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Abstract

This manuscript is the second in a two part survey and analysis of
the state of the art in secure processor systems, with a specific fo-
cus on remote software attestation and software isolation. The first
part established the taxonomy and prerequisite concepts relevant to
an examination of the state of the art in trusted remote computation:
attested software isolation containers (enclaves). This second part ex-
tends Part I’s description of Intel’s Software Guard Extensions (SGX),
an available and documented enclave-capable system, with a rigorous
security analysis of SGX as a system for trusted remote computation.
This part documents the authors’ concerns over the shortcomings of
SGX as a secure system and introduces the MIT Sanctum processor
developed by the authors: a system designed to offer stronger security
guarantees, lend itself better to analysis and formal verification, and
offer a more straightforward and complete threat model than the Intel
system, all with an equivalent programming model.

This two part work advocates a principled, transparent, and well-
scrutinized approach to system design, and argues that practical guar-
antees of privacy and integrity for remote computation are achievable
at a reasonable design cost and performance overhead.
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Intel SGX Security Analysis and MIT Sanctum Architecture. Foundations and
TrendsR© in Electronic Design Automation, vol. 11, no. 3, pp. 249–361, 2017.
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1
Introduction

Between the Snowden revelations and the seemingly unending series
of high-profile hacks of the past few years, the public’s confidence in
software systems has decreased considerably. At the same time, key
initiatives such as cloud computing and the IoT (Internet of Things)
are gaining popularity but require users to place much trust in the
systems providing these services. We must therefore develop capa-
bilities to build software systems with compelling security, and gain
back our users’ trust.

This manuscript is the second in a two part survey of the state of
the art in secure processor systems, with a specific focus on remote
software attestation and software isolation. Part I [Costan et al., 2017]
established relevant background in computer system design (§ I.2) and
security primitives (§ I.3), and surveyed relevant prior work (§ I.4).
The same work discussed the attested software isolation container (en-
clave): a modern primitive for modular secure software and trusted
remote computation, as exemplified by Intel’s Software Guard Ex-
tensions (§ I.5).

This manuscript extends the discussion of enclaves and SGX by
surveying the implementation and security properties of SGX (§ 2),
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1.1. The Case for Hardware Isolation 251

and documents the authors’ concerns with its vulnerabilities to several
classes of software attacks. Informed by the successes and shortcom-
ings of SGX, this manuscript also discusses the MIT Sanctum proces-
sor (§ 3): a secure processor that offers an equivalent programming
model with strong security guarantees against an insidious software
threat model including cache timing and memory access pattern at-
tacks. With this work, we hope to enable a shift in discourse in secure
hardware architecture away from plugging specific security holes to a
principled approach to eliminating attack surfaces.

1.1 The Case for Hardware Isolation

The best known practical method for securing a software system
amounts to modularizing the system’s code in a way that minimizes
code in the modules responsible for the system’s security. Formal ver-
ification techniques are then applied to these modules, which make
up the system’s trusted codebase (TCB). The method assumes that
software modules are isolated, so the TCB must also include the mech-
anism providing the isolation guarantees.

Today’s systems rely on an operating system kernel, or a hypervi-
sor (such as Linux or Xen, respectively) for software isolation. How-
ever each of the last three years (2012-2014) witnessed over 100 new
security vulnerabilities in Linux [cve, 2014a, Chen et al., 2011], and
over 40 in Xen [cve, 2014b].

One may hope that formal verification methods can produce a se-
cure kernel or hypervisor. Unfortunately, these codebases are far out-
side our verification capabilities: Linux and Xen have over 17 million
[Anthony, 2014] and 150,000 [xen, 2015] lines of code, respectively. In
stark contrast, the seL4 formal verification effort [Klein et al., 2009]
spent 20 man-years to cover 9,000 lines of code.

Given Linux and Xen’s history of vulnerabilities and uncertain
prospects for formal verification, a prudent system designer cannot in-
clude either in a TCB (trusted computing base), and must look else-
where for a software isolation mechanism.
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Fortunately, Intel’s Software Guard Extensions (SGX) [McKeen
et al., 2013, Anati et al., 2013] has brought attention to the alter-
native of providing software isolation primitives in the CPU’s hard-
ware. This avenue is appealing because the CPU is an unavoidable
TCB component, and processor manufacturers have strong economic
incentives to build correct hardware.

1.2 Intel SGX is Not the Answer

Unfortunately, although the SGX design includes a vast array of de-
fenses against a variety of software and physical attacks, it fails to offer
meaningful software isolation guarantees. The SGX threat model pro-
tects against all direct attacks, but excludes “side-channel attacks”,
even if they can be performed via software alone.

Alarmingly, cache timing attacks require only unprivileged software
running on the victim’s host computer, and do not rely on any phys-
ical access to the machine. This is particularly concerning in a cloud
computing scenario, where gaining software access to the victim’s com-
puter only requires a credit card [Ristenpart et al., 2009], whereas
physical access is harder, requiring trespass, coercion, or social engi-
neering on the cloud provider’s employees.

Similarly, in many Internet of Things (IoT) scenarios, the process-
ing units have some amount of physical security, but they run outdated
software stacks that have known security vulnerabilities. For example,
an attacker may exploit a vulnerability in an IoT lock’s Bluetooth
stack and obtain software execution privileges, then mount a cache
timing attack on its access-granting process, and obtain the crypto-
graphic key that opens the lock.

Furthermore, the analysis of SGX documentation as described in
Part I of this work reveals that it is impossible for anyone but In-
tel to reason about SGX’s security properties, because significant im-
plementation details are not covered by the publicly available docu-
mentation. This is a concern, as the myriad of security vulnerabilities
[Wojtczuk and Rutkowska, 2011, 2009b, Wojtczuk et al., 2009, Duflot
et al., 2006, Rutkowska and Wojtczuk, 2008, Wojtczuk and Rutkowska,
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2009a, Wecherowski, 2009, Embleton et al., 2010] in TXT [Grawrock,
2009], Intel’s previous attempt at securing remote computation, show
that securing the machinery underlying Intel’s processors is incredibly
challenging, even in the presence of strong economic incentives.

If a successor to SGX claimed to protect against cache timing at-
tacks, substantiating such a claim would require an analysis of its hard-
ware and microcode, and ensuring that no implementation detail is
vulnerable to cache timing attacks. Barring a highly unlikely shift to
open-source hardware from Intel, such analysis will never happen.

A concrete example: the SGX documentation [Int, 2013, 2014] does
not state where SGX stores the EPCM (enclave page cache map). If
the EPCM is stored in cacheable RAM, page translation verification is
subject to cache timing attacks. Interestingly, this detail is unnecessary
for analyzing the security of today’s SGX implementation, as we know
that SGX uses the operating system’s page tables, and page transla-
tions are therefore vulnerable to cache timing attacks. The example
does, however, demonstrate the fine nature of crucial details that are
simply undocumented in today’s hardware security implementations.

In summary, while the principles behind SGX have great potential,
the SGX design does not offer meaningful isolation guarantees, and the
SGX implementation is not open enough for independent researchers
to be able to analyze its security properties.

1.3 MIT Sanctum Processor

The Sanctum processor’s main contribution is a software isolation
scheme that addresses the issues raised above: Sanctum’s isolation prov-
ably defends against known software side-channel attacks, including
cache timing attacks and passive address translation attacks. Sanctum
is a co-design that combines minimal and minimally invasive hard-
ware modifications with a trusted software security monitor that is
amenable to rigorous analysis and does not perform cryptographic
operations using keys.

Sanctum achieves minimality by reusing and lightly modifying
existing, well-understood mechanisms. For example, Sanctum’s per-
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enclave page tables implementation uses the core’s existing page walk-
ing circuit, and requires very little extra logic. Sanctum is minimally
invasive because it does not require modifying any major CPU build-
ing block. It only adds hardware to the interfaces between blocks,
and does not modify any block’s input or output. The use of con-
ventional building blocks limits the effort needed to validate a Sanc-
tum implementation.

Sanctum demonstrates that memory access pattern attacks by ma-
licious software can be foiled without incurring unreasonable over-
heads. Its hardware changes are small, small enough to present the
added circuits, in their entirety, in Figures 3.9 and 3.10. Sanctum cores
have the same clock speed as their insecure counterparts, as there
are no modifications on the CPU core critical execution path. Using
a straightforward page-coloring-based cache partitioning scheme with
Sanctum adds a few percent of overhead in execution time, which is
orders of magnitude lower than the overheads of the ORAM schemes
[Goldreich, 1987, Stefanov et al., 2013] that are usually employed to
conceal memory access patterns.

All layers of Sanctum’s TCB are open-sourced [MIT, 2017], and
unencumbered by patents, trade secrets, or other similar intellectual
property concerns that would disincentivize security researchers from
analyzing it. The Sanctum prototype targets the Rocket Chip [Lee
et al., 2014], an open-sourced implementation of the RISC-V [Water-
man et al., 2014, 2015] instruction set architecture, which is an open
standard. Sanctum’s software stack bears the MIT license.

To further encourage analysis, most of Sanctum’s security moni-
tor is written in portable C++ which, once rigorously analyzed, can
be used across different CPU implementations. Furthermore, even the
non-portable assembly code can be reused across different implemen-
tations of the same architecture. In comparison, SGX’s microcode is
CPU model-specific, so each micro-architectural revision would require
a separate verification effort.



2
An Analysis of Intel’s Software Guard Extensions

(SGX)

Intel’s Software Guard Extensions (SGX) is a set of extensions to
the Intel architecture that aims to provide integrity and confiden-
tiality guarantees to security- sensitive computation performed on a
computer where the privileged software (kernel, hypervisor, etc) is
potentially malicious.

This section extends the survey of Intel’s SGX presented in (§ I.5).
Software Guard Extensions, and analyzes SGX based on the 3 pa-
pers [McKeen et al., 2013, Anati et al., 2013, Hoekstra et al., 2013]
that introduced it, on the Intel Software Developer’s Manual [Int,
2015b] (which supersedes the SGX manuals [Int, 2013, 2014]), an ISCA
2015 tutorial [Int, 2015a], and two patents [McKeen et al., 2009, John-
son et al., 2010]. We use the papers, reference manuals, and tuto-
rial as primary data sources, and only draw on the patents to fill
in missing information.1

This section discusses the implementation of SGX (including a se-
ries of intelligent guesses of important but undocumented aspects of

1We note that this manuscript does not reflect the information available in two
papers [Johnson et al., 2016, Gueron, 2016] that were published after [Costan and
Devadas, 2016].
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SGX), its security argument, and the implication of the complex Intel
ecosystem on the ability of SGX to enable trusted remote computation.

2.1 SGX Implementation Overview

An under-documented and overlooked feat achieved by the SGX design
is that implementing it on an Intel processor has a very low impact on
the chip’s hardware design. SGX’s modifications to the processor’s exe-
cution cores (§ I.2.9.4) are either very small or completely nonexistent.
The CPU’s uncore (§ I.2.9.3, § I.2.11.3) receives a new module, the
Memory Encryption Engine, which appears to be fairly self-contained.

The bulk of the SGX implementation is relegated to the proces-
sor’s microcode (§ I.2.14), which supports a much higher development
speed than the chip’s electrical circuitry.

2.1.1 Execution Core Modifications

At a minimum, the SGX design requires a very small modification
to the processor’s execution cores (§ I.2.9.4), in the Page Miss Han-
dler (PMH, § I.2.11.5).

The PMH resolves TLB misses, and consists of a fast path that
relies on an FSM page walker, and a microcode assist fallback that
handles the edge cases (§ I.2.14.3). The bulk of SGX’s memory ac-
cess checks, which are discussed in § 2.2, can be implemented in
the microcode assist.

The only modification to the PMH hardware that is absolutely
necessary to implement SGX is developing an ability to trigger the
microcode assist for all address translations when a logical proces-
sor (§ I.2.9.4) is in enclave mode (§ I.5.4), or when the physical ad-
dress produced by the page walker FSM matches the Processor Re-
served Memory (PRM, § I.5.1) range.

The PRM range is configured by the PRM Range Registers (§ I.5.1),
which have exactly the same semantics as the Memory Type Range
Registers (MTRRs, § I.2.11.4) used to configure a variable memory
range. The page walker FSM in the PMH is already configured to
issue a microcode assist when the page tables are in uncacheable
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memory (§ I.2.11.4). Therefore, the PRMRR can be represented as
an extra MTRR pair.

2.1.2 Uncore Modifications

The Intel’s Software Development Manual (SDM) [Int, 2015b] states
that DMA transactions (§ I.2.9.1) that target the PRM range are
aborted by the processor. The SGX patents disclose that the PRMRR
protection against unauthorized DMA is implemented by having the
SGX microcode set up entries in the Source Address Decoder (SAD)
in the uncore CBoxes and in the Target Address Decoder (TAD) in
the integrated Memory Controller (MC).

§ I.2.11.3 mentions that Intel’s Trusted Execution Technol-
ogy (TXT) [Grawrock, 2009] already takes advantage of the integrated
MC to protect a DRAM range from DMA. It is highly likely that the
SGX implementation reuses the mechanisms brought by TXT, and only
requires the extension of the SADs and TADs by one entry.

SGX’s major hardware modification is the Memory Encryption
Engine (MEE) that is added to the processor’s uncore (§ I.2.9.3,
§ I.2.11.3) to protect SGX’s Enclave Page Cache (EPC, § I.5.1.1)
against physical attacks.

The MEE was first briefly described in the ISCA 2015 SGX tu-
torial [Int, 2015a]. According to the information presented there, the
MEE roughly follows the approach introduced by Aegis [Suh et al.,
2003] [Suh et al., 2005], which relies on a variation of Merkle trees to
provide the EPC with confidentiality, integrity, and freshness guar-
antees (§ I.3.1). Unlike Aegis, the MEE uses non-standard crypto-
graphic primitives that include a slightly modified AES operating
mode (§ I.3.1.2) and a Carter-Wegman [Carter and Wegman, 1977,
Wegman and Carter, 1981] MAC (§ I.3.1.3) construction. The MEE
was further described in [Gueron, 2016].

Both the ISCA SGX tutorial and the patents state that the MEE is
connected to to the Memory Controller (MC) integrated in the CPU’s
uncore. However, all sources are completely silent on further imple-
mentation details. The MEE overview slide states that “the Mem-
ory Controller detects [the] address belongs to the MEE region, and
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routes transaction to MEE”, which suggests that the MEE is fairly
self-contained and has a narrow interface to the rest of the MC.

Intel’s SGX patents use the name Crypto Memory Aperture (CMA)
to refer to the MEE. The CMA description matches the MEE and
PRM concepts, as follows. According to the patents, the CMA is used
to securely store the EPC, relies on crypto controllers in the MC, and
loses its keys during deep sleep. These details align perfectly with the
SDM’s statements regarding the MEE and PRM.

The Intel patents also disclose that the EPCM (§ I.5.1.2) and other
structures used by the SGX implementation are also stored in the PRM.
This rules out the possibility that the EPCM requires on-chip memory
resembling the last-level cache (§ I.2.11, § I.2.11.3).

Last, the SGX patents shine a bit of light on an area that the official
Intel documentation is completely silent about, namely the implemen-
tation concerns brought by computer systems with multiple processor
chips. The patents state that the MEE also protects the Quick-Path
Interconnect (QPI, § I.2.9.1) traffic using link-layer encryption.

2.1.3 Microcode Modifications

According to the SGX patents, all SGX instructions are implemented
in microcode. This can also be deduced by reading the SDM’s pseu-
docode for all the instructions, and realizing that it is highly unlikely
that any SGX instruction can be implemented in 4 or fewer micro-
ops (§ I.2.10), which is the most that can be handled by the simple
decoders used in the hardware fast paths (S I.2.14.1).

The Asynchronous Enclave Exit (AEX, § I.5.4.3) behavior is also
implemented in microcode. § I.2.14.2 draws on an assortment of Intel
patents to conclude that hardware exceptions (§ I.2.8.2), including both
faults and interrupts, trigger microcode events (§ I.2.14.2). It follows
that the SGX implementation can implement AEX by modifying the
hardware exception handlers in the microcode.

The SGX initialization sequence is also implemented in microcode.
SGX is initialized in two phases. First, it is very likely that the boot
sequence in microcode (§ I.2.14.4) was modified to initialize the reg-
isters associated with the SGX microcode. The ISCA SGX tutorial
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states that the MEE’ keys are initialized during the boot process. Sec-
ond, SGX instructions are enabled by setting a bit in a Model-Specific
Register (MSR, § I.2.4). This second phase involves enabling the MEE
and configuring the SAD and TAD to protect the PRM range. Both
tasks are amenable to a microcode implementation.

The SGX description in the SDM implies that the SGX imple-
mentation uses a significant number of new registers, which are only
exposed to microcode. However, the SGX patents reveal that most of
these registers are actually stored in DRAM.

For example, the patents state that each TCS (§ I.5.2.4) has two
fields that receive the values of the DR7 and IA32_DEBUGCTL regis-
ters when the processor enters enclave mode (§ I.5.4.1), and are used to
restore the original register values during enclave exit (§ I.5.4.2). The
SDM documents these fields as “internal CREGs” (CR_SAVE_DR7
and CR_SAVE_DEBUGCTL), which are stated to be “hardware
specific registers”.

The SGX patents document a small subset of the CREGs described
in the SDM, summarized in Table 2.1, as microcode registers. While in
general we trust official documentation over patents, in this case we use
the CREG descriptions provided by the patents, because they appear
to be more suitable for implementation purposes.

From a cost-performance standpoint, the cost of register memory
only seems to be justified for the state used by the PMH to implement
SGX’s memory access checks, which will be discussed in § 2.2. The
other pieces of state listed as CREGs are accessed so infrequently that
storing them in dedicated SRAM would make very little sense.

The SGX patents state that SGX requires very few hardware
changes, and most of the implementation is in microcode, as a pos-
itive fact. We therefore suspect that minimizing hardware changes was
a high priority in the SGX design, and that any SGX modification
proposals need to be aware of this priority.
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2.2 SGX Memory Access Protection

SGX guarantees that the software inside an enclave is isolated from all
other software, including the software executing in other enclaves. This
isolation guarantee is at the core of SGX’s security model.

It is tempting to assume that the main protection mechanism in
SGX is the Memory Encryption Engine (MEE) described in § 2.1.2,
as it encrypts and MACs the DRAM’s contents. However, the MEE
sits in the processor’s memory controller, which is at the edge of the
on-chip memory hierarchy, below the caches (§ I.2.11). Therefore, the
MEE cannot protect an enclave’s memory from software attacks.

The root of SGX’s protections against software attacks is a series of
memory access checks which prevents the currently running software
from accessing memory that does not belong to it. Specifically, non-
enclave software is only allowed to access memory outside the PRM
range, while the code inside an enclave is allowed to access non-PRM
memory, and the EPC pages owned by the enclave.

Although it is believed [Evtyushkin et al., 2014] that SGX’s ac-
cess checks are performed on every memory access check, Intel’s
patents disclose that the checks are performed in the Page Miss Han-
dler (PMH, § I.2.11.5), which only handles TLB misses.

2.2.1 Functional Description

The intuition behind SGX’s memory access protections can be built by
considering what it would take to implement the same protections in a
trusted operating system or hypervisor, solely by using the page tables
that direct the CPU’s address translation feature (§ I.2.5).

The hypothetical trusted software proposed above can implement
enclave entry (§ I.5.4.1) as a system call (§ I.2.8.1) that creates page
table entries mapping the enclave’s memory. Enclave exit (§ I.5.4.2)
can be a symmetric system call that removes the page table entries
created during enclave entry. When modifying the page tables, the
system software has to consider TLB coherence issues (§ I.2.11.5) and
perform TLB shootdowns when appropriate.
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SGX leaves page table management under the system software’s
control, but it cannot trust the software to set up the page tables
in any particular way. Therefore, the hypothetical design described
above cannot be used by SGX as-is. Instead, at a conceptual level,
the SGX implementation approximates the effect of having the page
tables set up correctly by inspecting every address translation that
comes out of the Page Miss Handler (PMH, § I.2.11.5). The address
translations that do not obey SGX’s access control restrictions are
rejected before they reach the TLBs.

SGX’s approach relies on the fact that software always references
memory using virtual addresses, so all micro-ops (§ I.2.10) that reach
the memory execution units (§ I.2.10.1) use virtual addresses that must
be resolved using the TLBs before the actual memory accesses are car-
ried out. By contrast, the processor’s microcode (§ I.2.14) has the abil-
ity to issue physical memory accesses, which bypass the TLBs. Con-
veniently, SGX instructions are implemented in microcode (§ 2.1.3),
so they can bypass the TLBs and access memory that is off limits to
software, such as the EPC page holding an enclave’s SECS (§ I.5.1.3).

The SGX address translation checks use the information in the
Enclave Page Cache Map (EPCM, § I.5.1.2), which is effectively an
inverted page table that covers the entire EPC. This means that each
EPC page is accounted for by an EPCM entry, using the structure is
summarized in Table 2.2, with the PT (page type) field enumerated
by Table 2.3. The EPCM fields were described in detail in § I.5.1.2,
§ I.5.2.3, § I.5.2.4, § I.5.5.1, and § I.5.5.2.

Conceptually, SGX adds the access control logic illustrated in Fig-
ure 2.1 to the PMH. SGX’s security checks are performed after the
page table attributes-based checks (§ I.2.5.3) defined by the Intel ar-
chitecture. It follows that SGX’s access control logic has access to the
physical address produced by the page walker FSM.

SGX’s security checks depend on whether the logical proces-
sor (§ I.2.9.4) is in enclave mode (§ I.5.4) or not. While the processor
is outside enclave mode, the PMH allows any address translation that
does not target the PRM range (§ I.5.1). When the processor is inside
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Figure 2.1: SGX adds a few security checks to the PMH. The checks ensure that
all TLB entries created by the address translation unit meet SGX’s memory access
restrictions.
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Table 2.2: The fields in an EPCM entry.

Field Bits Description
VALID 1 0 for un-allocated EPC pages
BLOCKED 1 page is being evicted
R 1 enclave code can read
W 1 enclave code can write
X 1 enclave code can execute
PT 8 page type (Table 2.3)
ADDRESS 48 the virtual address used to access this

page
ENCLAVESECS the EPC slot number for the SECS of the

enclave owning the page

Table 2.3: Values of the PT (page type) field in an EPCM entry.

Type Allocated by Contents
PT_REG EADD enclave code and data
PT_SECS ECREATE SECS (§ I.5.1.3)
PT_TCS EADD TCS (§ I.5.2.4)
PT_VA EPA VA (§ I.5.5.2)

enclave mode, the PMH performs the checks described below, which
provide the security guarantees described in § I.5.2.3.

First, virtual addresses inside the enclave’s virtual memory
range (ELRANGE, § I.5.2.1) must always translate into physical ad-
dresses inside the EPC. This way, an enclave is assured that all code and
data stored in ELRANGE is covered by SGX’s confidentiality, integrity,
and freshness guarantees. Since the memory outside ELRANGE does
not enjoy these guarantees, the SGX design disallows having enclave
code outside ELRANGE. This is most likely accomplished by setting
the disable execution (XD, § I.2.5.3) attribute on the TLB entry.

Second, an EPC page must only be accessed by the code of the
enclave who owns the page. For the purpose of this check, each en-
clave is identified by the index of the EPC page that stores the en-
clave’s SECS (§ I.5.1.3). The current enclave’s identifier is stored
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in the CR_ACTIVE_SECS microcode register during enclave en-
try. This register is compared against the enclave identifier stored
in the EPCM entry corresponding to the EPC page targeted by the
address translation.

Third, some EPC pages cannot be accessed by software. Pages that
hold SGX internal structures, such as a SECS, a TCS (§ I.5.2.4), or
a VA (§ I.5.5.2) must only be accessed by SGX’s microcode, which
uses physical addresses and bypasses the address translation unit, in-
cluding the PMH. Therefore, the PMH rejects address translations
targeting these pages.

Blocked (§ I.5.5.1) EPC pages are in the process of being
evicted (§ I.5.5), so the PMH must not create new TLB entries
targeting them.

Next, an enclave’s EPC pages must always be accessed using the
virtual addresses associated with them when they were allocated to the
enclave. Regular EPC pages, which can be accessed by software, are
allocated to enclaves using the EADD (§ I.5.3.2) instruction, which reads
in the page’s address in the enclave’s virtual address space. This address
is stored in the LINADDR field in the corresponding EPCM entry.
Therefore it is sufficient for the PMH to is to ensure that LINADDR in
the address translation’s target EPCM entry equals the virtual address
that caused the TLB miss which invoked the PMH.

At this point, the PMH’s security checks have completed, and the
address translation result will definitely be added to the TLB. Before
that happens, however, the SGX extensions to the PMH apply the ac-
cess restrictions in the EPCM entry for the page to the address trans-
lation result. While the public SGX documentation we found did not
describe this process, there is a straightforward implementation that
fulfills SGX’s security requirements. Specifically, the TLB entry bits P,
W, and XD can be AND-ed with the EPCM entry bits R, W, and X.

2.2.2 EPCM Entry Representation

Most EPCM entry fields have obvious representations. The exception
is the LINADDR and ENCLAVESECS fields, described below. These
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representations explain SGX’s seemingly arbitrary limit on the size of
an enclave’s virtual address range (ELRANGE).

The SGX patents disclose that the LINADDR field in an EPCM en-
try stores the virtual page number (VPN, § I.2.5.1) of the correspond-
ing EPC page’s expected virtual address, relative to the ELRANGE
base of the enclave that owns the page.

The representation described above reduces the number of bits
needed to store LINADDR, assuming that the maximum ELRANGE
size is significantly smaller than the virtual address size supported by
the CPU. This desire to save EPCM entry bits is the most likely moti-
vation for specifying a processor model-specific ELRANGE size, which
is reported by the CPUID instruction.

The SDM states that the ENCLAVESECS field of an EPCM en-
try corresponding to an EPC page indicates the SECS of the enclave
that owns the page. Intel’s patents reveal that the SECS address in EN-
CLAVESECS is represented as a physical page number (PPN, § I.2.5.1)
relative to the start of the EPC. Effectively, this relative PPN is the
0-based EPC page index.

The EPC page index representation saves bits in the EPCM en-
try, assuming that the EPCM size is significantly smaller than the
physical address space supported by the CPU. The ISCA 2015 SGX
tutorial slides mention an EPC size of 96MB, which is significantly
smaller than the physical addressable space on today’s typical pro-
cessors, which is 236 - 240 bytes.

2.2.3 PMH Hardware Modifications

The SDM describes the memory access checks performed after SGX is
enabled, but does not provide any insight into their implementation.
Intel’s patents hint at three possible implementations that make dif-
ferent cost-performance tradeoffs. This section summarizes the three
approaches and argues in favor of the implementation that requires
the fewest hardware modifications to the PMH.

All implementations of SGX’s security checks entail adding a pair
of memory type range registers (MTRRs, § I.2.11.4) to the PMH.
These registers are named the Secure Enclave Range Registers (SERR)
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in Intel’s patents. Enabling SGX on a logical processor initializes
the SERR to the values of the Protected Memory Range Regis-
ters (PMRR, § I.5.1).

Furthermore, all implementations have the same behavior when
a logical processor is outside enclave mode. The memory type range
described by the SERR is enabled, causing a microcode assist to
trigger for every address translation that resolves inside the PRM.
SGX’s implementation uses the microcode assist to replace the ad-
dress translation result with an address that causes memory access
transactions to be aborted.

The three implementations differ in their behavior when the pro-
cessor enters enclave mode (§ I.5.4) and starts executing enclave code.

The alternative that requires the least amount of hardware changes
sets up the PMH to trigger a microcode assist for every address trans-
lation. This can be done by setting the SERR to cover the whole of
physical memory (e.g., by setting the mask to zero, and the base to a
non-zero value). In this approach, the microcode assist implements all
enclave mode security checks illustrated in Figure 2.1.

A speedier alternative adds a pair of registers to the PMH that
represents the current enclave’s ELRANGE and modifies the PMH so
that, in addition to checking physical addresses against the SERR,
it also checks the virtual addresses going into address translations
against ELRANGE. When either check is true, the PMH invokes the
microcode assist used by SGX to implement its memory access checks.
Assuming the ELRANGE registers use the same base / mask repre-
sentation as variable MTRRs, enclave exits can clear ELRANGE by
zeroing both the base and the mask. This approach uses the same
microcode assist implementation, minus the ELRANGE check that
moves into the PMH hardware.

The second alternative described above has the benefit that the
microcode assist is not invoked for enclave mode accesses outside EL-
RANGE. However, § I.5.2.1 argues that an enclave should treat all
virtual memory addresses outside ELRANGE as untrusted storage,
and only use that memory to communicate with software outside the
enclave. Taking this into consideration, well-designed enclaves would
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spend relatively little time performing memory accesses outside EL-
RANGE. Therefore, this second alternative is unlikely to obtain per-
formance gains that are worth its cost.

The last and most performant alternative would entail implement-
ing the access checks shown in Figure 2.1 in hardware. Similarly to the
address translation FSM, the hardware would only invoke a microcode
assist when a security check fails and a Page Fault needs to be handled.

The high-performance implementation described above avoids the
cost of microcode assists for all TLB misses, assuming well-behaved sys-
tem software. In this association, a microcode assist results in a Page
Fault, which triggers an Asynchronous Enclave Exit (AEX, § I.5.4.3).
The cost of the AEX dominates the performance overhead of the
microcode assist.

While this last implementation looks attractive, one needs to real-
ize that TLB misses occur quite infrequently, so a large improvement
in the TLB miss speed translates into a much less impressive improve-
ment in overall enclave code execution performance. Taking this into
consideration, it seems unwise to commit to extensive hardware mod-
ifications in the PMH before SGX gains adoption.

2.3 SGX Security Check Correctness

In § 2.2.1, we argued that SGX’s security guarantees can be obtained
by modifying the Page Miss Handler (PMH, § I.2.11.5) to block un-
desirable address translations from reaching the TLB. This section
builds on the result above and outlines a correctness proof for SGX’s
memory access protection.

Specifically, we outline a proof for the following invariant. At
all times, the TLB entries in every logical processor are be
consistent with the SGX security policy. By the argument in
§ 2.2.1, the invariant translates into an assurance that all memory ac-
cesses performed by software obey SGX’s security model. The high-
level proof structure is presented because it helps understand how
the SGX security checks come together. By contrast, a detailed proof
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would be incredibly tedious, and would do very little to boost the
reader’s understanding of SGX.

2.3.1 Top-Level Invariant Breakdown

We first break down the above invariant into specific cases based on
whether a logical processor (LP) is executing enclave code or not, and
on whether the TLB entries translate virtual addresses in the cur-
rent enclave’s ELRANGE (§ I.5.2.1). When the processor is outside
enclave mode, ELRANGE can be considered to be empty. This rea-
soning yields the three cases outlined below.

1. At all times when an LP is outside enclave mode, its TLB may
only contain physical addresses belonging to DRAM pages out-
side the PRM.

2. At all times when an LP is inside enclave mode, the TLB entries
for virtual addresses outside the current enclave’s ELRANGE
must contain physical addresses belonging to DRAM pages out-
side the PRM.

3. At all times when an LP is in enclave mode, the TLB entries for
virtual addresses inside the current enclave’s ELRANGE must
match the virtual memory layout specified by the enclave author.

The first two invariant cases can be easily proven independently for
each LP, by induction over the sequence of instructions executed by the
LP. For simplicity, the reader can assume that instructions are executed
in program mode. While the assumption is not true on processors with
out-of-order execution (§ I.2.10), the arguments presented here also
hold when the executed instruction sequence is considered in retirement
order, for reasons that will be described below.

An LP will only transition between enclave mode and non-enclave
mode at a few well-defined points, which are EENTER (§ I.5.4.1),
ERESUME (§ I.5.4.4), EEXIT (§ I.5.4.2), and Asynchronous Enclave Ex-
its (AEX, § I.5.4.3). According to the SDM, all transition points flush
the TLBs and the out-of-order execution pipeline. In other words, the
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TLBs are guaranteed to be empty after every transition between en-
clave mode and non-enclave mode, so we can consider all these tran-
sitions to be trivial base cases for our induction proofs.

While SGX initialization is not thoroughly discussed, the SDM
mentions that loading some Model-Specific Registers (MSRs, § I.2.4)
triggers TLB flushes, and that system software should flush TLBs when
modifying Memory Type Range Registers (MTRRs, § I.2.11.4). Given
that the space of possible SGX implementations described in § 2.2.3
entails adding a MTRR, it is safe to assume that enabling SGX mode
also results in a TLB flush and out-of-order pipeline flush, and can
be used by our induction proof as well.

The base cases in the induction proofs are serialization points for
out-of-order execution, as the pipeline is flushed during both enclave
mode transitions and SGX initialization. This makes the proofs be-
low hold when the program order instruction sequence is replaced
with the retirement order sequence.

The first invariant case holds because while the LP is outside en-
clave mode, the SGX security checks added to the PMH (§ 2.2.1,
Figure 2.1) reject any address translation that would point into the
PRM before it reaches the TLBs. A key observation for proving the
induction step of this invariant case is that the PRM never changes
after SGX is enabled on an LP.

The second invariant case can be proved using a similar argument.
While an LP is executing an enclave’s code, the SGX memory access
checks added to the PMH reject any address translation that resolves
to a physical address inside the PRM, if the translated virtual address
falls outside the current enclave’s ELRANGE. The induction step for
this invariant case can be proven by observing that a change in an LP’s
current ELRANGE is always accompanied by a TLB flush, which re-
sults in an empty TLB that trivially satisfies the invariant. This follows
from the constraint that an enclave’s ELRANGE never changes after it
is established, and from the observation that the LP’s current enclave
can only be changed by an enclave entry, which must be preceded by
an enclave exit, which triggers a TLB flush.
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The third invariant case is best handled by recognizing that the En-
clave Page Cache Map (EPCM, § I.5.1.2) is an intermediate represen-
tation for the virtual memory layout specified by the enclave authors.
This suggests breaking down the case into smaller sub-invariants cen-
tered around the EPCM, which will be proven in the subsections below.

1. At all times, each EPCM entry for a page that is allocated to
an enclave matches the virtual memory layout desired by the
enclave’s author.

2. Assuming that the EPCM contents is constant, at all times when
an LP is in enclave mode, the TLB entries for virtual addresses
inside the current enclave’s ELRANGE must match EPCM en-
tries that belong to the enclave.

3. An EPCM entry is only modified when there is no mapping for
it in any LP’s TLB.

The second and third invariant combined prove that all TLBs in an
SGX-enabled computer always reflect the contents of the EPCM, as the
third invariant essentially covers the gaps in the second invariant. This
result, in combination with the first invariant, shows that the EPCM
is a bridge between the memory layout specifications of the enclave au-
thors and the TLB entries that regulate what memory can be accessed
by software executing on the LPs. When further combined with the rea-
soning in § 2.2.1, the whole proof outlined here results in an end-to-end
argument for the correctness of SGX’s memory protection scheme.

2.3.2 EPCM Entries Reflect Enclave Author Design

This subsection outlines the proof for the following invariant. At all
times, each EPCM entry for a page that is allocated to
an enclave matches the virtual memory layout desired by
the enclave’s author.

A key observation, backed by the SDM pseudocode for SGX in-
structions: all instructions that modify the EPCM pages allocated to
an enclave are synchronized using a lock in the enclave’s SECS. This
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entails the existence of a time ordering of the EPCM modifications as-
sociated with an enclave. We prove the invariant stated above using a
proof by induction over this sequence of EPCM modifications.

EPCM entries allocated to an enclave are created by instructions
that can only be issued before the enclave is initialized, specifically
ECREATE (§ I.5.3.1) and EADD (§ I.5.3.2). The contents of the EPCM
entries created by these instructions contributes to the enclave’s mea-
surement (§ I.5.6), together with the initial data loaded into the cor-
responding EPC pages.

§ I.3.3.3 argues that we can assume that enclaves with incorrect
measurements do not exist, as they will be rejected by software attes-
tation. Therefore, we can assume that the attributes used to initialize
EPCM pages match the enclave authors’ memory layout specifications.

EPCM entries can be evicted to untrusted DRAM, together with
their corresponding EPC pages, by the EWB (§ I.5.5.4) instruction. The
ELDU / ELDB (§ I.5.5) instructions reload evicted page contents and
metadata back into the EPC and EPCM. By induction, we can assume
that an EPCM entry matches the enclave author’s specification when
it is evicted. Therefore, if we can prove that the EPCM entry that is
reloaded from DRAM is equivalent to the entry that was evicted, we
can conclude that the reloaded entry matches the author’s specification.

A detailed analysis of the cryptographic primitives used by the SGX
design to protect the evicted EPC page contents and its associated
metadata is outside the scope of this work. Summarizing the descrip-
tion in § I.5.5, the contents of evicted pages is encrypted using AES-
GMAC (§ I.3.1.3), which is an authenticated encryption mechanism.
The MAC tag produced by AES-GMAC covers the EPCM metadata
as well as the page data, and includes a 64-bit version that is stored in
a version tree whose nodes are Version Array (VA, (§ I.5.5.2) pages.

Assuming no cryptographic weaknesses, SGX’s scheme does appear
to guarantee the confidentiality, integrity, and freshness of the EPC
page contents and associated metadata while it is evicted to untrusted
memory. It follows that EWB will only reload an EPCM entry if the
contents is equivalent to the contents of an evicted entry.
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The equivalence notion invoked here is slightly different from per-
fect equality, in order to account for the allowable operation of evict-
ing an EPC page and its associated EPCM entry, and then reloading
the page contents to a different EPC page and a different EPCM en-
try, as illustrated in Figure I.5.10. Loading the contents of an EPC
page at a different physical address than it had before does not break
the virtual memory abstraction, as long as the contents is mapped at
the same virtual address (the LINEARADDRESS EPCM field), and
has the same access control attributes (R, W, X, PT EPCM fields)
as it had when it was evicted.

The rest of this section enumerates the address translation at-
tacks prevented by the MAC verification that occurs in ELDU / ELDB.
This is intended to help the reader develop some intuition for the
reasoning behind using the page data and all EPCM fields to com-
pute and verify the MAC tag.

The most obvious attack is prevented by having the MAC cover
the contents of the evicted EPC page, so the untrusted OS cannot
modify the data in the page while it is stored in untrusted DRAM.
The MAC also covers the metadata that makes up the EPCM entry,
which prevents the more subtle attacks described below.

The enclave ID (EID) field is covered by the MAC tag, so the OS
cannot evict an EPC page belonging to one enclave, and assign the
page to a different enclave when it is loaded back into the EPC. If
EID was not covered by authenticity guarantees, a malicious OS could
read any enclave’s data by evicting an EPC page belonging to the
victim enclave, and loading it into a malicious enclave that would copy
the page’s contents to untrusted DRAM.

The virtual address (LINADDR) field is covered by the MAC tag,
so the OS cannot modify the virtual memory layout of an enclave
by evicting an EPC page and specifying a different LINADDR when
loading it back. If LINADDR was not covered by authenticity guaran-
tees, a malicious OS could perform the exact attack shown in Fig-
ure I.3.24 and described in § I.3.7.3.

The page access permission flags (R, W, X) are also covered by
the MAC tag. This prevents the OS from changing the access permis-
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sion bits in a page’s EPCM entry by evicting the page and loading
it back in. If the permission flags were not covered by authenticity
guarantees, the OS could use the ability to change EPCM access per-
missions to facilitate exploiting vulnerabilities in enclave code. For ex-
ample, exploiting a stack overflow vulnerability is generally easier if
OS can make the stack pages executable.

The nonce stored in the VA slot is also covered by the MAC. This
prevents the OS from mounting a replay attack that reverts the con-
tents of an EPC page to an older version. If the nonce would not be
covered by integrity guarantees, the OS could evict the target EPC
page at different times t1 and t2 in the enclave’s life, and then pro-
vide the EWB outputs at t1 to the ELDU / ELDB instruction. Without
the MAC verification, this attack would successfully revert the con-
tents of the EPC page to its version at t1.

While replay attacks look relatively benign, they can be quite dev-
astating when used to facilitate double spending.

2.3.3 TLB Entries for ELRANGE Reflect EPCM Contents

This subsection sketches a proof for the following invariant. At all
times when an LP is in enclave mode, the TLB entries for vir-
tual addresses inside the current enclave’s ELRANGE must
match EPCM entries that belong to the enclave. The argument
makes the assumption that the EPCM contents is constant, which
will be justified in the following subsection.

The invariant can be proven by induction over the sequence of TLB
insertions that occur in the LP. This sequence is well-defined because
an LP has a single PMH, so the address translation requests triggered
by TLB misses must be serialized to be processed by the PMH.

The proof’s induction step depends on the fact that the TLB on
hyper-threaded cores (§ I.2.9.4) is dynamically partitioned between the
two LPs that share the core, and no TLB entry is shared between
the LPs. This allows our proof to consider the TLB insertions as-
sociated with one LP independently from the other LP’s insertions,
which means we don’t have to worry about the state (e.g., enclave
mode) of the other LP on the core.
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The proof is further simplified by observing that when an LP exits
enclave mode, both its TLB and its out-of-order instruction pipeline
are flushed. Therefore, the enclave mode and current enclave register
values used by address translations are guaranteed to match the values
obtained by performing the translations in program order.

Having eliminated the complexities associated with hyper-
threaded (§ I.2.9.4) out-of-order (§ I.2.10) execution cores, it is easy
to see that the security checks outlined in Figure 2.1 and § 2.2.1 ensure
that TLB entries that target EPC pages are guaranteed to reflect the
constraints in the corresponding EPCM entries.

Last, the SGX access checks implemented in the PMH reject any
address translation for a virtual address in ELRANGE that does not
resolve to an EPC page. It follows that memory addresses inside EL-
RANGE can only map to EPC pages which, by the argument above,
must follow the constraints of the corresponding EPCM entries.

2.3.4 EPCM Entries are Not In TLBs When Modified

In this subsection, we outline a proof that an EPCM entry is only
modified when there is no mapping for it in any LP’s TLB..
This proof analyzes each of the instructions that modify EPCM entries.

For the purposes of this proof, we consider that setting the
BLOCKED attribute does not count as a modification to an EPCM
entry, as it does not change the EPC page that the entry is associated
with, or the memory layout specification associated with the page.

The instructions that modify EPCM entries in such a way that
the resulting EPCM entries have the VALID field set to true require
that the EPCM entries were invalid before they were modified. These
instructions are ECREATE (§ I.5.3.1), EADD (§ I.5.3.2), EPA (§ I.5.5.2),
and ELDU / ELDB (§ I.5.5). The EPCM entry targeted by any these
instructions must have had its VALID field set to false, so the invari-
ant proved in the previous subsection implies that the EPCM entry
had no TLB entry associated with it.

Conversely, the instructions that modify EPCM entries and result
in entries whose VALID field is false start out with valid entries. These
instructions are EREMOVE (§ I.5.3.4) and EWB (§ I.5.5.4).
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The EPCM entries associated with EPC pages that store Ver-
sion Arrays (VA, § I.5.5.2) represent a special case for both instruc-
tions mentioned above, as these pages are not associated with any
enclave. As these pages can only be accessed by the microcode used
to implement SGX, they never have TLB entries representing them.
Therefore, both EREMOVE and EWB can invalidate EPCM entries for
VA pages without additional checks.

EREMOVE only invalidates an EPCM entry associated with an enclave
when there is no LP executing in enclave mode using a TCS associ-
ated with the same enclave. An EPCM entry can only result in TLB
translations when an LP is executing code from the entry’s enclave,
and the TLB translations are flushed when the LP exits enclave mode.
Therefore, when EREMOVE invalidates an EPCM entry, any associated
TLB entry is guaranteed to have been flushed.

EWB’s correctness argument is more complex, as it relies on the
EBLOCK / ETRACK sequence described in § I.5.5.1 to ensure that any
TLB entry that may have been created for an EPCM entry is flushed
before the EPCM entry is invalidated.

Unfortunately, the SDM pseudocode for the instructions mentioned
above leaves out the algorithm used to verify that the relevant TLB
entries have been flushed. Thus, we must base our proof on the as-
sumption that the SGX implementation produced by Intel’s engineers
matches the claims in the SDM. In § 2.4, we propose a method for
ensuring that EWB will only succeed when all LPs executing an en-
clave’s code at the time when ETRACK is called have exited enclave
mode at least once between the ETRACK call and the EWB call. Hav-
ing proven the existence of a correct algorithm by construction, we
can only hope that the SGX implementation uses our algorithm, or
a better algorithm that is still correct.

2.4 Tracking TLB Flushes

This section proposes a straightforward method that the SGX imple-
mentation can use to verify that the system software plays its part
correctly in the EPC page eviction (§ I.5.5) process. Our method
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meets the SDM’s specification for EBLOCK (§ I.5.5.1), ETRACK (§ I.5.5.1)
and EWB (§ I.5.5.4).

The motivation behind this section is that, at least at the time
of this writing, there is no official SGX documentation that contains
a description of the mechanism used by EWB to ensure that all Logi-
cal Processors (LPs, § I.2.9.4) running an enclave’s code exit enclave
mode (§ I.5.4) between an ETRACK invocation and a EWB invocation.
Knowing that there exists a correct mechanism that has the same in-
terface as the SGX instructions described in the SDM gives us a reason
to hope that the SGX implementation is also correct.

Our method relies on the fact that an enclave’s SECS (§ I.5.1.3)
is not accessible by software, and is already used to store information
used by the SGX microcode implementation (§ 2.1.3). We store the
following fields in the SECS. tracking and done-tracking are Boolean
variables. tracked-threads and active-threads are non-negative integers
that start at zero and must store numbers up to the number of LPs in
the computer. lp-mask is an array of Boolean flags that has one member
per LP in the computer. The fields are initialized as shown in Figure 2.2.

ECREATE(SECS)
� Initialize the SECS state used for tracking.

1 SECS . tracking ← false
2 SECS . done-tracking ← false
3 SECS . active-threads ← 0
4 SECS . tracked-threads ← 0
5 SECS . lp-mask ← 0

Figure 2.2: The algorithm used to initialize the SECS fields used by the TLB flush
tracking method presented in this section.

The active-threads SECS field tracks the number of LPs that
are currently executing the code of the enclave who owns the
SECS. The field is atomically incremented by EENTER (§ I.5.4.1) and
ERESUME (§ I.5.4.4) and is atomically decremented by EEXIT (§ I.5.4.2)
and Asynchronous Enclave Exits (AEXs, § I.5.4.3). Asides from helping
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track TLB flushes, this field can also be used by EREMOVE (§ I.5.3.4) to
decide when it is safe to free an EPC page that belongs to an enclave.

As specified in the SDM, ETRACK activates TLB flush tracking for
an enclave. In our method, this is accomplished by setting the tracking
field to true and the done-tracking field to false.

When tracking is enabled, tracked-threads is the number of LPs
that were executing the enclave’s code when the ETRACK instruction
was issued, and have not yet exited enclave mode. Therefore, execut-
ing ETRACK atomically reads active-threads and writes the result into
tracked-threads. Also, lp-mask keeps track of the LPs that have exited
the current enclave after the ETRACK instruction was issued. There-
fore, the ETRACK implementation atomically zeroes lp-mask. The full
ETRACK algorithm is listed in Figure 2.3.

ETRACK(SECS)
� Abort if tracking is already active.

1 if SECS . tracking = true
2 then return sgx-prev-trk-incmpl

� Activate TLB flush tracking.
3 SECS . tracking ← true
4 SECS . done-tracking ← false
5 SECS . tracked-threads ←

atomic-read(SECS . active-threads)
6 for i← 0 to max-lp-id
7 do atomic-clear(SECS . lp-mask[i])

Figure 2.3: The algorithm used by ETRACK to activate TLB flush tracking.

When an LP exits an enclave that has TLB flush tracking activated,
we atomically test and set the current LP’s flag in lp-mask. If the flag
was not previously set, it means that an LP that was executing the
enclave’s code when ETRACK was invoked just exited enclave mode for
the first time, and we atomically decrement tracked-threads to reflect
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this fact. In other words, lp-mask prevents us from double-counting an
LP when it exits the same enclave while TLB flush tracking is active.

Once active-threads reaches zero, we are assured that all LPs run-
ning the enclave’s code when ETRACK was issued have exited enclave
mode at least once, and can set the done-tracking flag. Figure 2.4 enu-
merates the steps taken during an enclave exit.

enclave-exit(SECS)
� Track an enclave exit.

1 atomic-decrement(SECS . active-threads)
2 if atomic-test-and-set(

SECS . lp-mask[lp-id])
3 then atomic-decrement(

SECS . tracked-threads)
4 if SECS . tracked-threads = 0
5 then SECS . done-tracking ← true

Figure 2.4: The algorithm that updates the TLB flush tracking state when an LP
exits an enclave via EEXIT or AEX.

Without any compensating measure, the method above will incor-
rectly decrement tracked-threads, if the LP exiting the enclave had
entered it after ETRACK was issued. We compensate for this with the
following trick. When an LP starts executing code inside an enclave
that has TLB flush tracking activated, we set its corresponding flag
in lp-mask. This is sufficient to avoid counting the LP when it ex-
its the enclave. Figure 2.5 lists the steps required by our method
when an LP enters an enclave.

With these algorithms in place, EWB can simply verify that both
tracking and done-tracking are true. This ensures that the system
software has triggered enclave exits on all LPs that were running the
enclave’s code when ETRACK was executed. Figure 2.6 lists the algorithm
used by the EWB tracking verification step.

Last, EBLOCK marks the end of a TLB flush tracking cycle by clear-
ing the tracking flag. This ensures that system software must go through
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enclave-enter(SECS)
� Track an enclave entry.

1 atomic-increment(SECS . active-threads)
2 atomic-set(SECS . lp-mask[lp-id])

Figure 2.5: The algorithm that updates the TLB flush tracking state when an LP
enters an enclave via EENTER or ERESUME.

another cycle of ETRACK and enclave exits before being able to use
EWB on the page whose BLOCKED EPCM field was just set to true
by EBLOCK. Figure 2.7 shows the details.

Our method’s correctness can be easily proven by arguing that each
SECS field introduced in this section has its intended value through-
out enclave entries and exits.

2.5 Enclave Signature Verification

Let m be the public modulus in the enclave author’s RSA key, and
s be the enclave signature. Since the SGX design fixes the value of
the public exponent e to 3, verifying the RSA signature amounts to
computing the signed message M = s3 mod m, checking that the value
meets the PKCS v1.5 padding requirements, and comparing the 256-
bit SHA-2 hash inside the message with the value obtained by hashing
the relevant fields in the SIGSTRUCT supplied with the enclave.

This section describes an algorithm for computing the signed mes-
sage while only using subtraction and multiplication on large non-
negative integers. The algorithm admits a significantly simpler imple-
mentation than the typical RSA signature verification algorithm, by
avoiding the use of long division and negative numbers. The descrip-
tion here is essentially the idea in [Gueron, 2011], specialized for e = 3.

The algorithm provided here requires the signer to compute the
q1 and q2 values shown below. The values can be computed from the
public information in the signature, so they do not leak any additional
information about the private signing key. Furthermore, the algorithm
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EWB-verify(virtual-addr)
1 physical-addr ← translate(virtual-addr)
2 epcm-slot ← epcm-slot(physical-addr)
3 if EPCM [slot]. BLOCKED = false
4 then return sgx-not-blocked
5 SECS ← epcm-addr(

EPCM [slot]. ENCLAVESECS)
� Verify that the EPC page can be evicted.

6 if SECS . tracking = false
7 then return sgx-not-tracked
8 if SECS . done-tracking = false
9 then return sgx-not-tracked

Figure 2.6: The algorithm that ensures that all LPs running an enclave’s code
when ETRACK was executed have exited enclave mode at least once.

verifies the correctness of the values, so it does not open up the possibil-
ity for an attack that relies on supplying incorrect values for q1 and q2.

q1 =
⌊

s2

m

⌋

q2 =
⌊

s3 − q1 × s×m

m

⌋

Due to the desirable properties mentioned above, it is very likely
that the algorithm described here is used by the SGX implementation
to verify the RSA signature in an enclave’s SIGSTRUCT (§ I.5.7.1).

The algorithm given by Figure 2.8 computes the signed message
M = s3 mod m, while also verifying that the given values of q1 and
q2 are correct. The latter is necessary because the SGX implementa-
tion of signature verification must handle the case where an attacker
attempts to exploit the signature verification implementation by sup-
plying invalid values for q1 and q2.
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EBLOCK(virtual-addr)
1 physical-addr ← translate(virtual-addr)
2 epcm-slot ← epcm-slot(physical-addr)
3 if EPCM [slot]. BLOCKED = true
4 then return sgx-blkstate
5 if SECS . tracking = true
6 then if SECS . done-tracking = false
7 then return sgx-entryepoch-locked
8 SECS . tracking ← false
9 EPCM [slot]. BLOCKED ← true

Figure 2.7: The algorithm that marks the end of a TLB flushing cycle when EBLOCK
is executed.

1. Compute u← s× s and v ← q1 ×m.

2. If u < v, abort. q1 must be incorrect.

3. Compute w ← u− v.

4. If w ≥ m, abort. q1 must be incorrect.

5. Compute x← w × s and y ← q2 ×m

6. If x < y, abort. q2 must be incorrect.

7. Compute z ← x− y.

8. If z ≥ m, abort. q2 must be incorrect.

9. Output z.

Figure 2.8: An RSA signature verification algorithm specialized for the case where
the public exponent is 3. s is the RSA signature and m is the RSA key modulus.
The algorithm uses two additional inputs, q1 and q2.
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The rest of this section proves the correctness of the RSA sig-
nature verification.

2.5.1 Analysis of Steps 1 - 4

Steps 1 − 4 in the algorithm check the correctness of q1 and use it to
compute s2 mod m. The key observation to understanding these steps
is recognizing that q1 is the quotient of the integer division s2/m.

Having made this observation, we can use elementary division prop-
erties to prove that the supplied value for q1 is correct if and only
if the following property holds.

0 ≤ s2 − q1 ×m < m

We observe that the first comparison, 0 ≤ s2− q1×m, is equivalent
to q1 ×m ≤ s2, which is precisely the check performed by step 2. We
can also see that the second comparison, s2− q1×m < m corresponds
to the condition verified by step 4. Therefore, if the algorithm passes
step 4, it must be the case that the value supplied for q1 is correct.

We can also plug s2, q1 and m into the integer division remainder
definition to obtain the identity s2 mod m = s2 − q1 × m. However,
according to the computations performed in steps 1 and 3, w = s2 −
q1 × m. Therefore, we can conclude that w = s2 mod m.

2.5.2 Analysis of Steps 5 - 8

Similarly, steps 5− 8 in the algorithm check the correctness of q2 and
use it to compute w × s mod m. The key observation here is that q2
is the quotient of the integer division (w × s)/m.

We can convince ourselves of the truth of this observation by us-
ing the fact that w = s2 mod m, which was proven above, by plug-
ging in the definition of the remainder in integer division, and by
taking advantage of the distributivity of integer multiplication with
respect to addition.
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⌊
w × s

m

⌋
=
⌊

(s2 mod m)× s

m

⌋

=
⌊

(s2 − b s2

m c ×m)× s

m

⌋

=
⌊

s3 − b s2

m c ×m× s

m

⌋

=
⌊

s3 − q1 ×m× s

m

⌋

=
⌊

s3 − q1 × s×m

m

⌋
= q2

By the same argument used to analyze steps 1 − 4, we use ele-
mentary division properties to prove that q2 is correct if and only
if the equation below is correct.

0 ≤ w × s− q2 ×m < m

The equation’s first comparison, 0 ≤ w × s− q2 ×m, is equivalent
to q2 ×m ≤ w × s, which corresponds to the check performed by step
6. The second comparison, w× s− q2×m < m, matches the condition
verified by step 8. It follows that, if the algorithm passes step 8, it
must be the case that the value supplied for q2 is correct.

By plugging w × s, q2 and m into the integer division remainder
definition, we obtain the identity w×s mod m = w×s−q2×m. Trivial
substitution reveals that the computations in steps 5 and 7 result in
z = w×s− q2×m, which allows us to conclude that z = w×s mod m.

In the analysis for steps 1− 4, we have proven that w = s2 mod m.
By substituting this into the above identity, we obtain the proof that
the algorithm’s output is indeed the desired signed message.
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z = w × s mod m

= (s2 mod m)× s mod m

= s2 × s mod m

= s3 mod m

2.5.3 Implementation Requirements

The main advantage of SGX’s RSA signature verification is that it
relies on the implementation of very few arithmetic operations on large
integers. The maximum integer size that needs to be handled is twice
the size of the modulus in the RSA key used to generate the signature.

Steps 1 and 5 use large integer multiplication. Steps 3 and 7 use
integer subtraction. Steps 2, 4, 6, and 8 use large integer comparison.
The checks in steps 2 and 6 guarantee that the results of the subtrac-
tions performed in steps 3 and 7 will be non-negative. It follows that
the algorithm will never encounter negative numbers.

2.6 Key Hierarchy and Derivation

According to Intel’s patents, the SGX implementation relies on a com-
plex key derivation process rooted on global secret keys in the CPU
circuitry, and on secrets embedded in the processor’s eFUSEs. eFUSE
information can be extracted efficiently (Chipworks quotes $50-250k
for extracting the entire eFUSE contents from an Intel i5 processor),
so some of the eFUSE secrets are encrypted with a master key (re-
ferred to as a “global wrapping logic key” in the patents).

The SGX patents describe two “logic keys” embedded in the CPU’s
circuitry, which are the same for all CPUs in a stepping, making them
essentially global keys. The global wrapping logic key (GWK) is a 128-
bit AES key, and it is used to encrypt a subset a 256-bit A.x value
used to re-create the CPU’s EPID key, and a 128-bit pre-seed key 0.
The eFUSEs also contain a 128-bit pre-seed key 1 and a 32-bit EPID
group ID, which are stored in cleartext.
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[Shanbhogue et al., 2015], which describes mechanisms for protect-
ing SGX keys in the presence of hardware debuggers, states that some
hardware secrets are stored in “metal tie-ups and tie-downs”, while
other secrets are stored in e-fuses or in physically unclonable function
(PUF) circuits [Gassend et al., 2002]. [Brickell and Li, 2014, Gotze
et al., 2014a] state that the GWK is embedded into a chip using
“metal tie-ups and tie-downs”, and is shared by all chips manufac-
tured from the same mask set.

The SGX patents state that encrypting the eFUSE secrets by the
logic key makes them harder to extract via hardware monitoring tools,
and protects them while in transit to the CPU during the manufactur-
ing process. This assumes that it is very expensive to obtain the global
key from a CPU, by virtue of the low feature size. [Gotze et al., 2014a]
expresses concerns that the GWK can be reverse-engineered.

[Gotze et al., 2014a,b] disclose that SGX processors also employ a
PUF, which generates a symmetric key that is used during the provi-
sioning process. Specifically, at an early provisioning stage, the PUF
key is encrypted with the GWK and transmitted to the key genera-
tion server. At a later stage, the key generation server encrypts the
chip’s fuse key material with the PUF key, and transmits it to the
chip. The PUF key increases the cost of obtaining a chip’s fuse key
material, as an attacker must compromise both provisioning stages in
order to be able to decrypt the fuse key material.

The SDM [Int, 2015b] mentions a 16-byte CPU security version
number (SVN), which contains the version numbers of various TCB
components, and is a source in the key derivation process. The patents
further specify that the SVN register is made up of (most likely 8-bit)
sections that contain the SVNs of each layer in the SGX initialization
process, and that each initialization step sets the corresponding section
to its SVN, and then locks it for the duration of the power-up cycle.

Intel’s patents disclose that the key derivation process uses 128-
bit AES in ECB mode as a pseudo-random function (PRF). When
an SVN is an input to a key derivation process, a PRF loop is used,
where the PRF is applied to a constant.
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[Anati et al., 2013] confirms that the attestation uses Intel’s
EPID [Brickell and Li, 2009] group signature scheme.

The Intel patents indicate that EREPORT’s KeyID is initialized
to a random value on each processor power cycle, and is incremented
after 232 AES operations that use the value. They also indicate that
each EREPORT may increment the KeyID by 1.

Neither the ISCA 2015 SGX tutorial nor the SDM mention the
DAK described above. However, an Intel-sponsored book on the Man-
agement Engine (ME) [Ruan, 2014], which is the closest thing avail-
able to an official documentation for the ME, mentions that the ME
contains e-fuses that store an EPID key which is used by the virtual
TPM’s software attestation feature.

Many aspects in the description of the ME’s EPID key match the
SGX patents’ depiction of the DAK. Both sources use the same com-
pressed representation of the EPID key. Also, both documents mention
that the EPID key is encrypted with an AES key.

This coincidence, combined with the apparent lack of an SGX in-
struction that can be used to retrieve the DAK, prompts the consid-
eration of the possibility that the DAK mentioned in the SGX patent
is actually stored in the Intel ME’s flash memory or e-fuses. This ap-
proach would make sense from a cost standpoint, as the ME’s core uses
a larger feature size than the CPU, so adding e-fuses or NVRAM to
the ME die is cheaper than adding them to the CPU die.

While this approach seems attractive from a cost standpoint, if
it were to be true, it would have significant implications on SGX’s
security properties. The DMI bus (§ I.2.9.1) that connects the CPU
to the chipset that contains the ME is untrusted, so the EPID key
cannot be transmitted between the CPU and the ME in plaintext.
Below, we outline two possibilities for building a secure system where
the DAK is stored in the ME’s flash memory.

The most straightforward approach is having the Provision En-
clave encrypt the DAK using the Provisioning Seal Key, as described
in § I.5.8.2. Under this approach, the ME would effectively be an un-
trusted flash memory, so it would not be able to run the virtual TPM
application described in [Ruan, 2014].
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Another approach that preserves the virtual TPM functional-
ity would entail having the ME authenticate the CPU as described
in [Costan and Devadas, 2011], and using a key agreement proto-
col (§ I.3.2.2) to establish a secure communication channel over the
DMI bus. In this case, the ME firmware is responsible for storing the
DAK, as described in [Ruan, 2014], and can implement a virtual TPM.

The downside of the latter approach is that the ME must be counted
as belonging to the SGX’s TCB, as it is trusted to access the DAK.
An attack that successfully plants malicious firmware into the ME, as
described in § I.3.6 and briefly analyzed in § 2.7.5, would result in an
exposed DAK, and a total compromise of SGX’s security.

In its last chapter, [Ruan, 2014] mentions that the SGX architec-
ture takes advantage of the ME using its Dynamic Application Loader
(DAL) interface. This may refer to the Protected Audio/Video Path
mentioned in an SGX paper [Hoekstra et al., 2013], or it may refer to
the DAK provisioning methods speculated above.

2.7 SGX Security Properties

We have summarized SGX’s programming model and the implementa-
tion details that are publicly documented in Intel’s official documenta-
tion and published patents. We are now ready to bring this the informa-
tion together in an analysis of SGX’s security properties. We start the
analysis by restating SGX’s security guarantees, and spend the bulk of
this section discussing how SGX fares when pitted against the attacks
described in § I.3. We conclude the analysis with some troubling im-
plications of SGX’s lack of resistance to software side-channel attacks.

2.7.1 Overview

Intel’s Software Guard Extensions (SGX) is Intel’s latest iteration
of a trusted hardware solution to the secure remote computation
problem. The SGX design is centered around the ability to create
an isolated container whose contents receives special hardware pro-
tections that are intended to translate into confidentiality, integrity,
and freshness guarantees.
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An enclave’s initial contents is loaded by the system software on the
computer, and therefore cannot contain secrets in plain text. Once ini-
tialized, an enclave is expected to participate in a software attestation
process, where it authenticates itself to a remote server. Upon successful
authentication, the remote server is expected to disclose some secrets
to an enclave over a secure communication channel. The SGX design
attempts to guarantee that the measurement presented during software
attestation accurately represents the contents loaded into the enclave.

SGX also offers a certificate-based identity system that can be
used to migrate secrets between enclaves that have certificates is-
sued by the same authority. The migration process involves secur-
ing the secrets via authenticated encryption before handing them off
to the untrusted system software, which passes them to another en-
clave that can decrypt them.

The same mechanism used for secret migration can also be used
to cache the secrets obtained via software attestation in an untrusted
storage medium managed by system software. This caching can reduce
the number of times that the software attestation process needs to
be performed in a distributed system. In fact, SGX’s software attes-
tation process is implemented by enclaves with special privileges that
use the certificate-based identity system to securely store the CPU’s
attestation key in untrusted memory.

2.7.2 Physical Attacks

We begin by discussing SGX’s resilience to the physical attacks de-
scribed in § I.3.4. Unfortunately, this section is set to disappoint readers
expecting definitive statements. The lack of publicly available details
around the hardware implementation aspects of SGX precludes any
rigorous analysis. However, we do know enough about SGX’s imple-
mentation to point out a few avenues for future exploration.

Due to insufficient documentation, one can only hope that the SGX
security model is not trivially circumvented by a port attack (§ I.3.4.1).
We are particularly concerned about the Generic Debug eXternal Con-
nection (GDXC) [Yuffe et al., 2011, Kurts et al., 2011], which collects
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and filters the data transferred by the uncore’s ring bus (§ I.2.11.3),
and reports it to an external debugger.

The SGX memory protection measures are implemented at the core
level, in the Page Miss Handler (PMH, § I.2.11.5) (§ 2.2) and at the chip
die level, in the memory controller (§ 2.1.2). Therefore, the code and
data inside enclaves is stored in plaintext in on-chip caches (§ I.2.11),
which entails that the enclave contents travels without any crypto-
graphic protection on the uncore’s ring bus (§ I.2.11.3).

Fortunately, a recent Intel patent [Shanbhogue et al., 2015] indi-
cates that Intel engineers are tackling at least some classes of at-
tacks targeting debugging ports.

The SDM and SGX papers discuss the most obvious class of bus
tapping attacks (§ I.3.4.2), which is the DRAM bus tapping attack.
SGX’s threat model considers DRAM and the bus connecting it to
the CPU chip to be untrusted. Therefore, SGX’s Memory Encryption
Engine (MEE, § 2.1.2) provides confidentiality, integrity and fresh-
ness guarantees to the Enclave Page Cache (EPC, § I.5.1.1) data
while it is stored in DRAM.

However, both the SGX papers and the ISCA 2015 tutorial on SGX
admit that the MEE does not protect the addresses of the DRAM lo-
cations accessed when cache lines holding EPC data are evicted or
loaded. This provides an opportunity for a malicious computer owner
to observe an enclave’s memory access patterns by combining a DRAM
address line bus tap with carefully crafted system software that cre-
ates artificial pressure on the last-level cache (LLC ,§ I.2.11) lines
that hold the enclave’s EPC pages.

On a brighter note, as mentioned in § I.3.4.2, we are not aware of any
successful DRAM address line bus tapping attack. Furthermore, SGX
is vulnerable to cache timing attacks that can be carried out completely
in software, so malicious computer owners do not need to bother setting
up a physical attack to obtain an enclave’s memory access patterns.

While the SGX documentation addresses DRAM bus tap-
ping attacks, it makes no mention of the System Management
bus (SMBus, § I.2.9.2) that connects the Intel Management En-
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gine (ME, § I.2.9.2) to various components on the computer’s moth-
erboard.

In § 2.7.5, we will explain that the ME needs to be taken into
account when evaluating SGX’s memory protection guarantees. This
makes us concerned about the possibility of an attack that taps the
SMBus to reach into the Intel ME. The SMBus is much more ac-
cessible than the DRAM bus, as it has fewer wires that operate at
a significantly lower speed. Unfortunately, without more information
about the role that the Intel ME plays in a computer, we cannot
move beyond speculation on this topic.

The threat model stated by the SGX design excludes physical at-
tacks targeting the CPU chip (§ I.3.4.3). Fortunately, Intel’s patents
disclose an array of countermeasures aimed at increasing the cost
of chip attacks.

For example, the original SGX patents [McKeen et al., 2009, John-
son et al., 2010] disclose that the Fused Seal Key and the Provisioning
Key, which are stored in e-fuses (§ I.5.8.2), are encrypted with a global
wrapping logic key (GWK). The GWK is a 128-bit AES key that is
hard-coded in the processor’s circuitry, and serves to increase the cost
of extracting the keys from an SGX-enabled processor.

As explained in § I.3.4.3, e-fuses have a large feature size, which
makes them relatively easy to “read” using a high-resolution micro-
scope. In comparison, the circuitry on the latest Intel processors has
a significantly smaller feature size, and is more difficult to reverse
engineer. Unfortunately, the GWK is shared among all dies created
from the same mask, so it suffers from the drawbacks of global se-
crets explained in § I.3.4.3.

Newer Intel patents [Gotze et al., 2014a,b] describe SGX-enabled
processors that employ a Physical Unclonable Function (PUF), e.g.,
[Suh and Devadas, 2007], [Maes et al., 2009], which generates a sym-
metric key that is used during the provisioning process.

Specifically, at an early provisioning stage, the PUF key is en-
crypted with the GWK and transmitted to the key generation server.
At a later stage, the key generation server encrypts the key material
that will be burned into the processor chip’s e-fuses with the PUF
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key, and transmits the encrypted material to the chip. The PUF key
increases the cost of obtaining a chip’s fuse key material, as an at-
tacker must compromise both provisioning stages in order to be able
to decrypt the fuse key material.

As mentioned in previous sections, patents reveal design possibil-
ities considered by the SGX engineers. However, due to the length
of timelines involved in patent applications, patents necessarily de-
scribe earlier versions of the SGX implementation plans, which may
not match the shipping implementation. We expect this may be the
case with the PUF provisioning patents, as it makes little sense to in-
clude a PUF in a chip die and rely on e-fuses and a GWK to store
SGX’s root keys. Deriving the root keys from the PUF would be more
resilient to chip imaging attacks.

SGX’s threat model excludes power analysis attacks (§ I.3.4.4) and
other side-channel attacks. This is understandable, as power attacks
cannot be addressed at the architectural level. Defending against power
attacks requires expensive countermeasures at the lowest levels of hard-
ware implementation, which can only be designed by engineers who
have deep expertise in both system security and Intel’s manufactur-
ing process. It follows that defending against power analysis attacks
has a very high cost-to-benefit ratio.

2.7.3 Privileged Software Attacks

The SGX threat model considers system software to be untrusted. This
is a prerequisite for SGX to qualify as a solution to the secure remote
computation problem encountered by software developers who wish to
take advantage of Infrastructure-as-a-Service (IaaS) cloud computing.

SGX’s approach is also an acknowledgment of the realities of to-
day’s software landscape, where the system software that runs at high
privilege levels (§ I.2.3) is so complex that security researchers con-
stantly find vulnerabilities in it (§ I.3.5).

The SGX design prevents malicious software from directly reading
or from modifying the EPC pages that store an enclave’s code and
data. This security property relies on two pillars in the SGX design.
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First, the SGX implementation (§ 2.1) runs in the processor’s mi-
crocode (§ I.2.14), which is effectively a higher privilege level that sys-
tem software does not have access to. Along the same lines, SGX’s
security checks (§ 2.2) are the last step performed by the PMH, so
they cannot be bypassed by any other architectural feature.

This implementation detail is only briefly mentioned in SGX’s of-
ficial documentation, but has a large impact on security. For context,
Intel’s Trusted Execution Technology (TXT, [Grawrock, 2009]), which
is the predecessor of SGX, relied on Intel’s Virtual Machine Extensions
(VMX) for isolation. The approach was unsound, because software run-
ning in System Management Mode (SMM, § I.2.3) could bypass the
restrictions used by VMX to provide isolation.

The security properties of SGX’s memory protection mechanisms
are discussed in detail in § 2.7.4.

Second, SGX’s microcode is always involved when a CPU transi-
tions between enclave code and non-enclave code (§ I.5.4), and there-
fore regulates all interactions between system software and an en-
clave’s environment.

On enclave entry (§ I.5.4.1), the SGX implementation sets up
the registers (§ I.2.2) that make up the execution state (§ I.2.6) of
the logical processor (LP § I.2.9.4), so a malicious OS or hypervi-
sor cannot induce faults in the enclave’s software by tampering with
its execution environment.

When an LP transitions away from an enclave’s code due to a hard-
ware exception (§ I.2.8.2), the SGX implementation stashes the LP’s
execution state into a State Save Area (SSA, § I.5.2.5) area inside the
enclave and scrubs it, so the system software’s exception handler cannot
access any enclave secrets that may be stored in the execution state.

The protections described above apply to all levels of privileged
software. SGX’s transitions between an enclave’s code and non-enclave
code place SMM software on the same footing as the system software
at lower privilege levels. System Management Interrupts (SMI, § I.2.12,
§ I.3.5), which cause the processor to execute SMM code, are handled
using the same Asynchronous Enclave Exit (AEX, § I.5.4.3) process
as all other hardware exceptions.
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Reasoning about the security properties of SGX’s transitions be-
tween enclave mode and non-enclave mode is very difficult. A correct-
ness proof would have to take into account all features of the CPU
that expose registers. Difficulty aside, such a proof would be very
short-lived, because every generation of Intel CPUs tends to intro-
duce new architectural features. The paragraph below gives a taste
of what such a proof would look like.

EENTER (§ I.5.4.1) stores the RSP and RBP register values in the
SSA used to enter the enclave, but stores XCR0 (§ I.2.6), FS and
GS (§ I.2.7) in the non-architectural area of the TCS (§ 2.1.3). At
first glance, it may seem elegant to remove this inconsistency and
have EENTER store the contents of the XCR0, FS, and GS registers
in the current SSA, along with RSP and RBP. However, this approach
would break the Intel architecture’s guarantees that only system soft-
ware can modify XCR0, and application software can only load seg-
ment registers using selectors that index into the GDT or LDT set up
by system software. Specifically, a malicious application could modify
these privileged registers by creating an enclave that writes the de-
sired values to the current SSA locations backing up the registers,
and then executes EEXIT (§ I.5.4.2).

Unfortunately, the following sections will reveal that while SGX
offers rather thorough guarantees against straightforward attacks on
enclaves, its guarantees are almost non-existent when it comes to
more sophisticated attacks, such as side-channel attacks. This sec-
tion concludes by describing what may be the most egregious side-
channel vulnerability in SGX.

Most modern Intel processors feature hyper-threading. On these
CPUs, the execution units (§ I.2.10) and caches (§ I.2.11) on a
core (§ I.2.9.4) are shared by two LPs, each of which has its own
execution state. SGX does not prevent hyper-threading, so malicious
system software can schedule a thread executing the code of a victim
enclave on an LP that shares the core with an LP executing a snooping
thread. This snooping thread can use the processor’s high-resolution
performance counter [Petters and Farber, 1999], in conjunction with
microarchitectural knowledge of the CPU’s execution units and out-
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of-order scheduler, to learn the instructions executed by the victim
enclave, as well as its memory access patterns.

This vulnerability can be fixed using two approaches. The straight-
forward solution is to require cloud computing providers to disable
hyper-threading when offering SGX. The SGX enclave measurement
would have to be extended to include the computer’s hyper-threading
configuration, so the remote parties in the software attestation process
can be assured that their enclaves are hosted by a secure environment.

A more complex approach to fixing the hyper-threading vulnerabil-
ity would entail having the SGX implementation guarantee that when
an LP is executing an enclave’s code, the other LP sharing its core
is either inactive, or is executing the same enclave’s code. While this
approach is possible, its design would likely be quite cumbersome.

2.7.4 Memory Mapping Attacks

§ I.5.4 explained that the code running inside an enclave uses the same
address translation process (§ I.2.5) and page tables as its host ap-
plication. While this design approach makes it easy to retrofit SGX
support into existing codebases, it also enables the address transla-
tion attacks described in § I.3.7.

The SGX design protects the code inside enclaves against the ac-
tive attacks described in § I.3.7. These protections have been exten-
sively discussed in prior sections, so we limit ourselves to pointing out
SGX’s answer to each active attack. We also explain the lack of protec-
tions against passive attacks, which can be used to learn an enclave’s
memory access pattern at 4KB page granularity.

SGX uses the Enclave Page Cache Map (EPCM, § I.5.1.2) to
store each EPC page’s position in its enclave’s virtual address space.
The EPCM is consulted by SGX’s extensions to the Page Miss Han-
dler (PMH, § 2.2.1), which prevent straightforward active address
translation attacks (§ I.3.7.2) by rejecting undesirable address trans-
lations before they reach the TLB (§ I.2.11.5).

SGX allows system software to evict (§ I.5.5) EPC pages into un-
trusted DRAM, so that the EPC can be over-subscribed. The con-
tents of the evicted pages and the associated EPCM metadata are pro-
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tected by cryptographic primitives that offer confidentiality, integrity
and freshness guarantees. This protects against the active attacks us-
ing page swapping described in § I.3.7.3.

When system software wishes to evict EPC pages, it must follow
the process described in § I.5.5.1, which guarantees to the SGX im-
plementation that all LPs have invalidated any TLB entry associated
with pages that will be evicted. This defeats the active attacks based
on stale TLB entries described in § I.3.7.4.

§ 2.3 outlines a correctness proof for the memory protection mea-
sures described above.

Unfortunately, SGX does not protect against passive address trans-
lation attacks (§ I.3.7.1), which can be used to learn an enclave’s mem-
ory access pattern at page granularity. While this appears benign, re-
cent work [Xu et al., 2015] demonstrates the use of these passive at-
tacks in a few practical settings, which are immediately concerning
for image processing applications.

The rest of this section describes the theory behind planning a
passive attack against an SGX enclave. The reader is directed to [Xu
et al., 2015] for a fully working system.

Passive address translation attacks rely on the fact that mem-
ory accesses issued by SGX enclaves go through the Intel architec-
ture’s address translation process (§ I.2.5), including delivering page
faults (§ I.2.8.2) and setting the accessed (A) and dirty (D) at-
tributes (§ I.2.5.3) on page table entries.

A malicious OS kernel or hypervisor can obtain the page-level trace
of an application executing inside an enclave by setting the present
(P) attribute to 0 on all of the enclave’s pages before starting enclave
execution. While an enclave executes, the malicious system software
maintains exactly one instruction page and one data page present
in the enclave’s address space.

When a page fault is generated, CR2 contains the virtual address
of a page accessed by enclave, and the error code indicates whether the
memory access was a read or a write (bit 1) and whether the mem-
ory access is a data access or an instruction fetch access (bit 4). On
a data access, the kernel tracing the enclave code’s memory access
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pattern would set the P flag of the desired page to 1, and set the P
flag of the previously accessed data page to 0. Instruction accesses
can be handled in a similar manner.

For a slightly more detailed trace, the kernel can set a desired
page’s writable (W) attribute to 0 if the page fault’s error code in-
dicates a read access, and only set it to 1 for write accesses. Also,
applications that use a page as both code and data (self-modifying
code and just-in-time compiling VMs) can be handled by setting a
page’s disable execution (XD) flag to 0 for a data access, and by care-
fully accounting for the case where the last accessed data page is the
same as the last accessed code page.

Leaving an enclave via an Asynchronous Enclave
Exit (AEX, § I.5.4.3) and re-entering the enclave via ERESUME (§ I.5.4.4)
causes the CPU to flush TLB entries that contain enclave addresses,
so a tracing kernel would not need to worry about flushing the TLB.
The tracing kernel does not need to flush the caches either, because
the CPU needs to perform address translation even for cached data.

A straightforward way to reduce this attack’s power is to increase
the page size, so the trace contains less information. However, the at-
tack cannot be completely prevented without removing the kernel’s
ability to oversubscribe the EPC, which is a major benefit of paging.

2.7.5 Software Attacks on Peripherals

Since the SGX design does not trust the system software, it must be
prepared to withstand the attacks described in § I.3.6, which can be
carried out by the system software thanks to its ability to control pe-
ripheral devices on the computer’s motherboard (§ I.2.9.1). This sec-
tion summarizes the security properties of SGX when faced with these
attacks, based on publicly available information.

When SGX is enabled on an LP, it configures the memory con-
troller (MC, § I.2.11.3) integrated on the CPU chip die to reject
any DMA transfer that falls within the Processor Reserved Mem-
ory (PRM, § I.5.1) range. The PRM includes the EPC, so the en-
claves’ contents is protected from the PCI Express attacks described in
§ I.3.6.1. This protection guarantee relies on the fact that the MC
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is integrated on the processor’s chip die, so the MC configuration
commands issued by SGX’s microcode implementation (§ 2.1.3) are
transmitted over a communication path that never leaves the CPU
die, and therefore can be trusted.

SGX regards DRAM as an untrusted storage medium, and uses
cryptographic primitives implemented in the MEE to guarantee the
confidentiality, integrity and freshness of the EPC contents that is
stored into DRAM. This protects against software attacks on DRAM’s
integrity, like the rowhammer attack described in § I.3.6.2.

The SDM describes an array of measures that SGX takes to disable
processor features intended for debugging when a LP starts execut-
ing an enclave’s code. For example, enclave entry (§ I.5.4.1) disables
Precise Event Based Sampling (PEBS) for the LP, as well as any hard-
ware breakpoints placed inside the enclave’s virtual address range (EL-
RANGE, § I.5.2.1). This addresses some of the attacks described in
§ I.3.6.3, which take advantage of performance monitoring features to
get information that typically requires access to hardware probes.

At the same time, the SDM does not mention anything about un-
core PEBS counters, which can be used to learn about an enclave’s
LLC activity. Furthermore, the ISCA 2015 tutorial slides mention that
SGX does not protect against software side-channel attacks
that rely on performance counters.

This limitation in SGX’s threat model leaves security-conscious
enclave authors in a rather terrible situation. These authors know
that SGX does not protect their enclaves against a class of software
attacks. At the same time, they cannot even contemplate attempt-
ing to defeat these attacks on their own, due to lack of information.
Specifically, the documentation that is publicly available from Intel
does not provide enough information to model the information leak-
age due to performance counters.

For example, Intel does not document the mapping implemented in
CBoxes (§ I.2.11.3) between physical DRAM addresses and the LLC
slices used to cache the addresses. This mapping impacts several un-
core performance counters, and the impact is strong enough to allow
security researches to reverse-engineer the mapping [Inci et al., 2015,
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Maurice et al., 2015, Yarom et al., 2015]. Therefore, it is safe to as-
sume that a malicious computer owner who knows the CBox map-
ping can use the uncore performance counters to learn about an en-
clave’s memory access patterns.

The SGX papers mention that SGX’s threat model includes at-
tacks that overwrite the flash memory chip that stores the computer’s
firmware, which result in malicious code running in SMM. However,
the official SGX documentation is silent about the implications of an
attack that compromises the firmware executed by the Intel ME.

§ I.3.6.4 states that the ME’s firmware is stored in the same flash
memory as the boot firmware, and enumerates some of ME’s special
privileges that enable it to help system administrators remotely diag-
nose and fix hardware and software issues. Given that the SGX design
is concerned about the possibility of malicious computer firmware, it
is reasonable to be concerned about malicious ME firmware.

§ I.3.6.4 argues that an attacker who compromises the ME can carry
out actions that are usually classified as physical attacks. An optimistic
security researcher can observe that the most scary attack vector af-
forded by an ME takeover appears to be direct DRAM access, and SGX
already assumes that the DRAM is untrusted. Therefore, an ME com-
promise would be equivalent to the DRAM attacks analyzed in § 2.7.2.

However, we are troubled by the lack of documentation on the
ME’s implementation, as certain details are critical to SGX’s secu-
rity analysis. For example, the ME is involved in the computer’s boot
process (§ I.2.13, § I.2.14.4), so it is unclear if it plays any part in
the SGX initialization sequence. Furthermore, during the security boot
stage (SEC, § I.2.13.2), the bootstrap LP (BSP) is placed in Cache-
As-Ram (CAR) mode so that the PEI firmware can be stored securely
while it is measured. This suggests that it would be convenient for the
ME to receive direct access to the CPU’s caches, so that the ME’s
TPM implementation can measure the firmware directly. At the same
time, a special access path from the ME to the CPU’s caches may
sidestep the MEE, allowing an attacker who has achieved ME code
execution to directly read the EPC’s contents.
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2.7.6 Cache Timing Attacks

The SGX threat model excludes the cache timing attacks described
in § I.3.8. The SGX documentation bundles these attacks together
with other side-channel attacks and summarily dismisses them as com-
plex physical attacks. However, cache timing attacks can be mounted
entirely by unprivileged software running at ring 3. This section de-
scribes the implications of SGX’s environment and threat model on
cache timing attacks.

The main difference between SGX and a standard architecture is
that SGX’s threat model considers the system software to be untrusted.
As explained earlier, this accurately captures the situation in remote
computation scenarios, such as cloud computing. SGX’s threat model
implies that the system software can be carrying out a cache timing
attack on the software inside an enclave.

A malicious system software translates into significantly more pow-
erful cache timing attacks, compared to those described in § I.3.8.
The system software is in charge of scheduling threads on LPs, and
also in charge of setting up the page tables used by address transla-
tion (§ I.2.5), which control cache placement (§ I.2.11.5).

For example, the malicious kernel set out to trace an enclave’s mem-
ory access patterns described in § 2.7.4 can improve the accuracy of
a cache timing attack by using page coloring [Kessler and Hill, 1992]
principles to partition [Lin et al., 2008] the cache targeted by the at-
tack. In a nutshell, the kernel divides the cache’s sets (§ I.2.11.2) into
two regions, as shown in Figure 2.9.

The system software stores the whole of the victim enclave’s code
and data in DRAM addresses that map to the cache sets in one of the
regions, and stores its own code and data in DRAM addresses that map
to the other region’s cache sets. The snooping thread’s code is assumed
to be a part of the OS. For example, in a typical 256 KB (per-core) L2
cache organized as 512 8-way sets of 64-byte lines, the tracing kernel
could allocate lines 0-63 for the enclave’s code page, lines 64-127 for
the enclave’s data page, and use lines 128-511 for its own pages.

To the best of our knowledge, there is no minor modification to
SGX that would provably defend against cache timing attacks. How-
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Figure 2.9: A malicious OS can partition a cache between the software running
inside an enclave and its own malicious code. Both the OS and the enclave software
have cache sets dedicated to them. When allocating DRAM to itself and to the
enclave software, the malicious OS is careful to only use DRAM regions that map to
the appropriate cache sets. On a system with an Intel CPU, the the OS can partition
the L2 cache by manipulating the page tables in a way that is completely oblivious
to the enclave’s software.
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ever, the SGX design could take a few steps to increase the cost of
cache timing attacks. For example, SGX’s enclave entry implementa-
tion could flush the core’s private caches, which would prevent cache
timing attacks from targeting them. This measure would defeat the
cache timing attacks described below, and would only be vulnerable to
more sophisticated attacks that target the shared LLC, such as [Yarom
and Falkner, 2013, Liu et al., 2015]. The description above assumes that
multi-threading has been disabled, for the reasons explained in § 2.7.3.

Barring the additional protection measures described above, a
tracing kernel can extend the attack described in § 2.7.4 with the
steps outlined below to take advantage of cache timing and nar-
row down the addresses in an application’s memory access trace to
cache line granularity.

Right before entering an enclave via EENTER or ERESUME, the kernel
would issue CLFLUSH instructions to flush the enclave’s code page and
data page from the cache. The enclave could have accessed a single code
page and a single data page, so flushing the cache should be reasonably
efficient. The tracing kernel then uses 16 bogus pages (8 for the enclave’s
code page, and 8 for the enclave’s data page) to load all 8 ways in the
128 cache sets allocated by enclave pages. After an AEX gives control
back to the tracing kernel, it can read the 16 bogus pages, and exploit
the time difference between an L2 cache hit and a miss to see which
cache lines were evicted and replaced by the enclave’s memory accesses.

An extreme approach that can provably defeat cache timing at-
tacks is disabling caching for the PRM range, which contains the EPC.
The SDM is almost completely silent about the PRM, but the SGX
manuals that it is based on state that the allowable caching behav-
iors (§ I.2.11.4) for the PRM range are uncacheable (UC) and write-
back (WB). This could become useful if the SGX implementation would
make sure that the PRM’s caching behavior cannot be changed while
SGX is enabled, and if the selected behavior would be captured by
the enclave’s measurement (§ I.5.6).
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2.7.7 Software Attacks on Private Microarchitectural State

In addition to straightforward leaks of private information via page ta-
ble metadata, and well-studied cache timing attacks, SGX also fails to
protect enclaves against an adversary seeking to infer control flow infor-
mation via microarchitectural state maintained by hardware. Software
scheduled onto a where an enclave was (or is) executing instructions
shares persistent structures with private execution.

While the reorder buffer and other transient state can be isolated
by disabling hyper-threading, and the TLB is protected by SGX, the
enclave’s branch history is vulnerable [Lee et al., 2016]. Preventing
this attack would require the SGX microcode to flush branch history
when entering and exiting enclave mode (and preventing untrusted
threads from sharing a physical core with an enclave), which it does
not do at the time of this writing. The state of the DRAM controller
(selected bank, etc.) likewise leaks enclaves’ confidential DRAM ac-
cesses [Wang et al., 2017].

2.7.8 Other Software Side-Channel Attacks and SGX

The SGX design reuses a few terms from the Trusted Platform Mod-
ule (TPM, § I.4.4) design. This helps software developers familiar with
TPM understand SGX faster. At the same time, the term reuse in-
vites the assumption that SGX’s software attestation is implemented
in tamper-resistant hardware, similarly to the TPM design.

§ I.5.8 explains that, in fact, the SGX design delegates the creation
of attestation signatures to software that runs inside a Quoting Enclave
with special privileges that allows it to access the processor’s attesta-
tion key. Restated, SGX includes an enclave whose software reads the
attestation key and produces attestation signatures.

Creating the Quoting Enclave is a very elegant way of reducing the
complexity of the hardware implementation of SGX, assuming that
the isolation guarantees provided by SGX are sufficient to protect the
attestation key. However, the security analysis in § 2.7 reveals that
enclaves are vulnerable to a vast array of software side-channel at-
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tacks, which have been demonstrated effective in extracting a variety
of secrets from isolated environments.

The gaps in the security guarantees provided to enclaves place a
large amount of pressure on Intel’s software developers, as they must
attempt to implement the EPID signing scheme used by software attes-
tation without leaking any information. Intel’s ISCA 2015 SGX tutorial
slides suggest that the SGX designers will advise developers to write
their code in a way that avoids data-dependent memory accesses, as
suggested in § I.3.8.4, and perhaps provide analysis tools that detect
code that performs data-dependent memory accesses.

The main drawback of the approach described above is that it
is extremely cumbersome. § I.3.8.4 describes that, while it may be
possible to write simple pieces of software in such a way that they
do not require data-dependent memory accesses, there is no known
process that can scale this to large software systems. For example,
each virtual method call in an object-oriented language results in
data-dependent code fetches.

The ISCA 2015 SGX tutorial slides also suggest that the efforts
of removing data-dependent memory accesses should focus on crypto-
graphic algorithm implementations, in order to protect the keys that
they handle. This is a terribly misguided suggestion, because cryp-
tographic key material has no intrinsic value. Attackers derive ben-
efits from obtaining the data that is protected by the keys, such as
medical and financial records.

Some security researchers focus on protecting cryptographic keys
because they are the target of today’s attacks. Unfortunately, it is
easy to lose track of the fact that keys are being attacked simply
because they are the lowest hanging fruit. A system that can only
protect the keys will have a very small positive impact, as the at-
tackers will simply shift their focus on the algorithms that process
the valuable information, and use the same software side-channel at-
tacks to obtain that information directly.

The second drawback of the approach described towards the begin-
ning of this section is that while eliminating data-dependent memory
accesses should thwart the attacks described in § 2.7.4 and § 2.7.6,
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the measure may not be sufficient to prevent the hyper-threading at-
tacks described in § 2.7.3. The level of sharing between the two logical
processors (LP, § I.2.9.4) on the same CPU core is so high that it is
possible that a snooping LP can learn more than the memory access
pattern from the other LP on the same core.

For example, if the number of cycles taken by an integer ALU
to execute a multiplication or division micro-op (§ I.2.10) depends
on its inputs, the snooping LP could learn some information about
the numbers multiplied or divided by the other LP. While this may
be a simple example, it is safe to assume that the Quoting Enclave
will be studied by many motivated attackers, and that any informa-
tion leak will be exploited.



3
The MIT Sanctum Processor

Sanctum offers the same promise as Intel’s Software Guard Extensions
(SGX), namely strong provable isolation of software modules running
concurrently and sharing resources, but protects against an important
class of additional software attacks that infer private information from
a program’s memory access patterns. Sanctum shuns unnecessary com-
plexity, leading to a simpler security analysis. The Sanctum processor
design follows a principled approach to eliminating entire attack sur-
faces through isolation, rather than repairing attack-specific privacy
leaks. Most of Sanctum’s logic is implemented in trusted software,
which does not perform cryptographic operations using keys, and is
easier to analyze than SGX’s opaque microcode, which does. The Sanc-
tum prototype targets a Rocket RISC-V core [Lee et al., 2014], an open
implementation that allows any researcher to reason about its security
properties. Sanctum’s extensions can be adapted to other processors,
as the design does not modify any major CPU building block. Instead,
Sanctum adds hardware at interfaces between generic building blocks,
enforcing invariants to uphold Sanctum’s security policy without im-
pacting cycle time. Sanctum demonstrates that strong software isola-
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tion is achievable with a surprisingly small set of minimally invasive
hardware changes, and a very reasonable design and performance cost.

3.1 Threat Model

Sanctum isolates the software inside an enclave from other software on
the same computer. All outside software, including privileged system
software, can only interact with an enclave via a small set of primi-
tives provided by the security monitor. Programmers are expected to
move the sensitive code in their applications into enclaves. In general,
an enclave receives encrypted sensitive information from outside, de-
crypts the information and performs some computation on it, and then
returns encrypted results to the outside world.

For example, medical imaging software would use an enclave to de-
crypt a patient’s X-ray and produce a diagnostic via an image process-
ing algorithm. Application code that does not handle sensitive data,
such as receiving encrypted X-rays over the network and storing the
encrypted images in a database, would not be enclaved.

Sanctum assumes that an attacker can compromise any operat-
ing system and hypervisor present on the computer executing the en-
clave, and can launch rogue enclaves. The attacker knows the target
computer’s architecture and micro-architecture. The attacker can an-
alyze passively collected data, such as page fault addresses, as well
as mount active attacks, such as direct or DMA memory probing,
and cache timing attacks.

Sanctum’s isolation protects the integrity and privacy of the code
and data inside an enclave against any practical software attack that
relies on observing or interacting with the enclave software via means
outside the interface provided by the security monitor. In other words,
Sanctum does not protect enclaves that leak their own secrets directly
(e.g., by writing to untrusted memory) or by timing their operations
(e.g., by modulating their completion times). In effect, Sanctum solves
the security problems that emerge from sharing a computer among
mutually distrusting applications.
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This distinction is particularly subtle in the context of cache tim-
ing attacks. Sanctum does not protect against attacks like the one
in [Brumley and Boneh, 2005], where the victim application leaks in-
formation via its public API, and the leak occurs even if the vic-
tim runs on a dedicated machine. Sanctum does protect against at-
tacks like Flush+Reload [Yarom and Falkner, 2013], which exploit
shared hardware resources to interact with the victim via methods
outside its public API.

Sanctum also defeats attackers who aim to compromise an OS or
hypervisor by running malicious applications and enclaves. This ad-
dresses concerns that enclaves provide new attack vectors for mal-
ware [Rutkowska, 2013, Davenport, 2014]. Sanctum assumes that the
benefits of meaningful software isolation outweigh enabling a new av-
enue for frustrating malware detection and reverse engineering [Dunn
et al., 2011].

Lastly, Sanctum protects against a malicious computer owner who
attempts to lie about the security monitor running on the computer.
Specifically, the attacker aims to obtain an attestation stating that the
computer is running an uncompromised security monitor, whereas a
different monitor had been loaded in the boot process. The uncompro-
mised security monitor must not have any known vulnerability that
causes it to disclose its cryptographic keys. The attacker is assumed to
know the target computer’s architecture and micro-architecture, and
is allowed to run any combination of malicious security monitor, hy-
pervisor, OS, applications and enclaves.

Sanctum does not prevent timing attacks that exploit bottlenecks in
the cache coherence directory bandwidth or in the DRAM bandwidth,
deferring these to future work. The latency of memory operations exhib-
ited by high-end DRAM controllers, however, has been shown a viable
threat surface for timing attacks [Pessl et al., 2015], including in the
context of SGX enclaves [Wang et al., 2017], meaning Sanctum enclaves
must map DRAM regions to disjoint DRAM banks (this is the respon-
sibility of the OS, and is checked during attestation), or implement a
constant access latency DRAM controller, in order to guarantee confi-
dentiality of DRAM accesses. In general, any component of the system
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that exhibits variable timing due to the behavior of software must be
considered a potential threat surface and addressed appropriately.

Sanctum does not protect against denial-of-service (DoS) attacks
by compromised system software: a malicious OS may deny service by
refusing to allocate any resources to an enclave. Sanctum does protect
against malicious enclaves attempting to DoS an uncompromised OS.

Sanctum assumes correct underlying hardware, so it does not
protect against software attacks that exploit hardware bugs (fault-
injection attacks), such as rowhammer [Kim et al., 2014, Seaborn
and Dullien, 2015].

Sanctum’s isolation mechanisms exclusively target software attacks.
§ 3.8 mentions related work that can harden a Sanctum system against
some physical attacks. Furthermore, software attacks that rely on sen-
sor data are considered to be physical attacks. For example, Sanc-
tum does not address information leakage due to power variations,
because software would require a temperature or current sensor to
carry out such an attack.

3.2 Programming Model Overview

By design, Sanctum’s programming model minimally deviates from
SGX, while providing stronger security guarantees. The expectation
is that application authors will link against a Sanctum-aware runtime
that abstracts away most aspects of Sanctum’s programming model.
For example, C programs would use a modified implementation of the
libc standard library. This section assumes the reader’s familiarity
with SGX as described in I.5 and Section 2.

The software stack on a Sanctum machine, shown in Figure 3.1,
resembles the SGX stack with one notable exception: SGX’s microcode
is replaced by a trusted software component, the security monitor,
which is protected from compromised system software, as it runs at
the highest privilege level (machine level in RISC-V).

Sanctum relegates the management of computation resources, such
as DRAM and execution cores, to untrusted system software (as does
SGX). In Sanctum, the security monitor checks the system software’s
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Figure 3.1: Software stack on a Sanctum machine; The blue text represents addi-
tions required by Sanctum. The bolded elements are in the software TCB.

allocation decisions for correctness and commits them into the hard-
ware’s configuration registers. For simplicity, we refer to the software
that manages resources as an OS (operating system), even though it
may be a combination of a hypervisor and a guest OS kernel.

Figure 3.1 is representative of today’s popular software stacks,
where an operating system handles scheduling and demand paging,
and the hypervisor multiplexes the computer’s CPU cores. Sanctum
is easy to integrate in such a stack, because the API calls that make
up the security monitor’s interface were designed with multiplexing in
mind. Furthermore, a security-conscious hypervisor can use Sanctum’s
cache isolation primitive (DRAM region) to protect against cross-VM
cache timing attacks [Apecechea et al., 2014].

An enclave stores its code and private data in parts of DRAM
that have been allocated by the OS exclusively for the enclave’s use
(as does SGX), which are collectively called the enclave’s memory.
Consequently, we refer to the regions of DRAM that are not allo-
cated to any enclave as OS memory. The security monitor tracks
DRAM ownership, and ensures that no piece of DRAM is assigned
to more than one enclave.

Each Sanctum enclave uses a range of virtual memory addresses
(EVRANGE) to access its memory. The enclave’s memory is mapped
by the enclave’s own page tables, which are stored in the enclave’s mem-
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ory (Figure 3.2). This makes private the page table dirty and accessed
bits, which can reveal memory access patterns at page granularity. Ex-
posing an enclave’s page tables to the untrusted OS leaves the enclave
vulnerable to attacks such as [Xu et al., 2015].

The enclave’s virtual address space outside EVRANGE is used to
access its host application’s memory, via the page tables set up by
the OS. Sanctum’s hardware extensions implement dual page table
lookup (§ 3.5.2), and make sure that an enclave’s page tables can
only point into the enclave’s memory, while OS page tables can only
point into OS memory (§ 3.5.3).

Host application
space

Host application
space

EVRANGE A

Enclave A Virtual
Address Space

Physical Memory

Enclave A region

Enclave A page tables

Enclave A region

Enclave B region

Enclave B page tables

OS region

OS region

OS page tables

Host application
space

Host application
space

EVRANGE B

Enclave B Virtual
Address Space

Figure 3.2: Per-enclave page tables.

Sanctum supports multi-threaded enclaves, and enclaves must ap-
propriately provision for thread state data structures. Enclave threads,
like their SGX cousins, run at the lowest privilege level (user level
in RISC-V), meaning a malicious enclave cannot compromise the OS.
Specifically, enclaves may not execute privileged instructions; address
translations that use OS page tables generate page faults when ac-
cessing supervisor pages.

The per-enclave metadata used by the security monitor is stored in
dedicated DRAM regions (metadata regions), each managed at the
page level by the OS, and each includes a page map that is used by
the security monitor to verify the OS’ decisions (much like the EPC
and EPCM in SGX, respectively). Unlike SGX’s EPC, the metadata
region pages only store enclave and thread metadata. Figure 3.3 shows
how these structures are weaved together.
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Figure 3.3: Enclave layout and data structures.

Sanctum considers system software to be untrusted, and governs
transitions into and out of enclave code. An enclave’s host application
enters an enclave via a security monitor call that locks a thread state
area, and transfers control to its entry point. After completing its in-
tended task, the enclave code exits by asking the monitor to unlock the
thread’s state area, and transfer control back to the host application.

Enclaves cannot make system calls directly: Sanctum cannot trust
the OS to restore an enclave’s execution state, so the enclave’s run-
time must ask the host application to proxy syscalls such as file sys-
tem and network I/O requests.
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Sanctum’s security monitor is the first responder for interrupts:
an interrupt received during enclave execution causes an asynchronous
enclave exit (AEX), whereby the monitor saves the core’s registers
in the current thread’s AEX state area, zeroes the registers, sanitizes
core microarchitectural state (via a fixed sequence of branches and
loads), exits the enclave, and dispatches the interrupt as if it was re-
ceived by the code entering the enclave.

On a normal enclave enter or exit operation (as opposed to an
AEX), the enclave is expected to sanitize its own microarchitectural
state, including branch history and private caches via a sequence of
unprivileged instructions.

Unlike SGX, resuming enclave execution after an AEX means re-
entering the enclave using its normal entry point, and having the en-
clave’s code ask the security monitor to restore the pre-AEX execu-
tion state. Sanctum enclaves are aware of asynchronous exits so they
can implement security policies. For example, an enclave thread that
performs time-sensitive work, such as periodic I/O, may terminate it-
self if it ever gets preempted by an AEX.

The security monitor configures the CPU to dispatch all faults oc-
curring within an enclave directly to the enclave’s designated fault
handler, which is expected to be implemented by the enclave’s run-
time (SGX sanitizes and dispatches faults to the OS). For example,
a libc runtime would translate faults into UNIX signals which, by
default, would exit the enclave. It is possible, though not advisable
for performance reasons (§ 3.6.3), for a runtime to handle page faults
and implement demand paging securely, and robust against the at-
tacks described in [Xu et al., 2015].

Unlike SGX, Sanctum isolates each enclave’s data throughout the
system’s cache hierarchy. The security monitor flushes per-core caches,
such as the L1 cache and the TLB, whenever a core jumps be-
tween enclave and non-enclave code. Last-level cache (LLC) isolation
is achieved by a simple partitioning scheme supported by Sanctum’s
hardware extensions (§ 3.5.1).

Sanctum’s isolation is also stronger than SGX’s with respect to
fault handling. While SGX sanitizes the information that an OS re-
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ceives during a fault, Sanctum achieves full isolation by having the se-
curity monitor route the faults that occur inside an enclave to that
enclave’s fault handler. This removes all information leaks via the
fault timing channel.

Sanctum’s strong isolation yields a simple security model for ap-
plication developers: all computation that executes inside an enclave,
and only accesses data inside the enclave, is protected from any at-
tack mounted by software outside the enclave. All communication with
the outside world, including accesses to non-enclave memory, is sub-
ject to attacks.

Sanctum assumes that the enclave runtime implements the security
measures needed to protect the enclave’s communication with other
software modules. For example, any algorithm’s memory access pat-
terns can be protected by ensuring that the algorithm only operates
on enclave data. The runtime can implement this protection simply
by copying any input buffer from non-enclave memory into the en-
clave before computing on it.

The enclave runtime can use Native Client’s approach [Yee et al.,
2009] to ensure that the rest of the enclave software only interacts
with the host application via the runtime to mitigate potential se-
curity vulnerabilities in enclave software.

The lifecycle of a Sanctum enclave closely resembles the lifecycle
of its SGX equivalent. An enclave is created when its host applica-
tion performs a system call asking the OS to create an enclave from
a dynamically loadable module (.so or .dll file). The OS invokes
the security monitor to assign DRAM resources to the enclave, and to
load the initial code and data pages into the enclave. Once the com-
plete set of pages of an enclave are loaded, the enclave is marked as
initialized via another security monitor call.

Sanctum’s software attestation scheme is a simplified version of
SGX’s scheme, and reuses a subset of its concepts. The data used
to initialize an enclave is cryptographically hashed, yielding the en-
clave’s measurement. An enclave can invoke a secure inter-enclave mes-
saging service to send a message to a privileged attestation enclave
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that can access the security monitor’s attestation key, and produces
the attestation signature.

3.3 Protection Boundaries

Sanctum’s isolation protects the privacy and integrity of an enclave’s
software, even in the face of a malicious operating system. Sanctum
improves upon SGX by isolating cache sets and page tables used to
access an enclave’s private memory, as well as microarchitectural state
updated as a side effect of enclave execution. The improved isolation
defeats attacks that exploit the memory access pattern information
leaks that result from cache and page table sharing, as well as attacks
attempting to infer private control flow information from observing
core state after enclave execution.

3.4 Security Primitives

Sanctum uses strong isolation to defeat information leaks. Enclaves
that execute concurrently on different cores are isolated in the last-level
cache (LLC) using a simple partitioning scheme (§ 3.5.1). Page table
sharing is prevented via enclaves mapping their own physical memory
via private page tables inaccessible to other software (§ 3.5.2). Core mi-
croarchitectural state including private cache contents, branch history,
and TLBs is kept private by the security monitor, which interposes on
each context switch involving an enclave, and sanitizes these structures.

Sanctum’s hardware modifications target the DMA master (§ 3.5.4)
and the interfaces to the last-level cache (LLC) (shown in Figure 3.8), as
well as the interfaces between the memory management unit’s (MMU)
page walker, the translation lookaside buffers (TLBs), and the L1 data
cache (shown in Figure 3.11).

Sanctum interposes on the interface between the LLC and the core-
private caches to tweak the mapping between physical addresses and
LLC sets, so that the computer’s DRAM is split into many equal-
sized regions, and the addresses in each DRAM region use distinct
LLC sets (§ 3.5.1). Sanctum augments the interface between the TLBs
and the MMU page walker with registers supporting per-enclave page



316 The MIT Sanctum Processor

tables (§ 3.5.2), and Sanctum adds some logic to the interface between
the page walker and the L1 cache to provide a method for constrain-
ing a page table to a set of DRAM regions (§ 3.5.3). Sanctum modi-
fies the DMA master to reject DMA transfers that fall outside a safe
range of memory addresses set by the security monitor (§ 3.5.4). Sanc-
tum allows DRAM banks to be exclusively allocated to enclaves, or
it must implements a DRAM controller with constant expected ac-
cess latency in order to protect the confidentiality of enclaves’ inter-
actions with the DRAM controller.

Sanctum authenticates enclaves using the same principles as ear-
lier secure processors such as Aegis [Suh et al., 2003] and SGX. Each
Sanctum processor has an asymmetric key pair, and a certificate from
the manufacturer for its public key. After an enclave is started, it can
obtain an attestation intended to convince a remote party that it is
communicating to that specific enclave running in a trusted environ-
ment. The attestation is a signature chain that starts at the manu-
facturer’s trusted root key, and ends with a signature that covers the
remote party’s challenge nonce, the enclave’s measurement (a crypto-
graphic hash of the enclave’s initial state), and a value produced by
the enclave, which is generally used to start a key exchange protocol
such as Diffie-Hellman [Diffie and Hellman, 1976].

Sanctum’s attestation chain starts with the asymmetric key pair
built into the processor. The next link in the chain is the measure-
ment root (§ 3.6.1), a piece of trusted software that is burned into
the processor’s ROM. The measurement root contains the first instruc-
tions executed by a processor after it is powered on or reset, and its
main job is to compute a measurement of the security monitor (a
cryptographic hash) and add it to the attestation chain. The moni-
tor produces enclave attestations.
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3.5 Hardware Modifications

3.5.1 LLC Address Input Transformation

Figure 3.4 depicts a physical address in a toy computer with 32-bit
virtual addresses and 21-bit physical addresses, 4,096-byte pages, a set-
associative LLC with 512 sets and 64-byte lines, and 256 KB of DRAM.

DRAM Region
Index

Cache
Line Offset

5 0611
Page Offset

1214

Cache Set Index

DRAM Stripe
Index

151720 18
Cache Tag

Address bits used by 256 KB of DRAM

Address bits covering the maximum addressable physical space of 2 MB

Physical page number (PPN)

Figure 3.4: Interesting bit fields in a physical address.

The location where a byte of data is cached in the LLC depends
on the low-order bits in the byte’s physical address. The set index
determines which of the LLC lines can cache the line containing the
byte, and the line offset locates the byte in its cache line. A virtual
address’s low-order bits make up its page offset, while the other bits
are its virtual page number (VPN). Address translation leaves the page
offset unchanged, and translates the VPN into a physical page number
(PPN), based on the mapping specified by the page tables.

Sanctum defines the DRAM region index in a physical address
as the intersection between the PPN bits and the cache index bits.
This is the maximal set of bits that impact cache placement and are
determined by privileged software via page tables. Sanctum defines
a DRAM region to be the subset of DRAM with addresses hav-
ing the same DRAM region index. In Figure 3.4, for example, address
bits [14 . . . 12] are the DRAM region index, dividing the physical ad-
dress space into 8 DRAM regions.

In a typical system without Sanctum’s hardware extensions, DRAM
regions are made up of multiple continuous DRAM stripes, where
each stripe is exactly one page long. The top of Figure 3.5 drives this
point home, by showing the partitioning of our toy computer’s 256 KB
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Figure 3.5: Address shift for contiguous DRAM regions.

of DRAM into DRAM regions. The fragmentation of DRAM regions
makes it difficult for the OS to allocate contiguous DRAM buffers,
which are essential to the efficient DMA transfers used by high perfor-
mance devices. In our example, if the OS only owns 4 DRAM regions,
the largest contiguous DRAM buffer it can allocate is 16 KB.

Observe that, up to a certain point, circularly shifting (rotating)
the PPN of a physical address to the right by one bit, before it enters
the LLC, doubles the size of each DRAM stripe and halves the number
of stripes in a DRAM region, as illustrated in Figure 3.5.

Sanctum takes advantage of this effect by adding a cache address
shifter that circularly shifts the PPN to the right by a certain amount
of bits, as shown in Figures 3.6 and 3.8. In our example, configuring the
cache address shifter to rotate the PPN by 3 yields contiguous DRAM
regions, so an OS that owns 4 DRAM regions could hypothetically allo-
cate a contiguous DRAM buffer covering half of the machine’s DRAM.

The cache address shifter’s configuration depends on the amount
of DRAM present in the system. If our example computer could have
128 KB - 1 MB of DRAM, its cache address shifter must support shift
amounts from 2 to 5. Such a shifter can be implemented via a 3-position
variable shifter circuit (series of 8-input MUXes), and a fixed shift by
2 (no logic), as illustrated by Figure 3.7. Alternatively, in systems with
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known DRAM configuration (embedded, SoC, etc.), the shift amount
can be fixed, and implemented with no logic.
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Figure 3.6: Cache address shifter, 3 bit PPN rotation.
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Figure 3.7: A variable shifter that can shift by 2-5 bits can be composed of a fixed
shifter by 2 bits and a variable shifter that can shift by 0-3 bits.

3.5.2 Page Walker Input

Sanctum’s per-enclave page tables require an enclave page table base
register eptbr that stores the physical address of the currently running
enclave’s page tables, and has similar semantics to the page table base
register ptbr pointing to the operating system-managed page tables.
These registers may only be accessed by the Sanctum security monitor,
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Figure 3.8: Sanctum’s cache address shifter and DMA transfer filter logic in the
context of a Rocket uncore.

which provides an API call for the OS to modify ptbr, and ensures that
eptbr always points to the current enclave’s page tables.

The circuitry handling TLB misses switches between ptbr and
eptbr based on two registers that indicate the current enclave’s
EVRANGE, namely evbase (enclave virtual address space base) and
evmask (enclave virtual address space mask). When a TLB miss oc-
curs, the circuit in Figure 3.9 selects the appropriate page table base
by ANDing the faulting virtual address with the mask register and
comparing the output against the base register. Depending on the com-
parison result, either eptbr or ptbr is forwarded to the page walker
as the page table base address.

In addition to the page table base registers, Sanctum uses 3 more
pairs of registers that will be described in the next section. On a 64-
bit RISC-V computer, the modified FSM input requires 5 extra 52-bit
registers (the bottom 12 bits in a 64-bit page-aligned address will always
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Figure 3.9: Page walker input for per-enclave page tables.

be zero), 52 AND gates, a 52-bit wide equality comparator (52 XNOR
gates and 51 AND gates), and 208 (52 × 4) 2-bit MUXes.

3.5.3 Page Walker Memory Accesses

In modern high-speed CPUs, address translation is performed by a
hardware page walker that traverses the page tables when a TLB
miss occurs. The page walker’s latency greatly impacts the CPU’s per-
formance, so it is implemented as a finite-state machine (FSM) that
reads page table entries by issuing DRAM read requests using physical
addresses, over a dedicated bus to the L1 cache.

Unsurprisingly, page walker modifications require a lot of engi-
neering effort. At the same time, Sanctum’s security model demands
that the page walker only references enclave memory when travers-
ing the enclave page tables, and only references OS memory when
translating the OS page tables. Fortunately, these requirements can
be satisfied without modifying the FSM. Instead, the security moni-
tor configures the circuit in Figure 3.10 to ensure that the page ta-
bles only point into allowable memory.
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Sanctum’s security monitor must guarantee that ptbr points into
an OS DRAM region, and eptbr points into a DRAM region owned
by the enclave. This secures the page walker’s initial DRAM read. The
circuit in Figure 3.10 receives each page table entry fetched by the
FSM, and sanitizes it before it reaches the page walker FSM.

The security monitor configures the set of DRAM regions that page
tables may reference by writing to a DRAM region bitmap (drbmap)
register. The sanitization circuitry extracts the DRAM region index
from the address in the page table entry, and looks it up in the DRAM
region bitmap. If the address does to belong to an allowable DRAM
region, the sanitization logic forces the page table entry’s valid bit
to zero, which will cause the page walker FSM to abort the address
translation and signal a page fault.
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DRAM Region
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FSM Input:
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Page Table Leaf NOT
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Figure 3.10: Hardware support for per-enclave page tables: check page table entries
fetched by the page walker.

Sanctum’s security monitor and its attestation key are stored in
DRAM regions allocated to the OS. For security reasons, the OS must
not be able to modify the monitor’s code, or to read the attesta-
tion key. Sanctum extends the page table entry transformation de-
scribed above to implement a Protected Address Range (PAR) for
each set of page tables.

Each PAR is specified using a base register (parbase) register and
a mask register (parmask) with the same semantics as the variable
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Memory Type Range registers (MTRRs) in the x86 architecture. The
page table entry sanitization logic in Sanctum’s hardware extensions
checks if each page table entry points into the PAR by ANDing the
entry’s address with the PAR mask and comparing the result with the
PAR base. If a page table entry is seen with a protected address, its
valid bit is cleared, forcing a page fault.

The above transformation allows the security monitor to set up a
memory range that cannot be accessed by other software, and which
can be used to securely store the monitor’s code and data. Entry in-
validation ensures no page table entries are fetched from the protected
range, which prevents the page walker FSM from modifying the pro-
tected region by setting accessed and dirty bits.

All registers above are replicated, as Sanctum maintains separate
OS and enclave page tables. The security monitor sets up a protected
range in the OS page tables to isolate its own code and data structures
(most importantly its private attestation key) from a malicious OS.

Figure 3.11 shows Sanctum’s logic inserted between the page walker
and the cache unit that fetches page table entries.

Assuming a 64-bit RISC-V and the example cache above, the logic
requires a 64-bit MUX, 54 AND gates, a 51-bit wide equality compara-
tor (51 XNOR gates and 50 AND gates), a 1-bit NOT gate, and a copy
of the DRAM region index extraction logic in § 3.5.1, which could be
just wire re-routing if the DRAM configuration is known a priori.

3.5.4 DMA Transfer Filtering

Sanctum whitelists a DMA-safe DRAM region instead of following
SGX’s blacklist approach. Specifically, Sanctum adds two registers (a
base, dmarbase and an AND mask, dmarmask) to the DMA arbiter
(memory controller). The range check circuit shown in Figure 3.9 com-
pares each DMA transfer’s start and end addresses against the allowed
DRAM range, and the DMA arbiter drops transfers that fail the check.
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Figure 3.11: Sanctum’s page entry transformation logic in the context of a Rocket
core.

3.6 Software Design

Sanctum’s chain of trust, discussed in § 3.6.1, diverges significantly
from SGX. Sanctum replaces SGX’s microcode with a software security
monitor that runs at a higher privilege level than the hypervisor and
the OS. On RISC-V, the security monitor runs at machine level. The
Sanctum design only uses one privileged enclave, the signing enclave,
which behaves similarly to SGX’s Quoting Enclave.
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3.6.1 Attestation Chain of Trust

Sanctum has three pieces of trusted software: the measurement root,
which is burned in on-chip ROM, the security monitor (§ 3.6.2), which
must be stored alongside the computer’s firmware (usually in flash
memory), and the signing enclave, which can be stored in any un-
trusted storage that the OS can access.

The expectation is that the trusted software is amenable to rig-
orous analysis: the implementation of a security monitor for Sanc-
tum is written with verification in mind, and has fewer than 5 kloc
of C++, including a subset of the standard library and the cryp-
tography for enclave attestation.

The Measurement Root

The measurement root (mroot) is stored in a ROM at the top of the
physical address space, and covers the reset vector. Its main responsi-
bility is to compute a cryptographic hash of the security monitor and
generate a monitor attestation key pair and certificate based on the
monitor’s hash, as shown in Figure 3.12.

The security monitor is expected to be stored in non-volatile mem-
ory (such as an SPI flash chip) that can respond to memory I/O re-
quests from the CPU, perhaps via a special mapping in the computer’s
chipset. When mroot starts executing, it computes a cryptographic
hash over the security monitor. mroot then reads the processor’s key
derivation secret, and derives a symmetric key based on the monitor’s
hash. mroot will eventually hand down the key to the monitor.

The security monitor contains a header that includes the location
of an attestation key existence flag. If the flag is not set, the measure-
ment root generates a monitor attestation key pair, and produces a
monitor attestation certificate by signing the monitor’s public attes-
tation key with the processor’s private attestation key. The monitor
attestation certificate includes the monitor’s hash.

mroot generates a symmetric key for the security monitor so it
may encrypt its private attestation key and store it in the computer’s
SPI flash memory chip. When writing the key, the monitor also sets
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the monitor attestation key existence flag, instructing future boot se-
quences not to re-generate a key. The public attestation key and cer-
tificate can be stored unencrypted in any untrusted memory.

Before handing control to the monitor, mroot sets a lock that blocks
any software from reading the processor’s symmetric key derivation
seed and private key until a reset occurs. This prevents a malicious
security monitor from deriving a different monitor’s symmetric key,
or from generating a monitor attestation certificate that includes a
different monitor’s measurement hash.

The symmetric key generated for the monitor is similar in concept
to the Seal Keys produced by SGX’s key derivation process, as it is
used to securely store a secret (the monitor’s attestation key) in un-
trusted memory, in order to avoid an expensive process (asymmetric
key attestation and signing). Sanctum’s key derivation process is based
on the monitor’s measurement, so a given monitor is guaranteed to
get the same key across power cycles. The cryptographic properties of
the key derivation process guarantee that a malicious monitor cannot
derive the symmetric key given to another monitor.

The Signing Enclave

In order to avoid timing attacks, the security monitor does not com-
pute attestation signatures directly. Instead, the signing algorithm is
executed inside a signing enclave, which is a security monitor module
that executes in an enclave environment, so it is protected by the same
isolation guarantees that any other Sanctum enclave enjoys.

The signing enclave receives the monitor’s private attestation key
via an API call. When the security monitor receives the call, it com-
pares the calling enclave’s measurement with the known measurement
of the signing enclave. Upon a successful match, the monitor copies
its attestation key into enclave memory using a data-independent se-
quence of memory accesses, such as memcpy. This way, the monitor’s
memory access pattern does not leak the private attestation key.

Sanctum’s signing enclave authenticates another enclave on the
computer and securely receives its attestation data using mail-
boxes (§ 3.6.2), a simplified version of SGX’s local attestation (report-
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ing) mechanism. The enclave’s measurement and attestation data are
wrapped into a software attestation signature that can be examined
by a remote verifier. Figure 3.13 shows the chain of certificates and
signatures in an instance of software attestation.
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Figure 3.13: The certificate chain behind Sanctum’s software attestation signa-
tures.
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3.6.2 Security Monitor

The security monitor receives control after mroot finishes setting up
the attestation measurement chain.

The monitor provides API calls to the OS and enclaves for DRAM
region allocation and enclave management. The monitor guards
sensitive registers, such as the page table base register (ptbr) and the
allowed DMA range (dmarbase and dmarmask). The OS can set these
registers via monitor calls that ensure the register values are consistent
with the current DRAM region allocation.

DRAM Regions

Figure 3.14 shows the DRAM region allocation state transition dia-
gram. After the system boots up, all DRAM regions are allocated to
the OS, which can free up DRAM regions so it can re-assign them to
enclaves or to itself. A DRAM region can only become free after it
is blocked by its owner, which can be the OS or an enclave. While a
DRAM region is blocked, any address translations mapping to it cause
page faults, so no new TLB entries will be created for that region. Be-
fore the OS frees the blocked region, it must flush all TLBs in order
to remove any stale entries for the region.

OWNED BLOCKED FREE
block
DRAM
region

free
DRAM
region

assign DRAM region

Figure 3.14: DRAM region allocation states and API calls.

The monitor ensures that the OS performs TLB shootdowns, us-
ing a global block clock. When a region is blocked, the block clock is
incremented, and the current block clock value is stored in the meta-
data associated with the DRAM region (shown in Figure 3.15). When
a core’s TLB is flushed, that core’s flush time is set to the current
block clock value. When the OS asks the monitor to free a blocked
DRAM region, the monitor verifies that no core’s flush time is lower
than the block clock value stored in the region’s metadata. As an op-
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timization, freeing a region owned by an enclave only requires TLB
flushes on the cores running that enclave’s threads. No other core can
have TLB entries for the enclave’s memory.
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Figure 3.15: Security monitor data structures.

The region blocking mechanism guarantees that when a DRAM
region is assigned to an enclave or the OS, no stale TLB mappings
associated with the DRAM region exist. The monitor uses the MMU
extensions described in § 3.5.2 and § 3.5.3 to ensure that once a DRAM
region is assigned, no software other than the region’s owner may create
TLB entries pointing inside the DRAM region. Together, these mecha-
nisms guarantee that the DRAM regions allocated to an enclave cannot
be accessed by the operating system or by another enclave.

Metadata Regions

Since the security monitor sits between the OS and enclave, and its
APIs can be invoked by both sides, it is an easy target for timing
attacks. Sanctum prevents these attacks with a straightforward policy
that states the security monitor is never allowed to access enclave data,
and is not allowed to make memory accesses that depend on the at-
testation key material. The rest of the data handled by the monitor is
derived from the OS’ actions, so it is already known to the OS.

A rather obvious consequence of the policy above is that after
the security monitor boots the OS, it cannot perform any crypto-
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graphic operations that use keys. For example, the security monitor
cannot compute an attestation signature directly, and defers that op-
eration to a signing enclave (§ 3.6.1). While it is possible to implement
some cryptographic primitives without performing data-dependent ac-
cesses, the security and correctness proofs behind these implementa-
tions are non-trivial. For this reason, Sanctum avoids depending on
any such implementation.

A more subtle aspect of the access policy outlined above is that
the metadata structures that the security monitor uses to operate
enclaves cannot be stored in DRAM regions owned by enclaves, be-
cause that would give the OS an indirect method of accessing the
LLC sets that map to enclave’s DRAM regions, which could facili-
tate a cache timing attack.

For this reason, the security monitor requires the OS to set aside
at least one DRAM region for enclave metadata before it can create
enclaves. The OS has the ability to free up the metadata DRAM re-
gion, and regain the LLC sets associated with it, if it predicts that
the computer’s workload will not involve enclaves.

Each DRAM region that holds enclave metadata is managed in-
dependently from the other regions, at page granularity. The first few
pages of each region contain a page map that that tracks the usage
of each metadata page, specifically the enclave that it is assigned to,
and the data structure that it holds.

Each metadata region is like an EPC region in SGX, with the ex-
ception that our metadata regions only hold special pages, like Sanc-
tum’s equivalent of SGX’s Secure Enclave Control Structure (SECS)
and the Thread Control Structure (TCS). These structures will be
described in the following sections.

The data structures used to store Sanctum’s metadata can span
multiple pages. When the OS allocates such a structure in a metadata
region, it must point the monitor to a sequence of free pages that
belong to the same DRAM region. All the pages needed to represent
the structure are allocated and released in one API call.
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Enclave Lifecycle

The lifecycle of a Sanctum enclave is very similar to that of its SGX
counterparts, as shown in Figure 3.16.

non-
existent LOADING INITIALIZEDcreate
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enter
enclave
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PTE,thread

Figure 3.16: Enclave states and enclave management API calls.

The OS creates an enclave by issuing a create enclave call that cre-
ates the enclave metadata structure, which is Sanctum’s equivalent of
the SECS. The enclave metadata structure contains an array of mail-
boxes whose size is established at enclave creation time, so the num-
ber of pages required by the structure varies from enclave to enclave.
§ 3.6.2 describes the contents and use of mailboxes.

The create enclave API call initializes the enclave metadata fields
shown in Figure 3.3, and places the enclave in the LOADING state.
While the enclave is in this state, the OS sets up the enclave’s initial
state via monitor calls that assign DRAM regions to the enclave, create
hardware threads and page table entries, and copy code and data into
the enclave. The OS then issues a monitor call to transition the enclave
to the INITIALIZED state, which finalizes its measurement hash. The
application hosting the enclave is now free to run enclave threads.

Sanctum stores a measurement hash for each enclave in its meta-
data area, and updates the measurement to account for every operation
performed on an enclave in the LOADING state. The policy described
in § 3.6.2 does not apply to the secure hash operations used to up-
date enclave’s measurement, because the whole of the data used to
compute the hash is already known to the OS.

Enclave metadata is stored in a metadata region (§ 3.6.2), so it
can only be accessed by the security monitor. Therefore, the metadata
area can safely store public information with integrity requirements,
such as the enclave’s measurement hash.
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While an OS loads an enclave, it is free to map the enclave’s pages,
but the monitor maintains its page tables ensuring all entries point to
non-overlapping pages in DRAM owned by the enclave. Once an enclave
is initialized, it can inspect its own page tables and abort if the OS
created undesirable mappings. Simple enclaves do not require specific
mappings. Complex enclaves are expected to communicate their desired
mappings to the OS via out-of-band metadata not covered by this work.

Sanctum’s monitor ensures that page tables do not overlap by stor-
ing the last mapped page’s physical address in the enclave’s metadata.
To simplify the monitor, a new mapping is allowed if its physical ad-
dress is greater than that of the last, constraining the OS to map an
enclave’s DRAM pages in monotonically increasing order.

Enclave Code Execution

Sanctum closely follows the threading model of SGX enclaves. Each
CPU core that executes enclave code uses a thread metadata struc-
ture, which is Sanctum’s equivalent of SGX’s TCS combined with
SGX’s State Save Area (SSA). Thread metadata structures are stored
in a DRAM region dedicated to enclave metadata in order to pre-
vent a malicious OS from mounting timing attacks against an enclave
by causing AEXes on its threads. Figure 3.17 shows the lifecycle of
a thread metadata structure.
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Figure 3.17: Enclave thread metadata structure states and thread-related API
calls.

The OS turns a sequence of free pages in a metadata region into an
uninitialized thread structure via an allocate thread monitor call. Dur-
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ing enclave loading, the OS uses a load thread monitor call to initialize
the thread structure with data that contributes to the enclave’s mea-
surement. After an enclave is initialized, it can use an accept thread
monitor call to initialize its thread structure.

The application hosting an enclave starts executing enclave code
by issuing an enclave enter API call, which must specify an initialized
thread structure. The monitor honors this call by configuring Sanctum’s
hardware extensions to allow access to the enclave’s memory, and then
by loading the program counter and stack pointer registers from the
thread’s metadata structure. The enclave’s code can return control to
the hosting application voluntarily, by issuing an enclave exit API call,
which restores the application’s PC and SP from the thread state area
and sets the API call’s return value to ok.

When performing an AEX, the security monitor atomically tests-
and-sets the AEX state valid flag in the current thread’s metadata. If
the flag is clear, the monitor stores the core’s execution state in the
thread state’s AEX area. Otherwise, the enclave thread was resuming
from an AEX, so the monitor does not change the AEX area. When the
host application re-enters the enclave, it will resume from the previous
AEX. This reasoning avoids the complexity of SGX’s state stack.

If an interrupt occurs while the enclave code is executing, the se-
curity monitor’s exception handler performs an AEX, which sets the
API call’s return value to async_exit, and invokes the standard inter-
rupt handling code. After the OS handles the interrupt, the enclave’s
host application resumes execution, and re-executes the enter enclave
API call. The enclave’s thread initialization code examines the saved
thread state, and seeing that the thread has undergone an AEX, issues
a resume thread API call. The security monitor restores the enclave’s
registers from the thread state area, and clears the AEX flag.

Mailboxes

Sanctum’s software attestation process relies on mailboxes, which are
a simplified version of SGX’s local attestation mechanism. Sanctum
could not follow SGX’s approach because it relies on key derivation
and MAC algorithms, and Sanctum’s timing attack avoidance pol-
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icy (§ 3.6.2) states that the security monitor is not allowed to per-
form cryptographic operations that use keys.

Each enclave’s metadata area contains an array of mailboxes, whose
size is specified at enclave creation time, and covered by the en-
clave’s measurement. Each mailbox goes through the lifecycle shown
in Figure 3.18.
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Figure 3.18: Mailbox states and security monitor API calls related to inter-enclave
communication.

An enclave that wishes to receive a message in a mailbox, such as
the signing enclave, declares its intent by performing an accept mes-
sage monitor call. The API call is used to specify the mailbox that
will receive the message, and the identity of the enclave that is ex-
pected to send the message.

The sending enclave, which is usually the enclave wishing to be
authenticated, performs a send message call that specifies the iden-
tity of the receiving enclave, and a mailbox within that enclave. The
monitor only delivers messages to mailboxes that expect them. At
enclave initialization, the expected sender for all mailboxes is an in-
valid value (all zeros), so the enclave will not receive messages un-
til it calls accept message.

When the receiving enclave is notified via an out-of-band mech-
anism that it has received a message, it issues a read message call
to the monitor, which moves the message from the mailbox into the
enclave’s memory. If the API call succeeds, the receiving enclave is as-
sured that the message was sent by the enclave whose identity was
specified in the accept message call.

Enclave mailboxes are stored in metadata regions (§ 3.6.2), which
cannot be accessed by any software other than the security monitor.
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This guarantees the privacy, integrity, and freshness of the messages
sent via the mailbox system.

Sanctum’s mailbox design has the downside that both the send-
ing and receiving enclave need to be alive in DRAM in order to com-
municate. By comparison, SGX’s local attestation can be done asyn-
chronously. In return, mailboxes do not require any cryptographic op-
erations, and have a much simpler correctness argument.

Multi-Core Concurrency

The security monitor is highly concurrent, with fine-grained locks. API
calls targeting two different enclaves may be executed in parallel on
different cores. Each DRAM region has a lock guarding that region’s
metadata. An enclave is guarded by the lock of the DRAM region
holding its metadata. Each thread metadata structure also has a lock
guarding it, which is acquired when the structure is accessed, but also
while the metadata structure is used by a core running enclave code.
Thus, the enter enclave call acquires a slot lock, which is released by
an enclave exit call or by an AEX.

Sanctum avoids deadlocks by using a form of optimistic locking.
Each monitor call attempts to acquire all necessary locks via atomic
test-and-set operations, and errors with a concurrent_call code if
any lock is unavailable.

3.6.3 Enclave Eviction

General-purpose software can be enclaved without source code changes,
provided that it is linked against a runtime (e.g., libc) modified to work
with Sanctum. Any such runtime would be included in the TCB.

The Sanctum design allows the operating system to over-commit
physical memory allocated to enclaves, by collaborating with an enclave
to page some of its DRAM regions to disk. Sanctum does not give the
OS visibility into enclave memory accesses, in order to prevent private
information leaks, so the OS must decide the enclave whose DRAM
regions will be evicted based on other activity, such as network I/O, or
based on a business policy, such as Amazon EC2’s spot instances.
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Once a victim enclave has been decided, the OS asks the enclave
to block a DRAM region (cf. Figure 3.14), giving the enclave an op-
portunity to rearrange data in its RAM regions. DRAM region man-
agement can be transparent to the programmer if handled by the en-
clave’s runtime. The presented design requires each enclave to always
occupy at least one DRAM region, which contains enclave data struc-
tures and the memory management code described above. Evicting
all of a live enclave’s memory requires an entirely different scheme
that is deferred to future work.

The security monitor does not allow the OS to forcibly reclaim a
single DRAM region from an enclave, as doing so would leak mem-
ory access patterns. Instead, the OS can delete an enclave, after stop-
ping its threads, and reclaim all its DRAM regions. Thus, a small
or short-running enclave may well refuse DRAM region management
requests from the OS, and expect the OS to delete and restart it
under memory pressure.

To avoid wasted work, large long-running enclaves may elect to
use demand paging to overcommit their DRAM, albeit with the un-
derstanding that demand paging leaks page-level access patterns to
the OS. Securing this mechanism requires the enclave to obfuscate its
page faults via periodic I/O using oblivious RAM techniques, as in the
Ascend processor [Fletcher et al., 2012], applied at page rather than
cache line granularity, and with integrity verification. This carries a
high overhead: even with a small chance of paging, an enclave must
generate periodic page faults, and access a large set of pages at each
period. Using an analytic model, we estimate the overhead to be up-
wards of 12ms per page per period for a high-end 10K RPM drive,
and 27ms for a value hard drive. Given the number of pages accessed
every period grows with an enclave’s data size, the costs are easily pro-
hibitive. While SSDs may alleviate some of this prohibitive overhead,
and will be investigated in future work, currently Sanctum focuses on
securing enclaves without demand paging.

Enclaves that perform other data-dependent communication, such
as targeted I/O into a large database file, must also use the periodic
oblivious I/O to obfuscate their access patterns from the operating
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system. These techniques are independent of application business logic,
and can be provided by libraries such as database access drivers.

Briefly, the OS can ask the security monitor to freeze an enclave,
encrypting the enclave’s DRAM regions in place, and creating a leaf
node in a hash tree. When the monitor thaws a frozen enclave, it uses
the hash tree leaf to ensure freshness, decrypts the DRAM regions, and
relocates the enclave, updating its page tables to reflect new owners of
relevant DRAM regions. The hash tree is managed by the OS using an
approach similar to SGX’s version array page eviction.

3.7 Security Analysis of Sanctum

Sanctum’s security argument rests on two pillars: the enclave isola-
tion enforced by the security monitor, and the guarantees behind the
software attestation signature. This section outlines correctness argu-
ments for each of these pillars.

Sanctum’s isolation primitives protect enclaves from outside soft-
ware that attempts to observe or interact with the enclave software via
means outside the interface provided by the security monitor. Sanc-
tum prevents direct attacks by ensuring that the memory owned by an
enclave can only be accessed by that enclave’s software. More subtle
attacks are foiled by also isolating the structures used to access the en-
clave’s memory, such as the enclave’s page tables and the caches that
hold enclave data, and by sanitizing hardware structures updated by
enclave execution, such as the cores’ branch prediction tables. Attacks
exploiting DMA-capable devices on the system bus are thwarted by
whitelisting a region of physical addresses where DMA accesses are
permitted, and the DRAM controller timing channel is closed by either
expecting the OS to exclusively grant DRAM banks to enclaves (this
is evident during attestation), or by implementing a DRAM controller
with a constant expected access latency.

3.7.1 Protection Against Direct Attacks

The correctness proof for Sanctum’s DRAM isolation can be divided
into two sub-proofs that cover the hardware and software sides of the
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system. First, we need to prove that the page walker modifications de-
scribed in § 3.5.2 and § 3.5.3 behave according to their descriptions.
Thanks to the small sizes of the circuits involved, this sub-proof can
be accomplished by simulating the circuits for all logically distinct in-
put cases. Second, we must prove that the security monitor configures
Sanctum’s extended page walker registers in a way that prevents di-
rect attacks on enclaves. This part of the proof is significantly more
complex, but it follows the same outline as the proof for SGX’s mem-
ory access protection presented in § 2.3.

The proof revolves around a main invariant stating that all TLB en-
tries in every core are consistent with the programming model described
in § 3.2. The invariant breaks down into three cases that match § 2.3,
after substituting DRAM regions for pages.

These three cases are outlined below.

1. At all times when a core is not executing enclave code, its TLB
may only contain physical addresses in DRAM regions allocated
to the OS.

2. At all times when a core is executing an enclave’s code, the
TLB entries for virtual addresses outside the current enclave’s
EVRANGE must contain physical addresses belonging to DRAM
regions allocated to the OS.

3. At all times when an core is executing an enclave’s code, the
TLB entries for virtual addresses inside the current enclave’s
EVRANGE must match the virtual memory layout specified by
the enclave’s page tables.

3.7.2 Protection Against Subtle Attacks

Sanctum also protects enclaves from software attacks that attempt to
exploit side channels to obtain information indirectly. We focus on prov-
ing that Sanctum protects against the attacks mentioned in § 3.8, which
target the page fault address and cache timing side-channels.

The proof that Sanctum foils page fault attacks is centered around
the claims that each enclave’s page fault handler and page tables and
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page fault handler are isolated from all other software entities on the
computer. First, all the page faults inside an enclave’s EVRANGE are
reported to the enclave’s fault handler, so the OS cannot observe the
virtual addresses associated with the faults. Second, page table isolation
implies that the OS cannot access an enclave’s page tables and read
the access and dirty bits to learn memory access patterns.

Page table isolation is a direct consequence of the claim that Sanc-
tum correctly protects enclaves against direct attacks, which was cov-
ered above. Each enclave’s page tables are stored in DRAM regions
allocated to the enclave, so no software outside the enclave can ac-
cess these page tables.

The proof behind Sanctum’s cache isolation is straightforward but
tedious, as there are many aspects involved. We start by peeling off the
easier cases, and tackle the most difficult step of the proof at the end
of the section. Sanctum assumes the presence of both per-core caches
and a shared LLC, and each cache type requires a separate correct-
ness argument. Per-core cache isolation is achieved simply by flushing
core-private caches at every transition between enclave and non-enclave
mode. The cores’ microarchitectural state containing private informa-
tion — TLB (§ 3.7.1), and branch history table — is likewise sanitized
by the security monitor. DRAM controller timing is sanitized by im-
plementing a controller with constant expected access latency (or by
refusing trust in enclaves that aren’t granted DRAM regions cover-
ing entire DRAM banks). To prove the correctness of LLC isolation,
we first show that enclaves do not share LLC lines with outside soft-
ware, and then we show that the OS cannot indirectly reach into an
enclave’s LLC lines via the security monitor.

The two invariants outlined below show that per-core caches are
never shared between an enclave and any other software, effectively
proving the correctness of per-core cache isolation.

1. At all times when a core is not executing enclave code, its private
caches only contain data accessed by the OS (and other non-
enclave software).
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2. At all times when a core is executing enclave code, its private
caches only contain data accessed by the currently running en-
clave.

Due to the private nature of the per-core caches, the two invari-
ants can be proven independently for every core, by induction over
the sequence of instructions executed by the core. The base case oc-
curs when the security monitor hands off the computer’s control to
the OS, at which point there is no enclave, so all caches contain OS
data. The induction step has two cases – transitions between the OS
and an enclave flush the per-core caches, while all the other instruc-
tions trivially follow the invariants.

Showing that enclaves do not share LLC lines with outside soft-
ware can be accomplished by proving a stronger invariant that states
at all times, any LLC line that can potentially cache a location in
an enclave’s memory cannot cache any location outside that enclave’s
memory. In steady state, this follows directly from the LLC isolation
scheme in § 3.5.1, because the security monitor guarantees that each
DRAM region is assigned to exactly one enclave or to the OS.

The situations where a DRAM region changes ownership, outlined
below, can be reasoned case by case.

1. DRAM regions allocated to un-initialized enclaves can be indi-
rectly accessed by the OS, using the monitor APIs for loading
enclaves. It follows that the OS can influence the state of the en-
clave’s LLC lines at the moment when the enclave starts. Each
enclave’s initialization code is expected to read enough memory in
each DRAM region to get the LLC lines assigned to the enclave’s
memory in a known state. This way, the OS cannot influence the
timing of the enclave’s memory accesses, by adjusting the way it
loads the enclave’s pages.

2. When an enclave starts using a DRAM region allocated by the OS
after the enclave was initialized, it must follow the same process
outlined above to drive the LLC lines mapping the DRAM region
into a pre-determined state. Otherwise, the OS can influence the
timing of the enclave’s memory accesses, as reasoned above.
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3. When an enclave blocks a DRAM region in order to free it for OS
use, the enclave is responsible for cleaning up the DRAM region’s
contents and getting the associated LLC lines in a state that does
not leak secrets. Enclave runtimes that implement DRAM region
management can accomplish both tasks by zeroing the DRAM
region before blocking it.

4. DRAM regions released when the OS terminates an enclave are
zeroed by the security monitor. This removes secret data from the
DRAM regions, and also places the associated LLC lines in a pre-
determined state. Thus, the OS cannot use probing to learn about
the state of the LLC lines that mapped the enclave’s DRAM
regions.

The implementation for the measures outlined above belongs in the
enclave runtime (e.g., a modified libc), so enclave application developers
do not need to be aware of this security argument.

Last, we focus on the security monitor, because it is the only piece
of software outside an enclave that can access the enclave’s DRAM
regions. In order to claim that an enclave’s LLC lines are isolated from
outside software, we must prove that the OS cannot use the security
monitor’s API to indirectly modify the state of the enclave’s LLC lines.
This proof is accomplished by considering each function exposed by
the monitor API, as well as the monitor’s hardware fault handler. The
latter is considered to be under OS control because in a worst case
scenario, a malicious OS could program peripherals to cause interrupts
as needed to mount a cache timing attack.

First, we ignore all API functions that do not directly operate on
enclave memory, such as the APIs that manage DRAM regions. The ig-
nored functions include many APIs that manage enclave-related struc-
tures, such as mailbox APIs (§ 3.6.2) and most thread APIs (§ 3.6.2),
because they only operate on enclave metadata stored in dedicated
metadata DRAM regions. In fact, the sole purpose of metadata DRAM
regions is being able to ignore most APIs in this security argument.
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Second, we ignore the API calls that operate on un-initialized en-
claves, because each enclave is expected to drive its LLC lines into
a known state during initialization.

The remaining API call is enter enclave, which causes the cur-
rent core to start executing enclave code. All enclave code must be
stored in the enclave’s DRAM regions, so it can receive integrity guar-
antees. It follows that the OS can use enter enclave to cause spe-
cific enclave LLC lines to be fetched. This API does not contradict
our security argument because enter enclave is the Sanctum-provided
method for outside software to call into the enclave, so it is effec-
tively a part of the enclave’s interface.

We note that enclaves have means to control enter enclave’s be-
havior. The API call will only access enclave memory if the thread
metadata (§ 3.6.2) passed to it is available. Furthermore, code execu-
tion starts at an entry point defined by the enclave.

Last, we analyze the security monitor’s handling of hardware ex-
ceptions. We discuss faults (such as division by zero and page faults)
and interrupts caused by peripherals separately, as they are han-
dled differently.

When a core starts executing enclave code, the security monitor
configures it to route faults to an enclave-defined handler. On RISC-
V, this is done without executing any non-enclave code. On architec-
tures where the fault handler is always invoked with monitor priv-
ileges, the security monitor must copy its fault handler inside each
enclave’s DRAM regions, and configure the eparbase and eparmask
registers (§ 3.5.3) to prevent the enclave from modifying the handler
code. Faults must not be handled by the security monitor code stored
in OS DRAM regions, because that would give a malicious OS an op-
portunity to learn when enclaves incur faults, via cache probing.

Sanctum’s security monitor handles interrupts received during en-
clave execution by performing an AEX (§ 3.2). The AEX implementa-
tion only accesses information in metadata DRAM regions, and writes
the core’s execution state to a metadata DRAM region. Since the AEX
does not access the enclave’s DRAM regions, its code can be safely
stored in OS DRAM regions, along with the rest of the security mon-
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itor. The OS can observe AEXes by probing the LLC lines storing
the AEX handler. However, this leaks no information, because each
AEX results OS code execution.

3.7.3 Operating System Protection

Sanctum protects the operating system from direct attacks against ma-
licious enclaves, but does not protect it against subtle attacks that
take advantage of side-channels. Sanctum assumes that software de-
velopers will transition all sensitive software into enclaves, which are
protected even if the OS is compromised. At the same time, a hon-
est OS can potentially take advantage of Sanctum’s DRAM regions
to isolate mutually mistrusting processes.

Proving that a malicious enclave cannot attack the host computer’s
operating system is accomplished by first proving that the security
monitor’s APIs that start executing enclave code always place the core
in unprivileged mode, and then proving that the enclave can only access
OS memory using the OS-provided page tables. The first claim can be
proven by inspecting the security monitor’s code. The second claim
follows from the correctness proof of the circuits in § 3.5.2 and § 3.5.3.
Specifically, each enclave can only access memory either via its own
page tables or the OS page tables, and the enclave’s page tables cannot
point into the DRAM regions owned by the OS.

These two claims effectively show that Sanctum enclaves run with
the privileges of their host application. This parallels SGX, so all argu-
ments about OS security in SGX apply to Sanctum as well. Specifically,
malicious enclaves cannot DoS the OS, and can be contained using the
mechanisms that currently guard against malicious user software.

3.7.4 Security Monitor Protection

The security monitor is in Sanctum’s TCB, so the system’s security
depends on the monitor’s ability to preserve its integrity and protect
its secrets from attackers. The monitor does not use address translation,
so it is not exposed to any attacks via page tables. The monitor also
does not protect itself from cache timing attacks, and instead avoids
making any memory accesses that would reveal sensitive information.
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Proving that the monitor is protected from direct attacks from a
malicious OS or enclave can be accomplished in a few steps. First,
we invoke the proof that the circuits in § 3.5.2 and § 3.5.3, are cor-
rect. Second, we must prove that the security monitor configures Sanc-
tum’s extended page walker registers correctly. Third, we must prove
that the DRAM regions that contain monitor code or data are al-
ways allocated to the OS.

The circuit correctness proof was outlined in § 3.7.1, and effec-
tively comes down to reasoning through all possible input classes
and simulating the circuit.

The register configuration correctness proof consists of analyzing
Sanctum’s initialization code and ensuring that it sets up the parbase
and parmask registers to cover all of the monitor’s code and data.
These registers will not change after the security monitor hands off
control to the OS in the boot sequence.

Last, proving that the DRAM regions that store the monitor al-
ways belong to the OS requires analyzing the monitor’s DRAM region
management code. At boot time, all DRAM regions must be allocated
to the OS correctly. During normal operation, the block DRAM re-
gion API call (§ 3.6.2) must reject DRAM regions that contain mon-
itor code or data. At a higher level, the DRAM region management
code must implement the state machine shown in Figure 3.14, and
the drbmap and edrbmap registers (§ 3.5.3) must be updated to cor-
rectly reflect DRAM region ownership.

Since the monitor is exposed to cache timing attacks from the OS,
Sanctum’s security guarantees rely on proofs that the attacks would not
yield any information that the OS does not already have. Fortunately,
most of the security monitor implementation consists of acknowledging
and verifying the OS’ resource allocation decisions. The main piece of
private information held by the security monitor is the attestation key.
We can be assured that the monitor does not leak this key, as long as we
can prove that the monitor implementation only accesses the key when
it is provided to the signing enclave (§ 3.6.1), that the key is provided
via a data-independent memory copy operation, such as memcpy, and
that the attestation key is only disclosed to the signing enclave.
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Superficially, proving the last claim described above comes down
to ensuring that the API providing the key compares the current en-
clave’s measurement with a hard-coded value representing the correct
signing enclave, and errors out in case of a mismatch. However, the
current enclave’s measurement is produced by a sequence of calls to
the monitor’s enclave loading APIs, so a complete proof also requires
analyzing each loading API implementation and proving that it mod-
ifies the enclave measurement as expected.

Sanctum’s monitor requires a complex security argument when
compared to SGX’s microcode, because the microcode is burned into
a ROM that is not accessible by software, and is connected to the ex-
ecution core via a special path that bypasses caches. We expect that
the extra complexity in the security argument is much smaller than
the complexity associated with the microcode programming. Further-
more, SGX’s architectural enclaves, such as its quoting enclave, must
operate under the same regime as Sanctum’s monitor, as SGX does
not guarantee cache isolation to its enclaves.

3.7.5 The Security of Software Attestation

The security of Sanctum’s software attestation scheme depends on
the correctness of the measurement root and the security monitor.
mroot’s sole purpose is to set up the attestation chain, so the at-
testation’s security requires the correctness of the entire mroot code.
The monitor’s enclave measurement code also plays an essential role
in the attestation process, because it establishes the identity of the
attested enclaves, and is also used to distinguish between the sign-
ing enclave and other enclaves. Sanctum’s attestation also relies on
mailboxes, which are used to securely transmit attestation data from
the attested enclave to the signing enclave.

At a high level, the measurement root’s correctness proof is lengthy
and tedious, because setting up the attestation chain requires imple-
mentations for cryptographic hashing, symmetric encryption, RSA key
generation, and RSA signing. Before the monitor measurement is per-
formed, the processor must be placed into a cache-as-RAM mode, and
the monitor must be copied into the processor’s cache. Fortunately, the
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proof can be simplified by taking into account that when mroot starts
executing, the computer is in a well-defined post-reset state, interrupt
processing is disabled, and no other software is being executed by the
CPU. Furthermore, mroot runs in machine mode on the RISC-V ar-
chitecture, so the code uses physical addresses, and does not have to
deal with the complexities of address translation.

Measuring the security monitor requires initializing the flash mem-
ory that stores it. Interestingly, the correctness of the initialization code
is not critical to Sanctum’s security. If the flash memory is set up incor-
rectly, the monitor software that is executed may not match the version
stored on the flash chip. However, this does not impact the software
attestation’s security, as long as the measurement computed by mroot
matches the monitor that is executed. Storage initialization code is gen-
erally complex, so this argument can be used to exclude a non-trivial
piece of the measurement root’s code from correctness proofs.

The correctness proof for the monitor’s measurement code consists
of a sub-proof for the cryptographic hash implementation, and sub-
proofs for the code that invokes the cryptographic hash module in
each of the enclave loading APIs (§ 3.6.2), which are create enclave,
load page, load page table entry, and load thread. The cryptographic
hash implementation can be shared with the measurement root, so
the correctness proof can be shared as well. The hash implementation
operates on public data, so it does not need to be resistant to side-
channel attacks. The correctness proofs for the enclave loading API
implementations are tedious but straightforward.

The security analysis of the monitor’s mailbox API (§ 3.6.2) im-
plementation relies on proving the claims below. Each claim can be
proved by analyzing a specific part of the mailbox module’s code. It
is worth noting that these claims only cover the subset of the mailbox
implementation that the signing enclave depends on.

1. An enclave’s mailboxes are initialized to the empty state.

2. The accept message API correctly sets the target mailbox into
the empty state, and copies the expected sender enclave’s mea-
surement into the mailbox metadata.
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3. The send message API errors out without making any modifica-
tions if the sending enclave’s measurement does not match the
expected value in the mailbox’s metadata.

4. The send message API copies the sender’s message into the cor-
rect field of the mailbox’s metadata.

5. The receive message API errors out if the mailbox is not in the
full state.

6. The receive message API correctly copies the message from the
mailbox metadata to the calling enclave.

3.8 Work Related to Sanctum Mechanisms

Sanctum’s main improvement over SGX is preventing software attacks
that analyze an isolated container’s memory access patterns to infer
private information. One should be concerned with cache timing attacks
[Banescu, 2011], because they can be mounted by unprivileged software
sharing a computer with the victim software.

Cache timing attacks are known to retrieve cryptographic keys used
by AES [Bonneau and Mironov, 2006], RSA [Brumley and Boneh,
2005], Diffie-Hellman [Kocher, 1996], and elliptic-curve cryptography
[Brumley and Tuveri, 2011]. While early attacks required access to the
victim’s CPU core, recent sophisticated attacks [Yarom and Falkner,
2013, Liu et al., 2015] target the last-level cache (LLC), which is
shared by all cores in a socket. Recently, [Oren et al., 2015] demon-
strated a cache timing attack that uses JavaScript code in a page
visited by a web browser.

Cache timing attacks observe a victim’s memory access patterns at
cache line granularity. However, recent work shows that private infor-
mation can be gleaned even from the page-level memory access pattern
obtained by a malicious OS that simply logs the addresses seen by
its page fault handler [Xu et al., 2015].

The research community has brought forward various defenses
against cache timing attacks. PLcache [Wang and Lee, 2007, Kong
et al., 2008] and the Random Fill Cache Architecture (RFill, [Liu and
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Lee, 2014]) were designed and analyzed in the context of a small region
of sensitive data, and scaling them to protect a potentially large en-
clave without compromising performance is not straightforward. When
used to isolate entire enclaves in the LLC, RFill performs at least
37%-66% worse than Sanctum.

RPcache [Wang and Lee, 2007, Kong et al., 2008] trusts the OS
to assign different hardware process IDs to mutually mistrusting en-
tities, and its mechanism does not directly scale to large LLCs. The
non-monopolizable cache [Domnitser et al., 2012] uses a well-principled
partitioning scheme, but does not completely stop leakage, and relies
on the OS to assign hardware process IDs. CATalyst [Liu et al., 2016]
trusts the Xen hypervisor to correctly tame Intel’s Cache Allocation
Technology into providing cache pinning, which can only secure soft-
ware whose code and data fits into a fraction of the LLC.

A fair share of the cache timing attack countermeasures cited here
focus on protecting relatively small pieces of code and data that are
loosely coupled to the rest of the application. The countermeasures
are suitable for cryptographic keys and the algorithms that operate
on them, but do not scale to larger codebases. This is a question-
able approach, because crypto keys have no intrinsic value, and are
only attacked to gain access to the sensitive data that they protect.
For example, in a medical image processing application, the sensi-
tive data may be patient X-rays. A high-resolution image uses at
least a few megabytes, so the countermeasures above will leave the
X-rays vulnerable to cache timing attacks while they are operated
on by image processing algorithms.

Sanctum uses very simple cache partitioning [Lin et al., 2008] based
on page coloring [Taylor et al., 1990, Kessler and Hill, 1992], which
has proven to have reasonable overheads. It is likely that sophisti-
cated schemes like ZCache [Sanchez and Kozyrakis, 2010] and Van-
tage [Sanchez and Kozyrakis, 2011] can be combined with Sanctum’s
framework to yield better performance.



4
Conclusion

This manuscript is the second of a two-part review of secure pro-
cessor systems that aims to enable remote computation with guar-
antees of privacy and integrity. Part I of this survey established the
background, taxonomy, and prior work relevant for a discussion of
trusted remote computation. Part I also described the secure isola-
tion container (enclave), as exemplified by Intel’s Secure Guard Ex-
tensions (SGX), as an effective primitive for secure remote computa-
tion. This manuscript, Part II, relies on the fundamentals discussed
previously and extends the discussion of enclaves with an in-depth in-
vestigation of the implementation, security-critical mechanisms, threat
model, and shortcomings of SGX.

Shortly after we learned about Intel’s Software Guard Extensions
(SGX) initiative, we set out to study it in the hope of finding a prac-
tical solution to its vulnerability to cache timing attacks. After read-
ing the official SGX manuals, we were left with more questions than
when we started. The SGX patents filled some of the gaps in the offi-
cial documentation, but also revealed Intel’s enclave licensing scheme,
which has troubling implications.
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After learning about the SGX implementation and inferring its de-
sign constraints, we discarded our draft proposals for defending enclave
software against cache timing attacks. We concluded that it would be
impossible to claim to provide this kind of guarantee given the de-
sign constraints and all unknowns surrounding the SGX implemen-
tation. Instead, we applied the knowledge that we gained to design
the MIT Sanctum processor.

Sanctum shows that strong provable isolation of concurrent soft-
ware modules can be achieved with low design complexity and little
overhead. This approach provides strong security guarantees against
an insidious software threat model including cache timing and mem-
ory access pattern attacks. With the design of Sanctum, we hope
to enable a shift in discourse in secure hardware architecture away
from plugging specific security holes to a principled approach to elim-
inating attack surfaces.

This two part survey and analysis describes our findings while
studying SGX and designing Sanctum. We hope that it will help fellow
researchers understand the breadth of issues that need to be consid-
ered before accepting a trusted hardware design into a trusted com-
puting base. We also hope that our work will prompt the research
community to demand more transparency and open design from the
vendors who ask us to trust their hardware.
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