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Abstract -A new approach to the solution of burnup equations is developed that takes into account 
the dependence of the reaction constants on time as well as nonlinear and feedback effects. With the 
help of the transition probabilities for the simplified problem, the burnup differential equation is 
reduced to the equivalent integral equation, which is solved by iterations. The solution is made easy 
to understand with the help of diagrams constructed foil0 wing the suggested rules. It is strictly proved 
that any nuclide transmutation network can be broken into independent depletion chains if the burnup 
equations are linear in concentrations. The theory is illustrated by examples of the time dependence 
of reaction constants. 

I. INTRODUCTION Xi = its total depletion constant 

Problems related to analysis of isotope transmu- 
tations are encountered in many areas of nuclear phys- 
ics and its applications, ranging from star evolution 
studies’ and muon catalysis kinetics* to optimization 
of radioactive nuclide production3 and calculation of 
the decay heat from nuclear fuel.4 A detailed network 
of all possible transmutations may often be very com- 
plicated. However, if reaction constants- do not depend 
on the nuclide concentrations, the transmutation net- 
work can be broken up into independent linear chains 
in each of which, if there is no feedback, the isotope 
concentrations are described by a set of equations: 

dx. 
--! = si-IXj-1 - xjxi , 
dt 

where 

xi = concentration of the i’th nuclide 

*Present address: Boston University, Physics Depart- 
ment, 590 Commonwealth Ave., Boston, Massachusetts 
02215. 

si-1 = constant of its formation from the prede- 
cessor (se = 0). 

If si and hi are constant, Eq. (1) can be solved using 
the simple analytical formula derived by Bateman 
as early as 1910. Under initial conditions of xi(O) = 
Zi&i, I& being the Kroneker delta, the solution can be 
written as 

n-l 

x,(t) =zIJJ (Sif)‘Dn(hlt,...,h,t) * (2) 

Here, 0, (yi , . . . ,y,> is the depletion function intro- 
duced by Siewers6: 

D,(Yl,...,Y,) = l$ 
ew (-ui) 

i=l 0 (Yj - Yi) * 

j#i 

(3) 

Properties of these functions were studied in detail in 
Refs. 7 and 8, in which a number of new represen- 
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tations are given that are also applicable when the II. TRANSITION PROJ3ABILITY AND INTEGRAL 
values of some arguments are close or identical (see EQUATION FOR NUCLIDE CONCENTRATIONSa 
Appendix B). The depletion functions were applied to 
analyze the criteria conventionally used in identifying The original set [Eq. (l)] has the following matrix 
the important chains and in eliminating short-lived form: 
nuclei, as well as to obtain simple formulas for prelim- 
inary estimates of the nuclide concentrations and the 
sensitivity of the results to the values of the constants. (5) 
In these studies, si and Xi were assumed to be con- 
stant and the feedback absent. where x is the concentration vector and a is the reac- 

Making allowance for variable reaction constants tion rate matrix. We introduce transition probability 
and for the feedback effect, Eq. (1) can be written as matrix P(t) in which the element PO(~) is the concen- 

tration of the i’th nuclide at time f on condition that 
dx. 
_1 = Sj-IX;-1 - XiXi +fi(tyXi,. *. 9 Xn) . 
dt (4) 

initially only the j ‘th nuclide with a unity concentra- 
tion was present, i.e., 

Pij(O = w)lXk(0)=Gkj * (6) Depending on the explicit form of the functions fi in 
Eq. (4), account is taken of the variation of the reaction 
rates with time [if fi has the form fi = Xi-1 pi-1 (t) - 
xipi( t)] , the feedback effect (if for some i, fi depends 
linearly on Xi+, , . . . , x,), and the nonlinear effects 
(e.g., the blocking of the resonance absorption of 
neutrons). Note that with nonlinear effects, different 
linear chains are not generally independent. If the re- 
action constants are known time functions, the solu- 
tion of Eq. (4) can be presented as a multiple integral, 
explicitly calculated in simplest cases only. To take 
into account the feedback, one must known eigen- 
values of the nontriangular transition matrix, which 
have to be computed numerically. Thus in the general 
case, Eq. (4) cannot be solved analytically. 

This study is aimed at developing a new approach 
to burnup equations that makes it possible to take into 
account the dependence of the reaction constants on 
time and nuclide concentrations, as well as the feed- 
back effects.’ It is based on application of transition 
probabilities for the unperturbed problem, i.e., the 
problem with constant reaction rates and no feedback. 

Introduced in Sec. II is the transition probability 
that has the sense of the propagator for the unper- 
turbed problem. With its help, Eq. (l), with given ini- 
tial conditions, is reduced to an equivalent system of 
integral equations that is solved by iterations. A dia- 
gram method is presented in Sec. III similar to the 
Feynman diagram technique and permitting an analyt- 
ical expression for each term of a perturbation theory 
series when the functions fi ( t,xl, . . . , x,) are poly- 
noms of the concentrations x1,. . . , x,. The subject of 
Sec. IV is the linear problems, namely, the case of the 
reaction constants being only time dependent and the 
feedback case. First-order corrections to the burnup 
equation solutions for the sudden perturbation and 
linear time dependence of the reaction constants are 
given in Sec. V. Appendix A gives proof that any nu- 
elide transmutation network described by the linear 

: burnup equations can be decomposed into a set of 
independent chains. Appendix B gives basic relation- 
ships for depletion functions. 

Thus, Pii (t) satisfies the equation 

dPi,U) 
dt 

= AikP/cj( t) m 

In systems of linear differential equations, matrix P(t) 
is called the matricant of Eq. (5) (Refs. 10 and 11). 
Equation (7) yields the relationship 

Pik(t - tl)‘Pkj(tl) = Pij(t) , 0 S tl I t . (8) 

In the case of a successive chain, matrix A is two- 
diagonal (AN = -XI,AN-, = sc-r ,I = 1,. . . , n), and 
the explicit expression for Pij (t) can be obtained with 
the help of probabilistic considerations. Indeed, the 
transition probability is yielded by 

PG(t) =S,‘dti-‘So”-‘dti-l... r’dtj. 

Here, t, is the instant of transition of the I’th nuclide 
into the (I + 1)‘th one. The factor 

is the probability of this transition occurring over the 
interval from tl to t, + dt,, while the last exponent 
expresses the probability that the i’th nuclide does not 
pass to the next one over the interval from ti-1 to t. 
At constant values of hr and sl, we obtain 

“To facilitate the notation, it is assumed in Sets. II, 
III, and IV that the summation from 1 to n is taken with 
respect to twice repeated indices. 
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where x(‘)(f) is the solution for the “unperturbed” 
system [Eq. (5)] with the same initial conditions, ob- 
tained from Eq. (12). Indeed, by operating on both 
parts of Eq. (13) by d/dt - A and by using the rela- 
tionships in Eqs. (6) and (7), we can see that x(t) satis- 
fies Eq. (13). Furthermore, at t = 0 the second term in 
Eq. (14) disappears, and because x(‘)(O) = 2, the ini- 
tial conditions are also met. 

x exp[-Xi(f - 7j - . . . - ~~-i)] , (10) 

where6(x) =OifxzzO,B(x) =l ifx>O,andr,= 
tj - tl-1 is the “waiting time” in the I’th nuclide. With 
the presentation in Eq. (B.3) used for the depletion 
functions, Eq. (10) yields 

Regarding the second term in Eq. (14) as the per- 
turbation, we obtain the solution to the integral equa- 
tion by successive iterations constructed as follows: 

i-1 
PG(t) = J-J (S/t)Di-j+l(Ajit,- v * 3 Ait) e (11) 

I=j 

s 

I 

x(“)(t) =x(O)(t) + dt, p(t - t,) 
0 

The probabilistic interpretation makes it clear that 
when matrix A is not two diagonal the total probabil- 
ity Pij (t) is given by the sum of terms of the form of 
Eq. (11) over all the transition network paths from the 
j’th to the i’th nuclide. With no feedback, the total 
number of transition paths is finite, and the total 
transmutation network can be split into a set of a 
finite number of independent linear chains. ‘*-14 

x f[t&“-“(tJ . (15) 

The solution of Eq. (13) by the iterations of Eq. (15) 
is known”*‘5; however, this approach has never been 
applied to burnup equations in the perturbation the- 
ories. 

Thus, the solution of the set o,f burnup equations 
[Eq. (5)] with triangular matrix A is represented as 
a finite sum of solutions for the sets of the form in 
Eq. (1) with two-diagonal matrices made up from Aik 
elements. With the feedback present, the splitting is 
performed similarly, but the number of chains here is 
infinite (see Sec. IV), and the breakup algorithm must 
be strictly proved. This representation of the solution 
can be shown to be valid (see Appendix A) not only 
for burnup equations but also for an arbitrary system 
of linear homogeneous first-order differential equa- 
tions (for example, when the elements of matrix A are 
complex numbers, and the problem does not permit a 
probabilistic interpretation). 

It can be shown by conventional methods that at 
any finite interval [ 0, T] for a uniform convergence of. 
the iterations at n + 03 to the accurate solution x(t), 
it is sufficient that the partial derivatives of the func- 
tions fj by the concentrations Xj be bounded over the 
entire domain of the function 

Because Eq. (5) is linear, its solution at arbitrary 
initial conditions x(O) = f has the form 

x(t) = k(l)2 . (12) 

With allowance made for the dependence of the 
reaction constants on nuclide concentrations and time, 
Eq. (5) takes the form 

amt,x,, . . .,x,) < n 
axj - * 

(16) 

The condition is satisfied in cases of practical impor- 
tance. Note, however, that the rate of iteration conver- 
gence to the exact value of x(t) generally depends on 
t; the number of iterations required to obtain the pre- 
set accuracy level may increase with larger values of t. 

It can be shown’ that the adjoint functions used 
in the perturbation theory for burnup equations3 are 
proportional to Pij (1 - tl ), while the concentration 
variation x(r)(t) - x(‘)(t) coincides with the result of 
the first iteration [Eq. (15)]. 

III. DIAGRAM TECHNIQUES 

dx - = ax +f(t,x) , x(0) = 1 ) 
dt 

When the additional terms fi (t,x, , . . . , x,,) are 

(13) 
polynomial functions of the concentrations xl, . . . , x,, 
the iteration solution in Eq. (15) permits a transparent 

where f (t,x) is the general form of the additional term 
interpretation. For instance, take 

describing the above-mentioned effects. The transition fj(fJb.. 1, Xn) = Ujkf(t)XkXf * (17) 
probability has the sense of the propagator; therefore, 
the set of differential equations [Eq. (13)], together 

By substituting this expression into the formulas for 

with the initial conditions, can be reduced to an equiv- 
the first two iterations and taking into account the 

alent set of integral equations. In our case, the system 
relationship of Eq. (12), we obtain 

has the form 
t 

x!‘)(t) = P..(t)z. + I U J 
s 

dtl Pu(t - t,) 
0 s t x(t) =x(O)(t) + dt, bt - f~).f[t~,x(t~)l , (14) 

0 
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and 

s t X!2’(t) = P..(t)X. + I II J dtlPij(t - tl)Ujk/(fl) 
0 

s 

11 
dt2 Pkk, (f~ - f2) 

0 

x L/k,kzk,(f2)Pkzk,(t2)~k~Pk,k,(r2)~k,, 1 

When the brackets are opened, it can be easily seen 
that the expressions for x(l) and x(‘) are the sums 
of the products of transition probabilities Pij, coeffi- 
cients Ujk[ 3 and initial concentrations xi integrated 
over intermediate time moments within the indicated 
limits. This makes it possible to present each term of 
the analytical solution with the help of diagrams sim- 
ilar to the Feynman diagrams that are widely used in 
the quantum field theory. Let us formulate the dia- 
gram-building rules for a nonlinearity of the Eq. (17) 
type. 

1. Each transition probability Pii ( t2 - tl ) is shown 
as a straight line segment running from right to left 
from “point” (j, tr ) to point (i, t2) ( tl # t2). 

2. The end of the line that comes to the extreme 
right edge of the diagram (which refers to the instant 
t = 0) corresponds to an additional factor %j, j being 
the index of this end. 

3. The coefficient Ujk, is depicted as a vertex to 
which two lines come from the right with the end in- 
dexes k and 1 and from which a single line departs to 
the left with the zero index j. The upper incoming line 
corresponds to the second index (k) and the lower 
one, to the third index (I). 

4. The analytical expression corresponding to a 
given diagram is used to take the summation with re- 
spect to all the recurring indexes and the integration 
over each intermediate moment tk from zero to t&r. 
Here, tk-, is the moment corresponding to the vertex 
to which comes the line outgoing to the left from the 
vertex tk. The integration is taken from zero to t over 
the instant cr of the extreme left vertex. 

Note that Eq. (14) plays the same role as the Dyson 
equation in the quantum field theory with respect to 
the above diagram technique. 

Let us illustrate these rules. The first iteration, 

Eq. (18), is contributed to by two iterations only, 
Eqs. (20a) and (20b). The second iteration, Eq. (19), 
is contributed to by three diagrams, Eqs. (21), (22), 
and (23). The respective analytical expressions have the 
following form: 

i 
t 

j 2. 
0 J 

pijcoq , GOa) 

s t 0 
dt&U - t,>Ujkpkp(tl)~~plg(fl)~~ 3 Gob) 

s t dt,PijU - tl)Ujkl(fl)PNl(fl)~/, 
0 

X 
s 

t1 

dt&k, (tl - t2) uk, kzk3’ (t2) 
0 

s 

t 

dt, Pij (t - tI)vjkr(tl)Pkk,(tl)nk, 
0 

s 

t1 
X dWulUl - t2)G,&f2) 

0 

x P121,(f2)~i~P~~l,(t2)~I~ 9 (22) 
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and 

c t dtl Pij<t - tl)u’,t,(tl) 
JO 

x Pk2k4(t2)~~~.Pk3kg(f2)~~~ 

s 

II 
X dt, PN, t tl - t3 1 WI, l2 I, t t3 ) 

0 

x Pl*l,c~3>~l~Pl,l,t~3)~l~ - (23) 
For any iteration, the diagrams are tree shaped, 

with two lines coming from the right to each vertex 
and one line going out to the left in conformity with 
the quadratic form of the nonlinearity [Eq. (17)]. The 
zero approximation x(t) = .X(O) ( t) yields the simplest 
diagram, namely, a line running to the right edge that 
corresponds to the moment t = 0. The pattern of each 
branch is identical to that of the tree; i.e., it either 
reaches the right edge or splits into two more lines. 

Each diagram of the m’th order, i.e., one with m 
vertexes, represents m perturbations affecting the for- 
mation of the i’th nuclide at fixed moments t, , . . . , tm. 
Their total contribution to the concentration Xi(t) is 
given by the respective analytical expression. For ex- 
ample, the first-order diagram, Eq. (20), shows that at 
time t when xk(tl) = Pkp(fl)Zp, xl(fl) = Plq(t,)Z~, 
the derivative Xj changed by the value of the addl- 
tional term fj ( t ,  xl, .  .  .  ,  x,) in the right part of the 
j ‘th equation of Eq. (4). During the time from t, to 
tl + dtl , this will change xj by AXj (?I) = dtl AXj (tl ), 
making xi(t) change by 

AXi = Pij(t - tl)*AXj(t,) 

=Pij(l - tl)Ujk/(tl)Pkptfl) 

x ~p,%th>~qdh , 
and the integral will sum the contributions from all 
such events over the range 0 s tl I t. 

Comparing the diagrams to the analytical expres- 
sions obtained from the above formulas, it can be seen 
that the diagram series provides solution of the system 

[Eq. (14)] with nonlinearity [Eq. (17)]. Indeed, after 
summing all the diagrams, we obtain 

s 

I 
Xi(t) = Pij(t)Zj + dti Pij(f - fl) 

0 

x ~jk/(~l)Xk(~l)X/(~l) 3 (24) 

because any diagram other than the simplest one has 
the shape of a line splitting at point t, . These branch 
lines, in their turn, give rise to two diagram series that 
provide accurate solutions for xk (t, ) and xl ( tl ) . 

Diagrams are similarly constructed for perturba- 
tions of the kind 

htt,x*9*.*,xn) =Uijl...jktf)Xjl...Xjk (25) 

with only the third rule modified: Each vertex is ap- 
proached from the right side by k lines, the uppermost 
one corresponding to the index j, , the next one to j2, 
and the lowermost one to j,. If the perturbation is a 
added; thus the iteration and the diagram series are 
powers kl, I = 1,. . . , m, the result is contributed to 
by all the diagrams in which the left-right direction line 
can branch into any number k,, . . . , k, of lines. 

Now compare the two methods of solving the set 
of integral equations [Eq. (14)], namely, the iterations 
according to Eq. (15) and the diagram techniques. Any 
diagram of the n’th iteration is a line going to the left 
from the vertex to which the diagrams of the (n - 1 )‘th 
iteration come from the right; thus, the n’th iteration 
is contributed to by all the diagrams that have no more 
than n vertexes on any path from the left to the right 
edge. Included here are all the diagrams up to the n’th 
order as well as many higher order diagrams. Note 
that to obtain, at the n’th iteration, a solution whose 
perturbation accuracy would be up to the n’th order, 
it is sufficient to take account, at each preceding iter- 
ation, of only those terms whose order m does not 
exceed the number of the respective iteration i. This 
follows from the fact that the diagram of the order 
m > i gives rise, after the (i + 1)‘th iteration, to the 
diagram of the order m’ > i + 1. 

Thus, each iteration, starting with the second one, 
corresponds to the summation of a certain class of dia- 
grams. This obviously adds merits to the iteration 
approach by making it unnecessary to sort out several 
diagrams. In addition, when the condition [Eq. (16)] 
is met, the iteration algorithm is applicable to arbitrary 
perturbations, while the diagram techniques are only 
valid with respect to those that can be presented as a 
sum of terms of the form of Eq. (25). On the other 
hand, it can often be necessary just to find a first- 
order correction, or to allow for the feedback effect, 
and to take into account the reaction rate dependence 
on time (linear cases). Here both methods are equiv- 
alent, while the more comprehensible diagrams prove 
useful both for writing down respective analytical ex- 
pressions and for interpreting them. 
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n’th iteration there is only one n’th-order diagram 
added; thus the iteration and the diagram series are 

x PI1 (f - flbl.4°)(f,) (32) 
identical. The first three diagrams are shown in Eqs. and 
(27), (28), and (29). The respective analytical expres- 
sions have the following form: t xi’)(t) = x;O’(t) + dt, s+(t,) 

i j 2. 
s 0 

t 0 J x [-p2ltt - 4b,d”)tt,) 

pij<t)fj 9 (27) 
+ p22tt - t,bld”)ul) 

- p22tt - tdf12Xi”)ul)l - (33) 
i II v ml j 
t t1 0 Zj By substituting the transition probability equations 

[Eq. (11)l 

s 

t 

0 
dtlPi/,tt- tl)uf,,,(ti)P*,;(t,)~j , (28) 

Pii = eXp( -EiGt) , i = 1,2 

&2(f) = Cl 
exp(-Cr9t) - exp(-C2+t) 

9 (34) 
i 11 . . ml i2 ,, m2 

c2 - Cl 

CI 
t 

j i. 

11 t2 0 J 
one obtains the result of Ref. 16. 

IV. B. Feedback Case 

s 

t 

dt,Pi/,(t- tl)U/,m,(tl) 
0 

11 
X 

s 
dtz&,&~ - tz) 

0 

X ~f2m2(t2)P*~jtt2)~j * (29) 
If only a slow time variation of the reaction rates 

following a given law [ Xi -+ Xi + /Ji( t), Si + Si + Yi( t)] 
has to be accounted for, then for the perturbation 
U,(t) we have 

If the chain allows transitions of a daughter nu- 
elide to the parent state, Bateman’s solution [Eq. (2)] 
is inapplicable because the matrix of Eq. (4) becomes 
nontriangular. For instance, the radiative neutron cap- 
ture and the (n,2n) reaction always give rise to a feed- 
back loop. In fissile reactors where the fraction of 
sufficiently fast neutrons is low, the effects of this 
loop, as well as of the alpha-decay feedback, are usu- 
ally small. For this reason, the calculations that use the 
analytical solution of the burnup equations either 
neglect these effects4*‘2,14 or make allowance for one 
or two feedback cycles and keep the chain linear by 
adding fictitious isotopes”,‘* to it. 
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IV. LINEAR CASE and Ci is the effective capture cross section (Ci = ui + 
yri where y is the spectrum hardness and li the reso- 

W.A. Time Dependence of Reaction Rates nance integral). The fluxes of resonance and thermal 

If the additional terms of Eq. (17) are linear with neutrons are assumed to be constant and variable, 

respect to nuclide concentrations, the diagram tech- respectively: +(t) = + + B(t), i.e., vi(t) = q&B(t), 

nique is considerably simplified. Take, for instance, pj = ui69( t) (i = 1,2). Taking into account the dia- 
grams shown with Eqs. (27) and (28), we obtain 

fi(fl,X,,. f. ,xn) = Uik(f)Xk . (26) 

Here, there is only one line coming to each vertex x$“(t) =x{“(t) - 
from the right and going from it to the left. At the s 

‘dt,&+(t,) 
0 

Uik(t) = vi-1 (f)Ai-1,k - Pi(f)6i,k * (30) 

As an example, let us consider the transmutation 
of 237Np into 238P~ analyzed in detail in Ref. 16. Ne- 
glecting for simplicity the effect of the short-lived 
23*Np, we can write the set of equations in the form 

RI = -x,9x1 - c7*6+x* ) Xl(O) = 2, 

and 

The perturbation [Eq. (26)] describes the feedback 
effect on the i’th nuclide by the k’th nuclide (i < k) 
if U,(t) = v(t) > 0. Here, the I’th-order diagram de- 
picts I consecutive cycles along the feedback loop that 
start at the instants tl, . . . , tl when the k’th nuclide is 
transformed into the i’th one. Each iteration that fol- 
lows takes into account still another cycle: 

22 = Cl @Xl + CT1 imx, t 
- &*x2 - Q&+X2 , x2(0) = 0 . (31) xy+y t) = xiO’( t) + dt, Pni(t - t,)v(t )x(‘l)(t ) lk 1. 

Subscripts 1 and 2 refer to 237Np and 238Pu, respec- 
s 0 

tively; ai is the thermal neutron capture cross section, (35) 
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If only the first nuclide was present at the initial in- and 
stant, then at constant reaction rates (Y = const), using 
Eq. (2), x,(t) (n 1 i) can be presented as a series: 

n k,k 1 

x,(t) = x;O’(t) 1 + 2 (VI) ks (s,t) 
t [ I 

1 t t1 0 -% 

I=1 m=i 

X 
~n+z(k--i+l)(~lf,...,~nf,~~if~I...~~k~l,) 

&(xlt, *. . , &IO 1. 
R 

= s 

t 

= pk dtlPn,k(f - h)Xi”‘(f,) . (38b) 

(36) k=l 0 

Here, 1 At 1, denotes a sequence of I coinciding argu- Hence, 
ments, and the I’th term of the sum corresponds to the 
allowance for 1 cycles along the feedback loop yield- 

axiO) ( t) x;o)( t) -=- (3% 

ing a linear chain of n + 1 (k - i + 1) nuclides. As ask Sk 

demonstrated in Appendix A, the sum over all such and 
chains or “trajectories” gives the exact solution. To axiO) ( t ) n-1 
compute depletion functions with several identical ar- ____ = -t n (sjt)&+1(hlt,. . .,Ant,&t) , 
guments, one can use Eqs. (B.l), (B.4), and (B.5). A axk i=l 

matrix expansion, similar to Eq. (36), was obtained in (40) 
Ref. 19; however, the recurrent relationships used 
therein for matrix diagonalization are inapplicable 

which can be easily checked to be identical to the re- 

when the burnup rates of some nuclides are identical. 
sults obtained from the recurrence relationships for the 

To estimate the terms of Eq. (36), one can use 
depletion functions.* 

either the inequalities [Eq. (B.7)] or the method pro- V. B. Linear Dependence 
posed in Ref. 20; in many cases it suffices to take into 
account a single feedback cycle. For simplicity, let us 

Over small time intervals, slowly varying reaction 

assume that s, = X, = X, = X, m = 1,. . . , n - 1. 
constants can be approximated by a linear dependence. 

Then, Eq. (B.lO) is reduced to Eq. (B.4) and, taking 
The perturbation-describing terms in Eq. (30) are writ- 

into account only the term with I = 1 in Eq. (36), we 
ten as 

obtain vk(t) = b,t 
( ht)k-‘+l and 

xi’)(t) = x!jO)(t) - 
. (n + k - i) 3 

* (37) pk(f) = akt . (41) 
The analytical expressions of Eqs. (28) and (29) are 
convolution-type integrals, which makes it easy to use 
the Laplace transform. The result for the transition 
probability Pij (t) is 

Hence, it becomes obvious that if Y GZ 1, the feedback 
loop, which acts as the delay line, is important only at 
a long irradiation time At > n when the concentration 
of the desired nuclide starts decreasing after passing 
the peak. 

V. PARTICULAR CASES OF REACTION RATE 
TIME DEPENDENCE 

&j(q) = 
s 
omexp(-qt)Pu(t)dt 

Sja.*Si-1 

V.A. Sudden Perturbation 
Analysis of this case makes it possible to find coef- 

ficients of the nuclide concentration sensitivity to the 
accepted values of the constants. Assuming, Eq. (30), 
vk(t) = vkd(t) and pk(t) = pkO(t), we obtain in the 
first order xi’)(t) = x;‘)(t) + 6i + 6,; the diagrams 
for 6, and & are shown in Eqs. (38a) and (38b) and 
the respective expressions have the following form: 

nk+l k 
M” 

6, = 5 6,‘“’ 
k=l 

= (q + Xi). . . (q + Xi) * (42) 

By using the correspondence t-f(t) + - (a/aq)f( q) , 
the first iteration [for the initial conditions xi (0) = 
6ilZi,i= l,...,n] yields 

n-1 

x!?(q) = do’(q) - 2’1 c b/&k+l(q) $ &,, (4) 
k=l 

+ % 5 ak&k(d $ ~k,dq) , (43) 
k=l 

where x,(q) is the Laplace transform of the function 
x,(t). Taking into account Eq. (42) and the identity 

a 1 

z (q+hl)-.*(6?+~k) t 
dtlPn,k+l(t - h)-d”‘(fd (3W =1$ ik’ (q+hl) ’ (q+&) ’ (44) I . . . 
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n-1 k axLO’ x$“,“(cl) =X,$“(q) - x bk c 
k=I i=l ah; 

* (45) 

By taking the inverse Laplace transform and using 
Eq. (40), we obtain 

[ 

n-l 

X;“,“(t) =X$“(t) 1 + c (bkt) 
k=l 

k Dn+ltXIt,...,Xnt,Xit) 
xc 

i=l Dn(h,t,...,X,t) 

n 

- c (akt)(xkt) 
k=l 

k Dn+2tXIfv.. .y hnt,hit,hkt) 
xc 

i=l I Dn+I(Xft,...,Xnt,hit) . 

(46) 

For instance, for a chain with equal burnup rates ( h, = h, 
ai=p,i=l,..., n;bi=Y,i=l,..., n-l),with 
Eq. (B.4) taken into account, we get 

x$‘(t) =x:o’(t, 1 + 
[ 

n-l 2 (“f) - (iif)2(Xf) . 
I 

(47) 

If n = 11, X = p = 0.01, the relative error associated 
with the approximation of constant reaction rates is 
12.5% at t = 5 and -5% at t = 12. 

VI. SUMMARY 

The following conclusions can be drawn: 

1. A new approach to nuclide burnup equations is 
developed that makes it possible to take into account 
the dependence of the reaction constants on time as 
well as of the nonlinear and feedback effects. Rules 
are suggested for constructing diagrams that make it 
possible in most cases to write easily interpreted ana- 
lytical solutions. It is strictly proved that any nuclide 
transmutation network described by linear burnup 
equations can be decomposed into independent succes- 
sive chains. 

2. The examples considered demonstrate applica- 
bility of our approach for developing approximate 
analytic solutions. Although the clear trend in practical 
nuclear reactor computations has been in the opposite 
direction, such formulas remain valid for simple cases, 
estimates, and teaching. 

DECOMPOSITION OF THE NUCLIDE NETWORK 
INTO INDEPENDENT CHAINS 

It is generally considered self-evident that any nu- 
elide network described by linear burnup equations 
can be decomposed into a number of independent suc- 
cessive chains. However, this statement has never been 
strictly proved. To give such proof, it is demonstrated 
here that the solution to a set of first-order linear dif- 
ferential equations with an arbitrary (e.g., complex) 
matrix can be represented as the sum of known solu- 
tions to sets of particular form with two-diagonal ma- 
trices. 

Consider the problem 

dx 
- = Ax(t) , x(0) = f , 
dt 

where a is any n’th order square matrix assumed for 
simplicity to be so far independent of t. Thus, 

x(t) = exp(At)Z = lim (i + adt)*i , (A.3 
m-m 

where dt = t/m, and i is the unity matrix. Let us write 
Eq. (A.2) for each component of the vector x: 

xi(t) = lim 2 m-52 (hii + Aii, dt) 
rl....,i,-l,j=l 

. . . (6t,,,-,j + Ai,-,j dt)2j * (A.31 
The regrouping of terms in this equation yields 

C (1 +Aiidt) 
ko,k,,. ., k/=1 mo,. , m/r I 

kp*kpwt $7’. , I moi +m,zan 
I 

X m - i mpA,dt* (1 i- Ak,k,dt)m’-l 
p=o 

x Ak,k,-, dt(l + Ak,-,k,-, dW’-‘-’ 

. . . A,,,dt(l + A~o~odt)mo-‘&o 
I 

. (A.41 

Written explicitly in Eq. (A.4) are the values of the 
Kronecker deltas 6, that appear in Eq. (A.3), and the 
resulting terms are grouped according to the number 
of the nondiagonal elements of matrix A. Two external 
sums in Eq. (A.4) sort out all the ordered sequences of 
the indices, i.e., the “trajectories” kokl , . . k[i, where 
k. and i are its initial and final points, while kl, . . . , kl 
are the consecutive intermediate points. The separate 
term corresponds to a single-point trajectory and with 
m -+ ~0 it tends to Zi exp(Aiit). 

The internal sum in Eq. (A.4), with m -+ 00, tends 
to the solution of the (1 + 2)‘th order set similar to 
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ing the “two-diagonal” problems of Eqs. (A.5) and 
(A.8). Note that unlike the splitting methods express- 
ing the solution of Eq. (A.l) through eigenvalues of 
matrix A (Ref. 13), here PC(t) comprises only ele- 
ments of this matrix. Such a representation of the ma- 
tricant of a set of the ordinary differential equations 
has not, to our knowledge, been considered earlier. Bpp--l = -‘hp,kp-, 3 P = 1,. . . , l,Bi,~,, = Aik! (A.9 

and the initial condition Y,(O) = Yp = 6,&&,. In- 
deed, taking into account the relationship 

APPENDIX B 
(1 + A/+,dt)m’-l + eXP bbc,k,t4 - 1) dtl 64.6) m+cQ 

BASIC FORMULAS FOR 
and denoting tp = (“?p - 1) dt, one can see that with DEPLETION FUNCTIONS 
m -+ co the internal sum in Eq. (A.4) is transformed 
into the expression Given in this Appendix are basic relationships for 

yi=Yo . . . e(t-to-. 
s s 

the depletion functions [Eq. (3)]. The proofs, addi- 
. . - t/1 tional formulas, and the FORTRAN-IV subroutine 

to.. .I,20 DEPLET that permits computation of D, (xi, . . . , x,,) 
with n 5 15 for any real values of the arguments can 

V&t,)1 be found in Ref. 7. 
The recurrent relationships are 

x ew [B/+1,1+1 tt - to - . . . - h)l , (A.7) D1 (Xi) = eXp( -Xi) 

which is similar to Eq. (10) and yields the solution to 
the problem 

&(X1,. . .9&l) 

dY 
L),-i(XI,...,Xi-lrXi+l,...,X,) 

= 

p = &-I Y,-At) + BP&W 3 
dt 

Xi - Xj 

y,(o) = apOiko * (A.81 
al-1(X1,. ..,xj-1,xj+1,. ..,%) - . (B.1) 

I 
x pgo [B,+1,,~dt,-~ 

Taking into account Eqs. (1) and (2), one can write 
Xi - Xj 

Eq. (A.4) in the form Hence, the expression for the partial derivative is 

x;(t) =i?i*exp(A,it) + 2 5 Xn) = -Dn+l (XI,. * * 9 Xn,Xi) * (B-2) 
/=O ko,kl ,..., k/=1 

kpfkp-, , klfi 

I-1 The integral representation is 
X zko pgo (Akp+,,kpt) (Aik,t) 

[ 1 
x ~/+2b4kokot~ - . . -Ak,k!t, -Aiit) m (A.9) = . . . dt,... dt,6(1 - t, - . . .t,) 

If matrix A is time dependent, similar transforma- s s 
tions lead to an expression of the type in Eq. (9), 

I,, ) I,,0 

which is also the solution to the problem in Eq. (A.8). x exp[ -(fixi + . . . + t,x,)] , (B-3) 
When matrix A is triangular, the indices ko, . . . , k, in 
Eq. (A.4) are increase ordered, i.e., ko < kl . . . < kl, 

which makes it clear that the depletion functions are 

the order of matrix B does not exceed n, and the num- 
symmetrical with respect to all their arguments. Unlike 

ber of considered trajectories is finite. When matrix A 
Eq. (3), the representation of Eq. (B.3) is also appli- 

is nontriangular, the series in I becomes infinite, but 
cable when the values of some arguments are identi- 

it can be easily verified that it converges absolutely for 
cal. The following relationships follow from Eqs. (B.l) 

any finite value of t. 
and (B.3): 

Equation (A.9) can be written as em ( --xl ) 

Xi(t) = Pij(t)Xj 9 (A. 10) 
Dn(ix~l.) = (n _ ll! 03.4) 

where Pij( t) is the matricant, or the propagator of and 
Eq. (A.l) (Refs. 12 and 13), and Xj are the initial con- n-l 
ditions. Equation (A.9) provides representation of 
Po( t) as a sum of contributions by the trajectories 
j,kj,..., k,, i, each contribution being found by solv- 
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Eq. (A. 1) but having a two-diagonal matrix B consist- 
ing of matrix A elements: 

Bpp = Akpkp 9 P = 0, * * * 3 ~,BI+I,~+I = Aii 

and 

Dn(&.. ,xl’,x2) = exp(-x*)T*(n - 1,x1 - x2) . : 

(B-5) 
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Here, y * (m,x) is the modified incompiete gamma 
function r*(m,x) =xemy(m,x)/(m - l)! (Ref. 21) 
(see also Refs. 7 and 8). 

If all the arguments x1,. . . , x, have closely spaced 
values, the depletion function can be expanded into 
a fast-converging power series of Xi - x0 where xc = 
(Xl + . . . +x,)/n 

&(x1,. *. ,x,) 

em ( --x0> 
= (n-l)! [ l+ 

s2 
2n(n + 1) 

$3 2sq + s2 - 
3n(n + I)(n + 2) + 8n.. . (n + 3) 

6sg + 5s2s3 - 
30n. . . (n+4) + --. ’ 1 03.6) 

where sk = (x1 - xojk + . . . + (x, - ~0)~. 
For any real values of the arguments, the follow- 

ing inequalities hold true: 

exp ( -x0) 
(n - l)! rDn(x19...y 

x,) 5 + 5 exp(-xi) . n* ,=, 

03.7) 
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