by a naive address check. By verifying the virtual address of each
DRAM page belonging to a protected container, the system would
ensure integrity of address mappings for sensitive pages. This protec-
tion mechanism is, however, defeated by a more subtle active attack
exploiting architectural support for page swapping. Figure 3.24 illus-
trates an attack that does not modify the application’s page tables,
but produces the same corrupted CPU view of the application as the
straightforward attack described above.

In this attack, malicious system software evicts the pages that
contain the errorOut and disclose procedures from DRAM to a
slower medium, such as a hard disk. The system software exchanges

122 A Primer on Security for Trusted Processors

errorOut
Contents

disclose

Virtual Physical

0x1A000
0x19000

0x42000
0x41000

disclose
Contents

errorOut

Virtual Physical

0x1A000
0x19000

0x42000
0x41000

HDD / SSD

errorOut

disclose

Page tables and DRAM before swapping

Page tables and DRAM after swapping

Figure 3.24: An active memory mapping attack where the system software does
not modify the page tables. Instead, two pages are evicted from DRAM to a slower
storage medium. The malicious system software swaps the two pages’ contents then
brings them back into DRAM, building the same incorrect page mapping as the
direct attack shown in Figure 3.23. This attack defeats protection measures that
rely on tracking the virtual and disk addresses for DRAM pages.

the hard disk bytes storing the two pages, and then brings the two
pages back into DRAM. Remarkably, all of the steps performed by
this attack are indistinguishable from legitimate page swapping ac-
tivity, with the exception of the I/O operations that exchange the
disk bytes storing evicted pages.

The subtle attack described in this section can be defeated by cryp-
tographically binding the contents of each page that is evicted from
DRAM to the virtual address to which the page should be mapped.
The cryptographic primitive (§ 3.1) used to perform the binding must
obviously guarantee integrity by detecting an attack that alters the
data of a page. Furthermore, it must also guarantee freshness, in order
to foil replay attacks where the system software “undoes” an applica-
tion’s writes by evicting one of its DRAM pages to disk and bring-
ing in a prior version of the same page.

3.7.4 Active Attacks Based on TLBs

Today’s multi-core architectures can be subjected to an even more sub-
tle active attack, illustrated in Figure 3.25, which can bypass any pro-
tection measures that solely focus on the integrity of the page tables.

3.7. Address Translation Attacks 123

DRAM

disclose

Contents
0x19000
0x1A000

Physical
errorOut0x41000

0x1A0000x42000

Physical
0x19000

Virtual

Page tables and TLB
before swapping

HDD / SSD

errorOut

disclose

DRAM

errorOut

Contents
0x19000
0x1A000

Physical
disclose0x41000

0x1A0000x42000

Physical
0x19000

Virtual
Stale TLB after swapping

0x41000
0x190000x42000

Physical
0x1A000

Virtual
Page tables after swapping

Figure 3.25: An active memory mapping attack where the system software does
not invalidate a core’s TLBs when it evicts two pages from DRAM and exchanges
their locations when reading them back in. The page tables are updated correctly,
but the core with stale TLB entries has the same incorrect view of the protected
container’s code as in Figure 3.23.

For reasons of performance, each execution core caches address
translations in the core’s translation look-aside buffer (TLB, § 2.11.5).
To reduce complexity, the TLBs are not maintained by the cache co-
herence protocol, and must be managed by system software in order
to remain consistent with the system’s access control policies. Specif-
ically, the system software is responsible for invalidating TLB entries
across all cores whenever it modifies the page tables.

Malicious system software can exploit the design decisions above
by carrying out the following attack. While the same software used in
the previous examples is executing on core 0, system software executes
on core 1 and evicts the errorOut and disclose pages from DRAM.
As in the previous attack, the system software loads the disclose
code in the DRAM page that previously held errorOut. In this attack,
however, the system software also updates the page tables.

Core 1, where the system software executed, has a view of the code
as intended by the application developer, meaning the attack will un-
dergo any security checks that rely upon cryptographic associations

124 A Primer on Security for Trusted Processors

between page contents and page table data, as long as the checks are
performed by the core used to load pages back into DRAM. However,
core 0, which executes the protected container’s code, uses memory
mappings from obsolete page tables, as the system did not invalidate
its TLB entries. Assuming the TLBs are not subjected to any addi-
tional security checks, this attack causes the same private informa-
tion leak as in previous examples.

In order to avoid the attack described in this section, the trusted
software or hardware that implements protected containers must also
ensure that the system software invalidates the relevant TLB entries on
all cores when it evicts a page from a protected container to DRAM.

3.8 Cache Timing Attacks

Cache timing attacks [Banescu, 2011] are a powerful class of software
attacks that can be mounted entirely by an unprivileged attacker (ring
3, § 2.3). Cache timing attacks do not reveal information by directly
reading the victim’s memory, but by indirectly observing the victim’s
memory access pattern via their use of the system’s caches. These at-
tacks therefore sidestep address translation-based isolation measures
(§ 2.5) implemented in modern kernels and hypervisors.

3.8.1 Theory

Cache timing attacks exploit the unfortunate dependency between the
part of a computer’s memory subsystem hosting the freshest copy of a
chunk of memory, and the latency of the corresponding access. A cache
miss requires at the minimum a lookup in the core’s L1 cache, and
accesses to subsequent caches in the memory hierarchy if the address
is not present in the L1. If the cache is full and dirty eviction must
occur, further latency is incurred due to a write-back of evicted data.
On the Intel architecture, the latency between a cache hit and a miss
can be easily resolved via the RDTSC and RDTSCP instructions (§ 2.4),
which expose a high-frequency cycle counter. These instructions have
been designed for benchmarking and optimizing software, and provide
a high-resolution measure of time to unprivileged (ring 3) software.

3.8. Cache Timing Attacks 125

The fundamental tool of a cache timing attack is the attacker’s
facility to measure the latency of their own memory accesses, as af-
fected by the victim’s use of the cache. A large multitude of addresses
compete for any given cache set, giving the attacker ample room to
arrange this interference, and observe the victim’s use of the contested
cache sets by monitoring the latency of the attacker’s memory opera-
tions. The memory locations are chosen so that they map to the same
cache lines as those of some interesting memory locations in a victim
process, in a cache that is shared between the attacker and the vic-
tim. This family of attacks (as exemplified in Figure 3.26) generally
requires the attacker to know cache sizes, organization, and eviction
behavior (§ 2.11.2), all of which are readily available.

set indextag page offset

observed set

......

......

...

memory cache bank

attacker’s physical address

set indextag page offsetvictim’s physical address

line select

attacker evicts victim cache line,
observes latency of an eviction

Figure 3.26: A cache timing attack via shared cache sets corresponding to disjoint
physical addresses. The attacker measures the availability of their own cache sets to
indirectly observe the victim’s use of specific cache sets and therefore the victim’s
memory access pattern.

Armed with this knowledge, the attacker process begins with a se-
ries of operations that forces evictions on all cache sets corresponding
to an address of interest in the victim’s memory. The exact mechanism
varies by attack. A straightforward eviction via dedicated instructions
is available to the attacker on shared pages (such as shared library
code, or pages de-duplicated by system software for efficiency). The at-
tacker can also exploit their knowledge of the cache eviction behavior
by performing a series of memory accesses on their own virtual address

126 A Primer on Security for Trusted Processors

space in a way that fills all cache sets competing with the victim’s
address of interest, causing these to be evicted.

This forces the victim’s cache lines out of the cache and into DRAM
(or lower levels of the cache hierarchy). When the victim process is
scheduled and executes, any accesses to the monitored addresses must
bring the corresponding lines back into the cache.

The attacker periodically repeats their forced eviction of the vic-
tim’s lines, and measures the victim’s use of the cache since last evic-
tion. This is accomplished in one of several ways, again depending on
the attack. In case of shared physical pages, the attacker is able to
measure the latency of a direct read to the address of interest. A high
latency indicates the victim has not accessed the address of interest,
while a low latency indicates the line was re-introduced into the cache
by the victim’s execution. In other cases, the attacker must infer the
victim’s use of the cache by monitoring the latency of accesses to the
attacker’s own competing cache sets. By monitoring the time needed
to re-fill all relevant cache sets with the attacker’s lines, they can and
detect evictions caused by the victim’s execution. In some cases, the
attacker can further resolve victim stores from loads, as evictions of
dirty cache lines are slower than clean ones.

Over time, the attacker collects evidence of the victim’s execution
and learns partial information of the victim’s memory access pattern. If
the victim processes sensitive information using data-dependent control
flow or data access pattern, the attacker may be able to infer this
information from the observed memory access pattern.

3.8.2 Practical Considerations

Cache timing attacks require control over a software process that shares
cache sets with the victim process in any of the system’s cache hierar-
chy. A cache timing attack that targets the L2 cache relies on the system
software to co-locate the attacker thread with the victim thread on the
same physical core, whereas an attack on the L3 (last level) cache can
be performed by any logical processor on the same CPU. The latter
attack relies on the fact that the L3 cache is inclusive, which greatly
simplifies the processor’s cache coherence implementation (§ 2.11.3).

3.8. Cache Timing Attacks 127

The cache sharing requirement implies that L3 cache attacks are
feasible in an IaaS environment, whereas L1 and L2 cache attacks are
a significant concern when untrusted software runs at any privilege level
alongside a sensitive process managed by the same operating system.

Out-of-order execution (§ 2.10) can introduce noise in cache tim-
ing attacks. First, memory accesses may not be performed in pro-
gram order, which can impact the lines selected by the cache evic-
tion algorithms. Second, out-of-order execution may result in cache
fills that do not correspond to executed instructions. For example,
a load that follows a faulting instruction may be scheduled and ex-
ecuted before the fault is detected.

Cache timing attacks must account for speculative execution, as
mispredicted memory accesses may cause cache fills, causing the at-
tacker to observe cache fills that do not correspond to instructions ex-
ecuted by the victim software. Memory prefetching adds further noise
in form of cache fills that are informed by but are not the result of
instructions in the victim code.

3.8.3 Known Cache Timing Attacks

Despite these difficulties, cache timing attacks are known to retrieve
cryptographic keys used by numerous cryptosystems, including at the
time of this writing AES [Osvik et al., 2006, Bonneau and Mironov,
2006], RSA [Brumley and Boneh, 2005], Diffie-Hellman [Kocher, 1996],
and elliptic-curve cryptography [Brumley and Tuveri, 2011].

Early attacks required access to the victim’s CPU core, but more
sophisticated recent attacks [Yarom and Falkner, 2013, Liu et al., 2015]
are able to use the L3 (last-level) cache, which is shared by all cores on
a CPU die. L3-based attacks can be particularly devastating in cloud
computing scenarios, where running software on the same computer
as a victim application only requires modest statistical analysis and a
small payment [Ristenpart et al., 2009]. Another recently demonstrated
class of cache timing attacks uses JavaScript code loaded as part of
a web page visited by a Web browser [Oren et al., 2015], meaning
these attacks are extremely easy to deploy.

128 A Primer on Security for Trusted Processors

Given this pattern of vulnerabilities, ignoring cache timing attacks
is dangerously similar to ignoring the string of demonstrated attacks
which led to the deprecation of SHA-1 [nis, 2014, goo, 2014, mic, 2016].

3.8.4 Defending against Cache Timing Attacks

Fortunately, invalidating any of the preconditions for cache timing
attacks is sufficient for defending against them. The easiest precon-
dition to focus on is that the attacker must have access to mem-
ory locations that map to the same sets in a cache as the victim’s
memory. This assumption can be invalidated by the judicious use of
a cache partitioning scheme.

Performance concerns aside, the main difficulty associated with
cache partitioning schemes is that they must be implemented by a
trusted party. When the system software is trusted, it can (for exam-
ple) use the principles behind page coloring [Taylor et al., 1990, Kessler
and Hill, 1992] to partition the caches [Lin et al., 2008] between mutu-
ally distrusting parties. This comes down to setting up the page tables
in such a way that no two mutually distrusting software modules are
stored in physical pages that map to the same sets in any cache. How-
ever, if the system software cannot be trusted, the cache partitioning
scheme must be implemented by hardware.

The other interesting precondition is that the victim must access
its memory in a data-dependent fashion that allows the attacker to
infer private information from the observed memory access pattern.
It becomes tempting to think that cache timing attacks can be pre-
vented by eliminating data-dependent memory accesses from all code
handling sensitive data.

However, removing data-dependent memory accesses is difficult
to accomplish in practice because instruction fetches must also be
taken into consideration. [Käsper and Schwabe, 2009] gives an idea
of the level of effort required to remove data-dependent accesses from
AES, which is a relatively simple data processing algorithm. At the
time of this writing, we are not aware of any approach that scales
to large pieces of software.

3.8. Cache Timing Attacks 129

While the focus of this section is on cache timing attacks, we must
emphasize that that any sharing of resources among mutually distrust-
ing entities may leak private information via the availability of the
shared resource over time. One worrying example is hyper-threading
(§ 2.9.4), where each CPU core implements two logical processors, and
the threads executing on these two logical processors share execution
units. An attacker able to run a process on a logical processor co-located
on a core with a victim process can use RDTSCP [Petters and Farber,
1999] to learn which execution units are in use, and infer information
about the instructions executed by the victim process.

4
A Survey of Secure Processors

This section describes the broad landscape of trusted hardware projects
in cursory terms. Table 4.1 summarizes the security properties of SGX
and the other trusted hardware presented here.

4.1 The IBM 4765 Secure Coprocessor

Secure coprocessors [Yee, 1994] encapsulate an entire computer system,
including a CPU, a cryptographic accelerator, caches, DRAM, and an
I/O controller within a tamper-resistant environment. The enclosure
includes hardware that deters attacks, such as a Faraday cage, as well
as an array of sensors that can detect tampering attempts. The se-
cure coprocessor destroys the secrets that it stores when an attack is
detected. This approach has good security properties against physical
attacks, but tamper-resistant enclosures are very expensive [Anderson,
2001], relative to the cost of a computer system.

The IBM 4758 [Smith and Weingart, 1999], and its most current-
day successor, the IBM 4765 [nis, 2012] (shown in Figure 4.1) are rep-
resentative examples of secure coprocessors. The 4758 was certified to

131

132 A Survey of Secure Processors
T

ab
le

4.
1:

Se
cu
rit

y
fe
at
ur
es

ov
er
vi
ew

fo
r
th
e
tr
us
te
d
ha

rd
w
ar
e
pr
oj
ec
ts

re
la
te
d
to

In
te
l’s

SG
X
.

A
tt
ac
k

T
ru
st
Z
on

e
T
P
M

T
P
M
+
T
X
T

S
G
X

X
O
M

M
al
ic
io
u
s

co
nt
ai
n
er
s

(d
ir
ec
t

p
ro
b
-

in
g)

N
/A

(s
ec
ur
e
w
or
ld

is
tr
us
te
d)

N
/A

(T
he

w
ho

le
co
m
pu

te
r

is
on

e
co
nt
ai
ne

r)

N
/A

(D
oe
s

no
t

al
-

lo
w

co
nc
ur
re
nt

co
n-

ta
in
er
s)

A
cc
es
s

ch
ec
ks

on
T
L
B

m
is
se
s

Id
en
ti
fie

r
ta
g
ch
ec
ks

M
al
ic
io
u
s

O
S

(d
ir
ec
t
p
ro
b
in
g)

A
cc
es
s

ch
ec
ks

on
T
L
B

m
is
se
s

N
/A

(O
S

m
ea
su
re
d

an
d
tr
us
te
d)

H
os
t

O
S

pr
ee
m
pt
ed

du
ri
ng

la
te

la
un

ch
A
cc
es
s

ch
ec
ks

on
T
L
B

m
is
se
s

O
S
ha

s
it
s
ow

n
id
en

-
ti
fie

r
M
al
ic
io
u
s

hy
p
er
vi
so
r

(d
ir
ec
t
p
ro
b
in
g)

A
cc
es
s

ch
ec
ks

on
T
L
B

m
is
se
s

N
/A

(H
yp

er
vi
-

so
r

m
ea
su
re
d

an
d

tr
us
te
d)

H
yp

er
vi
so
r

pr
e-

em
pt
ed

du
ri
ng

la
te

la
un

ch

A
cc
es
s

ch
ec
ks

on
T
L
B

m
is
se
s

N
/A

(N
o

hy
pe

rv
is
or

su
pp

or
t)

M
al
ic
io
u
s

fi
rm

w
ar
e

N
/A

(fi
rm

w
ar
e

is
a

pa
rt

of
th
e

se
cu

re
w
or
ld
)

C
P
U

m
ic
ro
co
de

m
ea
-

su
re
s
P
E
I
fir
m
w
ar
e

SI
N
IT

A
C
M

si
gn

ed
by

In
te
lk

ey
an

d
m
ea
-

su
re
d

SM
M

ha
nd

le
r
is

su
b-

je
ct

to
T
L
B

ac
ce
ss

ch
ec
ks

N
/A

(F
ir
m
w
ar
e
is
no

t
ac
ti
ve

af
te
r
bo

ot
in
g)

M
al
ic
io
u
s

co
nt
ai
n
er
s

(c
ac
h
e
ti
m
in
g)

N
/A

(s
ec
ur
e
w
or
ld

is
tr
us
te
d)

N
/A

(D
oe
s

no
t

al
-

lo
w

co
nc
ur
re
nt

co
n-

ta
in
er
s)

N
/A

(D
oe
s

no
t

al
-

lo
w

co
nc
ur
re
nt

co
n-

ta
in
er
s)

×
×

M
al
ic
io
u
s

O
S

(p
ag
e

fa
u
lt

re
co
rd
in
g)

Se
cu

re
w
or
ld

ha
s
ow

n
pa

ge
ta
bl
es

N
/A

(O
S

m
ea
su
re
d

an
d
tr
us
te
d)

H
os
t

O
S

pr
ee
m
pt
ed

du
ri
ng

la
te

la
un

ch
×

N
/A

(P
ag
in
g
no

t
su
p-

po
rt
ed

)

M
al
ic
io
u
s

O
S

(c
ac
h
e
ti
m
in
g)

×
N
/A

(O
S

m
ea
su
re
d

an
d
tr
us
te
d)

H
os
t

O
S

pr
ee
m
pt
ed

du
ri
ng

la
te

la
un

ch
×

×

D
M
A
fr
om

m
al
i-

ci
ou

s
p
er
ip
h
er
al

O
n-
ch
ip

bu
s
bo

un
ce
s

se
cu

re
w
or
ld

ac
ce
ss
es

×
IO

M
M
U

bo
un

ce
s

D
M
A

in
to

T
X
T

m
em

or
y
ra
ng

e

IO
M
M
U

bo
un

ce
s

D
M
A

in
to

P
R
M

E
qu

iv
al
en
t
to

ph
ys
i-

ca
l
D
R
A
M

ac
ce
ss

P
hy

si
ca
l
D
R
A
M

re
ad

Se
cu

re
w
or
ld

lim
it
ed

to
on

-c
hi
p
SR

A
M

×
×

U
nd

oc
um

en
te
d
m
em

-
or
y
en

cr
yp

ti
on

en
gi
ne

D
R
A
M

en
cr
yp

ti
on

P
hy

si
ca
l
D
R
A
M

w
ri
te

Se
cu

re
w
or
ld

lim
it
ed

to
on

-c
hi
p
SR

A
M

×
×

U
nd

oc
um

en
te
d
m
em

-
or
y
en

cr
yp

ti
on

en
gi
ne

H
M
A
C

of
ad

dr
es
s

an
d
da

ta
P
hy

si
ca
l
D
R
A
M

ro
ll
b
ac
k
w
ri
te

Se
cu

re
w
or
ld

lim
it
ed

to
on

-c
hi
p
SR

A
M

×
×

U
nd

oc
um

en
te
d
m
em

-
or
y
en

cr
yp

ti
on

en
gi
ne

×

P
hy

si
ca
l
D
R
A
M

ad
d
re
ss

re
ad

s
Se

cu
re

w
or
ld

in
on

-
ch
ip

SR
A
M

×
×

×
×

H
ar
d
w
ar
e

T
C
B

si
ze

C
P
U

ch
ip

pa
ck
ag
e

M
ot
he

rb
oa
rd

(C
P
U
,

T
P
M
,
D
R
A
M
,
bu

se
s)

M
ot
he

rb
oa
rd

(C
P
U
,

T
P
M
,
D
R
A
M
,
bu

se
s)

C
P
U

ch
ip

pa
ck
ag
e

C
P
U

ch
ip

pa
ck
ag
e

S
of
tw

ar
e

T
C
B

si
ze

Se
cu

re
w
or
ld

(fi
rm

w
ar
e,

O
S,

ap
pl
ic
at
io
n)

A
ll

so
ft
w
ar
e

on
th
e

co
m
pu

te
r

SI
N
IT

A
C
M

+
V
M

(O
S,

ap
pl
ic
at
io
n)

A
pp

lic
at
io
n

m
od

ul
e

+
pr
iv
ile

ge
d

m
od

ul
e

+
co
nt
ai
ne

rs

A
pp

lic
at
io
n

m
od

ul
e

+
hy

pe
rv
is
or

4.1. The IBM 4765 Secure Coprocessor 133
T

ab
le

4.
1

C
on

ti
nu

ed
:
Se

cu
rit

y
fe
at
ur
es

ov
er
vi
ew

fo
r
th
e
tr
us
te
d
ha

rd
w
ar
e
pr
oj
ec
ts

re
la
te
d
to

In
te
l’s

SG
X
.

A
tt
ac
k

A
eg
is

B
as
ti
on

A
sc
en

d
,
P
h
an

to
m

S
an

ct
u
m

M
al
ic
io
u
s

co
nt
ai
n
er
s

(d
ir
ec
t

p
ro
b
-

in
g)

Se
cu

ri
ty

ke
rn
el

se
pa

-
ra
te
s
co
nt
ai
ne

rs
A
cc
es
s
ch
ec
ks

on
ea
ch

m
em

or
y
ac
ce
ss

O
S
se
pa

ra
te
s
co
nt
ai
n-

er
s

A
cc
es
s

ch
ec
ks

on
T
L
B

m
is
se
s

M
al
ic
io
u
s

O
S

(d
ir
ec
t
p
ro
b
in
g)

Se
cu

ri
ty

ke
rn
el

m
ea
-

su
re
d
an

d
is
ol
at
ed

M
em

or
y

en
cr
yp

ti
on

an
d
H
M
A
C

×
A
cc
es
s

ch
ec
ks

on
T
L
B

m
is
se
s

M
al
ic
io
u
s

hy
p
er
vi
so
r

(d
ir
ec
t
p
ro
b
in
g)

N
/A

(N
o

hy
pe

rv
is
or

su
pp

or
t)

H
yp

er
vi
so
r
m
ea
su
re
d

an
d
tr
us
te
d

N
/A

(N
o

hy
pe

rv
is
or

su
pp

or
t)

A
cc
es
s

ch
ec
ks

on
T
L
B

m
is
se
s

M
al
ic
io
u
s

fi
rm

w
ar
e

N
/A

(F
ir
m
w
ar
e
is
no

t
ac
ti
ve

af
te
r
bo

ot
in
g)

H
yp

er
vi
so
r
m
ea
su
re
d

af
te
r
bo

ot
N
/A

(F
ir
m
w
ar
e
is
no

t
ac
ti
ve

af
te
r
bo

ot
in
g)

F
ir
m
w
ar
e

is
m
ea
-

su
re
d
an

d
tr
us
te
d

M
al
ic
io
u
s

co
nt
ai
n
er
s

(c
ac
h
e
ti
m
in
g)

×
×

×
E
ac
h
en

cl
av
e
it
s
ge
ts

ow
n
ca
ch
e
pa

rt
it
io
n

M
al
ic
io
u
s

O
S

(p
ag
e

fa
u
lt

re
co
rd
in
g)

×
×

×
P
er
-e
nc

la
ve

pa
ge

ta
-

bl
es

M
al
ic
io
u
s

O
S

(c
ac
h
e
ti
m
in
g)

×
×

×
N
on

-e
nc

la
ve

so
ft
w
ar
e

us
es

a
se
pa

ra
te

ca
ch
e

pa
rt
it
io
n

D
M
A
fr
om

m
al
i-

ci
ou

s
p
er
ip
h
er
al

E
qu

iv
al
en
t
to

ph
ys
i-

ca
l
D
R
A
M

ac
ce
ss

E
qu

iv
al
en
t
to

ph
ys
i-

ca
l
D
R
A
M

ac
ce
ss

E
qu

iv
al
en
t
to

ph
ys
i-

ca
l
D
R
A
M

ac
ce
ss

M
C

bo
un

ce
s

D
M
A

ou
ts
id
e
al
lo
w
ed

ra
ng

e
P
hy

si
ca
l
D
R
A
M

re
ad

D
R
A
M

en
cr
yp

ti
on

D
R
A
M

en
cr
yp

ti
on

D
R
A
M

en
cr
yp

ti
on

×

P
hy

si
ca
l
D
R
A
M

w
ri
te

H
M
A
C

of
ad

dr
es
s,

da
ta
,
ti
m
es
ta
m
p

M
er
kl
e

tr
ee

ov
er

D
R
A
M

H
M
A
C

of
ad

dr
es
s,

da
ta
,
ti
m
es
ta
m
p

×

P
hy

si
ca
l
D
R
A
M

ro
ll
b
ac
k
w
ri
te

M
er
kl
e

tr
ee

ov
er

H
M
A
C

ti
m
es
ta
m
ps

M
er
kl
e

tr
ee

ov
er

D
R
A
M

M
er
kl
e

tr
ee

ov
er

H
M
A
C

ti
m
es
ta
m
ps

×

P
hy

si
ca
l
D
R
A
M

ad
d
re
ss

re
ad

s
×

×
O
R
A
M

×

H
ar
d
w
ar
e

T
C
B

si
ze

C
P
U

ch
ip

pa
ck
ag
e

C
P
U

ch
ip

pa
ck
ag
e

C
P
U

ch
ip

pa
ck
ag
e

C
P
U

ch
ip

pa
ck
ag
e

S
of
tw

ar
e

T
C
B

si
ze

A
pp

lic
at
io
n

m
od

ul
e

+
se
cu

ri
ty

ke
rn
el

A
pp

lic
at
io
n

m
od

ul
e

+
hy

pe
rv
is
or

A
pp

lic
at
io
n

pr
oc
es
s

+
tr
us
te
d
O
S

A
pp

lic
at
io
n

m
od

ul
e

+
se
cu

ri
ty

m
on

it
or

134 A Survey of Secure Processors

withstand physical attacks to FIPS 140-1 Level 4 [Smith et al., 1999],
and the 4765 meets the rigors of FIPS 140-2 Level 4 [nis, 2011].

PCI Express Card

Tamper-Resistant Enclosure

Application
CPU

Application
CPU

Random
Number

Generator
Real-Time

Clock
Crypto

Accelerator

Tamper
Detection and

Response

Battery-Backed
RAM

SDRAM

System Bus

Module Interface

I/O
Controller

Service
CPU

Hardware Access Control Logic

Battery-
Backed

RAM
Flash

NVRAM
Boot

Loader
ROM

PCIe I/O Controller Batteries

PCI Express Interface

Figure 4.1: The IBM 4765 secure coprocessor consists of an entire computer system
placed inside an enclosure that can deter and detect physical attacks. The applica-
tion and the system use separate processors. Sensitive memory can only be accessed
by the system code, thanks to access control checks implemented in the system bus’
hardware. Dedicated hardware is used to clear the platform’s secrets and shut down
the system when a physical attack is detected.

The 4765 relies heavily on physical isolation for its security prop-
erties. Its system software is protected from attacks by the applica-
tion software by virtue of using a dedicated service processor that is
completely separate from the application processor. Special-purpose
bus logic prevents the application processor from accessing privileged
resources, such as the battery-backed memory that stores the sys-
tem software’s secrets.

The 4765 implements software attestation. The coprocessor’s attes-
tation key is stored in battery-backed memory that is only accessible
to the service processor. Upon reset, the service processor executes a
first-stage bootloader stored in ROM, which measures and loads the
system software. In turn, the system software measures the application
code stored in NVRAM and loads it into the DRAM chip accessible

4.2. ARM TrustZone 135

to the application processor. The system software provides attestation
services to the application loaded inside the coprocessor.

4.2 ARM TrustZone

ARM’s TrustZone [Alves and Felton, 2004] is a collection of hard-
ware modules that can be used to conceptually partition a system’s
resources between a secure world, which hosts a secure container, and
a normal world, which runs an untrusted software stack. The Trust-
Zone documentation [ARM, 2009] describes semiconductor intellectual
property cores (IP blocks) and ways in which they can be combined to
achieve certain security properties, reflecting the fact that ARM is an
IP core provider, not a processor manufacturer. Therefore, the mere
presence of TrustZone IP blocks in a system is not sufficient to de-
termine whether the system is secure under a specific threat model.
Figure 4.2 illustrates a design for a smartphone System-on-Chip (SoC)
design that uses TrustZone IP blocks.

TrustZone extends the address lines in the AMBA AXI system
bus [ARM, 2004] with one signal that indicates whether an access
belongs to the secure or normal (non-secure) world. ARM processor
cores that include TrustZone’s “Security Extensions” can switch be-
tween the normal world and the secure world when executing code.
The address in each bus access executed by a core reflects the world
in which the core is currently executing.

The reset circuitry in a TrustZone processor places it in secure
mode, and points it to the first-stage bootloader stored in on-chip ROM.
TrustZone’s TCB includes this bootloader, which initializes the plat-
form, sets up the TrustZone hardware to protect the secure container
from untrusted software, and loads the normal world’s bootloader. The
secure container must also implement a monitor that performs the con-
text switches needed to transition an execution core between the two
worlds. The monitor must also handle hardware exceptions, such as
interrupts, and route them to the appropriate world.

The TrustZone design gives the secure world’s monitor unrestricted
access to the normal world, so the monitor can implement inter-process

136 A Survey of Secure Processors

System-on-Chip Package

4G ModemProcessor
without
Secure

Extensions
DMA

Controller

Memory
Controller

Memory
Controller

Display
Controller

OTP
Polyfuses

TZMABoot ROM

AMBA AXI On-Chip Bus

L3 Cache

AMBA AXI Bus

DRAM Flash Display

L2 Cache

Processor
with

Secure
Extensions

Interrupt Controller

APB Bus

AXI to APB
Bridge

ADC / DAC Keypad
Controller

Audio Keypad

Real-Time
Clock

SRAM

TZASC

Figure 4.2: Smartphone SoC design based on TrustZone. The red IP blocks are
TrustZone-aware. The red connections ignore the TrustZone secure bit in the bus
address. Defining the system’s security properties requires a complete understanding
of all red elements in this figure.

communication (IPC) between the software in the two worlds. Specif-
ically, the monitor can issue bus accesses using both secure and non-
secure addresses. In general, the secure world’s software can compro-
mise any level in the normal world’s software stack. For example, the
secure container’s software can jump into arbitrary locations in the
normal world by flipping a bit in a register. The untrusted software in
the normal world can only access the secure world via an instruction
that jumps into a well-defined location inside the monitor.

Conceptually, each TrustZone CPU core provides separate address
translation units for the secure and normal worlds. This is implemented
by two page table base registers, and by having the page walker use
the page table base corresponding to the core’s current world. The
physical addresses in the page table entries are extended to include
the values of the secure bit to be issued on the AXI bus. The se-
cure world is protected from untrusted software by having the CPU

4.2. ARM TrustZone 137

core force the secure bit in the address translation result to zero for
normal world address translations. As the secure container manages
its own page tables, its memory accesses cannot be directly observed
by the untrusted OS’s page fault handler.

TrustZone-aware hardware modules, such as caches, are trusted to
use the secure address bit in each bus access to enforce the isolation
between worlds. For example, TrustZone’s caches store the secure bit
in the address tag for each cache line, which effectively provides com-
pletely different views of the memory space to the software running in
different worlds. This design assumes that memory space is partitioned
between the two worlds, so no aliasing can occur.

The TrustZone documentation describes two TLB configurations.
If many context switches between worlds are expected, the TLB IP
blocks can be configured to include the secure bit in the address tag.
Alternatively, the secure bit can be omitted from the TLBs, as long as
the monitor flushes the TLBs when switching contexts.

The hardware modules that do not consume TrustZone’s address
bit are expected to be connected to the AXI bus via IP cores that
implement simple partitioning techniques. For example, the TrustZone
Memory Adapter (TZMA) can be used to partition an on-chip ROM
or SRAM into a secure region and a normal region, and the Trust-
Zone Address Space Controller (TZASC) partitions the memory space
provided by a DRAM controller into secure and normal regions. A
TrustZone-aware DMA controller rejects DMA transfers from the nor-
mal world that reference secure world addresses.

It follows that analyzing the security properties of a TrustZone sys-
tem requires a precise understanding of the behavior and configuration
of all hardware modules that are attached to the AXI bus. For exam-
ple, the caches described in TrustZone’s documentation do not enforce
a complete separation between worlds, as they allow a world’s mem-
ory accesses to evict the other world’s cache lines. This exposes the
secure container software to cache timing attacks from the untrusted
software in the normal world. Unfortunately, hardware manufactur-
ers that license the TrustZone IP cores are reluctant to disclose all

138 A Survey of Secure Processors

details of their designs, making it impossible for security researchers
to reason about TrustZone-based hardware.

The TrustZone components do not have any counter-measures for
physical attacks. However, a system that follows the recommendations
in the TrustZone documentation will not be exposed to physical at-
tacks, under a threat model that trusts the processor package. The
AXI bus is designed to connect components in an SoC design, so it
cannot be tapped by an attacker. The TrustZone documentation rec-
ommends storing all secure world code and data in an on-chip SRAM,
which is not assumed to be out of scope for physical attacks. However,
this approach places significant limits on the secure container’s func-
tionality, because on-chip SRAM is many orders of magnitude more
expensive than a DRAM module of the same capacity.

TrustZone’s documentation does not describe any software attes-
tation implementation. However, it does outline a method for im-
plementing secure boot, which comes down to having the first-stage
bootloader verify a signature in the second-stage bootloader against
a public key whose cryptographic hash is burned into on-chip One-
Time Programmable (OTP) polysilicon fuses. A hardware measure-
ment root can be built on top of the same components, by storing
a processor-specific attestation key in the polyfuses, and having the
first-stage bootloader measure the second-stage bootloader and store
its hash in an on-chip SRAM region allocated to the secure world.
The polyfuses would be gated by a TZMA IP block that makes them
accessible only to the secure world.

4.3 The XOM Architecture

The execute-only memory (XOM) architecture [Lie et al., 2000] intro-
duced the approach of executing sensitive code and data in isolated
containers managed by untrusted host software. XOM outlined the
mechanisms needed to isolate a container’s data from its untrusted
software environment, such as saving the register state to a protected
memory area before servicing an interrupt.

4.4. The Trusted Platform Module (TPM) 139

XOM supports multiple containers by tagging every cache line with
the identifier of the container owning it, and ensures isolation by dis-
allowing memory accesses to cache lines that don’t match the current
container’s identifier. The operating system and the untrusted applica-
tions are considered to belong to a container with a null identifier.

XOM also introduced the integration of encryption and HMAC
functionality in the processor’s memory controller to protect container
memory from physical attacks on DRAM. The encryption and HMAC
functionality is used for all cache line evictions and fetches, and the
ECC bits in DRAM are repurposed to store HMAC values.

XOM’s design cannot guarantee DRAM freshness, so the software
in its containers is vulnerable to physical replay attacks. Furthermore,
XOM does not protect a container’s memory access patterns, mean-
ing that any piece of malicious software can perform cache timing at-
tacks against the software in a container. Last, XOM containers are de-
stroyed when they encounter hardware exceptions, such as page faults,
so XOM does not support paging.

XOM predates the attestation scheme described at the beginning
of the section, and relies on a modified software distribution scheme
instead. Each container’s contents are encrypted with a symmetric key,
which also serves as the container’s identity. The symmetric key, in
turn, is encrypted with the public key of each CPU that is trusted to run
the container. A container’s author can be assured that the container is
running on trusted software by embedding a secret into the encrypted
container data, and using it to authenticate the container. While con-
ceptually simpler than software attestation, this scheme does not allow
the container author to vet the container’s software environment.

4.4 The Trusted Platform Module (TPM)

The Trusted Platform Module (TPM) [TCG, 2003] introduced the
software attestation model described at the beginning of this section.
The TPM design does not require any hardware modifications to the
CPU, and instead relies on an auxiliary tamper-resistant chip. The
TPM module is only used to store the attestation key and to perform

140 A Survey of Secure Processors

software attestation. The TPM was widely deployed on commodity
computers, because it does not rely on CPU modifications. Unfor-
tunately, the cost of this approach is that the TPM has very weak
security guarantees, as explained below.

The TPM design provides one isolation container, covering all soft-
ware running on the computer that has the TPMmodule. It follows that
the measurement included in an attestation signature covers the entire
OS kernel and all kernel modules, such as device drivers. However,
commercial computers use a wide diversity of devices, and their sys-
tem software is updated at an ever-increasing pace, so it is impossible
to maintain a list of acceptable measurement hashes corresponding to a
piece of trusted software. Due to this issue, the TPM’s software attesta-
tion is not used in many security systems, despite its wide deployment.

The TPM design is technically not vulnerable to any software at-
tacks, because it trusts all software on the computer. However, a TPM-
based system is vulnerable to an attacker who has physical access
to the machine, as the TPM module does not provide any isolation
for the software on the computer. Furthermore, the TPM module re-
ceives the software measurements from the CPU, so TPM-based sys-
tems are vulnerable to attackers who can tap the communication bus
between the CPU and the TPM.

Last, the TPM’s design relies on the software running on the CPU
to report its own cryptographic hash. The TPM module resets the
measurements stored in Platform Configuration Registers (PCRs) when
the computer is rebooted. Then, the TPM expects the software at each
boot stage to cryptographically hash the software at the next stage, and
send the hash to the TPM. The TPM updates the PCRs to incorporate
the new hashes it receives, as shown in Figure 4.3. Most importantly,
the PCR value at any point reflects all software hashes received by the
TPM up to that point. This makes it impossible for software that has
been measured to “remove” itself from the measurement.

For example, the firmware on most modern computers implements
the platform initialization process in the Unified Extensible Firmware
Interface (UEFI) specification [UEF, 2015]. Each platform initialization
phase is responsible for verifying or measuring the firmware that im-

4.4. The Trusted Platform Module (TPM) 141

)SHA-1(

Boot Loader

0 (zero)

)SHA-1(

sent to TPM

)SHA-1(

OS Kernel

)SHA-1(

sent to TPM

TPM MR
after reboot

TPM MR when
boot loader
executes

)SHA-1(

Kernel module

)SHA-1(

sent to TPM
TPM MR when

OS kernel
executes

TPM MR when
Kernel Module executes

Figure 4.3: The measurement stored in a TPM platform configuration register
(PCR). The PCR is reset when the system reboots. The software at every boot
stage hashes the next boot stage, and sends the hash to the TPM. The PCR’s new
value incorporates both the old PCR value, and the new software hash.

plements the next phase. The SEC firmware initializes the TPM PCR,
and then stores the PEI’s measurement into a measurement register.
In turn, the PEI implementation measures the DXE firmware and up-
dates the measurement register that stores the PEI hash to account for
the DXE hash. When the OS is booted, the hash in the measurement
register accounts for all firmware that was used to boot the computer.

Unfortunately, the security of the whole measurement scheme
hinges on the requirement that the first hash sent to the TPM must
reflect the software that runs in the first boot stage. The TPM threat
model explicitly acknowledges this issue, and assumes that the firmware
responsible for loading the first stage bootloader is securely embed-
ded in the motherboard. However, virtually every TPM-enabled com-
puter stores its firmware in a flash memory module that can be re-
programmed in software (§ 2.9.1), so the TPM’s measurement can be

142 A Survey of Secure Processors

subverted by an attacker who can re-flash the computer’s firmware
[Butterworth et al., 2013].

On very recent Intel processors, the attack described above can
be defeated by having the initialization microcode (§ 2.14.4) hash the
computer’s firmware (specifically, the PEI code in UEFI [UEF, 2015]
firmware) and communicate the hash to the TPM module. This is mar-
keted as the Measured Boot feature of Intel’s Boot Guard [Ruan, 2014].

Sadly, most computer manufacturers use Verified Boot (also known
as “secure boot”) instead of Measured Boot (also known as “trusted
boot”). Verified Boot means that the processor’s microcode only boots
into PEI firmware that contains a signature produced by a key burned
into the processor’s e-fuses. Verified Boot does not impact the mea-
surements stored on the TPM, so it does not improve the security
of software attestation.

4.5 Intel’s Trusted Execution Technology (TXT)

Intel’s Trusted Execution Technology (TXT) [Grawrock, 2009] uses
the TPM’s software attestation model and auxiliary tamper-resistant
chip, but reduces the software inside the secure container to a virtual
machine (guest operating system and application) hosted by the CPU’s
hardware virtualization features (VMX [Uhlig et al., 2005]).

TXT isolates the software inside the container from untrusted soft-
ware by ensuring that the container has exclusive control over the entire
computer while it is active. This is accomplished by a secure initializa-
tion authenticated code module (SINIT ACM) that effectively performs
a warm system reset before starting the container’s VM.

TXT requires a TPM module with an extended register set. The
registers used by the measured boot process described in § 4.4 are
considered to make up the platform’s Static Root of Trust Measure-
ment (SRTM). When a TXT VM is initialized, it updates TPM regis-
ters that make up the Dynamic Root of Trust Measurement (DRTM).
While the TPM’s SRTM registers only reset at the start of a boot
cycle, the DRTM registers are reset by the SINIT ACM, every time
a TXT VM is launched.

4.6. The Aegis Secure Processor 143

TXT does not implement DRAM encryption or HMACs, and there-
fore is vulnerable to physical DRAM attacks, just like TPM-based de-
signs. Furthermore, early TXT implementations were vulnerable to at-
tacks where a malicious operating system would program a device,
such as a network card, to perform DMA transfers to the DRAM re-
gion used by a TXT container [Wojtczuk and Rutkowska, 2009b, Wo-
jtczuk et al., 2009]. In recent Intel CPUs, the memory controller is
integrated on the CPU die, so the SINIT ACM can securely set up
the memory controller to reject DMA transfers targeting TXT mem-
ory. An Intel chipset datasheet [Int, 2015c] documents an “Intel TXT
DMA Protected Range” IIO configuration register.

Early TXT implementations did not measure the SINIT ACM. In-
stead, the microcode implementing the TXT launch instruction ver-
ified that the code module contained an RSA signature by a hard-
coded Intel key. SINIT ACM signatures cannot be revoked if vul-
nerabilities are found, so TXT’s software attestation had to be re-
vised when SINIT ACM exploits [Wojtczuk and Rutkowska, 2011] sur-
faced. Currently, the SINIT ACM’s cryptographic hash is included
in the attestation measurement.

Last, the warm reset performed by the SINIT ACM does not in-
clude the software running in System Management Mode (SMM). SMM
was designed solely for use by firmware, and is stored in a protected
memory area (SMRAM) which should not be accessible to non-SMM
software. However, the SMM handler was compromised on multiple
occasions [Duflot et al., 2006, Rutkowska and Wojtczuk, 2008, Wo-
jtczuk and Rutkowska, 2009a, Wecherowski, 2009, Embleton et al.,
2010], and an attacker who obtains SMM execution can access the
memory used by TXT’s container.

4.6 The Aegis Secure Processor

The Aegis secure processor [Suh et al., 2003] relies on a security kernel
in the operating system to isolate containers, and includes the ker-
nel’s cryptographic hash in the measurement reported by the software
attestation signature. [Suh et al., 2003] also describes a variant archi-

144 A Survey of Secure Processors

tecture that assumes an untrusted OS. [Suh et al., 2005] argued that
Physical Unclonable Functions (PUFs) [Gassend et al., 2002] can be
used to endow a secure processor with a tamper-resistant private key,
which is required for software attestation. PUFs do not have the fab-
rication process drawbacks of EEPROM, and are significantly more
resilient to physical attacks than e-fuses.

Aegis relies on a trusted security kernel to isolate each container
from the other software on the computer by configuring the page ta-
bles used in address translation. The security kernel is a subset of
a typical OS kernel, and handles virtual memory management, pro-
cesses, and hardware exceptions. As the security kernel is a part of
the trusted code base (TCB), its cryptographic hash is included in
the software attestation measurement. The security kernel uses pro-
cessor features to isolate itself from the untrusted part of the oper-
ating system, such as device drivers.

The Aegis memory controller encrypts the cache lines in one mem-
ory range, and HMACs the cache lines in one other memory range.
The two memory ranges can overlap, and are configurable by the se-
curity kernel. Thanks to the two ranges, the memory controller can
avoid the latency overhead of cryptographic operations for the DRAM
outside containers. Aegis was the first secure processor not vulnera-
ble to physical replay attacks, as it uses a Merkle tree construction
[Gassend et al., 2003] to guarantee DRAM freshness. The latency over-
head of the Merkle tree is greatly reduced by augmenting the L2 cache
with the tree nodes for the cache lines.

Aegis’ security kernel allows the OS to page out container mem-
ory, but verifies the correctness of the paging operations. The secu-
rity kernel uses the same encryption and Merkle tree algorithms as
the memory controller to guarantee the confidentiality and integrity
of the container pages that are swapped out from DRAM. The OS
is free to page out container memory, so it can learn a container’s
memory access patterns, at page granularity. Aegis containers are also
vulnerable to cache timing attacks.

4.7. The Bastion Architecture 145

4.7 The Bastion Architecture

The Bastion architecture [Champagne and Lee, 2010] introduced the
use of a trusted hypervisor to provide secure containers to applica-
tions running inside unmodified, untrusted operating systems. Bas-
tion’s hypervisor ensures that the operating system does not inter-
fere with the secure containers. We only describe Bastion’s virtual-
ization extensions to architectures that use nested page tables, like
Intel’s VMX [Uhlig et al., 2005].

The hypervisor enforces the containers’ desired memory mappings
in the OS page tables, as follows. Each Bastion container has a Se-
curity Segment that lists the virtual addresses and permissions of all
pages belonging to the container, and the hypervisor maintains a Mod-
ule State Table that stores an inverted page map, associating each
physical memory page to its container and virtual address. The pro-
cessor’s hardware page walker is modified to invoke the hypervisor on
every TLB miss, before updating the TLB with the address transla-
tion result. The hypervisor checks that the virtual address used by the
translation matches the expected virtual address associated with the
physical address in the Module State Table.

Bastion’s cache lines are not tagged with container identifiers. In-
stead, only TLB entries are tagged. The hypervisor’s TLB miss handler
sets the container identifier for each TLB entry as it is created. Sim-
ilarly to XOM and Aegis, the secure processor checks the TLB tag
against the current container’s identifier on every memory access.

Bastion offers the same protection against physical DRAM attacks
as Aegis does, without the restriction that a container’s data must
be stored inside a continuous DRAM range. This is accomplished by
extending cache lines and TLB entries with flags that enable mem-
ory encryption and HMACing. The hypervisor’s TLB miss handler
sets the flags on TLB entries, and the flags are propagated to cache
lines on memory writes.

The Bastion hypervisor allows the untrusted operating system
to evict secure container pages. The evicted pages are encrypted,
HMACed, and covered by a Merkle tree maintained by the hypervi-
sor. Thus, the hypervisor ensures the confidentiality, authenticity, and

146 A Survey of Secure Processors

freshness of the swapped pages. However, the ability to freely evict
container pages allows a malicious OS to learn a container’s memory
accesses with page granularity. Furthermore, Bastion’s threat model
excludes cache timing attacks.

Bastion does not trust the platform’s firmware, and computes the
cryptographic hash of the hypervisor after the firmware finishes playing
its part in the booting process. The hypervisor’s hash is included in
the measurement reported by software attestation.

4.8 Intel SGX

Intel’s Software Guard Extensions (SGX) [McKeen et al., 2013, Anati
et al., 2013, Hoekstra et al., 2013] implements secure containers for ap-
plications without making any modifications to the processor’s critical
execution path. SGX does not trust any layer in the computer’s soft-
ware stack (firmware, hypervisor, OS). Instead, SGX’s TCB consists
of the CPU’s microcode and a few privileged containers. SGX intro-
duces an approach to solving some of the issues raised by multi-core
processors with a shared, coherent last-level cache.

SGX does not extend caches or TLBs with container identity bits,
and does not require any security checks during normal memory ac-
cesses. As suggested in the TrustZone documentation, SGX always en-
sures that a core’s TLBs only contain entries for the container that
it is executing, which requires flushing the CPU core’s TLBs when
context-switching between containers and untrusted software.

SGX follows Bastion’s approach of having the untrusted OS man-
age the page tables used by secure containers. The containers’ secu-
rity is preserved by a TLB miss handler that relies on an inverted
page map (the EPCM) to reject address translations for memory that
does not belong to the current container.

Like Bastion, SGX allows the untrusted operating system to evict
secure container pages, in a controlled fashion. After the OS initiates
a container page eviction, it must prove to the SGX implementation
that it also switched the container out of all cores that were executing
its code, effectively performing a very coarse-grained TLB shootdown.

4.9. Sanctum 147

SGX’s microcode ensures the confidentiality, authenticity, and
freshness of each container’s evicted pages, like Bastion’s hypervisor.
However, SGX relies on a version-based Merkle tree, inspired by Aegis
[Suh et al., 2003], and adds an innovative twist that allows the operat-
ing system to dynamically shape the Merkle tree. SGX also shares Bas-
tion’s and Aegis’ vulnerability to memory access pattern leaks, namely
a malicious OS can directly learn a container’s memory accesses at page
granularity, and any piece of software can perform cache timing attacks.

SGX’s software attestation is implemented using Intel’s Enhanced
Privacy ID (EPID) group signature scheme [Brickell and Li, 2009],
which is too complex for a microcode implementation. Therefore, SGX
relies on an assortment of privileged containers that receive direct ac-
cess to the SGX processor’s hardware keys. The privileged containers
are signed using an Intel private key whose corresponding public key is
hard-coded into the SGX microcode, similarly to TXT’s SINIT ACM.

As SGX does not protect against cache timing attacks, the priv-
ileged enclave’s authors cannot use data-dependent memory accesses.
For example, cache attacks on the Quoting Enclave, which computes at-
testation signatures, would provide an attack with a processor’s EPID
signing key and completely compromise SGX.

Intel’s documentation states that SGX guarantees DRAM confi-
dentiality, authentication, and freshness by virtue of a Memory En-
cryption Engine (MEE). The MEE is informally described in an ISCA
2015 tutorial [Int, 2015f], and in more detail in [Gueron, 2016]. It ap-
pears that SGX provides the same protection against physical DRAM
attacks that Aegis and Bastion provide.

4.9 Sanctum

Sanctum [Costan et al., 2015] introduced a straightforward soft-
ware/hardware co-design that yields the same resilience against soft-
ware attacks as SGX, and adds protection against memory access
pattern leaks, such as page fault monitoring attacks and cache tim-
ing attacks.

148 A Survey of Secure Processors

Sanctum uses a conceptually simple cache partitioning scheme,
where a computer’s DRAM is split into equally-sized continuous
DRAM regions, and each DRAM region uses distinct sets in the shared
last-level cache (LLC). Each DRAM region is allocated to exactly one
container, so containers are isolated in both DRAM and the LLC. Con-
tainers are isolated in the other caches by flushing on context switches.

Like XOM, Aegis, and Bastion, Sanctum also considers the hyper-
visor, OS, and the application software to conceptually belong to a sep-
arate container. Containers are protected from the untrusted outside
software by the same measures that isolate containers from each other.

Sanctum relies on a trusted security monitor, which is the first
piece of firmware executed by the processor, and has the same se-
curity properties as those of Aegis’ security kernel. The monitor is
measured by bootstrap code in the processor’s ROM, and its cryp-
tographic hash is included in the software attestation measurement.
The monitor verifies the operating system’s resource allocation deci-
sions. For example, it ensures that no DRAM region is ever acces-
sible to two different containers.

Each Sanctum container manages its own page tables mapping its
DRAM regions, and handles its own page faults. It follows that a ma-
licious OS cannot learn the virtual addresses that would cause a page
fault in the container. Sanctum’s hardware modifications work in con-
junction with the security monitor to make sure that a container’s page
tables only reference memory inside the container’s DRAM regions.

The Sanctum design focuses completely on software attacks, and
does not offer protection from any physical attack. The authors expect
Sanctum’s hardware modifications to be combined with the physical
attack protections in Aegis or Ascend.

4.10 Ascend and Phantom

The Ascend [Fletcher et al., 2012] and Phantom [Maas et al., 2013]
secure processors introduced practical implementations of Oblivious
RAM [Goldreich, 1987] techniques in the CPU’s memory controller.
These processors are resilient to attackers who can probe the DRAM

4.10. Ascend and Phantom 149

address bus and attempt to learn a container’s private information
from its DRAM memory access pattern.

Implementing an ORAM scheme in a memory controller is largely
orthogonal to the other secure architectures described above. It fol-
lows, for example, that Ascend’s ORAM implementation can be com-
bined with Aegis’ memory encryption and authentication, and with
Sanctum’s hardware extensions and security monitor, yielding a se-
cure processor that can withstand both software attacks and phys-
ical DRAM attacks.

5
The Software Isolation Container (As

Exemplified by Intel’s SGX)

Among prior work that failed to achieve meaningful security guaran-
tees in a realistic setting, two shortcomings are prevalent: an inabil-
ity to protect against an impersonating attacker, and the inclusion of
large amounts of vulnerable system software in the trusted comput-
ing base. In the context of remote computation, the system’s privacy
guarantees affect the system’s ability to guarantee integrity: an at-
tacker capable of learning the trusted system’s secret keys can trivially
defeat any protection offered by the system by emulating it (convinc-
ing the remote user that an arbitrary malicious system is the trusted
system she intends to communicate with).

Another common failure is the inclusion of excessive system soft-
ware in the trusted computing base. As further discussed in Section 3.5,
a modern hypervisor (Xen) weighs in at 150 thousand lines of code,
with the Linux kernel reaching a staggering 17 million lines of code.
Such large code bases are (at the time of this writing) far too large
for formal verification, and are dense with implementation errors. In-
deed, both reveal dozens of security vulnerabilities every year, and
should not be included in a trusted computing base of any security-
critical application. Even if a system is able to guarantee the integrity

151

152 The Software Isolation Container (As Exemplified by Intel’s SGX)

and privacy of a given application, the inclusion of millions of lines of
buggy code in the trusted computing base makes the system’s claims
to security largely irrelevant.

A practically secure system trusts only the software needed to per-
form the security-critical task, as well as a hardware platform able to
enforce its security policy and traceable to a trustworthy manufacturer.
While an application cannot reasonably be secure against its own acci-
dental or deliberate leaks of information, security-critical applications
are expected to be scrutinized, and may be formally verified. A simple,
easy-to-understand threat model improves the programmers’ ability to
write secure software, as a simple threat model simplifies the invari-
ants the system must obey in order to be secure.

While Intel’s Software Guard Extensions fall short of this ideal
(as discussed in Part II of this work), the system does present a
very attractive programming model: a private process with privacy
and integrity guarantees assuming the software of the process itself
is not vulnerable. The central concept of SGX1 is the enclave, a pro-
tected environment that contains the code and data pertaining to a
security-sensitive computation.

SGX-enabled processors provide trusted computing by isolating
each enclave’s environment from the untrusted software outside the en-
clave, and by implementing a software attestation scheme that allows
a remote party to authenticate the software running inside an enclave.
SGX’s isolation mechanisms are intended to protect the confidential-
ity and integrity of the computation performed inside an enclave from
attacks coming from malicious software executing on the same com-
puter, as well as from a limited set of physical attacks.

Given that SGX is an available, documented example of an enclave-
capable system, this section presents the programming model employed
by the enclave primitive, as exemplified by Intel’s SGX. In Part II of this
work, we rely on this discussion to motivate the MIT Sanctum project,
and present its hardware and software design to present a stronger
security argument with an equivalent programming model.

1 As mentioned earlier, this work discusses the original version of SGX, also
referred to as SGX 1.

5.1. SGX Physical Memory Organization 153

This section summarizes the SGX concepts that make up a men-
tal model that is sufficient for programmers to author SGX enclaves
and to add SGX support to existing system software. Unless stated
otherwise, the information in this section is backed up by Intel’s Soft-
ware Developer Manual (SDM). The following section builds on the
concepts introduced here to fill in some of the missing pieces in the
manual, and analyzes some of SGX’s security properties.

5.1 SGX Physical Memory Organization

The enclaves’ code and data is stored in Processor Reserved Memory
(PRM), which is a subset of DRAM that cannot be directly accessed by
other software, including system software and SMM code. The CPU’s
integrated memory controllers (§ 2.9.3) also reject DMA transfers tar-
geting the PRM, thus protecting it from access by other peripherals.

The PRM is a continuous range of memory whose bounds are con-
figured using a base and a mask register with the same semantics as
a variable memory type range (§ 2.11.4). Therefore, the PRM’s size
must be an integer power of two, and its start address must be aligned
to the same power of two. Due to these restrictions, checking if an
address belongs to the PRM can be done very cheaply in hardware,
using the circuit outlined in § 2.11.4.

The SDM does not describe the PRM and the PRM range registers
(PRMRR). These concepts are documented in the SGX manuals [Int,
2013, 2014d] and in one of the SGX papers [McKeen et al., 2013].
Therefore, the PRM is a micro-architectural detail that may change
in future implementations of SGX. Our security analysis of SGX relies
on implementation details surrounding the PRM, and will have to be
re-evaluated for SGX future implementations.

5.1.1 The Enclave Page Cache (EPC)

The contents of enclaves and the associated data structures are stored
in the Enclave Page Cache (EPC), which is a subset of the PRM,
as shown in Figure 5.1.

154 The Software Isolation Container (As Exemplified by Intel’s SGX)

EPCDRAM

4kb page
4kb page

⋮

4kb page
4kb page
4kb page

Entry
Entry

⋮

Entry
Entry
Entry

EPCM

PRM

PRM

EPC

Figure 5.1: Enclave data is stored into the EPC, which is a subset of the PRM. The
PRM is a contiguous range of DRAM that cannot be accessed by system software
or peripherals.

The SGX design supports multiple enclaves on a system concur-
rently, which is a necessity in multi-process environments. This is
achieved by having the EPC split into 4 KB pages that can be as-
signed to different enclaves. The EPC uses the same page size as the
architecture’s address translation feature (§ 2.5). This is not a coinci-
dence, as future sections will reveal that the SGX implementation is
tightly coupled with the address translation implementation.

The EPC is managed by the same system software that manages the
rest of the computer’s physical memory. The system software, which
can be a hypervisor or an OS kernel, uses SGX instructions to allo-
cate unused pages to enclaves, and to free previously allocated EPC
pages. The system software is expected to expose enclave creation and
management services to application software.

Non-enclave software cannot directly access the EPC, as it is con-
tained in the PRM. This restriction plays a key role in SGX’s enclave
isolation guarantees, but creates an obstacle when the system software
needs to load the initial code and data into a newly created enclave.
The SGX design solves this problem by having the instructions that
allocate an EPC page to an enclave also initialize the page. Most EPC
pages are initialized by copying data from a non-PRM memory page.

5.1.2 The Enclave Page Cache Map (EPCM)

The SGX design expects the system software to allocate the EPC pages
to enclaves. However, as the system software is not trusted, SGX pro-
cessors check the correctness of the system software’s allocation deci-

5.1. SGX Physical Memory Organization 155

sions, and refuse to perform any action that would compromise SGX’s
security guarantees. For example, if the system software attempts to
allocate the same EPC page to two enclaves, the SGX instruction used
to perform the allocation will fail.

In order to perform its security checks, SGX records some infor-
mation about the system software’s allocation decisions for each EPC
page in the Enclave Page Cache Map (EPCM). The EPCM is an array
with one entry per EPC page, so computing the address of a page’s
EPCM entry only requires a bitwise shift operation and an addition.

The EPCM’s contents is only used by SGX’s security checks. Under
normal operation, the EPCM does not generate any software-visible be-
havior, and enclave authors and system software developers can mostly
ignore it. Therefore, the SDM only describes the EPCM at a very
high level, listing the information contained within and noting that
the EPCM is “trusted memory”. The SDM does not disclose the stor-
age medium or memory layout used by the EPCM.

The EPCM uses the information in Table 5.1 to track the ownership
of each EPC page. We defer a full discussion of the EPCM to a later
section, because its contents is intimately coupled with all of SGX’s
features, which will be described over the next few sections.

Table 5.1: The fields in an EPCM entry that track the ownership of pages.

Field Bits Description
VALID 1 0 for un-allocated EPC pages
PT 8 page type
ENCLAVESECS identifies the enclave owning the page

The SGX instructions that allocate an EPC page set the VALID
bit of the corresponding EPCM entry to 1, and refuse to operate on
EPC pages whose VALID bit is already set.

The instruction used to allocate an EPC page also determines the
page’s intended usage, which is recorded in the page type (PT) field
of the corresponding EPCM entry. The pages that store an enclave’s
code and data are considered to have a regular type (PT_REG in the
SDM). The pages dedicated to the storage of SGX’s supporting data

156 The Software Isolation Container (As Exemplified by Intel’s SGX)

structures are tagged with special types. For example, the PT_SECS
type identifies pages that hold SGX Enclave Control Structures, which
will be described in the following section. The other EPC page types
will be described in future sections.

Last, a page’s EPCM entry also identifies the enclave that owns
the EPC page. This information is used by the mechanisms that en-
force SGX’s isolation guarantees to prevent an enclave from accessing
another enclave’s private information. As the EPCM identifies a single
owning enclave for each EPC page, it is impossible for enclaves to com-
municate via shared memory using EPC pages. Fortunately, enclaves
can share untrusted non-EPC memory, as will be discussed in § 5.2.3.

5.1.3 The SGX Enclave Control Structure (SECS)

SGX stores per-enclave metadata in a SGX Enclave Control Struc-
ture (SECS) associated with each enclave. Each SECS is stored in a
dedicated EPC page with the page type PT_SECS. These pages are
not intended to be mapped into any enclave’s address space, and are
exclusively used by the CPU’s SGX implementation.

An enclave’s identity is almost synonymous to its SECS. The first
step in bringing an enclave to life allocates an EPC page to serve as
the enclave’s SECS, and the last step in destroying an enclave deallo-
cates the page holding its SECS. The EPCM entry field identifying the
enclave that owns an EPC page points to the enclave’s SECS. The sys-
tem software uses the virtual address of an enclave’s SECS to identify
the enclave when invoking SGX instructions.

All SGX instructions take virtual addresses as their inputs. Given
that SGX instructions use SECS addresses to identify enclaves, the
system software must create entries in its page tables pointing to the
SECS of the enclaves it manages. However, the system software cannot
access any SECS page, as these pages are stored in the PRM. SECS
pages are not intended to be mapped inside their enclaves’ virtual ad-
dress spaces, and SGX-enabled processors explicitly prevent enclave
code from accessing SECS pages.

This seemingly arbitrary limitation is in place so that the SGX
implementation can store sensitive information in the SECS, and be

5.2. The Memory Layout of an SGX Enclave 157

able to assume that no potentially malicious software will access that
information. For example, the SDM states that each enclave’s mea-
surement is stored in its SECS. If software would be able to modify
an enclave’s measurement, SGX’s software attestation scheme would
provide no security assurances.

The SECS is strongly coupled with many of SGX’s features. There-
fore, the pieces of information that make up the SECS will be gradually
introduced as the different aspects of SGX are described.

5.2 The Memory Layout of an SGX Enclave

SGX was designed to minimize the effort required to convert applica-
tion code to take advantage of enclaves. History suggests this is a wise
decision, as a large factor in the continued dominance of the Intel archi-
tecture is its ability to maintain backward compatibility. To this end,
SGX enclaves were designed to be conceptually similar to the leading
software modularization construct, dynamically loaded libraries, which
are packaged as .so files on Unix, and .dll files on Windows.

For simplicity, we describe the interaction between enclaves and
non-enclave software assuming that each enclave is used by exactly one
application process, which we shall refer to as the enclave’s host process.
We do note, however, that the SGX design does not explicitly prohibit
multiple application processes from sharing an enclave.

5.2.1 The Enclave Linear Address Range (ELRANGE)

Each enclave designates an area in its virtual address space, called the
enclave linear address range (ELRANGE), which is used to map the
code and the sensitive data stored in the enclave’s EPC pages. The
virtual address space outside ELRANGE is mapped to access non-
EPC memory via the same virtual addresses as the enclave’s host
process, as shown in Figure 5.2.

The SGX design guarantees that the enclave’s memory accesses in-
side ELRANGE obey the virtual memory abstraction (§ 2.5.1), while
memory accesses outside ELRANGE receive no guarantees. There-
fore, enclaves must store all of their code and private data inside EL-

158 The Software Isolation Container (As Exemplified by Intel’s SGX)

Page Tables
managed by

system software

ELRANGE

Enclave Virtual
Memory View

DRAM

Abort Page

Host Application
Virtual Memory

View

EPC

Figure 5.2: An enclave’s EPC pages are accessed using a dedicated region in the
enclave’s virtual address space, called ELRANGE. The rest of the virtual address
space is used to access the memory of the host process. The memory mappings are
established using the page tables managed by system software.

RANGE, and must consider the memory outside ELRANGE to be an
untrusted interface to the outside world.

The word “linear” in ELRANGE references the linear addresses
produced by the vestigial segmentation feature (§ 2.7) in the 64-bit
Intel architecture. For most purposes, “linear” can be treated as a
synonym for “virtual”.

ELRANGE is specified using a base (the BASEADDR field) and
a size (the SIZE) in the enclave’s SECS (§ 5.1.3). ELRANGE must
meet the same constraints as a variable memory type range (§ 2.11.4)
and as the PRM range (§ 5.1), namely the size must be a power of
2, and the base must be aligned to the size. These restrictions are
in place so that the SGX implementation can inexpensively check
whether an address belongs to an enclave’s ELRANGE, in either hard-
ware (§ 2.11.4) or software.

When an enclave represents a dynamic library, it is natural to set
ELRANGE to the memory range reserved for the library by the loader.
The ability to access non-enclave memory from enclave code makes it
easy to reuse existing library code that expects to work with pointers
to memory buffers managed by code in the host process.

5.2. The Memory Layout of an SGX Enclave 159

Non-enclave software cannot access PRM memory. A memory ac-
cess that resolves inside the PRM results in an aborted transaction,
which is undefined at an architectural level, On current processors,
aborted writes are ignored, and aborted reads return a value whose
bits are all set to 1. This comes into play in the scenario described
above, where an enclave is loaded into a host application process as
a dynamically loaded library. The system software maps the enclave’s
code and data in ELRANGE into EPC pages. If application software
attempts to access memory inside ELRANGE, it will experience the
abort transaction semantics. The current semantics do not cause the
application to crash (e.g., due to a Page Fault), but also guarantee
that the host application will not be able to tamper with the en-
clave or read its private information.

5.2.2 SGX Enclave Attributes

The execution environment of an enclave is heavily influenced by the
value of the ATTRIBUTES field in the enclave’s SECS (§ 5.1.3). The
rest of this work will refer to the field’s sub-fields, shown in Ta-
ble 5.2, as enclave attributes.

Table 5.2: An enclave’s attributes are the sub-fields in the ATTRIBUTES field of
the enclave’s SECS. This table shows a subset of the attributes defined in the SGX
documentation.

Field Bits Description
DEBUG 1 Opts into enclave debugging features.
XFRM 64 The value of XCR0 (§ 2.6) while this en-

clave’s code is executed.
MODE64BIT 1 Set for 64-bit enclaves.

The most important attribute, from a security perspective, is the
DEBUG flag. When this flag is set, it enables the use of SGX’s de-
bugging features for this enclave. These debugging features include the
ability to read and modify most of the enclave’s memory. Therefore,
DEBUG should only be set in a development environment, as it causes
the enclave to lose all SGX security guarantees.

160 The Software Isolation Container (As Exemplified by Intel’s SGX)

SGX guarantees that enclave code will always run with the XCR0
register (§ 2.6) set to the value indicated by extended features request
mask (XFRM). Enclave authors are expected to use XFRM to specify
the set of architectural extensions enabled by the compiler used to
produce the enclave’s code. Having XFRM be explicitly specified allows
Intel to design new architectural extensions that change the semantics
of existing instructions, such as Memory Protection Extensions (MPX),
without having to worry about the security implications on enclave code
that was developed without an awareness of the new features.

The MODE64BIT flag is set to true for enclaves that use the 64-
bit Intel architecture. From a security standpoint, this flag should not
even exist, as supporting a secondary architecture adds unnecessary
complexity to the SGX implementation, and increases the probability
that security vulnerabilities will creep in. It is very likely that the 32-
bit architecture support was included due to Intel’s strategy of offering
extensive backwards compatibility, which has paid off quite well so far.

In the interest of mental sanity, this work does not analyze the
behavior of SGX for enclaves whose MODE64BIT flag is cleared.
However, a security researcher who wishes to find vulnerabilities in
SGX may study this area.

Last, the INIT flag is always false when the enclave’s SECS is cre-
ated. The flag is set to true at a certain point in the enclave lifecy-
cle, which will be summarized in § 5.3.

5.2.3 Address Translation for SGX Enclaves

Under SGX, the operating system and hypervisor are still in full con-
trol of the page tables and EPTs, and each enclave’s code uses the
same address translation process and page tables (§ 2.5) as its host
application. This minimizes the amount of changes required to add
SGX support to existing system software. At the same time, having
the page tables managed by untrusted system software opens SGX up
to the address translation attacks described in § 3.7. As future sections
will reveal, a good amount of the complexity in SGX’s design can be
attributed to the need to prevent these attacks.

5.2. The Memory Layout of an SGX Enclave 161

SGX’s active memory mapping attacks defense mechanisms re-
volve around ensuring that each EPC page can only be mapped at
a specific virtual address (§ 2.7). When an EPC page is allocated,
its intended virtual address is recorded in the EPCM entry for the
page, in the ADDRESS field.

When an address translation (§ 2.5) result is the physical address
of an EPC page, the CPU ensures2 that the virtual address given to
the address translation process matches the expected virtual address
recorded in the page’s EPCM entry.

SGX also protects against some passive memory mapping attacks
and fault injection attacks by ensuring that the access permissions of
each EPC page always match the enclave author’s intentions. The ac-
cess permissions for each EPC page are specified when the page is
allocated, and recorded in the readable (R), writable (W), and exe-
cutable (X) fields in the page’s EPCM entry, shown in Table 5.3.

Table 5.3: The fields in an EPCM entry that indicate the enclave’s intended virtual
memory layout.

Field Bits Description
ADDRESS 48 the virtual address used to access this page
R 1 allow reads by enclave code
W 1 allow writes by enclave code
X 1 allow execution of code inside the page, inside

enclave

When an address translation (§ 2.5) resolves into an EPC page,
the corresponding EPCM entry’s fields override the access permission
attributes (§ 2.5.3) specified in the page tables. For example, the W
field in the EPCM entry overrides the writable (W) attribute, and the
X field overrides the disable execution (XD) attribute.

It follows that an enclave author must include memory layout in-
formation along with the enclave, in such a way that the system soft-
ware loading the enclave will know the expected virtual memory ad-
dress and access permissions for each enclave page. In return, the

2A mismatch triggers a general protection fault (#GP, § 2.8.2).

162 The Software Isolation Container (As Exemplified by Intel’s SGX)

SGX design guarantees to the enclave authors that the system soft-
ware, which manages the page tables and EPT, will not be able to
set up an enclave’s virtual address space in a manner that is incon-
sistent with the author’s expectations.

The .so and .dll file formats, which are SGX’s intended enclave
delivery vehicles, already have provisions for specifying the virtual ad-
dresses that a software module was designed to use, as well as the
desired access permissions for each of the module’s memory areas.

Last, a SGX-enabled CPU will ensure that the virtual memory
inside ELRANGE (§ 5.2.1) is mapped to EPC pages. This prevents
the system software from carrying out an address translation attack
where it maps the enclave’s entire virtual address space to DRAM
pages outside the PRM, which do not trigger any of the checks above,
and can be directly accessed by the system software.

5.2.4 The Thread Control Structure (TCS)

The SGX design fully embraces multi-core processors. It is possible for
multiple logical processors (§ 2.9.3) to concurrently execute the same
enclave’s code concurrently, via different threads.

The SGX implementation uses a Thread Control Structure (TCS)
for each logical processor that executes an enclave’s code. It follows
that an enclave’s author must provision at least as many TCS in-
stances as the maximum number of concurrent threads that the en-
clave is intended to support.

Each TCS is stored in a dedicated EPC page whose EPCM en-
try type is PT_TCS. The SDM describes the first few fields in the
TCS. These fields are considered to belong to the architectural part
of the structure, and therefore are guaranteed to have the same se-
mantics on all processors that support SGX. The rest of the TCS
is not documented.

The contents of an EPC page that holds a TCS cannot be directly
accessed, even by the code of the enclave that owns the TCS. This
restriction is similar to the restriction on accessing EPC pages hold-
ing SECS instances. However, the architectural fields in a TCS can
be read by enclave debugging instructions.

5.2. The Memory Layout of an SGX Enclave 163

The architectural fields in the TCS lay out the context
switches (§ 2.6) performed by a logical processor when it transitions
between executing non-enclave and enclave code.

For example, the OENTRY field specifies the value loaded in the
instruction pointer (RIP) when the TCS is used to start executing
enclave code, so the enclave author has strict control over the entry
points available to enclave’s host application. Furthermore, the OFS-
BASGX and OFSBASGX fields specify the base addresses loaded in
the FS and GS segment registers (§ 2.7), which typically point to
Thread Local Storage (TLS).

5.2.5 The State Save Area (SSA)

When the processor encounters a hardware exception (§ 2.8.2), such
as an interrupt (§ 2.12), while executing the code inside an enclave, it
performs a privilege level switch (§ 2.8.2) and invokes a hardware ex-
ception handler provided by the system software. Before executing the
exception handler, however, the processor needs a secure area to store
the enclave code’s execution context (§ 2.6), so that the information in
the execution context is not revealed to the untrusted system software.

In the SGX design, the area used to store an enclave thread’s
execution context while a hardware exception is handled is called
a State Save Area (SSA), illustrated in Figure 5.3. Each TCS ref-
erences a contiguous sequence of SSAs. The offset of the SSA ar-
ray (OSSA) field specifies the location of the first SSA in the en-
clave’s virtual address space. The number of SSAs (NSSA) field in-
dicates the number of available SSAs.

Each SSA starts at the beginning of an EPC page, and uses up
the number of EPC pages that is specified in the SSAFRAMESIZE
field of the enclave’s SECS. These alignment and size restrictions most
likely simplify the SGX implementation by reducing the number of
special cases that it needs to handle.

An enclave thread’s execution context consists of the general-
purpose registers (GPRs) and the result of the XSAVE instruc-
tion (§ 2.6). Therefore, the size of the execution context depends on
the requested-feature bitmap (RFBM) used by to XSAVE. All code

164 The Software Isolation Container (As Exemplified by Intel’s SGX)

TCS 1

001000

SECS

SSA 1 Page 1
SSA 1 Page 2
SSA 1 Page 3
SSA 2 Page 1
SSA 2 Page 2
SSA 2 Page 3

NSSA 2
OSSA

OENTRY
OFSBASGX
OGSBASGX

01D038

Thread 1 TLS

008000

SSAFRAMESIZE 3

TCS 2
⋮

Code Pages

Data Pages

_main

RWC3F000 PT_REG

⋮⋮ ⋮

RWXC1D000 PT_REG

RWX

RWX

RW
RW

⋮

RW

R

RW
RW
RW

RW

PTADDRESS
PT_SECS0

C04000

C02000

C05000

C01000

⋮

C1C000

C00000

C03000

C09000

C06000

C08000
C07000

PT_REG

PT_TCS
⋮

PT_REG
PT_REG
PT_REG
PT_REG
PT_REG
PT_REG
PT_REG
PT_TCS
PT_REG

BASEADDR C00000
SIZE 40000

EPCM entries

Enclave virtual
address space

ELF / PE Header

Figure 5.3: A possible layout of an enclave’s virtual address space. Each enclave
has a SECS, and one TCS per supported concurrent thread. Each TCS points to a
sequence of SSAs, and specifies initial values for RIP and for the base addresses of
FS and GS.

in an enclave uses the same RFBM, which is declared in the XFRM
enclave attribute (§ 5.2.2). The number of EPC pages reserved for each
SSA, specified in SSAFRAMESIZE, must3 be large enough to fit the
XSAVE output for the feature bitmap specified by XFRM.

SSAs are stored in regular EPC pages, whose EPCM page type is
PT_REG. Therefore, the SSA contents is accessible to enclave soft-
ware. The SSA layout is architectural, and is completely documented

3ECREATE (§ 5.3.1) fails if SSAFRAMESIZE is too small.

5.3. The Life Cycle of an SGX Enclave 165

in the SDM. This opens up possibilities for an enclave exception han-
dler that is invoked by the host application after a hardware exception
occurs, and acts upon the information in a SSA.

5.3 The Life Cycle of an SGX Enclave

An enclave’s life cycle is deeply intertwined with resource manage-
ment, specifically the allocation of EPC pages. Therefore, the instruc-
tions that transition between different life cycle states can only be
executed by the system software. The system software is expected
to expose the SGX instructions described below as enclave loading
and teardown services.

The following subsections describe the major steps in an enclave’s
lifecycle, which is illustrated by Figure 5.4.

Uninitialized

Initialized
Not in use

Non-
existing ECREATE

Initialized
In use

EINIT

EENTER
ERESUME

EEXIT
AEX

EREMOVE

EADD
EEXTEND

EBLOCK
ETRACK

ELDU, ELDB
EWB

EBLOCK
ETRACK

ELDU, ELDB

EGETKEY
EREPORT

Figure 5.4: The SGX enclave life cycle management instructions and state transi-
tion diagram.

5.3.1 Creation

An enclave is born when the system software issues the ECREATE
instruction, which turns a free EPC page into the SECS (§ 5.1.3)
for the new enclave.

ECREATE initializes the newly created SECS using the information
in a non-EPC page owned by the system software. This page specifies

166 The Software Isolation Container (As Exemplified by Intel’s SGX)

the values for all SECS fields defined in the SDM, such as BASEADDR
and SIZE, using an architectural layout that is guaranteed to be pre-
served by future implementations.

While is very likely that the actual SECS layout used by initial
SGX implementations matches the architectural layout quite closely,
future implementations are free to deviate from this layout, as long
as they maintain the ability to initialize the SECS using the architec-
tural layout. Software cannot access an EPC page that holds a SECS,
so it cannot become dependent on an internal SECS layout. This is
a stronger version of the encapsulation used in the Virtual Machine
Control Structure (VMCS, § 2.8.3).

ECREATE validates the information used to initialize the SECS,
and results in a page fault (#PF, § 2.8.2) or general protection
fault (#GP, § 2.8.2) if the information is not valid. For example, if
the SIZE field is not a power of two, ECREATE results in #GP. This
validation, combined with the fact that the SECS is not accessible by
software, simplifies the implementation of the other SGX instructions,
which can assume that the information inside the SECS is valid.

Last, ECREATE initializes the enclave’s INIT attribute (sub-field
of the ATTRIBUTES field in the enclave’s SECS, § 5.2.2) to the
false value. The enclave’s code cannot be executed until the INIT at-
tribute is set to true, which happens in the initialization stage that
will be described in § 5.3.3.

5.3.2 Loading

ECREATE marks the newly created SECS as uninitialized. While an en-
clave’s SECS is in this state, the system software can use EADD instruc-
tions to load the initial code and data into the enclave. EADD is used
to create both TCS pages (§ 5.2.4) and regular pages.

EADD reads its input data from a Page Information (PAGEINFO)
structure, illustrated in Figure 5.5. The structure’s contents are only
used to communicate information to the SGX implementation, so it is
entirely architectural and documented in the SDM.

Currently, the PAGEINFO structure contains the virtual address of
the EPC page that will be allocated (LINADDR), the virtual address

5.3. The Life Cycle of an SGX Enclave 167

PAGEINFO

SECINFO
SRCPGE
LINADDR
SECS

Enclave and Host Application
Virtual Address Space

SECINFO

R, W, X
FLAGS

PAGE_TYPE

Initial Page Contents

SIZE

SECS
BASEADDR

ELRANGE

New EPC Page

EPCM Entry

ENCLAVESECS
PT
R, W, X
ADDRESS

Figure 5.5: The PAGEINFO structure supplies input data to SGX instructions
such as EADD.

of the non-EPC page whose contents will be copied into the newly al-
located EPC page (SRCPGE), a virtual address that resolves to the
SECS of the enclave that will own the page (SECS), and values for
some of the fields of the EPCM entry associated with the newly al-
located EPC page (SECINFO).

The SECINFO field in the PAGEINFO structure is actually a vir-
tual memory address, and points to a Security Information (SECINFO)
structure, some of which is also illustrated in Figure 5.5. The SECINFO
structure contains the newly allocated EPC page’s access permis-
sions (R, W, X) and its EPCM page type (PT_REG or PT_TCS).
Like PAGEINFO, the SECINFO structure is solely used to commu-
nicate data to the SGX implementation, so its contents are also en-
tirely architectural. However, most of the structure’s 64 bytes are
reserved for future use.

Both the PAGEINFO and the SECINFO structures are prepared
by the system software that invokes the EADD instruction, and there-

168 The Software Isolation Container (As Exemplified by Intel’s SGX)

fore must be contained in non-EPC pages. Both structures must be
aligned to their sizes – PAGEINFO is 32 bytes long, so each PAGE-
INFO instance must be 32-byte aligned, while SECINFO has 64 bytes,
and therefore each SECINFO instance must be 64-byte aligned. The
alignment requirements likely simplify the SGX implementation by re-
ducing the number of special cases that must be handled.

EADD validates its inputs before modifying the newly allocated EPC
page or its EPCM entry. Most importantly, attempting to EADD a page
to an enclave whose SECS is in the initialized state will result in a #GP.
Furthermore, attempting to EADD an EPC page that is already allocated
(the VALID field in its EPCM entry is 1) results in a #PF. EADD
also ensures that the page’s virtual address falls within the enclave’s
ELRANGE, and that all reserved fields in SECINFO are set to zero.

While loading an enclave, the system software will also use the
EEXTEND instruction, which updates the enclave’s measurement used
in the software attestation process. Software attestation is discussed
in § 5.8.

5.3.3 Initialization

After loading the initial code and data pages into the enclave, the sys-
tem software must use a Launch Enclave (LE) to obtain an EINIT
Token Structure, via an under-documented process that will be de-
scribed in more detail in § 5.9.1. The token is then provided to the
EINIT instruction, which marks the enclave’s SECS as initialized.

The LE is a privileged enclave provided by Intel, and is a prereq-
uisite for the use of enclaves authored by parties other than
Intel. The LE is an SGX enclave, so it must be created, loaded and
initialized using the processes described in this section. However, the
LE is cryptographically signed (§ 3.1.3) with a special Intel key that
is hard-coded into the SGX implementation, and that causes EINIT to
initialize the LE without checking for a valid EINIT Token Structure.

When EINIT completes successfully, it sets the enclave’s INIT at-
tribute to true. This opens the way for ring 3 (§ 2.3) application soft-
ware to execute the enclave’s code, using the SGX instructions de-
scribed in § 5.4. On the other hand, once INIT is set to true, EADD

5.4. The Life Cycle of an SGX Thread 169

cannot be invoked on that enclave anymore, so the system software
must load all pages that make up the enclave’s initial state before
executing the EINIT instruction.

5.3.4 Teardown

After the enclave has done the computation it was designed to per-
form, the system software executes the EREMOVE instruction to deal-
locate the EPC pages used by the enclave.

EREMOVE marks an EPC page as available by setting the VALID
field of the page’s EPCM entry to 0 (zero). Before freeing up the page,
EREMOVE makes sure that there is no logical processor executing code
inside the enclave that owns the page to be removed.

An enclave is completely destroyed when the EPC page holding
its SECS is freed. EREMOVE refuses to deallocate a SECS page if it is
referenced by any other EPCM entry’s ENCLAVESECS field, so an
enclave’s SECS page can only be deallocated after all pages belong-
ing to the enclave have been deallocated.

5.4 The Life Cycle of an SGX Thread

Between the time when an enclave is initialized (§ 5.3.3) and the
time when it is torn down (§ 5.3.4), the enclave’s code can be exe-
cuted by any application process that has the enclave’s EPC pages
mapped into its virtual address space.

When executing the code inside an enclave, a logical processor is
said to be in enclave mode, and the code that it executes can access
the regular (PT_REG, § 5.1.2) EPC pages that belong to the currently
executing enclave. When a logical process is outside enclave mode, it
bounces any memory accesses inside the Processor Reserved Memory
range (PRM, § 5.1), which includes the EPC.

Each logical processor that executes enclave code uses a Thread
Control Structure (TCS, § 5.2.4). When a TCS is used by a logi-
cal processor, it is said to be busy, and it cannot be used by any
other logical processor. Figure 5.6 illustrates the instructions used by

170 The Software Isolation Container (As Exemplified by Intel’s SGX)

a host process to execute enclave code and their interactions with
the TCS that they target.

Logical Processor in
Enclave Mode

TCS Busy
CSSA = 0

TCS Available
CSSA = 0 EENTER

TCS Busy
CSSA = 1

TCS Available
CSSA = 1

EEXIT

AEXERESUME

EENTER
EEXIT

TCS Available
CSSA = 2

AEXERESUME

Figure 5.6: The stages of the life cycle of an SGX Thread Control Structure (TCS)
that has two State Save Areas (SSAs).

Assuming that no hardware exception occurs, an enclave’s host pro-
cess uses the EENTER instruction, described in § 5.4.1, to execute enclave
code. When the enclave code finishes performing its task, it uses the
EEXIT instruction, covered in § 5.4.2, to return the execution control
to the host process that invoked the enclave.

If a hardware exception occurs while a logical processor is in en-
clave mode, the processor is taken out of enclave mode using an Asyn-
chronous Enclave Exit (AEX), summarized in § 5.4.3, before the system
software’s exception handler is invoked. After the system software’s
handler is invoked, the enclave’s host process can use the ERESUME
instruction, described in § 5.4.4, to re-enter the enclave and resume
the computation that it was performing.

5.4.1 Synchronous Enclave Entry

At a high level, EENTER performs a controlled jump into enclave
code, while performing the processor configuration that is needed by
SGX’s security guarantees. Going through all configuration steps is

5.4. The Life Cycle of an SGX Thread 171

a tedious exercise, but is a necessary prerequisite to understanding
how all data structures used by SGX work together. For this rea-
son, EENTER and its siblings are described in much more detail than
the other SGX instructions.

EENTER, illustrated in Figure 5.7 can only be executed by unprivi-
leged application software running at ring 3 (§ 2.3), and results in an
undefined instruction (#UD) fault if it is executed by system software.

OENTRY

OFSBASGX

TCS
Reserved

OSSA
CSSA

OGSBASGX

FSLIMIT
GSLIMIT

XFRM
BASEADDR
SSAFRAMESIZE
SECS

PT

TCS EPCM Entry
ENCLAVESECS
R, W, X, PT

XCR0

RCX
RBP

GS

FS

RBX
RIP

RSP
Input Register File

GPRSGX
XSAVE
AEP
U_RBP
U_RSP
SSA

+

x

RCX

FS

GS
RIP

XCR0

Output
Register File

Limit Base

+

+

Limit Base

SelectorTypeBase Limit

CR_SAVE_XCR0

CR_SAVE_FS

CR_SAVE_GS

SelectorTypeBase Limit

+

WriteRead

Figure 5.7: Data flow diagram for a subset of the logic in EENTER. The figure
omits the logic for disabling debugging features, such as hardware breakpoints and
performance monitoring events.

172 The Software Isolation Container (As Exemplified by Intel’s SGX)

EENTER switches the logical processor to enclave mode, but does
not perform a privilege level switch (§ 2.8.2). Therefore, enclave code
always executes at ring 3, with the same privileges as the application
code that calls it. This makes it possible for an infrastructure owner to
allow user-supplied software to create and use enclaves, while having
the assurance that the OS kernel and hypervisor can still protect the
infrastructure from buggy or malicious software.

EENTER takes the virtual address of a TCS as its input, and requires
that the TCS is available (not busy), and that at least one State Save
Area (SSA, § 5.2.5) is available in the TCS. The latter check is imple-
mented by making sure that the current SSA index (CSSA) field in the
TCS is less than the number of SSAs (NSSA) field. The SSA indicated
by the CSSA, which shall be called the current SSA, is used in the
event that a hardware exception occurs while enclave code is executed.

EENTER transitions the logical processor into enclave mode, and sets
the instruction pointer (RIP) to the value indicated by the entry point
offset (OENTRY) field in the TCS that it receives. EENTER is used
by an untrusted caller to execute code in a protected environment,
and therefore has the same security considerations as SYSCALL (§ 2.8),
which is used to call into system software. Setting RIP to the value
indicated by OENTRY guarantees to the enclave author that the en-
clave code will only be invoked at well defined points, and prevents
a malicious host application from bypassing any security checks that
the enclave author may perform.

EENTER also sets XCR0 (§ 2.6), the register that controls which
extended architectural features are in use, to the value of the XFRM
enclave attribute (§ 5.2.2). Ensuring that XCR0 is set according to
the enclave author’s intentions prevents a malicious operating system
from bypassing an enclave’s security by enabling architectural features
that the enclave is not prepared to handle.

Furthermore, EENTER loads the bases of the segment registers (§ 2.7)
FS and GS using values specified in the TCS. The segments’ selectors
and types are hard-coded to safe values for ring 3 data segments. This
aspect of the SGX design makes it easy to implement per-thread Thread
Local Storage (TLS). For 64-bit enclaves, this is a convenience feature

5.4. The Life Cycle of an SGX Thread 173

rather than a security measure, as enclave code can securely load new
bases into FS and GS using the WRFSBASE and WRGSBASE instructions.

The EENTER implementation backs up the old values of the registers
that it modifies, so they can be restored when the enclave finishes
its computation. Just like SYSCALL, EEENTER saves the address of the
following instruction in the RCX register.

Interestingly, the SDM states that the old values of the XCR0,
FS, and GS registers are saved in new registers dedicated to the SGX
implementation. However, given that they will only be used on an en-
clave exit, we expect that the registers are saved in DRAM, in the
reserved area in the TCS.

Like SYSCALL, EENTER does not modify the stack pointer register
(RSP). To avoid any security exploits, enclave code should set RSP to
point to a stack area that is entirely contained in EPC pages. Multi-
threaded enclaves can easily implement per-thread stack areas by set-
ting up each thread’s TLS area to include a pointer to the thread’s
stack, and by setting RSP to the value obtained by reading the TLS
area at which the FS or GS segment points.

Last, when EENTER enters enclave mode, it suspends some of the
processor’s debugging features, such as hardware breakpoints and Pre-
cise Event Based Sampling (PEBS). Conceptually, a debugger at-
tached to the host process sees the enclave’s execution as one sin-
gle processor instruction.

5.4.2 Synchronous Enclave Exit

EEXIT can only be executed while the logical processor is in en-
clave mode, and results in a (#UD) if executed in any other circum-
stances. In a nutshell, the instruction returns the processor to ring
3 outside enclave mode and restores the registers saved by EENTER,
which were described above.

Unlike SYSRET, EEXIT sets RIP to the value read from RBX, after
exiting enclave mode. This is inconsistent with EENTER, which saves
the RIP value to RCX. Unless this inconsistency stems from an error
in the SDM, enclave code must be sure to note the difference.

174 The Software Isolation Container (As Exemplified by Intel’s SGX)

The SDM explicitly states that EEXIT does not modify most regis-
ters, so enclave authors must make sure to clear any secrets stored in
the processor’s registers before returning control to the host process.
Furthermore, enclave software will most likely cause a fault in its caller
if it doesn’t restore the stack pointer RSP and the stack frame base
pointer RBP to the values that they had when EENTER was called.

It may seem unfortunate that enclave code can induce faults in its
caller. For better or for worse, this perfectly matches the case where
an application calls into a dynamically loaded module. More specifi-
cally, the module’s code is also responsible for preserving stack-related
registers, and a buggy module may jump into any address in the ap-
plication code of the host process.

This section describes the EENTER behavior for 64-bit enclaves. The
EENTER implementation for 32-bit enclaves is significantly more com-
plex, due to the extra special cases introduced by the full-fledged seg-
mentation model that is still present in the 32-bit Intel architecture. As
stated in the introduction, we are not interested in such legacy aspects.

5.4.3 Asynchronous Enclave Exit (AEX)

If a hardware exception, like a fault (§ 2.8.2) or an interrupt (§ 2.12),
occurs while a logical processor is executing an enclave’s code, the pro-
cessor performs an Asynchronous Enclave Exit (AEX) before invoking
the system software’s exception handler, as shown in Figure 5.8.

The AEX saves the enclave code’s execution context (§ 2.6), re-
stores the state saved by EENTER, and sets up the processor registers so
that the system software’s hardware exception handler will return to an
asynchronous exit handler in the enclave’s host process. The exit han-
dler is expected to use the ERESUME instruction to resume the enclave
computation that was interrupted by the hardware exception.

Asides from the behavior described in § 5.4.1, EENTER also writes
some information to the current SSA, which is only used if an AEX
occurs. As shown in Figure 5.7, EENTER stores the stack pointer reg-
ister RSP and the stack frame base pointer register RBP into the
U_RSP and U_RBP fields in the current SSA. Last, EENTER stores

5.4. The Life Cycle of an SGX Thread 175

 ERESUME

 return SUCCESS;
}

 store call results

Application Code

 store call results

 }

 return ERROR;

 try {

int call() {

 prepare call arguments

 EENTER

 } catch (AEX e) {

Resumable
exception?

RCX: AEP RBX: TCS

RCX: AEP RBX: TCS

Yes

 perform enclave
 computation

 PUSH RCX

}

Enclave Code

 POP RBX

void entry() {

 read ESP from
 FS:TLS

 EEXIT

RCX set by
 EENTER

CSSA
TCS

OENTRY

XSAVE

U_RSP

AEP

SSA

GPRSGX

U_RBP

AEX

Code

SS
RSP
RFLAGS
CS
RIP

GPRs

Ring 0
Stack

No

 restore GPRs
 handle exception

}

System Software
Hardware Exception Handler
void handler() {

 save GPRs

 IRET

Synchronous
Execution Path

AEX Path

Registers
cleared
by AEX

Figure 5.8: If a hardware exception occurs during enclave execution, the syn-
chronous execution path is aborted, and an Asynchronous Enclave Exit (AEX) oc-
curs instead.

the value in RCX in the Asynchronous Exit handler Pointer (AEP)
field in the current SSA.

When a hardware exception occurs in enclave mode, the SGX imple-
mentation performs a sequence of steps that takes the logical processor
out of enclave mode and invokes the hardware exception handler in the
system software. Conceptually, the SGX implementation first performs
an AEX to take the logical processor out of enclave mode, and then the
hardware exception is handled using the standard Intel architecture’s

176 The Software Isolation Container (As Exemplified by Intel’s SGX)

behavior described in § 2.8.2. Actual Intel processors may interleave
the AEX implementation with the exception handling implementation.
However, for simplicity, this work describes AEX as a separate process
that is performed before any exception handling steps are taken.

In the Intel architecture, if a hardware exception occurs, the ap-
plication code’s execution context can be read and modified by the
system software’s exception handler (§ 2.8.2). This is acceptable when
the system software is trusted by the application software. However,
under SGX’s threat model, the system software is not trusted by en-
claves. Therefore, the AEX step erases any secrets that may exist in
the execution state by resetting all its registers to predefined values.

Before the enclave’s execution state is reset, it is backed up inside
the current SSA. Specifically, an AEX backs up the general purpose
registers (GPRs, § 2.6) in the GPRSGX area in the SSA, and then
performs an XSAVE (§ 2.6) using the requested-feature bitmap (RFBM)
specified in the XFRM field in the enclave’s SECS. As each SSA is
entirely stored in EPC pages allocated to the enclave, the system soft-
ware cannot read or tamper with the backed up execution state. When
an SSA receives the enclave’s execution state, it is marked as used by
incrementing the CSSA field in the current TCS.

After clearing the execution context, the AEX process sets RSP
and RBP to the values saved by EENTER in the current SSA, and sets
RIP to the value in the current SSA’s AEP field. This way, when the
system software’s hardware exception handler completes, the processor
will execute the asynchronous exit handler code in the enclave’s host
process. The SGX design makes it easy to set up the asynchronous
handler code as an exception handler in the routine that contains the
EENTER instruction, because the RSP and RBP registers will have the
same values as they had when EENTER was executed.

Many of the actions taken by AEX to get the logical processor
outside of enclave mode match EEXIT. The segment registers FS and GS
are restored to the values saved by EENTER, and all debugging facilities
that were suppressed by EENTER are restored to their previous states.

5.4. The Life Cycle of an SGX Thread 177

5.4.4 Recovering from an Asynchronous Exit

When a hardware exception occurs inside enclave mode, the proces-
sor performs an AEX before invoking the exception’s handler set up
by the system software. The AEX sets up the execution context in
such a way that when the system software finishes processing the
exception, it returns into an asynchronous exit handler in the en-
clave’s host process. The asynchronous exception handler usually ex-
ecutes the ERESUME instruction, which causes the logical processor to
go back into enclave mode and continue the computation that was
interrupted by the hardware exception.

ERESUME shares much of its functionality with EENTER. This is best
illustrated by the similarity between Figures 5.9 and 5.8.

EENTER and ERESUME receive the same inputs, namely a pointer
to a TCS, described in § 5.4.1, and an AEP, described in § 5.4.3.
The most common application design will pair each EENTER instance
with an asynchronous exit handler that invokes ERESUME with ex-
actly the same arguments.

The main difference between ERESUME and EENTER is that the former
uses an SSA that was “filled out” by an AEX (§ 5.4.3), whereas the
latter uses an empty SSA. Therefore, ERESUME results in a #GP fault
if the CSSA field in the provided TCS is 0 (zero), whereas EENTER fails
if CSSA is greater than or equal to NSSA.

When successful, ERESUME decrements the CSSA field of the TCS,
and restores the execution context backed up in the SSA pointed to by
the CSSA field in the TCS. Specifically, the ERESUME implementation
restores the GPRs (§ 2.6) from the GPRSGX field in the SSA, and
performs an XRSTOR (§ 2.6) to load the execution state associated with
the extended architectural features used by the enclave.

ERESUME shares the following behavior with EENTER (§ 5.4.1). Both
instructions write the U_RSP, U_RBP, and AEP fields in the cur-
rent SSA. Both instructions follow the same process for backing up
XCR0 and the FS and GS segment registers, and set them to the
same values, based on the current TCS and its enclave’s SECS. Last,
both instructions disable the same subset of the logical processor’s
debugging features.

178 The Software Isolation Container (As Exemplified by Intel’s SGX)

 ERESUME

 return SUCCESS;
}

 store call results

Application Code

 store call results

 }

 return ERROR;

 try {

int call() {

 prepare call arguments

 EENTER

 } catch (AEX e) {

Resumable
exception?

RCX: AEP RBX: TCS

RCX: AEP RBX: TCS

Yes

 perform enclave
 computation

 PUSH RCX

}

Enclave Code

 POP RBX

void entry() {

 read ESP from
 FS:TLS

 EEXIT

RCX set by
 ERESUME

CSSA
TCS

OENTRY

XSAVE

U_RSP

AEP

SSA

GPRSGX

U_RBP

AEX

Code

SS
RSP
RFLAGS
CS
RIP

GPRs

Ring 0
Stack

No

 restore GPRs
 handle exception

}

System Software
Hardware Exception Handler
void handler() {

 save GPRs

 IRET

Synchronous
Execution Path

AEX Path

Registers
cleared
by AEX

Figure 5.9: If a hardware exception occurs during enclave execution following
an ERESUME, the synchronous execution path is aborted, and an Asynchronous
Enclave Exit (AEX) occurs instead.

An interesting edge case that ERESUME handles correctly is that
it sets XCR0 to the XFRM enclave attribute before performing an
XRSTOR. It follows that ERESUME fails if the requested feature bitmap
(RFBM) in the SSA is not a subset of XFRM. This matters because,
while an AEX will always use the XFRM value as the RFBM, en-
clave code executing on another thread is free to modify the SSA
contents before ERESUME is called.

5.5. EPC Page Eviction 179

The correct sequencing of actions in the ERESUME implementation
prevents a malicious application from using an enclave to modify reg-
isters associated with extended architectural features that are not de-
clared in XFRM. This would break the system software’s ability to
provide thread-level execution context isolation.

5.5 EPC Page Eviction

Modern OS kernels take advantage of address translation (§ 2.5) to
implement page swapping, also referred to as paging (§ 2.5). In a
nutshell, paging allows the OS kernel to over-commit the computer’s
DRAM by evicting rarely used memory pages to a slower storage
medium called the disk.

Paging is a key contributor to utilizing a computer’s resources ef-
fectively. For example, a desktop system whose user runs multiple pro-
grams concurrently can evict memory pages allocated to inactive ap-
plications without a significant degradation in user experience.

Unfortunately, the OS cannot be allowed to evict an enclave’s EPC
pages via the same methods that are used to implement page swap-
ping for DRAM memory outside the PRM range. In the SGX threat
model, enclaves do not trust the system software, so the SGX de-
sign offers an EPC page eviction method that can defend against
a malicious OS that attempts any of the active address translation
attacks described in § 3.7.

The price of the security afforded by SGX is that an OS kernel that
supports evicting EPC pages must use a modified page swapping imple-
mentation that interacts with the SGX mechanisms. Enclave authors
can mostly ignore EPC evictions, similarly to how today’s application
developers can ignore the OS kernel’s paging implementation.

As illustrated in Figure 5.10, SGX supports evicting EPC pages to
DRAM pages outside the PRM range. The system software is expected
to use its existing page swapping implementation to evict the contents
of these pages out of DRAM and onto a disk.

SGX’s eviction feature revolves around the EWB instruction, de-
scribed in detail in § 5.5.4. Essentially, EWB evicts an EPC page into a

180 The Software Isolation Container (As Exemplified by Intel’s SGX)

HDD / SSD

DRAM DRAM

EWB

ELDU,
ELDB

classical
page

swapping

Enclave
Memory

Non-PRM
Memory

Disk

EPC

Figure 5.10: SGX offers a method for the OS to evict EPC pages into non-PRM
DRAM. The OS can then use its standard paging feature to evict the pages out of
DRAM.

DRAM page outside the EPC and marks the EPC page as available,
by zeroing the VALID field in the page’s EPCM entry.

The SGX design relies on symmetric key cryptography (§ 3.1.1) to
guarantee the confidentiality and integrity of the evicted EPC pages,
and on nonces (§ 3.1.4) to guarantee the freshness of the pages brought
back into the EPC. These nonces are stored in Version Arrays (VAs),
covered in § 5.5.2, which are EPC pages dedicated to nonce storage.

Before an EPC page is evicted and freed up for use by other en-
claves, the SGX implementation must ensure that no TLB has address
translations associated with the evicted page, in order to avoid the
TLB-based address translation attack described in § 3.7.4.

As explained in § 5.1.1, SGX leaves the system software in charge
of managing the EPC. It naturally follows that the SGX instructions
described in this section, which are used to implement EPC paging,
are only available to system software, which runs at ring 0 (§ 2.3).

In today’s software stacks (§ 2.3), only the OS kernel implements
page swapping in order to support the over-committing of DRAM. The
hypervisor is only used to partition the computer’s physical resources
between operating systems. Therefore, this section is written with the
expectation that the OS kernel will also take on the responsibility of
EPC page swapping. For simplicity, we often use the term “OS kernel”
instead of “system software”. The reader should be aware that the SGX
design does not preclude a system where the hypervisor implements its

5.5. EPC Page Eviction 181

own EPC page swapping. Therefore, “OS kernel” should really be read
as “the system software that performs EPC paging”.

5.5.1 Page Eviction and the TLBs

One of the least promoted accomplishments of SGX is that it does
not add any security checks to the memory execution units (§ 2.9.4,
§ 2.10). Instead, SGX’s access control checks occur after an address
translation (§ 2.5) is performed, right before the translation result
is written into the TLBs (§ 2.11.5). This aspect is generally down-
played throughout the SDM, but it becomes visible when explaining
SGX’s EPC page eviction mechanism.

A full discussion of SGX’s memory access protections checks mer-
its its own section, and is deferred to part II of this work. The EPC
page eviction mechanisms can be explained using only two require-
ments from SGX’s security model. First, when a logical processor exits
an enclave, either via EEXIT (§ 5.4.2) or via an AEX (§ 5.4.3), its TLBs
are flushed. Second, when an EPC page is deallocated from an enclave,
all logical processors executing that enclave’s code must be directed
to exit the enclave. This is sufficient to guarantee the removal of any
TLB entry targeting the deallocated EPC.

System software can cause a logical processor to exit an enclave
by sending it an Inter-Processor Interrupt (IPI, § 2.12), which will
trigger an AEX when received. Essentially, this is a very coarse-
grained TLB shootdown.

SGX does not trust system software. Therefore, before marking an
EPC page’s EPCM entry as free, the SGX implementation must en-
sure that the OS kernel has flushed all TLBs that may contain transla-
tions for the page. Furthermore, performing IPIs and TLB flushes for
each page eviction would add a significant overhead to a paging im-
plementation, so the SGX design allows a batch of pages to be evicted
using a single IPI / TLB flush sequence.

The TLB flush verification logic relies on a 1-bit EPCM entry
field called BLOCKED. As shown in Figure 5.11, the VALID and
BLOCKED fields yield three possible EPC page states. A page is free

182 The Software Isolation Container (As Exemplified by Intel’s SGX)

when both bits are zero, in use when VALID is zero and BLOCKED
is one, and blocked when both bits are one.

Blocked
BLOCKED = 1

VALID = 1

In Use
BLOCKED = 0

VALID = 1
EBLOCK

Free
BLOCKED = 0

VALID = 0

EWBEREMOVE

ELDU

EREMOVE

ECREATE,
EADD, EPA

ELDB

Figure 5.11: The VALID and BLOCKED bits in an EPC page’s EPCM entry can
be in one of three states. EADD and its siblings allocate new EPC pages. EREMOVE
permanently deallocates an EPC page. EBLOCK blocks an EPC page so it can be
evicted using EWB. ELDB and ELDU load an evicted page back into the EPC.

Blocked pages are not considered accessible to enclaves. If an ad-
dress translation results in a blocked EPC page, the SGX implemen-
tation causes the translation to result in a Page Fault (#PF, § 2.8.2).
This guarantees that once a page is blocked, the CPU will not cre-
ate any new TLB entries pointing to it.

Furthermore, every SGX instruction makes sure that the EPC pages
on which it operates are not blocked. For example, EENTER ensures
that the TCS it is given is not blocked, that its enclave’s SECS is not
blocked, and that every page in the current SSA is not blocked.

In order to evict a batch of EPC pages, the OS kernel must first issue
EBLOCK instructions targeting them. The OS is also expected to remove
the EPC page’s mapping from page tables, but is not trusted to do so.

After all desired pages have been blocked, the OS kernel must ex-
ecute an ETRACK instruction, which directs the SGX implementation
to keep track of which logical processors have had their TLBs flushed.
ETRACK requires the virtual address of an enclave’s SECS (§ 5.1.3). If
the OS wishes to evict a batch of EPC pages belonging to multiple
enclaves, it must issue an ETRACK for each enclave.

5.5. EPC Page Eviction 183

Following the ETRACK instructions, the OS kernel must induce en-
clave exits on all logical processors that are executing code inside
the enclaves that have been ETRACKed. The SGX design expects that
the OS will use IPIs to cause AEXs in the logical processors whose
TLBs must be flushed.

The EPC page eviction process is completed when the OS executes
an EWB instruction for each EPC page to be evicted. This instruction,
which will be fully described in § 5.5.4, writes an encrypted version of
the EPC page to be evicted into DRAM, and then frees the page by
clearing the VALID and BLOCKED bits in its EPCM entry. Before
carrying out its tasks, EWB ensures that the EPC page that it targets
has been blocked, and checks the state set up by ETRACK to make sure
that all relevant TLBs have been flushed.

An evicted page can be loaded back into the EPC via the ELDU and
ELDB instructions. Both instructions start up with a free EPC page
and a DRAM page that has the evicted contents of an EPC page,
decrypt the DRAM page’s contents into the EPC page, and restore
the corresponding EPCM entry. The only difference between ELDU and
ELDB is that the latter sets the BLOCKED bit in the page’s EPCM
entry, whereas the former leaves it cleared.

ELDU and ELDB resemble ECREATE and EADD, in the sense that they
populate a free EPC page. Since the page that they operate on was
free, the SGX security model predicates that no TLB entries can pos-
sibly target it. Therefore, these instructions do not require a mech-
anism similar to EBLOCK or ETRACK.

5.5.2 The Version Array (VA)

When EWB evicts the contents of an EPC, it creates an 8-byte
nonce (§ 3.1.4) that Intel’s documentation calls a page version. SGX’s
freshness guarantees are built on the assumption that nonces are
stored securely, so EWB stores the nonce that it creates inside a Ver-
sion Array (VA).

Version Arrays are EPC pages that are dedicated to storing nonces
generated by EWB. Each VA is divided into slots, and each slot is
exactly large enough to store one nonce. Given that the size of an

184 The Software Isolation Container (As Exemplified by Intel’s SGX)

EPC page is 4KB, and each nonce occupies 8 bytes, it follows that
each VA has 512 slots.

VA pages are allocated using the EPA instruction, which takes in the
virtual address of a free EPC page, and turns it into a Version Array
with empty slots. VA pages are identified by the PT_VA type in their
EPCM entries. Like SECS pages, VA pages have the ENCLAVEAD-
DRESS fields in their EPCM entries set to zero, and cannot be accessed
directly by any software, including enclaves.

Unlike the other page types discussed so far, VA pages are not
associated with any enclave. This means they can be deallocated via
EREMOVE without any restriction. However, freeing up a VA page whose
slots are in use effectively discards the nonces in those slots, which
results in losing the ability to load the corresponding evicted pages back
into the EPC. Therefore, it is unlikely that a correct OS implementation
will ever call EREMOVE on a VA with non-free slots.

According to the pseudo-code for EPA and EWB in the SDM, SGX
uses the zero value to represent the free slots in a VA, implying that
all generated nonces have to be non-zero. This also means that EPA
initializes a VA simply by zeroing the underlying EPC page. However,
since software cannot access a VA’s contents, neither the use of a special
value, nor the value itself is architectural.

5.5.3 Enclave IDs

The EWB and ELDU / ELDB instructions use an enclave ID (EID) to
identify the enclave that owns an evicted page. The EID has the same
purpose as the ENCLAVESECS (§ 5.1.2) field in an EPCM entry, which
is also used to identify the enclave that owns an EPC page. This section
explains the need for having two values represent the same concept by
comparing the two values and their uses.

The SDM states that ENCLAVESECS field in an EPCM entry
is used to identify the SECS of the enclave owning the associated
EPC page, but stops short of describing its format. In theory, the EN-
CLAVESECS field can change its representation between SGX imple-
mentations since SGX instructions never expose its value to software.

5.5. EPC Page Eviction 185

However, we will later argue that the most plausible representa-
tion of the ENCLAVESECS field is the physical address of the en-
clave’s SECS. Therefore, the ENCLAVESECS value associated with
a given enclave will change if the enclave’s SECS is evicted from the
EPC and loaded back at a different location. It follows that the EN-
CLAVESECS value is only suitable for identifying an enclave while
its SECS remains in the EPC.

According to the SDM, the EID field is a 64-bit field stored in
an enclave’s SECS. ECREATE’s pseudocode in the SDM reveals that an
enclave’s ID is generated when the SECS is allocated, by atomically
incrementing a global counter. Assuming that the counter does not
roll over4, this process guarantees that every enclave created during
a power cycle has a unique EID.

Although the SDM does not specifically guarantee this, the EID
field in an enclave’s SECS does not appear to be modified by any
instruction. This makes the EID’s value suitable for identifying an
enclave throughout its lifetime, even across evictions of its SECS
page from the EPC.

5.5.4 Evicting an EPC Page

The system software evicts an EPC page using the EWB instruction,
which produces all data needed to restore the evicted page at a later
time via the ELDU instruction, as shown in Figure 5.12.

EWB’s output consists of an encrypted version of the evicted EPC
page’s contents, a subset of the fields in the EPCM entry corresponding
to the page, the nonce discussed in § 5.5.2, and a message authenti-
cation code (MAC, § 3.1.3) tag. With the exception of the nonce, EWB
writes its output in DRAM outside the PRM area, so the system soft-
ware can choose to further evict it to disk.

The EPC page contents is encrypted, to protect the confidential-
ity of the enclave’s data while the page is stored in the untrusted
DRAM outside the PRM range. Without the use of encryption, the
system software could learn the contents of an EPC page by evict-
ing it from the EPC.

4A 64-bit counter incremented at 4GHz rolls over in slightly more than 136 years.

186 The Software Isolation Container (As Exemplified by Intel’s SGX)

Untrusted DRAM
⋮

VA page

nonce

⋮

EWB

Encrypted
EPC Page

Page
Metadata

MAC
Tag

⋮
VA page

⋮
EWB source page

⋮

EPC

ELDB target page

⋮

⋮
VA page metadata

⋮
EWB source metadata

⋮

EPCM

ELDB target metadata

⋮

ELDU /
ELDB

Figure 5.12: The EWB instruction outputs the encrypted contents of the evicted
EPC page, a subset of the fields in the page’s EPCM entry, a MAC tag, and a nonce.
All this information is used by the ELDB or ELDU instruction to load the evicted page
back into the EPC, with confidentiality, integrity and freshness guarantees.

The page metadata is stored in a Page Information (PAGE-
INFO) structure, illustrated in Figure 5.13. This structure is simi-
lar to the PAGEINFO structure described in § 5.3.2 and depicted
in Figure 5.5, except that the SECINFO field has been replaced by
a PCMD field, which contains the virtual address of a Page Crypto
Metadata (PCMD) structure.

The LINADDR field in the PAGEINFO structure is used to store
the ADDRESS field in the EPCM entry, which indicates the virtual

5.5. EPC Page Eviction 187

PAGEINFO

PCMD
SRCPGE
LINADDR
SECS

Enclave and Host Application
Virtual Address Space

MAC
ENCLAVEID

PCMD

Encrypted EPC Page

EID
SIZE

SECS
BASEADDR

ELRANGE

EPC Page

EPCM Entry

ENCLAVESECS
PT
R, W, X
ADDRESS

SECINFO

R, W, X
FLAGS

PAGE_TYPE

=

Figure 5.13: The PAGEINFO structure used by the EWB and ELDU / ELDB instruc-
tions.

address intended for accessing the page. The PCMD structure embeds
the Security Information (SECINFO) described in § 5.3.2, which is
used to store the page type (PT) and the access permission flags (R,
W, X) in the EPCM entry. The PCMD structure also stores the en-
clave’s ID (EID, § 5.5.3). These fields are later used by ELDU or ELDB
to populate the EPCM entry for the EPC page that is reloaded.

The metadata described above is stored unencrypted, so the OS has
the option of using the information inside as-is for its own bookkeeping.
This has no negative impact on security, because the metadata is not
confidential. In fact, with the exception of the enclave ID, all metadata
fields are specified by the system software when ECREATE is called. The

188 The Software Isolation Container (As Exemplified by Intel’s SGX)

enclave ID is only useful for identifying the enclave that the EPC page
belongs to, and the system software already has this information as well.

Asides from the metadata described above, the PCMD structure
also stores the MAC tag generated by EWB. The MAC tag covers the
authenticity of the EPC page contents, the metadata, and the nonce.
The MAC tag is checked by ELDU and ELDB, which will only load an
evicted page back into the EPC if the MAC verification confirms the
authenticity of the page data, metadata, and nonce. This security check
protects against the page swapping attacks described in § 3.7.3.

Similarly to EREMOVE, EWB will only evict the EPC page holding an
enclave’s SECS if there is no other EPCM entry whose ENCLAVESECS
field references the SECS. At the same time, as an optimization, the
SGX implementation does not perform ETRACK-related checks when
evicting a SECS. This is safe because a SECS is only evicted if the
EPC has no pages belonging to the SECS’ enclave, which implies that
there isn’t any TCS belonging to the enclave in the EPC, so no pro-
cessor can be executing enclave code.

The pages holding Version Arrays can be evicted, just like any other
EPC page. VA pages are never accessible by software, so they can’t
have any TLB entries pointing to them. Therefore, EWB evicts VA pages
without performing any ETRACK-related checks. The ability to evict VA
pages has profound implications that will be discussed in § 5.5.6.

EWB’s data flow, shown in detail in Figure 5.14, has an aspect that
can be confusing to OS developers. The instruction reads the virtual
address of the EPC page to be evicted from a register (RBX) and
writes it to the LINADDR field of the PAGEINFO structure that it
is provided. The separate input (RBX) could have been removed by
providing the EPC page’s address in the LINADDR field.

5.5.5 Loading an Evicted Page Back into EPC

After an EPC page belonging to an enclave is evicted, any at-
tempt to access the page from enclave code will result in a Page
Fault (#PF, § 2.8.2). The #PF will cause the logical processor to
exit enclave mode via AEX (§ 5.4.3), and then invoke the OS ker-
nel’s page fault handler.

5.5. EPC Page Eviction 189

TRACKING

SECS
EID

AES-GCM

PCMD (Output)

MAC
reserved fields
ENCLAVEID

SECINFO

reserved fields

PAGE_TYPE

FLAGS
R, W, X

PAGEINFO
(Input/Output)

SECS
PCMD
SRCPGE
LINADDR

LINADDR

MAC_HDR
(Temporary)
EID

EPC Page Address
(Input)

LINADDR
ENCLAVESECS

BLOCKED

VALID

EPCM entry

PT
R, W, X

EPC Page

SECINFO

reserved fields

R, W, X

FLAGS
PAGE_TYPE

non-EPC
Page

MAC

ciphertext

plaintext

Page Version
(Generated) VA slot address

(Input)
⋮

VA page

target VA slot

⋮

counter

MAC data

zero

points to
copied to

Figure 5.14: The data flow of the EWB instruction that evicts an EPC page. The
page’s content is encrypted in a non-EPC RAM page. A nonce is created and saved
in an empty slot inside a VA page. The page’s EPCM metadata and a MAC are
saved in a separate area in non-EPC memory.

Page faults receive special handling from the AEX process. While
leaving the enclave, the AEX logic specifically checks if the hardware
exception that triggered the AEX was #PF. If that is the case, the AEX

190 The Software Isolation Container (As Exemplified by Intel’s SGX)

implementation clears the least significant 12 bits of the CR2 register,
which stores the virtual address whose translation caused a page fault.

In general, the OS kernel’s page handler needs to be able to ex-
tract the virtual page number (VPN, § 2.5.1) from CR2, so that it
knows which memory page needs to be loaded back into DRAM. The
OS kernel may also be able to use the 12 least significant address bits,
which are not part of the VPN, to better predict the application soft-
ware’s memory access patterns. However, unlike the bits that make
up the VPN, the bottom 12 bits are not absolutely necessary for the
fault handler to carry out its job. Therefore, SGX’s AEX implementa-
tion clears these 12 bits, in order to limit the amount of information
that is learned by the page fault handler.

When the OS page fault handler examines the address in the CR2
register and determines that the faulting address is inside the EPC, it
is generally expected to use the ELDU or ELDB instruction to load the
evicted page back into the EPC. If the outputs of EWB have been evicted
from DRAM to a slower storage medium, the OS kernel will have to
read the outputs back into DRAM before invoking ELDU / ELDB.

ELDU and ELDB verify the MAC tag produced by EWB, described
in § 5.5.4. This prevents the OS kernel from performing the page
swapping-based active address translation attack described in § 3.7.3.

5.5.6 Eviction Trees

The SGX design allows VA pages to be evicted from the EPC, just like
enclave pages. When a VA page is evicted from EPC, all nonces stored
by the VA slots become inaccessible to the processor. Therefore, the
evicted pages associated with these nonces cannot be restored by ELDB
until the OS loads the VA page back into the EPC.

In other words, an evicted page depends on the VA page storing
its nonce, and cannot be loaded back into the EPC until the VA page
is reloaded as well. The dependency graph created by this relationship
is a forest of eviction trees. An eviction tree, shown in Figure 5.15,
has enclave EPC pages as leaves, and VA pages as inner nodes. A
page’s parent is the VA page that holds its nonce. Since EWB always

5.5. EPC Page Eviction 191

outputs a nonce in a VA page, the root node of each eviction tree
is always a VA page in the EPC.

Encrypted VA
Page

⋮

⋮

Encrypted
EPC Page

Page
Metadata

MAC
Tag

Page
Metadata

MAC
Tag

Encrypted VA
Page

⋮

⋮

⋮

Encrypted
EPC Page

Page
Metadata

MAC
Tag

Page
Metadata

MAC
Tag

Encrypted
EPC Page

Page
Metadata

MAC
Tag

VA Page

⋮

⋮

Figure 5.15: A version tree formed by evicted VA pages and enclave EPC pages.
The enclave pages are leaves, and the VA pages are inner nodes. The OS controls the
tree’s shape, which impacts the performance of evictions, but not their correctness.

192 The Software Isolation Container (As Exemplified by Intel’s SGX)

A straightforward inductive argument shows that when an OS
wishes to load an evicted enclave page back into the EPC, it needs
to load all VA pages on the path from the eviction tree’s root to the
leaf corresponding to the enclave page. Therefore, the number of page
loads required to satisfy a page fault inside the EPC depends on the
shape of the eviction tree that contains the page.

The SGX design leaves the OS in complete control of the shape
of the eviction trees. This has no negative impact on security, as
the tree shape only impacts the performance of the eviction scheme,
and not its correctness.

5.6 SGX Enclave Measurement

SGX implements a software attestation scheme that follows the gen-
eral principles outlined in § 3.3. For the purposes of this section, the
most relevant principle is that a remote party authenticates an enclave
based on its measurement, which is intended to identify the software
that is executing inside the enclave. The remote party compares the en-
clave measurement reported by the trusted hardware with an expected
measurement, and only proceeds if the two values match.

§ 5.3 explains that an SGX enclave is built using the
ECREATE (§ 5.3.1), EADD (§ 5.3.2) and EEXTEND instructions. After the
enclave is initialized via EINIT (§ 5.3.3), the instructions mentioned
above cannot be used anymore. As the SGX measurement scheme fol-
lows the principles outlined in § 3.3.3, the measurement of an SGX
enclave is obtained by computing a secure hash (§ 3.1.3) over the in-
puts to the ECREATE, EADD and EEXTEND instructions used to create
the enclave and load the initial code and data into its memory. EINIT
finalizes the hash that represents the enclave’s measurement.

Along with the enclave’s contents, the enclave author is expected
to specify the sequence of instructions that should be used in order to
create an enclave whose measurement will match the expected value
used by the remote party in the software attestation process. The .so
and .dll dynamically loaded library file formats, which are SGX’s
intended enclave delivery methods, already include informal specifica-

5.6. SGX Enclave Measurement 193

tions for loading algorithms. We expect the informal loading specifi-
cations to serve as the starting points for specifications that prescribe
the exact sequences of SGX instructions that should be used to cre-
ate enclaves from .so and .dll files.

As argued in § 3.3.3, an enclave’s measurement is computed using
a secure hashing algorithm, so the system software can only build an
enclave that matches an expected measurement by following the exact
sequence of instructions specified by the enclave’s author.

The SGX design uses the 256-bit SHA-2 [Barker et al., 2015] se-
cure hash function to compute its measurements. SHA-2 is a block
hash function (§ 3.1.3) that operates on 64-byte blocks, uses a 32-byte
internal state, and produces a 32-byte output. Each enclave’s mea-
surement is stored in the MRENCLAVE field of the enclave’s SECS.
The 32-byte field stores the internal state and final output of the 256-
bit SHA-2 secure hash function.

5.6.1 Measuring ECREATE

The ECREATE instruction, described in § 5.3.1, first initializes the
MRENCLAVE field in the newly created SECS using the 256-bit SHA-
2 initialization algorithm, and then extends the hash with the 64-
byte block depicted in Table 5.4.

Table 5.4: 64-byte block extended into MRENCLAVE by ECREATE.

Offset Size Description
0 8 “ECREATE\0”
8 8 SECS.SSAFRAMESIZE (§ 5.2.5)

16 8 SECS.SIZE (§ 5.2.1)
32 8 32 zero (0) bytes

The enclave’s measurement does not include the BASEADDR field.
The omission is intentional, as it allows the system software to load an
enclave at any virtual address inside a host process that satisfies the
ELRANGE restrictions (§ 5.2.1), without changing the enclave’s mea-
surement. This feature can be combined with a compiler that generates
position-independent enclave code to obtain relocatable enclaves.

194 The Software Isolation Container (As Exemplified by Intel’s SGX)

The enclave’s measurement includes the SSAFRAMESIZE field, which
guarantees that the SSAs (§ 5.2.5) created by AEX and used by
EENTER (§ 5.4.1) and ERESUME (§ 5.4.4) have the size that is expected
by the enclave’s author. Leaving this field out of an enclave’s mea-
surement would allow a malicious enclave loader to attempt to attack
the enclave’s security checks by specifying a bigger SSAFRAMESIZE
than the enclave’s author intended, which could cause the SSA contents
written by an AEX to overwrite the enclave’s code or data.

5.6.2 Measuring Enclave Attributes

The enclave’s measurement does not include the enclave at-
tributes (§ 5.2.2), which are specified in the ATTRIBUTES field in
the SECS. Instead, it is included directly in the information that is
covered by the attestation signature, which will be discussed in § 5.8.1.

The SGX software attestation definitely needs to cover the enclave
attributes. For example, if XFRM (§ 5.2.2, § 5.2.5) would not be cov-
ered, a malicious enclave loader could attempt to subvert an enclave’s
security checks by setting XFRM to a value that enables architectural
extensions that change the semantics of instructions used by the en-
clave, but still produces an XSAVE output that fits in SSAFRAMESIZE.

The special treatment applied to the ATTRIBUTES SECS field
seems questionable from a security standpoint, as it adds extra com-
plexity to the software attestation verifier, which translates into more
opportunities for exploitable bugs. This decision also adds complexity
to the SGX software attestation design, which is described in § 5.8.

The most likely reason why the SGX design decided to go this
route, despite the concerns described above, is the wish to be able
to use a single measurement to represent an enclave that can take
advantage of some architectural extensions, but can also perform its
task without them.

Consider, for example, an enclave that performs image processing
using a library such as OpenCV, which has routines optimized for SSE
and AVX, but also includes generic fallbacks for processors that do not
have these features. The enclave’s author will likely wish to allow an
enclave loader to set bits 1 (SSE) and 2 (AVX) to either true or false. If

5.6. SGX Enclave Measurement 195

ATTRIBUTES (and, by extension, XFRM) was a part of the enclave’s
measurement, the enclave author would have to specify that the enclave
has 4 valid measurements. In general, allowing n architectural exten-
sions to be used independently will result in 2n valid measurements.

5.6.3 Measuring EADD

The EADD instruction, described in § 5.3.2, extends the SHA-2 hash
in MRENCLAVE with the 64-byte block shown in Table 5.5.

Table 5.5: 64-byte block extended into MRENCLAVE by EADD. The ENCLAVE-
OFFSET is computed by subtracting the BASEADDR in the enclave’s SECS from
the LINADDR field in the PAGEINFO structure.

Offset Size Description
0 8 “EADD\0\0\0\0”
8 8 ENCLAVEOFFSET

16 48 SECINFO (first 48 bytes)

The address included in the measurement is the address where the
EADDed page is expected to be mapped in the enclave’s virtual address
space. This ensures that the system software sets up the enclave’s vir-
tual memory layout according to the enclave author’s specifications.
If a malicious enclave loader attempts to set up the enclave’s layout
incorrectly, perhaps in order to mount an active address translation
attack (§ 3.7.2), the loaded enclave’s measurement will differ from the
measurement expected by the enclave’s author.

The virtual address of the newly created page is measured relative
to the start of the enclave’s ELRANGE. In other words, the value
included in the measurement is LINADDR - BASEADDR. This makes
the enclave’s measurement invariant to BASEADDR changes, which is
desirable for relocatable enclaves. Measuring the relative addresses still
preserves all information about the memory layout inside ELRANGE,
and therefore has no negative security impact.

EADD also measures the first 48 bytes of the SECINFO struc-
ture (§ 5.3.2) provided to EADD, which contain the page type (PT)
and access permissions (R, W, X) field values used to initialize the

196 The Software Isolation Container (As Exemplified by Intel’s SGX)

page’s EPCM entry. By the same argument as above, including these
values in the measurement guarantees that the memory layout built
by the system software loading the enclave matches the specifica-
tions of the enclave author.

The EPCM field values mentioned above take up less than one
byte in the SECINFO structure, and the rest of the bytes are reserved
and expected to be initialized to zero. This leaves plenty of expan-
sion room for future SGX features.

The most notable omission from Table 5.5 is the data used to ini-
tialize the newly created EPC page. Therefore, the measurement data
contributed by EADD guarantees that the enclave’s memory layout will
have pages allocated with prescribed access permissions at the de-
sired virtual addresses. However, the measurements don’t cover the
code or data loaded in these pages.

For example, EADD’s measurement data guarantees that an enclave’s
memory layout consists of three executable pages followed by five
writable data pages, but it does not guarantee that any of the code
pages contains the code supplied by the enclave’s author.

5.6.4 Measuring EEXTEND

The EEXTEND instruction exists solely for the reason of measuring data
loaded inside the enclave’s EPC pages. The instruction reads in a vir-
tual address, and extends the enclave’s measurement hash with the five
64-byte blocks in Table 5.6, which effectively guarantee the contents of
a 256-byte chunk of data in the enclave’s memory.

Before examining the details of EEXTEND, we note that SGX’s secu-
rity guarantees only hold when the contents of the enclave’s key pages
is measured. For example, EENTER (§ 5.4.1) is only guaranteed to per-
form controlled jumps inside an enclave’s code if the contents of all
Thread Control Structure (TCS, § 5.2.4) pages are measured. Other-
wise, a malicious enclave loader can change the OENTRY field (§ 5.2.4,
§ 5.4.1) in a TCS while building the enclave, and then a malicious OS
can use the TCS to perform an arbitrary jump inside enclave code. By
the same argument, the entire body of the enclave’s code should be

5.6. SGX Enclave Measurement 197

Table 5.6: 64-byte blocks extended into MRENCLAVE by EEXTEND. The EN-
CLAVEOFFSET is computed by subtracting the BASEADDR in the enclave’s SECS
from the LINADDR field in the PAGEINFO structure.

Offset Size Description
0 8 “EEXTEND\0”
8 8 ENCLAVEOFFSET

16 48 48 zero (0) bytes
64 64 bytes 0 - 64 in the chunk
128 64 bytes 64 - 128 in the chunk
192 64 bytes 128 - 192 in the chunk
256 64 bytes 192 - 256 in the chunk

measured by EEXTEND. Any code fragment that is not measured can
be replaced by a malicious enclave loader.

Given these pitfalls, it is surprising that the SGX design opted to
decouple the virtual address space layout measurements done by EADD
from the memory content measurements done by EEXTEND.

At a first pass, it appears that the decoupling only has one benefit,
which is the ability to load unmeasured user input into an enclave
while it is being built. However, this benefit only translates into a
small performance improvement, because enclaves can alternatively be
designed to copy the user input from untrusted DRAM after being
initialized. At the same time, the decoupling opens up the possibility of
relying on an enclave that provides no meaningful security guarantees,
due to not measuring all important data via EEXTEND calls.

However, the real reason behind the EADD / EEXTEND separation is
hinted at by the EINIT pseudo-code in the SDM, which states that
the instruction opens an interrupt (§ 2.12) window while it performs
a computationally intensive RSA signature check. If an interrupt oc-
curs during the check, EINIT fails with an error code, and the in-
terrupt is serviced. This very unusual approach for a processor in-
struction suggests that the SGX implementation was constrained in
respect to how much latency its instructions were allowed to add to
the interrupt handling process.

198 The Software Isolation Container (As Exemplified by Intel’s SGX)

In light of the concerns above, it is reasonable to conclude that
EEXTEND was introduced because measuring an entire page using 256-
bit SHA-2 is quite time-consuming, and doing it in EADD would have
caused the instruction to exceed SGX’s latency budget. The need to
hit a certain latency goal is a reasonable explanation for the seem-
ingly arbitrary 256-byte chunk size.

The EADD / EEXTEND separation will not cause security issues if
enclaves are authored using the same tools that build today’s dynam-
ically loaded modules, which appears to be the workflow targeted by
the SGX design. In this workflow, the tools that build enclaves can
easily identify the enclave data that needs to be measured.

It is correct and meaningful, from a security perspective, to have
the message blocks provided by EEXTEND to the hash function in-
clude the address of the 256-byte chunk, in addition to the contents
of the data. If the address were not included, a malicious enclave
loader could mount the memory mapping attack described in § 3.7.2
and illustrated in Figure 3.23.

More specifically, the malicious loader would EADD the errorOut
page contents at the virtual address intended for disclose, EADD the
disclose page contents at the virtual address intended for errorOut,
and then EEXTEND the pages in the wrong order. If EEXTEND would not
include the address of the data chunk that is measured, the steps above
would yield the same measurement as the correctly constructed enclave.

The last aspect of EEXTEND worth analyzing is its support for re-
locating enclaves. Similarly to EADD, the virtual address measured by
EEXTEND is relative to the enclave’s BASEADDR. Furthermore, the
only SGX structure whose content is expected to be measured by
EEXTEND is the TCS. The SGX design has carefully used relative ad-
dresses for all TCS fields that represent enclave addresses, which are
OENTRY, OFSBASGX and OGSBASGX.

5.6.5 Measuring EINIT

The EINIT instruction (§ 5.3.3) concludes the enclave building process.
After EINIT is successfully invoked on an enclave, the enclave’s contents
are “sealed”, meaning that the system software cannot use the EADD

5.7. SGX Enclave Versioning Support 199

instruction to load code and data into the enclave, and cannot use the
EEXTEND instruction to update the enclave’s measurement.

EINIT uses the SHA-2 finalization algorithm (§ 3.1.3) on the
MRENCLAVE field of the enclave’s SECS. After EINIT, the field no
longer stores the intermediate state of the SHA-2 algorithm, and in-
stead stores the final output of the secure hash function. This value
remains constant after EINIT completes, and is included in the attes-
tation signature produced by the SGX software attestation process.

5.7 SGX Enclave Versioning Support

The software attestation model (§ 3.3) introduced by the Trusted Plat-
form Module (§ 4.4) relies on a measurement (§ 5.6), which is es-
sentially a content hash, to identify the software inside a container.
The downside of using content hashes for identity is that there is no
relation between the identities of containers that hold different ver-
sions of the same software.

In practice, it is highly desirable for systems based on secure con-
tainers to handle software updates without having access to the remote
party in the initial software attestation process. This entails having the
ability to migrate secrets between the container that has the old version
of the software and the container that has the updated version. This re-
quirement translates into a need for a separate identity system that can
recognize the relationship between two versions of the same software.

SGX supports the migration of secrets between enclaves that rep-
resent different versions of the same software, as shown in Figure 5.16.

The secret migration feature relies on a one-level certificate hier-
archy (§ 3.2.1), where each enclave author is a Certificate Authority,
and each enclave receives a certificate from its author. These certificates
must be formatted as Signature Structures (SIGSTRUCT), which are
described in § 5.7.1. The information in these certificates is the basis for
an enclave identity scheme, presented in § 5.7.2, which can recognize
the relationship between different versions of the same software.

The EINIT instruction (§ 5.3.3) examines the target enclave’s cer-
tificate and uses the information in it to populate the SECS (§ 5.1.3)

200 The Software Isolation Container (As Exemplified by Intel’s SGX)

Enclave A

SECS

Enclave B

Non-volatile memory

Encrypted
Secret

Secret

Authenticated
Encryption

Authenticated
Decryption

Secret

Symmetric
Key

Secret
Key

SGX
EGETKEY

SGX
EGETKEY

SIGSTRUCT A

SGX EINIT

Certificate-Based Identity

SECS

SIGSTRUCT B

SGX EINIT

Certificate-Based Identity

Enclave A Identity

Figure 5.16: SGX has a certificate-based enclave identity scheme, which can be
used to migrate secrets between enclaves that contain different versions of the same
software module. Here, enclave A’s secrets are migrated to enclave B.

fields that describe the enclave’s certificate-based identity. This pro-
cess is summarized in § 5.7.4.

Last, the actual secret migration process is based on the key deriva-
tion service implemented by the EGETKEY instruction, which is described
in § 5.7.5. The sending enclave uses the EGETKEY instruction to obtain a
symmetric key (§ 3.1.1) based on its identity, encrypts its secrets with
the key, and hands off the encrypted secrets to the untrusted system
software. The receiving enclave passes the sending enclave’s identity to
EGETKEY, obtains the same symmetric key as above, and uses the key
to decrypt the secrets received from system software.

The symmetric key obtained from EGETKEY can be used in con-
junction with cryptographic primitives that protect the confidential-
ity (§ 3.1.2) and integrity (§ 3.1.3) of an enclave’s secrets while they

5.7. SGX Enclave Versioning Support 201

are migrated to another enclave by the untrusted system software. How-
ever, symmetric keys alone cannot be used to provide freshness guar-
antees (§ 3.1), so secret migration is subject to replay attacks. This
is acceptable when the secrets being migrated are immutable, such as
when the secrets are encryption keys obtained via software attestation.

5.7.1 Enclave Certificates

The SGX design requires each enclave to have a certificate issued by its
author. This requirement is enforced by EINIT (§ 5.3.3), which refuses
to operate on enclaves without valid certificates.

The SGX implementation consumes certificates formatted as Sig-
nature Structures (SIGSTRUCT), which are intended to be generated
by an enclave building toolchain, as shown in Figure 5.17.

A SIGSTRUCT certificate consists of metadata fields, the most
interesting of which are presented in Table 5.7, and an RSA signa-
ture that guarantees the authenticity of the metadata, formatted as
shown in Table 5.8. The semantics of the fields will be revealed in
the following sections.

Table 5.7: A subset of the metadata fields in a SIGSTRUCT enclave certificate.

Field Bytes Description
ENCLAVEHASH 32 Must equal the enclave’s measure-

ment (§ 5.6).
ISVPRODID 32 Differentiates modules signed by

the same public key.
ISVSVN 32 Differentiates versions of the same

module.
VENDOR 4 Differentiates Intel enclaves.
ATTRIBUTES 16 Constrains the enclave’s attributes.
ATTRIBUTEMASK 16 Constrains the enclave’s attributes.

The enclave certificates must be signed by RSA signatures (§ 3.1.3)
that follow the method described in RFC 3447 [Jonsson and Kaliski,
2003], using 256-bit SHA-2 [Barker et al., 2015] as the hash function

202 The Software Isolation Container (As Exemplified by Intel’s SGX)

RFC
3447

Enclave Contents

SIGSTRUCT

MODULUS

Q2

SIGNATURE

RSA Signature
EXPONENT (3)

Q1

VENDOR

DATE

ENCLAVEHASH

ATTRIBUTEMASK

ISVSVN

ATTRIBUTES

ISVPRODID

Signed Fields

SGX
Measurement

Simulation

BASEADDR
SIZE

SECS

SSAFRAMESIZE

ATTRIBUTES

Other EPC
Pages

AND

Enclave Author’s
 Public RSA Key

Build Toolchain
Configuration 256-bit SHA-2

PKCS #1 v1.5
Padding

RSA
Exponentiation

Enclave Author’s
 Private RSA Key

zero (not Intel)

Figure 5.17: An enclave’s Signature Structure (SIGSTRUCT) is intended to be
generated by an enclave building toolchain that has access to the enclave author’s
private RSA key.

that reduces the input size, and the padding method described in PKCS
#1 v1.5 [Kaliski, 1998], which is illustrated in Figure 3.14.

The SGX implementation only supports 3072-bit RSA keys whose
public exponent is 3. The key size is likely chosen to meet FIPS’ rec-
ommendation [Barker et al., 2012], which makes SGX eligible for use
in U.S. government applications. The public exponent 3 affords a sim-
plified signature verification algorithm, which is discussed in § II.2.5.

5.7. SGX Enclave Versioning Support 203

Table 5.8: The format of the RSA signature used in a SIGSTRUCT enclave cer-
tificate.

Field Bytes Description
MODULUS 384 RSA key modulus
EXPONENT 4 RSA key public exponent
SIGNATURE 384 RSA signature (See § II.2.5)
Q1 384 Simplifies RSA signature verification. (See

§ II.2.5)
Q2 384 Simplifies RSA signature verification. (See

§ II.2.5)

The simplified algorithm also requires the fields Q1 and Q2 in the RSA
signature, which are also described in § II.2.5.

5.7.2 Certificate-Based Enclave Identity

An enclave’s identity is determined by three fields in its certifi-
cate (§ 5.7.1): the modulus of the RSA key used to sign the certifi-
cate (MODULUS), the enclave’s product ID (ISVPRODID) and the
security version number (ISVSVN).

The public RSA key used to issue a certificate identifies the enclave’s
author. All RSA keys used to issue enclave certificates must have the
public exponent set to 3, so they are only differentiated by their modu-
lus. SGX does not use the entire modulus of a key, but rather a 256-bit
SHA-2 hash of the modulus. This is called a signer measurement (MR-
SIGNER), to parallel the name of enclave measurement (MREN-
CLAVE) for the SHA-2 hash that identifies an enclave’s contents.

The SGX implementation relies on a hard-coded MRSIGNER
value to recognize certificates issued by Intel. Enclaves that have an
Intel-issued certificate can receive additional privileges, which are dis-
cussed in § 5.8.

An enclave author can use the same RSA key to issue certificates
for enclaves that represent different software modules. Each module is
identified by a unique Product ID (ISVPRODID) value. Conversely, all
enclaves whose certificates have the same ISVPRODID and are issued

204 The Software Isolation Container (As Exemplified by Intel’s SGX)

by the same RSA key (and therefore have the same MRENCLAVE)
are assumed to represent different versions of the same software mod-
ule. Enclaves whose certificates are signed by different keys are always
assumed to contain different software modules.

Enclaves that represent different versions of a module can have
different security version numbers (SVN). The SGX design disallows
the migration of secrets from an enclave with a higher SVN to an
enclave with a lower SVN. This restriction is intended to assist with
the distribution of security patches, as follows.

If a security vulnerability is discovered in an enclave, the author
can release a fixed version with a higher SVN. As users upgrade, SGX
will facilitate the migration of secrets from the vulnerable version of the
enclave to the fixed version. Once a user’s secrets have migrated, the
SVN restrictions in SGX will deflect any attack based on building the
vulnerable enclave version and using it to read the migrated secrets.

Software upgrades that add functionality should not be accompa-
nied by an SVN increase, as SGX allows secrets to be migrated freely
between enclaves with matching SVN values. As explained above, a
software module’s SVN should only be incremented when a security vul-
nerability is found. SIGSTRUCT only allocates 2 bytes to the ISVSVN
field, which translates to 65,536 possible SVN values. This space can
be exhausted if a large team (incorrectly) sets up a continuous build
system to allocate a new SVN for every software build that it pro-
duces, and each code change triggers a build.

5.7.3 CPU Security Version Numbers

The SGX implementation itself has a security version number
(CPUSVN), which is used in the key derivation process imple-
mented [McKeen et al., 2009] by EGETKEY, in addition to the enclave’s
identity information. CPUSVN is a 128-bit value that, according to the
SDM, reflects the processor’s microcode update version.

The SDM does not describe the structure of CPUSVN, but it
states that comparing CPUSVN values using integer comparison is
not meaningful, and that only some CPUSVN values are valid. Fur-
thermore, CPUSVNs admit an ordering relationship that has the same

5.7. SGX Enclave Versioning Support 205

semantics as the ordering relationship between enclave SVNs. Specifi-
cally, an SGX implementation will consider all SGX implementations
with lower SVNs to be compromised due to security vulnerabilities,
and will not trust them.

An SGX patent [McKeen et al., 2009] discloses that CPUSVN is a
concatenation of small integers representing the SVNs of the various
components that make up SGX’s implementation. This structure is
consistent with all statements made in the SDM.

5.7.4 Establishing an Enclave’s Identity

When the EINIT (§ 5.3.3) instruction prepares an enclave for code exe-
cution, it also sets the SECS (§ 5.1.3) fields that make up the enclave’s
certificate-based identity, as shown in Figure 5.18.

Enclave ContentsSIGSTRUCT

EXPONENT (3)

Q2

SIGNATURE

RSA Signature
MODULUS

Q1

VENDOR
ATTRIBUTES
ENCLAVEHASH

ISVSVN

ATTRIBUTEMASK
DATE

ISVPRODID

Signed Fields

256-bit SHA-2
PADDING

BASEADDR

SSAFRAMESIZE
SIZE

ATTRIBUTES
ISVPRODID
ISVSVN

SECS

MRSIGNER

MRENCLAVEMust be equal

AND

Must be equal

Other EPC
Pages

RSA Signature
Verification

Privileged attribute check

Intel’s
MRSIGNER

Equality check

Figure 5.18: EINIT verifies the RSA signature in the enclave’s certificate. If the
certificate is valid, the information in it is used to populate the SECS fields that
make up the enclave’s certificate-based identity.

EINIT requires the virtual address of the SIGSTRUCT certificate
issued to the enclave, and uses the information in the certificate to ini-

206 The Software Isolation Container (As Exemplified by Intel’s SGX)

tialize the certificate-based identity information in the enclave’s SECS.
Before using the information in the certificate, EINIT first verifies its
RSA signature. The SIGSTRUCT fields Q1 and Q2, along with the
RSA exponent 3, facilitate a simplified verification algorithm, which
is discussed in § II.2.5.

If the SIGSTRUCT certificate is found to be properly signed,
EINIT follows the steps discussed in the following few paragraphs to
ensure that the certificate was issued to the enclave that is being
initialized. Once the checks have completed, EINIT computes MR-
SIGNER, the 256-bit SHA-2 hash of the MODULUS field in the
SIGSTRUCT, and writes it into the enclave’s SECS. EINIT also copies
the ISVPRODID and ISVSVN fields from SIGSTRUCT into the en-
clave’s SECS. As explained in § 5.7.2, these fields make up the en-
clave’s certificate-based identity.

After verifying the RSA signature in SIGSTRUCT, EINIT copies
the signature’s padding into the PADDING field in the enclave’s
SECS. The PKCS #1 v1.5 padding scheme, outlined in Figure 3.14,
does not involve randomness, so PADDING should have the same
value for all enclaves.

EINIT performs a few checks to make sure that the enclave undergo-
ing initialization was indeed authorized by the provided SIGSTRUCT
certificate. The most obvious check involves making sure that the
MRENCLAVE value in SIGSTRUCT equals the enclave’s measure-
ment, which is stored in the MRENCLAVE field in the enclave’s SECS.

However, MRENCLAVE does not cover the enclave’s attributes,
which are stored in the ATTRIBUTES field of the SECS. As dis-
cussed in § 5.6.2, omitting ATTRIBUTES from MRENCLAVE facil-
itates writing enclaves that have optimized implementations that can
use architectural extensions when present, and also have fallback im-
plementations that work on CPUs without the extensions. Such en-
claves can execute correctly when built with a variety of values in the
XFRM (§ 5.2.2, § 5.2.5) attribute. At the same time, allowing sys-
tem software to use arbitrary values in the ATTRIBUTES field would
compromise SGX’s security guarantees.

5.7. SGX Enclave Versioning Support 207

When an enclave uses software attestation (§ 3.3) to gain access
to secrets, the ATTRIBUTES value used to build it is included in the
SGX attestation signature (§ 5.8). This gives the remote party in the
attestation process the opportunity to reject an enclave built with an
undesirable ATTRIBUTES value. However, when secrets are obtained
using the migration process facilitated by certificate-based identities,
there is no remote party that can check the enclave’s attributes.

The SGX design solves this problem by having enclave authors con-
vey the set of acceptable attribute values for an enclave in the AT-
TRIBUTES and ATTRIBUTEMASK fields of the SIGSTRUCT cer-
tificate issued for the enclave. EINIT will refuse to initialize an enclave
using a SIGSTRUCT if the bitwise AND between the ATTRIBUTES
field in the enclave’s SECS and the ATTRIBUTESMASK field in the
SIGSTRUCT does not equal the SIGSTRUCT’s ATTRIBUTES field.
This check prevents enclaves with undesirable attributes from obtain-
ing and potentially leaking secrets using the migration process.

Any enclave author can use SIGSTRUCT to request any of the bits
in an enclave’s ATTRIBUTES field to be zero. However, certain bits
can only be set to one for enclaves that are signed by Intel. EINIT
has a mask of restricted ATTRIBUTES bits, discussed in § 5.8. The
EINIT implementation contains a hard-coded MRSIGNER value that
is used to identify Intel’s privileged enclaves, and only allows privileged
enclaves to be built with an ATTRIBUTES value that matches any of
the bits in the restricted mask. This check is essential to the security
of the SGX software attestation process, which is described in § 5.8.

Last, EINIT also inspects the VENDOR field in SIGSTRUCT.
The SDM description of the VENDOR field in the section dedicated
to SIGSTRUCT suggests that the field is essentially used to distin-
guish between special enclaves signed by Intel, which use a VEN-
DOR value of 0x8086, and everyone else’s enclaves, which should use
a VENDOR value of zero. However, the EINIT pseudocode seems
to imply that the SGX implementation only checks that VENDOR
is either zero or 0x8086.

208 The Software Isolation Container (As Exemplified by Intel’s SGX)

5.7.5 Enclave Key Derivation

SGX’s secret migration mechanism is based on the symmetric key
derivation service that is offered to enclaves by the EGETKEY instruc-
tion, illustrated in Figure 5.19.

Key Derivation Material

PADDING

SSAFRAME
SIZE

MRENCLAVE
ISVSVN

MRSIGNER

ATTRIBUTES

SIZE
BASEADDR

ISVPRODID

SECS

MRSIGNER

ISVSVN

KEYNAME
ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

AND

01

zero

KEYPOLICY

MRSIGNER
MRENCLAVE

MRENCLAVE

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVN

zero

KEYNAME

KEYID

Must be >=

Current
CPUSVN Must be >=

01

AES-CMAC
Key Derivation

OWNEPOCH

OWNEREPOCH
SGX Register

SGX Master
Derivation Key

128-bit
symmetric key

SEAL_FUSES

SEAL_FUSES

PADDING

Figure 5.19: EGETKEY implements a key derivation service that is primarily used
by SGX’s secret migration feature. The key derivation material is drawn from the
SECS of the calling enclave, the information in a Key Request structure, and secure
storage inside the CPU’s hardware.

The keys produced by EGETKEY are derived based on the identity
information in the current enclave’s SECS and on two secrets stored
in secure hardware inside the SGX-enabled processor. One of the se-
crets is the input to a largely undocumented series of transformations
that yields the symmetric key for the cryptographic primitive under-

5.7. SGX Enclave Versioning Support 209

lying the key derivation process. The other secret, referred to as the
CR_SEAL_FUSES in the SDM, is one of the pieces of information
used in the key derivation material.

The SDM does not specify the key derivation algorithm, but the
SGX patents [McKeen et al., 2009, Johnson et al., 2010] disclose that
the keys are derived using the method described in FIPS SP 800-
108 [Chen, 2009] using AES-CMAC [Dworkin, 2005] as a Pseudo-
Random Function (PRF). The same patents state that the secrets used
for key derivation are stored in the CPU’s e-fuses, which is confirmed
by the ISCA 2015 SGX tutorial [Int, 2015f].

This additional information implies that all EGETKEY invocations
that use the same key derivation material will result in the same key,
even across CPU power cycles. Furthermore, it is impossible for an
adversary to obtain the key produced from a specific key derivation
material without access to the secret stored in the CPU’s e-fuses. SGX’s
key hierarchy is further described in § 5.8.2.

The following paragraphs discuss the pieces of data used in the key
derivation material, which are selected by the Key Request (KEYRE-
QUEST) structure shown in in Table 5.9,

Table 5.9: A subset of the fields in the KEYREQUEST structure.

Field Bytes Description
KEYNAME 2 The desired key type; secret migra-

tion uses Seal keys
KEYPOLICY 2 The identity information (MREN-

CLAVE and/or MRSIGNER)
ISVSVN 2 The enclave SVN used in derivation
CPUSVN 16 SGX implementation SVN used in

derivation
ATTRIBUTEMASK 16 Selects enclave attributes
KEYID 32 Random bytes

The KEYNAME field in KEYREQUEST always participates in the
key generation material. It indicates the type of the key to be generated.
While the SGX design defines a few key types, the secret migration

210 The Software Isolation Container (As Exemplified by Intel’s SGX)

feature always uses Seal keys. The other key types are used by the
SGX software attestation process, which will be outlined in § 5.8.

The KEYPOLICY field in KEYREQUEST has two flags that in-
dicate if the MRENCLAVE and MRSIGNER fields in the enclave’s
SECS will be used for key derivation. Although the fields admits 4
values, only two seem to make sense, as argued below.

Setting the MRENCLAVE flag in KEYPOLICY ties the derived key
to the current enclave’s measurement, which reflects its contents. No
other enclave will be able to obtain the same key. This is useful when the
derived key is used to encrypt enclave secrets so they can be stored by
system software in non-volatile memory, and thus survive power cycles.

If the MRSIGNER flag in KEYPOLICY is set, the derived key is
tied to the public RSA key that issued the enclave’s certificate. There-
fore, other enclaves issued by the same author may be able to obtain
the same key, subject to the restrictions below. This is the only KEY-
POLICY value that allows for secret migration.

It makes little sense to have no flag set in KEYPOLICY. In this
case, the derived key has no useful security property, as it can be ob-
tained by other enclaves that are completely unrelated to the enclave
invoking EGETKEY. Conversely, setting both flags is redundant, as set-
ting MRENCLAVE alone will cause the derived key to be tied to the
current enclave, which is the strictest possible policy.

The KEYREQUEST structure specifies the en-
clave SVN (ISVSVN, § 5.7.2) and SGX implementation
SVN (CPUSVN, § 5.7.3) that will be used in the key derivation
process. However, EGETKEY will reject the derivation request and
produce an error code if the desired enclave SVN is greater than the
current enclave’s SVN, or if the desired SGX implementation’s SVN
is greater than the current implementation’s SVN.

The SVN restrictions prevent the migration of secrets from enclaves
with higher SVNs to enclaves with lower SVNs, or from SGX imple-
mentations with higher SVNs to implementations with lower SVNs.
§ 5.7.2 argues that the SVN restrictions can reduce the impact of se-
curity vulnerabilities in enclaves and in SGX’s implementation.

5.7. SGX Enclave Versioning Support 211

EGETKEY always uses the ISVPRODID value from the current en-
clave’s SECS for key derivation. It follows that secrets can never
flow between enclaves whose SIGSTRUCT certificates assign them
different Product IDs.

Similarly, the key derivation material always includes the value of a
128-bit Owner Epoch (OWNEREPOCH) SGX configuration register.
This register is intended to be set by the computer’s firmware to a secret
generated once and stored in non-volatile memory. Before the computer
changes ownership, the old owner can clear the OWNEREPOCH from
non-volatile memory, making it impossible for the new owner to decrypt
any enclave secrets that may be left on the computer.

Due to the cryptographic properties of the key derivation pro-
cess, outside observers cannot correlate keys derived using different
OWNEREPOCH values. This makes it impossible for software devel-
opers to use the EGETKEY-derived keys described in this section to
track a processor as it changes owners.

The EGETKEY derivation material also includes a 256-bit value sup-
plied by the enclave, in the KEYID field. This makes it possible for
an enclave to generate a collection of keys from EGETKEY, instead of a
single key. The SDM states that KEYID should be populated with a
random number, and is intended to help prevent key wear-out.

Last, the key derivation material includes the bitwise AND of the
ATTRIBUTES (§ 5.2.2) field in the enclave’s SECS and the AT-
TRIBUTESMASK field in the KEYREQUEST structure. The mask
has the effect of removing some of the ATTRIBUTES bits from the
key derivation material, making it possible to migrate secrets between
enclaves with different attributes. § 5.6.2 and § 5.7.4 explain the need
for this feature, as well as its security implications.

Before adding the masked attributes value to the key generation ma-
terial, the EGETKEY implementation forces the mask bits corresponding
to the INIT and DEBUG attributes (§ 5.2.2) to be set. From a practi-
cal standpoint, this means that secrets will never be migrated between
enclaves that support debugging and production enclaves.

Without this restriction, it would be unsafe for an enclave author
to use the same RSA key to issue certificates to both debugging and

212 The Software Isolation Container (As Exemplified by Intel’s SGX)

production enclaves. Debugging enclaves receive no integrity guaran-
tees from SGX, so it is possible for an attacker to modify the code
inside a debugging enclave in a way that causes it to disclose any
secrets that it has access to.

5.8 SGX Software Attestation

The software attestation scheme implemented by SGX follows the prin-
ciples outlined in § 3.3, and is illustrated at a high level by Figure 5.20.
An SGX-enabled processor computes a measurement of the code and
data that is loaded in each enclave, which is similar to the measure-
ment computed by the TPM (§ 4.4). The software inside an enclave
can start a process that results in an SGX attestation signature, which
includes the enclave’s measurement and an enclave message.

The cryptographic primitive used in SGX’s attestation signature is
too complex to be implemented in hardware, so the signing process is
performed by a privilegedQuoting Enclave, which is issued by Intel, and
can access the SGX attestation key. This enclave is discussed in § 5.8.2.

Pushing the signing functionality into the Quoting Enclave creates
the need for a secure communication path between an enclave under-
going software attestation and the Quoting Enclave. The SGX design
solves this problem with a local attestation mechanism that can be
used by an enclave to prove its identity to any other enclave hosted
by the same SGX-enabled CPU. This scheme, described in § 5.8.1, is
implemented by the EREPORT instruction.

The SGX attestation key used by the Quoting Enclave does not ex-
ist at the time SGX-enabled processors leave the factory. The attesta-
tion key is provisioned later, using a process that involves a Provisioning
Enclave issued by Intel, and two special EGETKEY (§ 5.7.5) key types.
The publicly available details of this process are summarized in § 5.8.2.

The SGX Launch Enclave and EINITTOKEN structure will be
discussed in § 5.9.

5.8. SGX Software Attestation 213

(Licensing)

Enclave Launch

Software Attestation

Enclave
Loading

Launch
Policy

Enclave
Authoring

Enclave Environment

Enclave
Contents

Compiler
Linker

Source
Files

Enclave
Runtime

Enclave Author
Public Key

Enclave Author
Private Key

Enclave Build
Toolchain

SIGSTRUCT

SGX Launch
Enclave

EINITTOKEN

SGX EINIT

SGX ECREATE

SGX EADD

SGX EEXTEND

MRENCLAVE

SGX EREPORT

REPORT

INITIALIZED

SGX Quoting
Enclave

Attestation
Signature

Attestation
Challenge

MRSIGNER

Figure 5.20: Setting up an SGX enclave and undergoing the software attestation
process involves the SGX instructions EINIT and EREPORT, and two special enclaves
authored by Intel, the SGX Launch Enclave and the SGX Quoting Enclave.

5.8.1 Local Attestation

An enclave proves its identity to another target enclave via the EREPORT
instruction shown in Figure 5.21. The SGX instruction produces an at-
testation Report (REPORT) that cryptographically binds a message
supplied by the enclave with the enclave’s measurement-based (§ 5.6)

214 The Software Isolation Container (As Exemplified by Intel’s SGX)

and certificate-based (§ 5.7.2) identities. The cryptographic binding
is accomplished by a MAC tag (§ 3.1.3) computed using a sym-
metric key that is only shared between the target enclave and the
SGX implementation.

MAC
EREPORT

KEYID

CPUSVN

ATTRIBUTES
MRENCLAVE

ISVPRODID

MACed Fields

MRSIGNER

ISVSVN
REPORTDATA

ATTRIBUTES

TARGETINFO
MEASUREMENT

BASEADDR
ISVSVN

MRSIGNER
MRENCLAVE

SSAFRAMESIZE

ATTRIBUTES

SIZE

ISVPRODID

SECS

CR_EREPORT_KEYID

Input Register File

RDX
RBX

RCX

REPORTDATA

Key Derivation Material

zero MRENCLAVE

MASKEDATTRIBUTES

zero

zero CPUSVNKEYNAME

KEYID

AES-CMAC
Key Derivation

OWNEPOCH

OWNEREPOCH
SGX Register

SGX Master
Derivation Key

128-bit
Report key

Current
CPUSVN

Report Key

AES-CMAC

PADDING

Hard-coded PKCS
#1 v1.5 Padding

SEAL_FUSES

SEAL_FUSES

Figure 5.21: EREPORT data flow.

5.8. SGX Software Attestation 215

The EREPORT instruction reads the current enclave’s identity infor-
mation from the enclave’s SECS (§ 5.1.3), and uses it to populate the
REPORT structure. Specifically, EREPORT copies the SECS fields in-
dicating the enclave’s measurement (MRENCLAVE), certificate-based
identity (MRSIGNER, ISVPRODID, ISVSVN), and attributes (AT-
TRIBUTES). The attestation report also includes the SVN of the
SGX implementation (CPUSVN) and a 64-byte (512-bit) message sup-
plied by the enclave.

The target enclave that receives the attestation report can convince
itself of the report’s authenticity as shown in Figure 5.22. The report’s
authenticity proof is its MAC tag. The key required to verify the MAC
can only be obtained by the target enclave, by asking EGETKEY (§ 5.7.5)
to derive a Report key. The SDM states that the MAC tag is computed
using a block cipher-based MAC (CMAC, [Dworkin, 2005]), but stops
short of specifying the underlying cipher. One of the SGX papers [Anati
et al., 2013] states that the CMAC is based on 128-bit AES.

The Report key returned by EGETKEY is derived from a secret em-
bedded in the processor (§ 5.7.5), and the key material includes the
target enclave’s measurement. The target enclave can be assured that
the MAC tag in the report was produced by the SGX implementation,
for the following reasons. The cryptographic properties of the under-
lying key derivation and MAC algorithms ensure that only the SGX
implementation can produce the MAC tag, as it is the only entity that
can access the processor’s secret, and it would be impossible for an at-
tacker to derive the Report key without knowing the processor’s secret.
The SGX design guarantees that the key produced by EGETKEY depends
on the calling enclave’s measurement, so only the target enclave can
obtain the key used to produce the MAC tag in the report.

EREPORT uses the same key derivation process as EGETKEY does when
invoked with KEYNAME set to the value associated with Report keys.
For this reason, EREPORT requires the virtual address of a Report Target
Info (TARGETINFO) structure that contains the measurement-based
identity and attributes of the target enclave.

When deriving a Report key, EGETKEY behaves slightly differently
than it does in the case of seal keys, as shown in Figure 5.22. The

216 The Software Isolation Container (As Exemplified by Intel’s SGX)

EGETKEY

Key Derivation Material

ATTRIBUTES

SSAFRAME
SIZE

MRENCLAVE
ISVSVN

MRSIGNER

PADDING

SIZE
BASEADDR

ISVPRODID

SECS

zero

ISVSVN

KEYNAME
ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

KEYPOLICY

MRSIGNER
MRENCLAVE

MRENCLAVE

MASKEDATTRIBUTES

zeroPADDING

CPUSVNKEYNAME

KEYID

Current
CPUSVN

AES-CMAC
Key Derivation

OWNEPOCH

OWNEREPOCH
SGX Register

SGX Master
Derivation Key

128-bit
Report key

MAC
EREPORT

KEYID

CPUSVN

ATTRIBUTES
MRENCLAVE

ISVPRODID

MACed Fields

MRSIGNER

ISVSVN
REPORTDATA

AES-CMAC

Equal?
Trust Report

Reject Report

Yes

No

Report Key

SEAL_FUSES

SEAL_FUSES

zero

Figure 5.22: The authenticity of the REPORT structure created by EREPORT can
and should be verified by the report’s target enclave. The target’s code uses EGETKEY
to obtain the key used for the MAC tag embedded in the REPORT structure, and
then verifies the tag.

5.8. SGX Software Attestation 217

key generation material never includes the fields corresponding to
the enclave’s certificate-based identity (MRSIGNER, ISVPRODID,
ISVSVN), and the KEYPOLICY field in the KEYREQUEST struc-
ture is ignored. It follows that the report can only be verified by
the target enclave.

Furthermore, the SGX implementation’s SVN (CPUSVN) value
used for key generation is determined by the current CPUSVN, in-
stead of being read from the Key Request structure. Therefore, SGX
implementation upgrades that increase the CPUSVN invalidate all out-
standing reports. Given that CPUSVN increases are associated with
security fixes, the argument in § 5.7.2 suggests that this restriction
may reduce the impact of vulnerabilities in the SGX implementation.

Last, EREPORT sets the KEYID field in the key genera-
tion material to the contents of an SGX configuration register
(CR_REPORT_KEYID) that is initialized with a random value when
SGX is initialized. The KEYID value is also saved in the attestation
report, but it is not covered by the MAC tag.

5.8.2 Remote Attestation

The SDM paints a complete picture of the local attestation mechanism
that was described in § 5.8.1. The remote attestation process, which
includes the Quoting Enclave and the underlying keys, is covered at a
high level in an Intel publication [Johnson et al., 2016]. This section’s
contents is based on the SDM, on one [Anati et al., 2013] of the SGX
papers, and on the ISCA 2015 SGX tutorial [Int, 2015f].

SGX’s software attestation scheme, which is illustrated in Fig-
ure 5.23, relies on a key generation facility and on a provisioning
service, both operated by Intel.

During the manufacturing process, an SGX-enabled processor com-
municates with Intel’s key generation facility, and has two secrets
burned into e-fuses, which are a one-time programmable storage
medium that can be economically included on a high-performance
chip’s die. We shall refer to the secrets stored in e-fuses as the Pro-
visioning Secret and the Seal Secret.

218 The Software Isolation Container (As Exemplified by Intel’s SGX)

CPU e-fuses

Provisioning
Enclave

Provisioning
Secret

Seal
Secret

Intel
Key Generation

Facility

Intel
Provisioning

Service

Provisioned
Keys

Proof of
Provisioning Key

ownership

Attestation Key

Provisioning
Key

Attestation
Key

Provisioning
Seal Key

Authenticated
Encryption

Quoting Enclave

Attestation
Key

Provisioning
Seal Key

Authenticated
Encryption

Encrypted
Attestation Key

Attested Enclave

Remote
Party in

Software
Attestation

Key Agreement
Message 1

EREPORT

Key Agreement
Message 2

Report Data

Challenge

Report

Attestation
Signature

Reporting
Key

Report
Verification

Response

Figure 5.23: SGX’s software attestation is based on two secrets stored in e-fuses
inside the processor’s die, and on a key received from Intel’s provisioning service.

5.8. SGX Software Attestation 219

The Provisioning Secret is the main input to a largely undocu-
mented process that outputs the SGX master derivation key used by
EGETKEY, which was referenced in Figures 5.19, 5.20, 5.21, and 5.22.

The Seal Secret is not exposed to software by any of the architec-
tural mechanisms documented in the SDM. The secret is only accessed
when it is included in the material used by the key derivation process
implemented by EGETKEY (§ 5.7.5). The pseudocode in the SDM uses
the CR_SEAL_FUSES register name to refer to the Seal Secret.

The names “Seal Secret” and “Provisioning Secret” deviate from
Intel’s official documents, which confusingly use the “Seal Key” and
“Provisioning Key” names to refer to both secrets stored in e-fuses
and keys derived by EGETKEY.

The SDM briefly describes the keys produced by EGETKEY, but
no official documentation explicitly describes the secrets in e-fuses.
The description below is is the only interpretation of all public in-
formation sources that is consistent with all statements in the SDM
regarding key derivation.

The Provisioning Secret is generated at the key generation facil-
ity, where it is burned into the processor’s e-fuses and stored in the
database used by Intel’s provisioning service. The Seal Secret is gener-
ated inside the processor chip, and therefore is not known to Intel. This
approach has the benefit that an attacker who compromises Intel’s facil-
ities cannot derive most keys produced by EGETKEY, even if the attacker
also compromises a victim’s firmware and obtains the OWNERE-
POCH (§ 5.7.5) value. These keys include the Seal keys (§ 5.7.5) and
Report keys (§ 5.8.1) introduced in previous sections.

The only documented exception to the reasoning above is the Pro-
visioning key, which is effectively a shared secret between the SGX-
enabled processor and Intel’s provisioning service. Intel has to be able
to derive this key, so the derivation material does not include the Seal
Secret or the OWNEREPOCH value, as shown in Figure 5.24.

EGETKEY derives the Provisioning key using the current enclave’s
certificate-based identity (MRSIGNER, ISVPRODID, ISVSVN) and
the SGX implementation’s SVN (CPUSVN). This approach has a few
desirable security properties. First, Intel’s provisioning service can be

220 The Software Isolation Container (As Exemplified by Intel’s SGX)

Key Derivation Material

PADDING

SSAFRAME
SIZE

MRENCLAVE
ISVSVN

MRSIGNER

ATTRIBUTES

SIZE
BASEADDR

ISVPRODID

SECS

MRSIGNER

ISVSVN

KEYNAME
ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

AND

KEYPOLICY

MRSIGNER
MRENCLAVE

zero

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVNKEYNAME

zero

Must be >=

Current
CPUSVN Must be >=

AES-CMAC
Key Derivation

zero

SGX Master
Derivation Key

128-bit
Provisioning Key

zero

PADDING

Provisioning Key
PROVISIONKEY

must be true

Figure 5.24: When EGETKEY is asked to derive a Provisioning key, it does not use
the Seal Secret or OWNEREPOCH. The Provisioning key does, however, depend
on MRSIGNER and on the SVN of the SGX implementation.

assured that it is authenticating a Provisioning Enclave signed by Intel.
Second, the provisioning service can use the CPUSVN value to reject
SGX implementations with known security vulnerabilities. Third, this
design admits multiple mutually distrusting provisioning services.

EGETKEY only derives Provisioning keys for enclaves whose PRO-
VISIONKEY attribute is set to true. § 5.9.3 argues that this mech-
anism is sufficient to protect the computer owner from a malicious
software provider that attempts to use Provisioning keys to track a
processor across OWNEREPOCH changes.

After the Provisioning Enclave obtains a Provisioning key, it uses
the key to authenticate itself to Intel’s provisioning service. Once the

5.8. SGX Software Attestation 221

provisioning service is convinced that it is communicating to a trusted
Provisioning enclave in the secure environment provided by a SGX-
enabled processor, the service generates an Attestation Key and sends
it to the Provisioning Enclave. The enclave then encrypts the Attes-
tation Key using a Provisioning Seal key, and hands off the encrypted
key to the system software for storage.

Provisioning Seal keys, are the last publicly documented type of
special keys derived by EGETKEY, using the process illustrated in Fig-
ure 5.25. As their name suggests, Provisioning Seal keys are con-
ceptually similar to the Seal Keys (§ 5.7.5) used to migrate secrets
between enclaves.

Key Derivation Material

PADDING

SSAFRAME
SIZE

MRENCLAVE
ISVSVN

MRSIGNER

ATTRIBUTES

SIZE
BASEADDR

ISVPRODID

SECS

MRSIGNER

ISVSVN

KEYNAME
ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

AND

KEYPOLICY

MRSIGNER
MRENCLAVE

zero

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVNKEYNAME

zero

Must be >=

Current
CPUSVN Must be >=

AES-CMAC
Key Derivation

zero

SGX Master
Derivation Key

128-bit
Provisioning

Seal key

SEAL_FUSES

SEAL_FUSES

PADDING

Provisioning Seal Key

Figure 5.25: The derivation material used to produce Provisioning Seal keys does
not include the OWNEREPOCH value, so the keys survive computer ownership
changes.

222 The Software Isolation Container (As Exemplified by Intel’s SGX)

The defining feature of Provisioning Seal keys is that they are not
based on the OWNEREPOCH value, so they survive computer own-
ership changes. Since Provisioning Seal keys can be used to track a
processor, their use is gated on the PROVISIONKEY attribute, which
has the same semantics as for Provisioning keys.

Like Provisioning keys, Seal keys are based on the current enclave’s
certificate-based identity (MRSIGNER, ISVPROD, ISVSVN), so the
Attestation Key encrypted by Intel’s Provisioning Enclave can only
be decrypted by another enclave signed with the same Intel RSA
key. However, unlike Provisioning keys, the Provisioning Seal keys
are based on the Seal Secret in the processor’s e-fuses, so they can-
not be derived by Intel.

When considered independently from the rest of the SGX design,
Provisioning Seal keys have desirable security properties. The main
benefit of these keys is that when a computer with an SGX-enabled
processor exchanges owners, it does not need to undergo the provision-
ing process again, so Intel does not need to be aware of the ownership
change. The confidentiality issue that stems from not using OWNERE-
POCH was already introduced by Provisioning keys, and is mitigated
using the access control scheme based on the PROVISIONKEY at-
tribute that will be discussed in § 5.9.3.

Similarly to the Seal key derivation process, both the Provision-
ing and Provisioning Seal keys depend on the bitwise AND of the
ATTRIBUTES (§ 5.2.2) field in the enclave’s SECS and the AT-
TRIBUTESMASK field in the KEYREQUEST structure. While most
attributes can be masked away, the DEBUG and INIT attributes are
always used for key derivation.

This dependency makes it safe for Intel to use its production RSA
key to issue certificates for Provisioning or Quoting Enclaves with de-
bugging features enabled. Without the forced dependency on the DE-
BUG attribute, using the production Intel signing key on a single de-
bug Provisioning or Quoting Enclave could invalidate SGX’s security
guarantees on all CPU devices whose attestation-related enclaves are
signed by the same key. Concretely, if the issued SIGSTRUCT would
be leaked, any attacker could build a debugging Provisioning or Quot-

5.8. SGX Software Attestation 223

ing enclave, use the SGX debugging features to modify the code in-
side it, and extract the 128-bit Provisioning key used to authenticated
the CPU to Intel’s provisioning service.

After the provisioning steps above have been completed, the Quot-
ing Enclave can be invoked to perform SGX’s software attestation. This
enclave receives local attestation reports (§ 5.8.1) and verifies them us-
ing the Report keys generated by EGETKEY. The Quoting Enclave then
obtains the Provisioning Seal Key from EGETKEY and uses it to decrypt
the Attestation Key, which is received from system software. Last, the
enclave replaces the MAC in the local attestation report with an At-
testation Signature produced with the Attestation Key.

The SGX patents state that the name “Quoting Enclave” was cho-
sen as a reference to the TPM (§ 4.4)’s quoting feature, which is used
to perform software attestation on a TPM-based system.

The Attestation Key uses Intel’s Enhanced Privacy ID (EPID)
cryptosystem [Brickell and Li, 2009], which is a group signature scheme
that is intended to preserve the anonymity of the signers. Intel’s key
provisioning service is the issuer in the EPID scheme, so it publishes
the Group Public Key, while securely storing the Master Issuing Key.
After a Provisioning Enclave authenticates itself to the provisioning
service, it generates an EPID Member Private Key, which serves as
the Attestation Key, and executes the EPID Join protocol to join the
group. Later, the Quoting Enclave uses the EPID Member Private
Key to produce Attestation Signatures.

The Provisioning Secret stored in the e-fuses of each SGX-enabled
processor can be used by Intel to trace individual physical proces-
sor packages when a Provisioning Enclave authenticates itself to the
provisioning service. However, if the EPID Join protocol is blinded,
Intel’s provisioning service cannot trace an Attestation Signature to
a specific Attestation Key, so Intel cannot trace Attestation Signa-
tures to individual CPUs.

Of course, the security properties of the description above hinge
on the correctness of the proofs behind the EPID scheme. Analyz-
ing the correctness of such cryptographic schemes is beyond the scope

224 The Software Isolation Container (As Exemplified by Intel’s SGX)

of this work, so we defer the analysis of EPID to the crypto re-
search community.

5.9 SGX Enclave Launch Control

The SGX design includes a launch control process, which introduces
an unnecessary approval step that is required before running most en-
claves on a computer. The approval decision is made by the Launch
Enclave (LE), which is an enclave issued by Intel that gets to ap-
prove every other enclave before it is initialized by EINIT (§ 5.3.3).
The officially documented information about this approval process
is discussed in § 5.9.1.

The SGX patents [McKeen et al., 2009, Johnson et al., 2010] disclose
in no uncertain terms that the Launch Enclave was introduced to ensure
that each enclave’s author has a business relationship with Intel, and
implements a software licensing system. § 5.9.2 briefly discusses the
implications, should this turn out to be true.

The remainder of the section argues that the Launch Enclave should
be removed from the SGX design. § 5.9.3 explains that the LE is not
required to enforce the computer owner’s launch control policy, and
concludes that the LE is only meaningful if it enforces a policy that
is detrimental to the computer owner. § 5.9.4 debunks the myth that
an enclave can host malware, which is likely to be used to justify the
LE. § 5.9.5 argues that Anti-Virus (AV) software is not fundamentally
incompatible with enclaves, further disproving the theory that Intel
needs to actively police the software that runs inside enclaves.

5.9.1 Enclave Attributes Access Control

The SGX design requires that all enclaves be vetted by a Launch En-
clave (LE), which is only briefly mentioned in Intel’s official documen-
tation. Neither its behavior nor its interface with the system software
is specified. We speculate that Intel has not been forthcoming about
the LE because of its role in enforcing software licensing, which will be
discussed in § 5.9.2. This section abstracts away the licensing aspect
and assumes that the LE enforces a black-box Launch Control Policy.

5.9. SGX Enclave Launch Control 225

The LE approves an enclave by issuing an EINIT Token (EINITTO-
KEN), using the process illustrated in Figure 5.26. The EINITTOKEN
structure contains the approved enclave’s measurement-based (§ 5.6)
and certificate-based (§ 5.7.2) identities, just like a local attestation
REPORT (§ 5.8.1). This token is inspected by EINIT (§ 5.3.3), which
refuses to initialize enclaves with incorrect tokens.

While an EINIT token is handled by untrusted system software,
its integrity is protected by a MAC tag (§ 3.1.3) that is computed
using a Launch Key obtained from EGETKEY. The EINIT implementa-
tion follows the same key derivation process as EGETKEY to convince
itself that the EINITTOKEN provided to it was indeed generated by
an LE that had access to the Launch Key.

The SDM does not document the MAC algorithm used to con-
fer integrity guarantees to the EINITTOKEN structure. However, the
EINIT pseudocode verifies the token’s MAC tag using the same func-
tion that the EREPORT pseudocode uses to create the REPORT
structure’s MAC tag. It follows that the reasoning in § 5.8.1 can be
reused to conclude that EINITTOKEN structures are MACed using
AES-CMAC with 128-bit keys.

The EGETKEY instruction only derives the Launch Key for enclaves
that have the LAUNCHKEY attribute set to true. The Launch Key
is derived using the same process as the Seal Key (§ 5.7.5). The
derivation material includes the current enclave’s versioning informa-
tion (ISVPRODID and ISVSVN) but it does not include the main
fields that convey an enclave’s identity, which are MRSIGNER and
MRENCLAVE. The rest of the derivation material follows the same
rules as the material used for Seal Keys.

The EINITTTOKEN structure contains the identities of the ap-
proved enclave (MRENCLAVE and MRSIGNER) and the approved
enclave attributes (ATTRIBUTES). The token also includes the infor-
mation used for the Launch Key derivation, which includes the LE’s
Product ID (ISVPRODIDLE), SVN (ISVSVNLE), and the bitwise
AND between the LE’s ATTRIBUTES and the ATTRIBUTEMASK
used in the KEYREQUEST (MASKEDATTRIBUTESLE).

226 The Software Isolation Container (As Exemplified by Intel’s SGX)

EGETKEY

MASKED
ATTRIBUTESLE

ISVPRODIDLE
CPUSVNLE
KEYID
ISVSVNLE

MAC
EINITTOKEN

VALID

MRSIGNER
MRENCLAVE

MACed Fields
ATTRIBUTES

Vetted Enclave
SIGSTRUCT

EXPONENT (3)

Q2

SIGNATURE

RSA Signature
MODULUS

Q1

VENDOR

ENCLAVEHASH

ATTRIBUTES

DATE

ISVSVN

ATTRIBUTEMASK

ISVPRODID

Signed Fields

256-bit
SHA-2

RDRAND

1

Signed by Enclave
Author’s RSA Key

Desired ATTRIBUTES

PADDING

ATTRIBUTES
BASEADDR

ISVSVN

MRSIGNER
MRENCLAVE

SSAFRAMESIZE
SIZE

ISVPRODID

Launch Enclave
SECS

ISVSVN

KEYNAME
ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

KEYPOLICY

MRSIGNER
MRENCLAVE

Current
CPUSVN Must be >=

AND

Launch
Control
Policy

Checks

Key Derivation Material

zero zero

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVNKEYNAME

KEYID

AES-CMAC
Key Derivation

OWNEPOCH

OWNEREPOCH
SGX Register

SGX Master
Derivation Key

128-bit
Launch Key

Launch Key

AND

AES-CMAC

Must be >=

PADDING

SEAL_FUSES

SEAL_FUSES

Figure 5.26: The SGX Launch Enclave computes the EINITTOKEN.

5.9. SGX Enclave Launch Control 227

The EINITTOKEN information used to derive the Launch Key
can also be used by EINIT for damage control, e.g. to reject tokens
issued by Launch Enclaves with known security vulnerabilities. The
reference pseudocode supplied in the SDM states that EINIT checks
the DEBUG bit in the MASKEDATTRIBUTESLE field, and will not
initialize a production enclave using a token issued by a debugging LE.
It is worth noting that MASKEDATTRIBUTESLE is guaranteed to in-
clude the LE’s DEBUG attribute, because EGETKEY forces the DEBUG
attribute’s bit in the attributes mask to 1 (§ 5.7.5).

The check described above make it safe for Intel to supply SGX
enclave developers with a debugging LE that has its DEBUG attribute
set, and performs minimal or no security checks before issuing an
EINITTOKEN. The DEBUG attribute disables SGX’s integrity pro-
tection, so the only purpose of the security checks performed in the
debug LE would be to help enclave development by mimicking its pro-
duction counterpart. The debugging LE can only be used to launch any
enclave with the DEBUG attribute set, so it does not undermining In-
tel’s ability to enforce a Launch Control Policy on production enclaves.

The enclave attributes access control system described above re-
lies on the LE to reject initialization requests that set privileged at-
tributes such as PROVISIONKEY on unauthorized enclaves. However,
the LE cannot vet itself, as there will be no LE available when the
LE itself needs to be initialized. Therefore, the Launch Key access
restrictions are implemented in hardware.

EINIT accepts an EINITTOKEN whose VALID bit is set to zero,
if the enclave’s MRSIGNER (§ 5.7.1) equals a hard-coded value that
corresponds to an Intel public key. For all other enclave authors,
an invalid EINIT token causes EINIT to reject the enclave and pro-
duce an error code.

This exemption to the token verification policy provides a way
to bootstrap the enclave attributes access control system, namely us-
ing a zeroed out EINITTOKEN to initialize the Launch Enclave. At
the same time, the cryptographic primitives behind the MRSIGNER
check guarantee that only Intel-provided enclaves will be able to by-
pass the attribute checks. This does not change SGX’s security prop-

228 The Software Isolation Container (As Exemplified by Intel’s SGX)

erties because Intel is already a trusted party, as it is responsible
for generating the Provisioning Keys and Attestation Keys used by
software attestation (§ 5.8.2).

Curiously, the EINIT pseudocode in the SDM states that the in-
struction enforces an additional restriction, which is that all enclaves
with the LAUNCHKEY attribute must have their certificates issued
by the same Intel public key that is used to bypass the EINITTTO-
KEN checks. This restriction appears to be redundant, as the same
restriction could be enforced in the Launch Enclave.

5.9.2 Licensing

The SGX patents [McKeen et al., 2009, Johnson et al., 2010] disclose
that EINIT Tokens and the Launch Enclave (§ 5.9.1) were introduced
to verify that the SIGSTRUCT certificates associated with production
enclaves are issued by enclave authors who have a business relationship
with Intel. In other words, the Launch Enclave is intended to be an
enclave licensing mechanism that allows Intel to force itself as
an intermediary in the distribution of all enclave software.

The SGX patents are likely to represent an early version of the SGX
design, due to the lengthy timelines associated with patent application
approval. In light of this consideration, we cannot make any claims
about Intel’s current plans. However, given that we know for sure that
Intel considered enclave licensing at some point, we briefly discuss the
implications of implementing such a licensing plan.

Intel has a near-monopoly on desktop and server-class processors,
and being able to decide which software vendors are allowed to use
SGX can effectively put Intel in a position to decide winners and
losers in many software markets.

Assuming SGX reaches widespread adoption, this issue is the soft-
ware security equivalent to the Net Neutrality debates that have pitted
the software industry against telecommunication giants. Given that vir-
tually all competent software development companies have argued that
losing Net Neutrality will stifle innovation, it is fairly safe to assume
that Intel’s ability to regulate access to SGX will also stifle innovation.

5.9. SGX Enclave Launch Control 229

Furthermore, from a historical perspective, the enclave licensing
scheme described in the SGX patents is very similar to Verified Boot,
which was briefly discussed in § 4.4. Verified Boot has mostly received
negative reactions from software developers, so it is likely that an en-
clave licensing scheme would meet the same fate, should the devel-
oper community become aware of it.

5.9.3 System Software Can Enforce a Launch Policy

§ 5.3 explains that the SGX instructions used to load and initialize en-
claves (ECREATE, EADD, EINIT) can only be issued by privileged system
software, because they manage the EPC, which is a system resource.

A consequence on the restriction that only privileged software can
issue ECREATE and EADD instructions is that the system software is
able to track all public information that is loaded into each enclave.
The privilege requirements of EINIT mean that the system software
can also examine each enclave’s SIGSTRUCT. It follows that the sys-
tem software has access to a superset of the information that the
Launch Enclave may use.

Furthermore, EINIT’s privileged instruction status means that the
system software can perform its own policy checks before allowing
application software to initialize an enclave. So, the system software
can enforce a Launch Control Policy set by the computer’s owner.
For example, an IaaS cloud service provider may use its hypervisor
to implement a Launch Control Policy that limits what enclaves its
customers are allowed to execute.

Given that the system software has access to a superset of the infor-
mation that the Launch Enclave may use, it is easy to see that the set of
policies that can be enforced by system software is a superset of the poli-
cies that can be supported by an LE. Therefore, the only rational expla-
nation for the existence of the LE is that it was designed to implement
a Launch Control Policy that is not beneficial to the computer owner.

As an illustration of this argument, we consider the case of re-
stricting access to EGETKEY’s Provisioning keys (§ 5.8.2). The deriva-
tion material for Provisioning keys does not include OWNEREPOCH,
so malicious enclaves can potentially use these keys to track a CPU

230 The Software Isolation Container (As Exemplified by Intel’s SGX)

chip package as it exchanges owners. For this reason, the SGX design
includes a simple access control mechanism that can be used by sys-
tem software to limiting enclave access to Provisioning keys. EGETKEY
refuses to derive Provisioning keys for enclaves whose PROVISION-
KEY attribute is not set to true.

It follows that a reasonable Launch Control Policy would only allow
the PROVISIONKEY attribute to be set for the enclaves that imple-
ment software attestation, such as Intel’s Provisioning Enclave and
Quoting Enclave. This policy can easily be implemented by system
software, given its exclusive access to the EINIT instruction.

The only concern with the approach outlined above is that a ma-
licious system software may abuse the PROVISIONKEY attribute to
generate a unique identifier for the hardware that it runs on, simi-
lar to the much maligned Intel Processor Serial Number [Int, 1999].
We dismiss this concern by pointing out that system software has
access to many unique identifiers, such as the Media Access Con-
trol (MAC) address of the Ethernet adapter integrated into the moth-
erboard’s chipset (§ 2.9.1).

5.9.4 Enclaves Cannot Damage the Host Computer

SGX enclaves execute at the lowest privilege level (user mode / ring
3), so they are subject to the same security checks as their host ap-
plication. For example, modern operating systems set up the I/O
maps (§ 2.7) to prevent application software from directly accessing
the I/O address space (§ 2.4), and use the supervisor (S) page table at-
tribute (§ 2.5.3) to deny application software direct access to memory-
mapped devices (§ 2.4) and to the DRAM that stores the system soft-
ware. Enclave software is subject to I/O privilege checks and address
translation checks, so a malicious enclave cannot directly interact with
the computer’s devices, and cannot tamper the system software.

It follows that software running in an enclave has the same means
to compromise the system software as its host application, which
come down to exploiting a security vulnerability. The same solutions
used to mitigate vulnerabilities exploited by application software (e.g.,
seccomp/bpf [Kim and Zeldovich, 2013]) apply to enclaves.

5.9. SGX Enclave Launch Control 231

The only remaining concern is that an enclave can perform a de-
nial of service (DoS) attack against the system software. The rest of
this section addresses the concern.

The SGX design provides system software the tools it needs to
protect itself from enclaves that engage in CPU hogging and DRAM
hogging. As enclaves cannot perform I/O directly, these are the only
two classes of DoS attacks available to them.

An enclave that attempts to hog an LP assigned to it can
be preempted by the system software via an Inter-Processor Inter-
rupt (IPI, § 2.12) issued from another processor. This method is
available as long as the system software reserves at least one LP
for non-enclave computation.

Furthermore, most OS kernels use tick schedulers, which use a real-
time clock (RTC) configured to issue periodical interrupts (ticks) to
all cores. The RTC interrupt handler invokes the kernel’s scheduler,
which chooses the thread that will get to use the logical processor until
the next RTC interrupt is received. Therefore, kernels that use tick
schedulers always have the opportunity to de-schedule enclave threads,
and don’t need to rely on the ability to send IPIs.

In SGX, the system software can always evict an enclave’s EPC
pages to non-EPC memory, and then to disk. The system software
can also outright deallocate an enclave’s EPC pages, though this will
probably cause the enclave code to encounter page faults that cannot
be resolved. The only catch is that the EPC pages that hold metadata
for running enclave threads cannot be evicted or removed. However,
this can easily be resolved, as the system software can always preempt
enclave threads, using one of the methods described above.

5.9.5 Interaction with Anti-Virus Software

Today’s anti-virus (AV) systems are glorified pattern matchers. AV
software simply scans all executable files on the system and the mem-
ory of running processes, looking for bit patterns that are thought
to only occur in malicious software. These patterns are somewhat
pompously called “virus signatures”.

232 The Software Isolation Container (As Exemplified by Intel’s SGX)

SGX (and TXT, to some extent) provides a method for executing
code in an isolated container that we refer to as an enclave. Enclaves
are isolated from all other software on the computer, including any
AV software that may be installed.

The isolation afforded by SGX opens up the possibility for bad
actors to structure their attacks as a generic loader that would end
up executing a malicious payload without tripping the AV’s pattern
matcher. More specifically, the attack would create an enclave and ini-
tialize it with a generic loader that looks innocent to an AV. The loader
inside the enclave would obtain an encrypted malicious payload, and
would undergo software attestation with an Internet server to obtain
the payload’s encryption key. The loader would then decrypt the ma-
licious payload and execute it inside the enclave.

In the scheme suggested here, the malicious payload only exists in a
decrypted form inside an enclave’s memory, which cannot be accessed
by the AV. Therefore, the AV’s pattern matcher will not trip.

This issue does not have a solution that maintains the status-quo
for the AV vendors. The attack described above would be called a
protection scheme if the payload would be a proprietary image pro-
cessing algorithm, or a DRM scheme.

On a brighter note, enclaves do not bring the complete extinction
of AV, they merely require a change in approach. Enclave code always
executes at the lowest privilege mode (ring 3 / user mode), so it cannot
perform any I/O without invoking the services of system software. For
all intents and purposes, this effectively means that enclave software
cannot perform any malicious action without the complicity of system
software. Therefore, enclaves can be policed effectively by intelligent AV
software that records and filters the I/O performed by software, and
detects malicious software according to the actions that it performs,
rather than according to bit patterns in its code.

Furthermore, SGX’s enclave loading model allows the possibility of
performing static analysis on the enclave’s software. For simplicity, as-
sume the existence of a standardized static analysis framework. The ini-
tial enclave contents is not encrypted, so the system software can easily
perform static analysis on it. Dynamically loaded code or Just-In-Time

5.9. SGX Enclave Launch Control 233

code generation (JIT) can be handled by requiring that all enclaves that
use these techniques embed the static analysis framework and use it to
analyze any dynamically loaded code before it is executed. The system
software can use static verification to ensure that enclaves follow these
rules, and refuse to initialize any enclaves that fail verification.

In conclusion, enclaves in and of themselves don’t introduce new
attack vectors for malware. However, the enclave isolation mechanism
is fundamentally incompatible with the approach employed by today’s
AV solutions. Fortunately, it is possible (though non-trivial) to develop
more intelligent AV software for enclave software.

6
Conclusion

This manuscript is the first of a two-part review of secure processor
systems that aims to enable remote computation with guarantees of
privacy and integrity. § 2 introduced computer architecture concepts
relevant to the work’s discussion of trusted remote computation, and
enclaves in particular. An understanding of the intended and unin-
tended properties of virtual memory, cache hierarchies, fine-grained
multithreading, and data structures managed by Operating System is
instrumental to a rigorous discussion of the security properties of a
trusted system. § 3 discussed practical cryptographic primitives and
protocols, as well as attack vectors exposed by modern computer sys-
tems. It provided concrete context against the threat models employed
by secure processor systems can be evaluated. § 4 is a brief survey of a
large body of secure processor systems, including commentary on their
threat models, design decisions, and success against real-world adver-
saries. Finally, § 5 presented a practical approach to and programming
model for a secure enclave with a small trusted computing base.

Part II of this work presents a deep dive into the design deci-
sions and resulting quirks of SGX and an analysis of the system’s se-
curity properties and threat model. Given this discussion, the work

235

236 Conclusion

will present MIT’s Sanctum, an enclave-capable secure system with a
stronger security argument under a software threat model than SGX.

While this work does not seek to prescribe any specific solution
to the security needs of a given application, we invite the reader to
carefully examine the software and hardware included in the trusted
computing base of the services they rely on. Security implies some
overhead, and the tradeoff between cost, performance, design effort,
and security must be carefully considered in any application. A claim
of security of a given system is meaningless without a corresponding
threat model and rigorous analysis of the system’s trusted computing
base. With a principled, transparent, and well-scrutinized approach
to system design, practical guarantees of privacy and integrity for re-
mote computation are well within reach.

Acknowledgments

Funding for this research was partially provided by the National Sci-
ence Foundation under contract number CNS-1413920 and by Delta
Electronics. We thank Christopher Fletcher, Albert Kwon, Marten
van Dijk, Ling Ren, Ron Rivest, and Nickolai Zeldovich for use-
ful discussions throughout the course of this work. We acknowledge
the useful feedback from Intel SGX designers on an early version
of this manuscript.

237

References

FIPS 140-2 Consolidated Validation Certificate No. 0003. 2011.
IBM 4765 Cryptographic Coprocessor Security Module - Security Policy. Dec

2012.
7-Zip LZMA benchmark: Intel Haswell. http://www.7-cpu.com/cpu/

Haswell.html, 2014. [Online; accessed 10-Februrary-2015].
Linux kernel: CVE security vulnerabilities, versions and detailed re-

ports. http://www.cvedetails.com/product/47/Linux-Linux-Kernel.
html?vendor_id=33, 2014a. [Online; accessed 27-April-2015].

XEN: CVE security vulnerabilities, versions and detailed reports. http://
www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276,
2014b. [Online; accessed 27-April-2015].

IPC2 hardware specification. http://fit-pc.com/download/intense-pc2/
documents/ipc2-hw-specification.pdf, Sep 2014. [Online; accessed 2-
Dec-2015].

Gradually sunsetting SHA-1. http://googleonlinesecurity.blogspot.
com/2014/09/gradually-sunsetting-sha-1.html, 2014. [Online; ac-
cessed 4-May-2015].

NIST’S policy on hash functions. http://csrc.nist.gov/groups/ST/hash/
policy.html, 2014. [Online; accessed 4-May-2015].

BIOS freedom status. https://puri.sm/posts/bios-freedom-status/,
Nov 2014. [Online; accessed 2-Dec-2015].

Xen project software overview. http://wiki.xen.org/wiki/Xen_Project_
Software_Overview, 2015. [Online; accessed 27-April-2015].

239

http://www.7-cpu.com/cpu/Haswell.html
http://www.7-cpu.com/cpu/Haswell.html
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://fit-pc.com/download/intense-pc2/documents/ipc2-hw-specification.pdf
http://fit-pc.com/download/intense-pc2/documents/ipc2-hw-specification.pdf
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://csrc.nist.gov/groups/ST/hash/policy.html
http://csrc.nist.gov/groups/ST/hash/policy.html
https://puri.sm/posts/bios-freedom-status/
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://wiki.xen.org/wiki/Xen_Project_Software_Overview

240 References

SHA-1 deprecation countdown. https://blogs.windows.com/msedgedev/
2016/11/18/countdown-to-sha-1-deprecation/#MPDwCxdpw3IqPPBR.
97, 2016. [Online; accessed 18-June-2017].

Seth Abraham. Time to revisit REP;MOVS - comment. https://software.
intel.com/en-us/forums/topic/275765, Aug 2006. [Online; accessed 23-
January-2015].

Tiago Alves and Don Felton. TrustZone: Integrated hardware and software
security. Information Quarterly, 3(4):18–24, 2004.

Ittai Anati, Shay Gueron, Simon P. Johnson, and Vincent R. Scarlata. In-
novative technology for CPU based attestation and sealing. In Proceedings
of the 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, HASP, volume 13, 2013.

Ross Anderson. Security engineering: A guide to building dependable dis-
tributed systems. Wiley, 2001.

Sebastian Anthony. Who actually develops Linux? the answer
might surprise you. http://www.extremetech.com/computing/
175919-who-actually-develops-linux, 2014. [Online; accessed 27-
April-2015].

AMBA R© AXI Protocol. ARM Limited, Mar 2004. Reference no. IHI 0022B,
IHI 0024B, AR500-DA-10004.

ARM Security Technology Building a Secure System using TrustZone R© Tech-
nology. ARM Limited, Apr 2009. Reference no. PRD29-GENC-009492C.

Sebastian Banescu. Cache timing attacks. 2011. [Online; accessed 26-January-
2014].

Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid.
Recommendation for key management – part 1: General (revision 3). Fed-
eral Information Processing Standards (FIPS) Special Publications (SP),
800-57, Jul 2012.

Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid.
Secure hash standard (SHS). Federal Information Processing Standards
(FIPS) Publications (PUBS), 180-4, Aug 2015.

Friedrich Beck. Integrated Circuit Failure Analysis: a Guide to Preparation
Techniques. John Wiley & Sons, 1998.

Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS# 1. In Advances in Cryptology –
CRYPTO’98, pages 1–12. Springer, 1998.

https://blogs.windows.com/msedgedev/2016/11/18/countdown-to-sha-1-deprecation/#MPDwCxdpw3IqPPBR.97
https://blogs.windows.com/msedgedev/2016/11/18/countdown-to-sha-1-deprecation/#MPDwCxdpw3IqPPBR.97
https://blogs.windows.com/msedgedev/2016/11/18/countdown-to-sha-1-deprecation/#MPDwCxdpw3IqPPBR.97
https://software.intel.com/en-us/forums/topic/275765
https://software.intel.com/en-us/forums/topic/275765
http://www.extremetech.com/computing/175919-who-actually-develops-linux
http://www.extremetech.com/computing/175919-who-actually-develops-linux

References 241

D. D. Boggs and S. D. Rodgers. Microprocessor with novel instruction for
signaling event occurrence and for providing event handling information in
response thereto, 1997. US Patent 5,625,788.

Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against
AES. In Cryptographic Hardware and Embedded Systems-CHES 2006, pages
201–215. Springer, 2006.

Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing.
IACR Cryptology ePrint Archive, 2009.

Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practi-
cal. In Computer Security–ESORICS 2011, pages 355–371. Springer, 2011.

David Brumley and Dan Boneh. Remote timing attacks are practical. Com-
puter Networks, 48(5):701–716, 2005.

John Butterworth, Corey Kallenberg, Xeno Kovah, and Amy Herzog. BIOS
chronomancy: Fixing the core root of trust for measurement. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & Communications
Security, pages 25–36. ACM, 2013.

David Champagne and Ruby B. Lee. Scalable architectural support for trusted
software. In High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on, pages 1–12. IEEE, 2010.

Daming D. Chen and Gail-Joon Ahn. Security analysis of x86 processor
microcode. 2014. [Online; accessed 7-January-2015].

Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and
M. Frans Kaashoek. Linux kernel vulnerabilities: State-of-the-art defenses
and open problems. In Proceedings of the Second Asia-Pacific Workshop
on Systems, page 5. ACM, 2011.

Lily Chen. Recommendation for key derivation using pseudorandom func-
tions. Federal Information Processing Standards (FIPS) Special Publica-
tions (SP), 800-108, Oct 2009.

Coreboot. Developer manual, Sep 2014. [Online; accessed 4-March-2015].
M. P. Cornaby and B. Chaffin. Microinstruction pointer stack including spec-

ulative pointers for out-of-order execution, 2007. US Patent 7,231,511.
Intel Corporation. Intel R© Xeon R© Processor E5 v3 Family Uncore Perfor-

mance Monitoring Reference Manual, Sep 2014. Reference no. 331051-001.
Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hard-

ware extensions for strong software isolation. Cryptology ePrint Archive,
Report 2015/564, 2015.

242 References

Victor Costan, Ilia Lebedev, and Srinivas Devadas. Secure processors part II:
Intel SGX security analysis and MIT sanctum architecture. In FnTEDA,
2017.

J. Daemen and V. Rijmen. AES proposal: Rijndael, AES algorithm submis-
sion, Sep 1999.

S. M. Datta and M. J. Kumar. Technique for providing secure firmware, 2013.
US Patent 8,429,418.

S. M. Datta, V. J. Zimmer, and M. A. Rothman. System and method for
trusted early boot flow, 2010. US Patent 7,752,428.

Pete Dice. Booting an Intel architecture system, part i: Early initialization.
Dr. Dobb’s, Dec 2011. [Online; accessed 2-Dec-2015].

Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654, 1976.

Loïc Duflot, Daniel Etiemble, and Olivier Grumelard. Using CPU sys-
tem management mode to circumvent operating system security functions.
CanSecWest/core06, 2006.

Morris Dworkin. Recommendation for block cipher modes of operation: Meth-
ods and techniques. Federal Information Processing Standards (FIPS) Spe-
cial Publications (SP), 800-38A, Dec 2001.

Morris Dworkin. Recommendation for block cipher modes of operation: The
CMAC mode for authentication. Federal Information Processing Standards
(FIPS) Special Publications (SP), 800-38B, May 2005.

Morris Dworkin. Recommendation for block cipher modes of operation: Ga-
lois/counter mode (GCM) and GMAC. Federal Information Processing
Standards (FIPS) Special Publications (SP), 800-38D, Nov 2007.

D. Eastlake and P. Jones. RFC 3174: US Secure Hash Algorithm 1 (SHA1).
Internet RFCs, 2001.

Shawn Embleton, Sherri Sparks, and Cliff C. Zou. SMM rootkit: a new breed
of OS independent malware. Security and Communication Networks, 2010.

Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engi-
neering: Design Principles and Practical Applications. John Wiley & Sons,
2011.

Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. A secure
processor architecture for encrypted computation on untrusted programs.
In Proceedings of the Seventh ACM Workshop on Scalable Trusted Comput-
ing, pages 3–8. ACM, 2012.

References 243

Agner Fog. Instruction tables - lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs. Dec 2014.
[Online; accessed 23-January-2015].

Andrew Furtak, Yuriy Bulygin, Oleksandr Bazhaniuk, John Loucaides,
Alexander Matrosov, and Mikhail Gorobets. BIOS and secure boot at-
tacks uncovered. The 10th ekoparty Security Conference, 2014. [Online;
accessed 22-October-2015].

William Futral and James Greene. Intel R© Trusted Execution Technology for
Server Platforms. Apress Open, 2013.

Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas. Sili-
con physical random functions. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, pages 148–160. ACM, 2002.

Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten Van Dijk, and Srini-
vas Devadas. Caches and hash trees for efficient memory integrity ver-
ification. In Proceedings of the 9th International Symposium on High-
Performance Computer Architecture, pages 295–306. IEEE, 2003.

Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via
low-bandwidth acoustic cryptanalysis. Cryptology ePrint Archive, Report
2013/857, 2013.

Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands off my
laptop: Physical side-channel key-extraction attacks on pcs. Cryptology
ePrint Archive, Report 2014/626, 2014.

Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. Stealing
keys from PCs using a radio: Cheap electromagnetic attacks on windowed
exponentiation. Cryptology ePrint Archive, Report 2015/170, 2015.

Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009.

R. T. George, J. W. Brandt, K. S. Venkatraman, and S. P. Kim. Dynamically
partitioning pipeline resources, 2009. US Patent 7,552,255.

A. Glew, G. Hinton, and H. Akkary. Method and apparatus for perform-
ing page table walks in a microprocessor capable of processing speculative
instructions, 1997. US Patent 5,680,565.

A. F. Glew, H. Akkary, R. P. Colwell, G. J. Hinton, D. B. Papworth, and
M. A. Fetterman. Method and apparatus for implementing a non-blocking
translation lookaside buffer, 1996. US Patent 5,564,111.

Oded Goldreich. Towards a theory of software protection and simulation by
oblivious RAMs. In Proceedings of the 19th annual ACM symposium on
Theory of Computing, pages 182–194. ACM, 1987.

244 References

J. R. Goodman and H. H. J. Hum. MESIF: A two-hop cache coherency
protocol for point-to-point interconnects. 2009.

Joe Grand. Advanced hardware hacking techniques, Jul 2004.
David Grawrock. Dynamics of a Trusted Platform: A building block approach.

Intel Press, 2009.
Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A

remote software-induced fault attack in JavaScript. CoRR, abs/1507.06955,
2015. URL http://arxiv.org/abs/1507.06955.

Shay Gueron. A memory encryption engine suitable for general purpose pro-
cessors. Cryptology ePrint Archive, Report 2016/204, 2016.

Ben Hawkes. Security analysis of x86 processor microcode. 2012. [Online;
accessed 7-January-2015].

John L. Hennessy and David A. Patterson. Computer Architecture - a Quanti-
tative Approach (5 ed.). Mogran Kaufmann, 2012. ISBN 978-0-12-383872-8.

Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart
card implementation resistant to power analysis attacks. In Applied cryp-
tography and Network security, pages 239–252. Springer, 2006.

G. Hildesheim, I. Anati, H. Shafi, S. Raikin, G. Gerzon, U. R. Savagaonkar,
C. V. Rozas, F. X. McKeen, M. A. Goldsmith, and D. Prashant. Apparatus
and method for page walk extension for enhanced security checks, 2014. US
Patent App. 13/730,563.

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and
Juan Del Cuvillo. Using innovative instructions to create trustworthy soft-
ware solutions. In Proceedings of the 2nd International Workshop on Hard-
ware and Architectural Support for Security and Privacy, HASP, volume 13,
2013.

Gael Hofemeier. Intel manageability firmware recovery agent. Mar 2013.
[Online; accessed 2-Dec-2015].

George Hotz. PS3 glitch hack. 2010. [Online; accessed 7-January-2015].
Andrew Huang. Hacking the Xbox: an Introduction to Reverse Engineering.

No Starch Press, 2003.
C. J. Hughes, Y. K. Chen, M. Bomb, J. W. Brandt, M. J. Buxton, M. J.

Charney, S. Chennupaty, J. Corbal, M. G. Dixon, M. B. Girkar, Jonathan C.
Hall, Hideki (Saito) Ido, Peter Lachner, Gilbert Neiger, Chris J. Newburn,
Rajesh S. Parthasarathy, Bret L. Toll, Robert Valentine, and Jeffrey G.
Wiedemeier. Gathering and scattering multiple data elements, 2013. US
Patent 8,447,962.

http://arxiv.org/abs/1507.06955

References 245

IEEE Standard for Ethernet. IEEE Computer Society, Dec 2012. IEEE Std.
802.3-2012.

Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Seriously, get off my cloud! cross-VM RSA key recovery
in a public cloud. Cryptology ePrint Archive, Report 2015/898, 2015.

Intel R© Processor Serial Number. Intel Corporation, Mar 1999. Order no.
245125-001.

An Introduction to the Intel R© QuickPath Interconnect. Intel Corporation,
Mar 2010a. Reference no. 323535-001.

Minimal Intel R© Architecture Boot Loader–Bare Bones Functionality Required
for Booting an Intel R© Architecture Platform. Intel Corporation, Jan 2010b.
Reference no. 323246.

Intel R© Core 2 Duo and Intel R© Core 2 Solo Processor for Intel R© Centrino R©
Duo Processor Technology Intel R© Celeron R© Processor 500 Series - Speci-
fication Update. Intel Corporation, Dec 2010c. Reference no. 314079-026.

Intel R© architecture Platform Basics. Intel Corporation, Sep 2010d. Reference
no. 324377.

Intel R© Trusted Execution Technology (Intel R© TXT) LAB Handout. Intel
Corporation, 2010e. [Online; accessed 2-July-2015].

Intel R© Xeon R© Processor 7500 Series Uncore Programming Guide. Intel Cor-
poration, Mar 2010f. Reference no. 323535-001.

Intel R© 7 Series Family - Intel R© Management Engine Firmware 8.1 - 1.5MB
Firmware Bring Up Guide. Intel Corporation, Jul 2012a. Revision
8.1.0.1248 - PV Release.

Intel R© Xeon R© Processor E5-2600 Product Family Uncore Performance Mon-
itoring Guide. Intel Corporation, Mar 2012b. Reference no. 327043-001.

Software Guard Extensions Programming Reference. Intel Corporation, 2013.
Reference no. 329298-001US.

Intel R© Xeon R© Processor 7500 Series Datasheet - Volume Two. Intel Corpo-
ration, Mar 2014a. Reference no. 329595-002.

Intel R© Xeon R© Processor E7 v2 2800/4800/8800 Product Family Datasheet -
Volume Two. Intel Corporation, Mar 2014b. Reference no. 329595-002.

Intel R© 64 and IA-32 Architectures Optimization Reference Manual. Intel
Corporation, Sep 2014c. Reference no. 248966-030.

Software Guard Extensions Programming Reference. Intel Corporation, 2014d.
Reference no. 329298-002US.

246 References

Intel R© 100 Series Chipset Family Platform Controller Hub (PCH) Datasheet
- Volume One. Intel Corporation, Aug 2015a. Reference no. 332690-001EN.

Mobile 4th Generation Intel R© Core R© Processor Family I/O Datasheet. Intel
Corporation, Feb 2015b. Reference no. 329003-003.

Intel R© Xeon R© Processor E5-1600, E5-2400, and E5-2600 v3 Product Family
Datasheet - Volume Two. Intel Corporation, Jan 2015c. Reference no.
330784-002.

Intel R© Xeon R© Processor 5500 Series - Specification Update. Intel Corpora-
tion, 2 2015d. Reference no. 321324-018US.

Intel R© Xeon R© Processor E5 Product Family - Specification Update. Intel
Corporation, Jan 2015e. Reference no. 326150-018.

Intel R© Software Guard Extensions (Intel R© SGX). Intel Corporation, Jun
2015f. Reference no. 332680-002.

Intel R© 64 and IA-32 Architectures Software Developer’s Manual. Intel Cor-
poration, Sep 2015g. Reference no. 325462-056US.

Intel R© C610 Series Chipset and Intel R© X99 Chipset Platform Controller Hub
(PCH) Datasheet. Intel Corporation, Oct 2015h. Reference no. 330788-003.

Bruce Jacob and Trevor Mudge. Virtual memory: Issues of implementation.
Computer, 31(6):33–43, 1998.

Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mc-
keen. Intel R© software guard extensions: EPID provisioning and attesta-
tion services. https://software.intel.com/en-us/blogs/2016/03/09/
intel-sgx-epid-provisioning-and-attestation-services, Mar 2016.
[Online; accessed 21-Mar-2016].

Simon P. Johnson, Uday R. Savagaonkar, Vincent R. Scarlata, Francis X.
McKeen, and Carlos V. Rozas. Technique for supporting multiple secure
enclaves, Dec 2010. US Patent 8,972,746.

Jakob Jonsson and Burt Kaliski. RFC 3447: Public-Key Cryptography Stan-
dards (PKCS) #1: RSA Cryptography Specifications Version 2.1. Internet
RFCs, Feb 2003.

Burt Kaliski. RFC 2313: PKCS #1: RSA Encryption Version 1.5. Internet
RFCs, Mar 1998.

Burt Kaliski and Jessica Staddon. RFC 2437: PKCS #1: RSA Encryption
Version 2.0. Internet RFCs, Oct 1998.

Corey Kallenberg, Xeno Kovah, John Butterworth, and Sam Cornwell. Ex-
treme privilege escalation on windows 8/UEFI systems, 2014.

https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services

References 247

Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-
GCM. In Cryptographic Hardware and Embedded Systems-CHES 2009,
pages 1–17. Springer, 2009.

Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
CRC Press, 2014.

Richard E. Kessler and Mark D. Hill. Page placement algorithms for large
real-indexed caches. ACM Transactions on Computer Systems (TOCS), 10
(4):338–359, 1992.

Taesoo Kim and Nickolai Zeldovich. Practical and effective sandboxing for
non-root users. In USENIX Annual Technical Conference, pages 139–144,
2013.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in mem-
ory without accessing them: An experimental study of DRAM disturbance
errors. In Proceeding of the 41st annual International Symposium on Com-
puter Architecuture, pages 361–372. IEEE Press, 2014.

L. A. Knauth and P. J. Irelan. Apparatus and method for providing eventing
ip and source data address in a statistical sampling infrastructure, 2014.
US Patent App. 13/976,613.

N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48
(177):203–209, 1987.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology (CRYPTO), pages 388–397. Springer, 1999.

Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in Cryptology – CRYPTOâĂŹ96,
pages 104–113. Springer, 1996.

Hugo Krawczyk, Ran Canetti, and Mihir Bellare. HMAC: Keyed-hashing for
message authentication. 1997.

Markus G. Kuhn. Electromagnetic eavesdropping risks of flat-panel displays.
In Privacy Enhancing Technologies, pages 88–107. Springer, 2005.

Tsvika Kurts, Guillermo Savransky, Jason Ratner, Eilon Hazan, Daniel Skaba,
Sharon Elmosnino, and Geeyarpuram N. Santhanakrishnan. Generic debug
eXternal connection (gdxc) for high integration integrated circuits, 2011.
US Patent 8,074,131.

David Levinthal. Performance analysis guide for Intel R© Core i7 processor
and Intel R© Xeon 5500 processors. https://software.intel.com/sites/
products/collateral/hpc/vtune/performance_analysis_guide.pdf,
2010. [Online; accessed 26-January-2015].

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

248 References

David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan
Boneh, John Mitchell, and Mark Horowitz. Architectural support for copy
and tamper resistant software. ACM SIGPLAN Notices, 35(11):168–177,
2000.

Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and
P. Sadayappan. Gaining insights into multicore cache partitioning: Bridging
the gap between simulation and real systems. In 14th International IEEE
Symposium on High Performance Computer Architecture (HPCA), pages
367–378. IEEE, 2008.

Barbara Liskov and Stephen Zilles. Programming with abstract data types.
In ACM Sigplan Notices, volume 9, pages 50–59. ACM, 1974.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-
level cache side-channel attacks are practical. In Security and Privacy (SP),
2015 IEEE Symposium on, pages 143–158. IEEE, 2015.

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste
Asanovic, John Kubiatowicz, and Dawn Song. Phantom: Practical obliv-
ious computation in a secure processor. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 311–
324. ACM, 2013.

James Manger. A chosen ciphertext attack on RSA optimal asymmetric en-
cryption padding (OAEP) as standardized in PKCS# 1 v2.0. In Advances
in Cryptology – CRYPTO 2001, pages 230–238. Springer, 2001.

Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier
Heen, and Aurélien Francillon. Reverse engineering Intel last-level cache
complex addressing using performance counters. In Proceedings of the 18th
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2015.

Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta,
Virgil Gligor, and Adrian Perrig. TrustVisor: Efficient TCB reduction and
attestation. In Security and Privacy (SP), 2010 IEEE Symposium on, pages
143–158. IEEE, 2010.

David McGrew and John Viega. The galois/counter mode of operation
(GCM). 2004. [Online; accessed 28-December-2015].

References 249

Francis X. McKeen, Carlos V. Rozas, Uday R. Savagaonkar, Simon P. John-
son, Vincent Scarlata, Michael A. Goldsmith, Ernie Brickell, Jiang Tao Li,
Howard C. Herbert, Prashant Dewan, Stephen J. Tolopka, Gilbert Neiger,
David Durham, Gary Graunke, Bernard Lint, Don A. Van Dyke, Joseph
Cihula, Stalinselvaraj Jeyasingh, Stephen R. Van Doren, Dion Rodgers,
John Garney, and Asher Altman. Method and apparatus to provide secure
application execution, Dec 2009. US Patent 9,087,200.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instruc-
tions and software model for isolated execution. HASP, 13:10, 2013.

Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomor-
phic encryption be practical? In Proceedings of the 3rd ACM workshop on
Cloud computing security workshop, pages 113–124. ACM, 2011.

National Institute of Standards and Technology (NIST). The advanced en-
cryption standard (AES). Federal Information Processing Standards (FIPS)
Publications (PUBS), 197, Nov 2001.

National Institute of Standards and Technology (NIST). The digital signa-
ture standard (DSS). Federal Information Processing Standards (FIPS)
Processing Standards Publications (PUBS), 186-4, Jul 2013.

National Security Agency (NSA) Central Security Service (CSS). Cryptog-
raphy today on suite B phase-out. https://www.nsa.gov/ia/programs/
suiteb_cryptography/, Aug 2015. [Online; accessed 28-December-2015].

M. S. Natu, S. Datta, J. Wiedemeier, J. R. Vash, S. Kottapalli, S. P. Bobholz,
and A. Baum. Supporting advanced RAS features in a secured computing
system, 2012. US Patent 8,301,907.

Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. The spy in the sandbox – practical cache attacks in JavaScript.
arXiv preprint arXiv:1502.07373, 2015.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: the case of AES. In Topics in Cryptology–CT-RSA 2006, pages
1–20. Springer, 2006.

Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model:
x86-TSO (extended version). University of Cambridge, Computer Labora-
tory, Technical Report, (UCAM-CL-TR-745), 2009.

Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang.
ACCessory: password inference using accelerometers on smartphones. In
Proceedings of the Twelfth Workshop on Mobile Computing Systems & Ap-
plications, page 9. ACM, 2012.

https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/

250 References

D. B. Papworth, G. J. Hinton, M. A. Fetterman, R. P. Colwell, and A. F. Glew.
Exception handling in a processor that performs speculative out-of-order
instruction execution, 1999. US Patent 5,987,600.

David A. Patterson and John L. Hennessy. Computer Organization and De-
sign: the hardware/software interface. Morgan Kaufmann, 2013. ISBN
978-0-12-374750-1.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. Reverse en-
gineering Intel DRAM addressing and exploitation. ArXiv e-prints, Nov
2015.

Stefan M. Petters and Georg Farber. Making worst case execution time anal-
ysis for hard real-time tasks on state of the art processors feasible. In Sixth
International Conference on Real-Time Computing Systems and Applica-
tions, pages 442–449. IEEE, 1999.

S. A. Qureshi and M. O. Nicholes. System and method for using a firmware
interface table to dynamically load an ACPI SSDT, 2006. US Patent
6,990,576.

S. Raikin and R. Valentine. Gather cache architecture, 2014. US Patent
8,688,962.

S. Raikin, O. Hamama, R. S. Chappell, C. B. Rust, H. S. Luu, L. A. Ong, and
G. Hildesheim. Apparatus and method for a multiple page size translation
lookaside buffer (TLB), 2014. US Patent App. 13/730,411.

Stefan Reinauer. x86 Intel: Add firmware interface table support. http:
//review.coreboot.org/#/c/2642/, 2013. [Online; accessed 2-July-2015].

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,
you, get off of my cloud: Exploring information leakage in third-party com-
pute clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, pages 199–212. ACM, 2009.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21
(2):120–126, 1978.

S. D. Rodgers, K. K. Tiruvallur, M. W. Rhodehamel, K. G. Konigsfeld, A. F.
Glew, H. Akkary, M. A. Karnik, and J. A. Brayton. Method and apparatus
for performing operations based upon the addresses of microinstructions,
1997. US Patent 5,636,374.

S. D. Rodgers, R. Vidwans, J. Huang, M. A. Fetterman, and K. Huck. Method
and apparatus for generating event handler vectors based on both operating
mode and event type, 1999. US Patent 5,889,982.

http://review.coreboot.org/#/c/2642/
http://review.coreboot.org/#/c/2642/

References 251

M. Rosenblum and T. Garfinkel. Virtual machine monitors: current technol-
ogy and future trends. Computer, 38(5):39–47, May 2005.

Xiaoyu Ruan. Platform Embedded Security Technology Revealed. Apress, 2014.
ISBN 978-1-4302-6571-9.

Joanna Rutkowska. Intel x86 considered harmful. https://blog.
invisiblethings.org/papers/2015/x86_harmful.pdf, Oct 2015. [On-
line; accessed 2-Nov-2015].

Joanna Rutkowska and Rafał Wojtczuk. Preventing and detecting Xen hy-
pervisor subversions. Blackhat Briefings USA, 2008.

Jerome H. Saltzer and M. Frans Kaashoek. Principles of Computer System
Design: An Introduction. Morgan Kaufmann, 2009.

Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowhammer bug to
gain kernel privileges. http://googleprojectzero.blogspot.com/2015/
03/exploiting-dram-rowhammer-bug-to-gain.html, Mar 2015. [Online;
accessed 9-March-2015].

V. Shanbhogue and S. J. Robinson. Enabling virtualization of a processor
resource, 2014. US Patent 8,806,104.

Stephen Shankland. Itanium: A cautionary tale. Dec 2005. [Online; accessed
11-February-2015].

Alan Jay Smith. Cache memories. ACM Computing Surveys (CSUR), 14(3):
473–530, 1982.

Sean W. Smith and Steve Weingart. Building a high-performance, pro-
grammable secure coprocessor. Computer Networks, 31(8):831–860, 1999.

Sean W. Smith, Ron Perez, Steve Weingart, and Vernon Austel. Validating a
high-performance, programmable secure coprocessor. In 22nd National In-
formation Systems Security Conference. IBM Thomas J. Watson Research
Division, 1999.

Marc Stevens, Pierre Karpman, and Thomas Peyrin. Free-start collision on
full SHA-1. Cryptology ePrint Archive, Report 2015/967, 2015.

G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srini-
vas Devadas. AEGIS: architecture for tamper-evident and tamper-resistant
processing. In Proceedings of the 17th annual international conference on
Supercomputing, pages 160–171. ACM, 2003.

G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas Devadas.
Design and Implementation of the AEGIS Single-Chip Secure Processor
Using Physical Random Functions. In Proceedings of the 32nd ISCA’05.
ACM, June 2005.

https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

252 References

George Taylor, Peter Davies, and Michael Farmwald. The TLB slice - a
low-cost high-speed address translation mechanism. SIGARCH Computer
Architecture News, 18(2SI):355–363, 1990.

Trusted Computing Group TCG. Tpm main specification. http://www.
trustedcomputinggroup.org/resources/tpm_main_specification,
2003.

Alexander Tereshkin and Rafal Wojtczuk. Introducing ring-3 rootkits. Mas-
ter’s thesis, 2009.

Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A dynamic and dif-
ferential CMOS logic with signal independent power consumption to with-
stand differential power analysis on smart cards. In Proceedings of the
28th European Solid-State Circuits Conference (ESSCIRC), pages 403–406.
IEEE, 2002.

Unified Extensible Firmware Interface Specification, Version 2.5. UEFI Fo-
rum, 2015. [Online; accessed 1-Jul-2015].

Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Mar-
tins, Andrew V. Anderson, Steven M. Bennett, Alain Kagi, Felix H. Leung,
and Larry Smith. Intel virtualization technology. Computer, 38(5):48–56,
2005.

Wim Van Eck. Electromagnetic radiation from video display units: an eaves-
dropping risk? Computers & Security, 4(4):269–286, 1985.

Amit Vasudevan, Jonathan M. McCune, Ning Qu, Leendert Van Doorn, and
Adrian Perrig. Requirements for an integrity-protected hypervisor on the
x86 hardware virtualized architecture. In Trust and Trustworthy Comput-
ing, pages 141–165. Springer, 2010.

Sathish Venkataramani. Advanced Board Bring Up - Power Sequencing Guide
for Embedded Intel Architecture. Intel Corporation, Apr 2011. Reference
no. 325268.

Vassilios Ververis. Security evaluation of Intel’s active management technol-
ogy. 2010.

Filip Wecherowski. A real SMM rootkit: Reversing and hooking BIOS SMI
handlers. Phrack Magazine, 13(66), 2009.

Rafal Wojtczuk and Joanna Rutkowska. Attacking SMM memory via Intel
CPU cache poisoning. Invisible Things Lab, 2009a.

Rafal Wojtczuk and Joanna Rutkowska. Attacking Intel trusted execution
technology. Black Hat DC, 2009b.

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

References 253

Rafal Wojtczuk and Joanna Rutkowska. Attacking intel TXT via SINIT code
execution hijacking, 2011.

Rafal Wojtczuk and Alexander Tereshkin. Attacking Intel R© BIOS. Invisible
Things Lab, 2010.

Rafal Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin. Another way
to circumvent Intel R© trusted execution technology. Invisible Things Lab,
2009.

Y. Wu and M. Breternitz. Genetic algorithm for microcode compression, 2008.
US Patent 7,451,121.

Y. Wu, S. Kim, M. Breternitz, and H. Hum. Compressing and accessing a
microcode ROM, 2012. US Patent 8,099,587.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating systems. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy (Oakland).
IEEE – Institute of Electrical and Electronics Engineers, May 2015.

A. C. Yao. How to generate and exchange secrets. In Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, pages 162–167,
1986.

Yuval Yarom and Katrina E. Falkner. Flush+Reload: a high resolution, low
noise, L3 cache side-channel attack. IACR Cryptology ePrint Archive, 2013:
448, 2013.

Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser. Mapping
the Intel last-level cache. Cryptology ePrint Archive, Report 2015/905,
2015.

Bennet Yee. Using secure coprocessors. PhD thesis, Carnegie Mellon Univer-
sity, 1994.

Marcelo Yuffe, Ernest Knoll, Moty Mehalel, Joseph Shor, and Tsvika Kurts. A
fully integrated multi-CPU, GPU and memory controller 32nm processor.
In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2011 IEEE International, pages 264–266. IEEE, 2011.

Xiantao Zhang and Yaozu Dong. Optimizing Xen VMM based on Intel R©
virtualization technology. In Internet Computing in Science and Engineer-
ing, 2008. ICICSE’08. International Conference on, pages 367–374. IEEE,
2008.

Li Zhuang, Feng Zhou, and J. Doug Tygar. Keyboard acoustic emanations re-
visited. ACM Transactions on Information and System Security (TISSEC),
13(1):3, 2009.

254 References

V. J. Zimmer and S. H. Robinson. Methods and systems for microcode patch-
ing, 2012. US Patent 8,296,528.

V. J. Zimmer and J. Yao. Method and apparatus for sequential hypervisor
invocation, 2012. US Patent 8,321,931.

	Introduction
	Secure Remote Computation
	SGX Lightning Tour
	Outline

	A Primer on Computer System Architecture
	Overview
	Computational Model
	Software Privilege Levels
	Address Spaces
	Address Translation
	Execution Contexts
	Segment Registers
	Privilege Level Switching
	An Overview of a Modern Computer System
	Out-of-Order and Speculative Execution
	Memory Cache Subsystem
	Interrupts
	Platform Initialization (Booting)
	CPU Microcode

	A Primer on Security for Trusted Processors
	Cryptographic Primitives
	Cryptographic Constructs
	Software Attestation Overview
	Physical Attacks
	Privileged Software Attacks
	Software Attacks on Peripherals
	Address Translation Attacks
	Cache Timing Attacks

	A Survey of Secure Processors
	The IBM 4765 Secure Coprocessor
	ARM TrustZone
	The XOM Architecture
	The Trusted Platform Module (TPM)
	Intel's Trusted Execution Technology (TXT)
	The Aegis Secure Processor
	The Bastion Architecture
	Intel SGX
	Sanctum
	Ascend and Phantom

	The Software Isolation Container (As Exemplified by Intel's SGX)
	SGX Physical Memory Organization
	The Memory Layout of an SGX Enclave
	The Life Cycle of an SGX Enclave
	The Life Cycle of an SGX Thread
	EPC Page Eviction
	SGX Enclave Measurement
	SGX Enclave Versioning Support
	SGX Software Attestation
	SGX Enclave Launch Control

	Conclusion
	Acknowledgments
	References

