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Abstract 

Resltlts of a comparative Malysis of actual vs. estintattd mnaa'nty in several 
dma sets dcrivdftm mural a d  m'd sciences are pre~twd h sets include: 
i )  time #re& in the sequential masuremetus of the same physical q u m i v ;  
ii) e n v i r o ~ a l  mearurems of ~rMium in soil; iii) mional popularion pro- 
jectiom; iv )  projccti~~tls for the United States' encrgy sector. Probobilitics of 
large &irotbtw3fom r i z  t l ~ ~  v a h s  ate garametW by M apme~tid distribu- 
tion with the slope &&nnincd by the dma. One can kdgc againn wpctrcd 
uncertainties by i@ui~g repned 1wtcertahty range by a &fcuolt j4fctyfoctor 
~ m i n e d f r o r n  the rchm Nsro&ddolcr sets. N empirical approach can be 
UKd in the uncertainty analysis of the low probabilityfigk wttseqwwe events, 
such as risk of global wam'ng. 

Science policy often hinges on ~ h & h  assessment of the ~lllcceMty in predictions derived from 
various models. Ar~dysis of events with low probability but high consequences (such as probabil- 
ity of extxeme global warming) is m e N  fot W i o n  making. However it is well known that there 
is a strong tendency for researchers to underestimate uncertainties in results, thus d t x m d g  their 
reliability md increasing the probability of "swprises".lb The history of natural and social sci- 
ences contains a wealth of data about reliability of models and estimates of parmetric unlmaiarty. 

methods of building confidence intervals around point estimates an used in the weather, 
population, and economic f~ncasting.~-ll They rely on the assumption that the distaibution of 
errors in htwe forecasts is the m e  as the distribution of these errors in the past forecasa. In 
many other fields, however (such as physical measurements and environmental risk as:~ssment), 



uppzr confidence limits for health risks are often calculated theoretically without er~~pirical valida- 
tion. In this paper, I present the results of a systematic analysis of actual errors in the datasets 
derived from nuclear physics, environmertal measurements, energy and population projec- 
tions.12-w The goal is to show how historic data on past overconfidence can be used to develop 
the empirical safety factors that can k applied to uncertainty estimates in ctlinnt models. 

Error in a physical measurement is an additive function of three types of errors: rnndoln errors. 
systematic errors, and blunders. Random errors come from stz~tistical fluctuations of tEc me:: vd- 
ues obtained with a finial: number of trials. Systematic errors are errors that have the same sign in 
different trials, for example, errors caused by unknown thermal expansion of a measuring 1.0.'. 

Blunders are gross errors usilaily caused by trivial mistakes (such as errors in entering tie data). 
Routine scientific data sets contain 5- 10% of blunders.3 

If the total uncertainty is dominated by random errrjis, then by the Cenval Limit Theorem (CLT) 
the distribution of the aridmetic mean of rnany observations around the me value is asymptoticdily 
normal. Uncertainty is usudFj leportcd as an average of many trial rneasmlnents (corrected for d 
recognized systeruauc effects), A, and an associated standard deviation, A. If the actual vaiue of 
this quantity is  a the2 the normalized deviation x = (a - A)lA follows the stmdard normal distribu- 
tion. In !!!at distribution, the range A A f ,964 has a 95 percent probability of i~tcluding a. 

The presence of systematic errors violam the assumptions n- for use of the CL'I'. If most 
of the uncert.ainty comes fmm systematic errors, the usual jirsafication for normal distribution does 
not apply. Despite this fact, the normal distribution remains implicit when resachers report ma- 
s d  values arrd the companding ancertaincies. 

In Sections 2 and 3, I present the distribution of the actual errors in several datasets derived from 
physical and environmental measurements. In Sections 4,5, and 6, I present the methodoloey and 
the results of the analysis of the distribution of errors in population and energy pr~jxrions. II! all 
cases the observed distributions 61' emrs have long tails that can be approrknately described by the 
exponential distribution. 

In Section 7, I show how urn&fes~ati,on of uncertainty cen be quantified by the ratio of the total 
uncertainty to the reported standard deviation, A. Assuming that this ratio is a normally distributed 
random variable with the standard deviation u, I derive a compound distribution which is normal 
for u = 0 and is exponential for u 2 1. Itl Section 8, I show how one can use the exponential dis- 
tribution to hedge against unsuspected wrcertainties in estimating the risk of global wanning. 

2. TRENDS IN PHYSICAL MEASUREMENTS 

The first attempts to quantify overcofi&..r.~ in physical measuremenu come from the work of 
B u k h v o s m ~ ~ ~  and Henrion and Fihoff.4 They compared elementary particle pisperks and fun- 
damental constants ic w l y  compilations -4th much more accurate values take2 fmm a more recent 



compilation. A convenie~lt m a s u r e  cf the deviation of "new" values from the "old" values is the 
normalized deviation n =: (a  - A)/& with Q the new value, A the old value, and A the old standard 
devistkn. 

Shlyakhter el al  12-'" extended ~hese original studies by following trends in data sets derived from 
nt~r!zz partic!e physics: masses and lifetimes of elementary particles, magnetic moments and 
Ilrztinnes of the excited nuclear states, and neutron scattering lengths (see Figure 1). All data sets 
were first converted into a standard fomart, Successive measurements of the same quantity com- 
prised a block of data; r data set typically consisted of several hundred such blocks. In order to 
limit the effects of "noise" in the d a ~  on final results, two selection criteria were applied: i) new 
s ~ i x i  uncertainty had to be much smaller than the old one: &&.&, 2 4; and ii) only cases where 
deviation from the true value did not exceed ten standard deviatis~ls were included in the analysis 
(in this way most blunders were excluded). Criterion (i) ensures that the new measured value, a, 
is close to the unkrmwn true value. Neglecting &, introduces a small bias into the calculated x 
values. However, since the errors are combined in quadrature, this bias is only about 3%. 
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Fig. 1. b b b i l i t y  sf onexpected msults in physh9 mcmuremenb. The plots s h ~ w  the cumuhtive 
pmbbility, S ( x )  = rp( t )dt  tbac new measurements ((1) will be st least irl smdard deviations ( A )  away from the 
old results (A); x = (i - A)ld as defmed in the text. 'Ibe cumulative pFobability distributions of M iae shown for the 
three dara m: particle data (elementary heavy solid he); magnetic moments of exciciwl nuclear s w s Z 2  
(dotted line); aeumn scattering (heavy dashed line). Also ploaed is cumulative normal distribution, 
erfc(xlrl&), (chi0 solid Line witb markm), and compound expmentid distribution with parameter u = 1 from Figure 
5 (thin solid he) .  



The results confirm the earlier findisfigs that a normal distribution grossly underestimates 
probability of large deviations from the expected values. A new finding is that the pattern of 
o v e r c a ~ d e n a  is similar In different h d s  of measaernens. 

3. TIWNDS IN ENVIRONMENTAL MEASUREMENTS 

Environmental measurements are rarely repeated with the same samples and it is hard to estimate 
how widespread ate the tuwcounted errors in routinely collected data. An oppohty  to address 
this issue is provided by the data on the excess uranium in the soil around the former Feed 
Materials Production Ccnter at Femald, Ohio, which had bsen a key uranium metals fabrication 
facility for U.S. defense projects mtil it was closed in 1989.z4 The data set was requalified at the 
request of the legal counsel to establish its credibility for litigation purposes. About 200 pairs of 
measurements of the radioactivity of three uranium isotopes (234U, a5U, and a8U) in the rme 
samples have been provided t me by K.A. Stcve~mn (U.S. Department of Energy Environmental 
Measurements Labomtory). 

Fig. 2. Distribution of errow 3c wwsuramcnt of excess inniurn in SOU. Prejentation is similar 
to Flgm 1. The c m W v e  probability dhtribudcm of Lrl are shown for (he three uranium isotopes (234~, heavy 
dotled W; Z ~ U ,  heavy dashed ~iae; aad 23% h v y  solid line). ~ l s o  PIOW are ~ 3 m p ~ n d  expentiai ~ t r i -  
butions fmm Figure 5: u = 0 (Gaussian, (bin solid Linc witb marluas) and u = 1 (thin solid Line). 



The distribution of deviations between the original and requalified measurements normalized by the 
reported standard enor of the old measurement is shown in Figure 2. The distribution is similar to 
the dietxibuPiuii of amrs in ohe mesmments in nuclear physics shown in Figure 1. This similar- 
ity indicates that the fraction of unsuspected uncertainties may be similar in a wide variety of rou- 
tine mwmments. 

4. UNCERTAINTY FUTUBE PROJECTIONS 

Uncertainty in fu tm projections is ddefmd less formally than uncertainty in physical measure- 
ments. In this section m dgt;brithm for analysis of uncertainty in historical projections is presented 
One can estimate the s~m&sl deviation A of an equivalent normal distribution and then draw the 
empirid p b a b i l i ~  distributions of the deviations of the old projections from the true values nor- 
malized by A. Experts may not ~iecg&y imply the normally distributed enor terms. However, 
the users of the results tend to base their decisions on the assumption that deviations exceeding 
scved uncerhhty mges are hprobatle. Coinparkon of errors in historical ddta sets with those 
predicted by the normal dis~xibaarion provib rp wful measm of the credibility of curent unmr- 
&€y atimates. 
Uncertainty in the projection. is uwi3y presented in the form of "seference," Mlowor't and "upper" 
esthn8t.s (R, L, and (I yt:s,ptive1y) that ore obWed by running a inodel with diftemnt sets of 
cxogcnous parameters (cg. the annual rate of growth). The range of scatter around the reference 
value R does not forai;lly define a &~ussilrn standard deviation because the fundamental uncertain- 
ties involved (e.g. tht: rate of fuim economic growth) arr! fqllently not stoclnastic. However, it 
is reimnabie to assurne that the mrigc of pmwneter variation presented! by a forecaster represents a 
subjective judgment about gte probability that the true value Z'E [L,U. Generally, lower and 
upper b a ~ &  pmnrt what is believed to be sr, "envelope" most likely tn bc8cht the true value and 
include the m~~jority of possible outcorns. 

Note that bounded distributions (such 8s the tdarigulm distribution) which are sometimes used to 
describe the probabilities of various xenarlos asign zero probability to the outliers. This incor- 
tectly implies that L and kl m real bounds rather than the estimates of plausible lange. Histohcal 
data presented below, however, suggests that deviations exceeding the expected uncertainty range 
are not uncommon. Therefore, using a normal (unbounded) distribution as a frame of reference 
~m&res~mtes  trite svemnfickncx. 

The standaid deviation of the equivalent normal distribution is calculated as follows: 

a) Spec@ the subjective probabilty a that the me value vfiJ1 lie between the low (L) and high 
( L o  estimates. I assme a = 6896; larger values of u increase the discrepancy between the 
G a u h  model and h t  czlculaced by this method. 

b) h.w m equivalent normal di~ibution that would have a spxif'id cur-ulative probaSilit-y 
fx bctwexm L and W. For a = 68% the stmchrd deviation of the quivalent nomaJ di:;eribu- 



tion is (U - L)/2 so that x = 2-(T - R)I(U - L). Therefore this choice of a cornsponds to 
the usual practice of splitting the un@e~~in ty  m g e  in half and using it as a smgate for the 
standard deviation. 

c) If the refe~nce value (R) is not in the middle of the (&,U) iintervd use two separate normal 
distributions tnmcated lit zero: "left half" for (La) interval and "right half' for (R,U) 
interval each having oln as the cumulative probability. 

5. POPULATION YROJEC918NS 

The history of population projections provides an opportunity to test the mliaility of uncertainty 
mhates in demographic models. Shlyakhter md Kammenl2-'4 andyad United Nations poptda- 
tion projections, made in 1972, for the year 1985 that can serve as the set of "exact" values, a. 

'Ihe population data base includes projections from 164 notions with population exmeding 100,000 
presented in the form of "high" and "medium" and "low" variants for each nation.26 Data for 31 
countries were excluded due to extreme errors resulting for example from unanticipated intema- 
tional migration; such cases can be considered as the use of a wrong model. Data for 133 nations 
satisfying the criteriA M < 10 were included in the analysis. 

Tke results are shown in Figure 3. Because all the ppulation estimates come from an authoritative 
soruce, namely the United Nations, it might be oxpxted that systematic crors would be small, 
representing a well-calibrated modd. The unsuspacted uncertainty, however is very large. Data 
for 37 indusaiaUwl countrim (when! data we generally more reliable) show little less surprise, but 
probability of large emrs is still grossly underudmatcd by the normal distribution. 

6, ENERGY PRO,JEglTl[OPJS 

Forecilsts of future energy consumption are a prerequisite for many major economic and policy 
dedsions such as how best to reduce cmhn dioxide ernisions to deviate global warning, or how 
best to stimulate the pace of development of alternate sources of energy. An analysis of credibility 
of uncertainty estimates was perfomed in Refs. 16 and 17 using the largest coherent set of US 
erErgy projections for the year 1990, the Annual Energy Outlook (AE0).27 

AEO projections .'or 1990 made in 1983, 1985, and 1987 consist of 182, 185, and 177 energy 
producing or conslming sectors of the U.S. economy respectively. The variation in the number of 
sacer~ss resulted because the low md high projections coincided in some cases, and no cornspond- 
ing uncertainty rmge could be derived. 



Fig. 3. Popubtton pmjectiom. Tbe plots depict cbc cumulative probrldiity. S ( x )  = rp(t)dl.  Ihat me 
valw (T) will be at leaat lxl slandanl &viadomi (A) away h m  the refet~=11~1: value of old projections (R) .  The 
popWicm data base is desdW la iba text. The d v e  pmbaM& dis(ributim8 of I*I am &own for the total 
dataset of 133 amtrim (heavy solid linc) aod for or asubaa of 37 Muatriallzed countries (heavy Whed line). Also 
&own i s  cbe ~ a r n a l  distrlbulton (W wUd li~llc with mrkm) nnrd (be eamp~uod d ~ b u ~  witb u 1 3 fm 

In 47, 50, a d  47 caws respectively, the values of 1*I (calculated as described in Section 3) 
exceeded 100; such cases were omitted as they were outside any reasonable range of parametric 
uncertainty of the AEO model. For dl remaining cases the x values were calculated and the fie- 
quency distributions analyzed. The distribution of signed x values is approximately symmetric 
with respect to zero. There is no large systematic bias (e.g. a gross underestimation of energy 
consumption in all or many sectors) and no sou~ng trends in the sca#~;rpms of x values; this indi- 
cates that the projections are generally independeat. 

figure 4 shows the cumulative probability distributions of M for the projections made for 1990 in 
1983. 1985, nlld 1987 together with the Gaussian and exponential distributions. The tilree empiri- 
ciJ distributions nsr, s~%&~gly similar. Although the absolute error in projections made in 1987 for 
1990 is somewhat smaller ban made in 1983 for 1990, the range of unc~rtahty is also smaller so 
cb%f probability of "large" deviations relative to the obsemd ~ ~ ~ c c r t a i n i y  is roughly the same as for 
i-: othrs two ~ C R T S .  OIle would expect that energy projec'iinns for a.ggregated mtcrs of economy 



would be more reliable than projections for individual sectors. However, this appears not to be the 
case 4, heavy dashed line). 

Pig. 4. Amml b e g  Chtlook projection#. 'Ibe pnsenlalion is as in Figure 3: 1983 to 1990 (heavy 
solid b); 198s to 1990 (beavy dssbed b); 1987 to 1990 (havy &tW Ltns), aggregefsd Seaas of a m c m y  (vcry 
heavy &shed line): nomd dlatrlbttoa (Ulin miid Mnc wtlb marlren); canpoMd d&i&ulba witb u = 3.4 (thin mlid 
line). 

7. EXPONENTIAL PARAMETMZATION OF OBSERVED DISTRIBWflIONS 

Bukhvostov2o and ShlyaUIter and Kammenl4 suggested simple heuristic arguments to describe 
how an exponential distribution of erron might arise. Let us assume that the estimate of the mean. 
A,  is u a b i ~ s d  but that the estimate of the true standard deviation, A' is randomly biased with a 
distribution f(r) where t = A'IA. Here A is the estimated standard deviation. In other words, I 
assume chat the &viatiofis nomalized by A', xO= (a - A)lA' follow the s t w b d  normal distribution 
while the deviations normalized by A, x = (a - A)lA, follow a normal distribution with a randomly 
chosen st~naclaxll deviation t: 

hr:, ig over all values of I gives a corupound clistxibution: 



If f(t) has a sharp peak near t = 1, Eq. (2) reduces to the normal distribution. If f(t) iu  broad, how- 
ever, the result is different. For simplicity, let us assume chat for large t, f(t) follows the Gaussian 
distribution with standard deviation u: f(t) oc exp[-t*/(2u)]. The main contribution to the integral in 
Eq.(2) comes from the vicinity of the saddle point where the exponential term xaches a maximum 
(for z = I,,: tz,, - ulrl). It is straightforward to show that, for large values of x, the probability 
distribution p(x) is not Gaussian but exponential: p(x) oc exp(-lrllu ). In order to 1 3 f l ~ t  the fat 
that experts are mostly overconfi&nt (Ae 2 A), I use a huncawl normal form of f(t): 

Integrating Eq. (2) with f(t) from Q. (3) gives the ccmuulative probability S(x) of deviations ex- 
ceeding Lxl: 

The normal (rr = 0) and exponential distributions (cr > 1) are members of a shglepmmetcr family 
of curves (Figure 5) .  For quick estimates for u 2 1, x 2 3. one can use the approximation 
e-hif(0*7u*0.j). In this framework the parametric uncertainty can be quantified by aaalyzing thc 
record of prior projections and estimating the value of r. Data presented iin Figures 1-4 sllow that 
u - l for physical and environmental measurements and u - 3 for population and energy 
pmjec ticns. 

Parameterization with the one-parameter family of con~pound exponential distributions described 
above is not the oilly one possible. Tryiqg to find the standard deviation that best fits the data 
while keeping the parametric form of the normal distribution produces a very poor fit. A good- 
ness-of-fit analysis of the data sets presented in Figure 1 (Sakharov, private communication, 
February 1994) gave a good two-parameter f i t  when the tlistributions of negative and positive 
deviations V J ~  mdyzed separately (with two different u values). Another good two-parameter fit 
was obmind with a sum of an inflated Gaussian distribution and a constant background term. 
Although increasing tile number of free parameters improves the quality of fit to the data, i t  also 
cornlplicetes cornpaxisons betwefin datasets. Safety factors for uncei t:jinty cstimaks should c1r:y~cnd 
only on the general form of the dis~ibution of errors, and for this p u p =  a simplc one-paramekr 
e.ri;ni *;Eial pi?r;alne&~iz~~t=ion is s:~ffibicient 



Flgum 5. Ow-parameter frxnlly of compound distributions. Parmeter u is Qfiaed in Eq. (3); it is a 
masure of mcatah~ty in che slandard & M m  A). The value8 of u rare iMlicated in the figure. The curves demon- 
strate tbc coatinurn of gn,baWty dlRtTlb~IIG118. IlOm C3msh.n (~4) to expmcntlBJ. (U > 1). 

There exists a broad s p t r u r n  of uncertainties extending from the negligible parametric uncertain- 
ties to a crucial uncertainty which of several models to choose. An analyst usually has a scale in 
mind for "important" uncertainties: smaller uncertainties are assumed to be negligible and are 
excluded from the detailed analysis. For example, in measurements of the excess uranium in soil, 
radioactive decay of U5U introduces a negligible error becaw the characteristic time scale far this 
decay is billion years. "Importmt" uncertainties (such as detector efficiency) are carefully evalu- 
ated and combined to produce the published estimate of the combined standard u n c e w l t y .  
However, errors of larger scales, particularly those arising from the use of a wmng model, are also 
possible. For example an important uncenainty that was overlooked in the old measurements of 
excess uranium was the uncertainty in the overall chemical yield of the procedure used to leach 
uranium from the soil.24 This heuristi,: model is an attempt t describe the human thought pro- 
cxsses that are mpnsible for the obxwd pattern of overconfidence. It can be also fomulated as 
a h c i a l  model with tlsc distribution of errors described by Levy stable distribution (a long-tail gcn- 
L liz~tiotl of tb2 normal distributi~n).~~ 



$. APPLICATION: RISK OF GLOBAL WARMING 

Cl~oosing appropriate safety factors as a hedge against unsuspected errors is particularly important 
in the uncertainty analysis of many situations in public policy. These describe events with low 
probability but high consequences that are deteranined by the he of the probability distributions. I 
illustrate possible applications using the c m n t  debate about possible rise in global temperature in 
mgome to the emissions of greenhouse gases. For applications of the inflated confidence inter- 
vals to population a d  energy projections, sea-level rise, estimates of health risks, and epidernio- 
logic studies see Refs. 14- 19. 

The causal sequence leading to sea-level rise is as follows: population + energy production -+ 
C02 emissions -+ greenhouse warming. One can pnsent the temperature rise as a product of four 
roughly independent facurs: 

The f i t  factor is the world population; the second factor is energy production per capita; the third 
factor is C02 emissions per unit energ2 production; the founh factor is temperam increase ATper 
unit rise in C02. For each factor there are uncertainies in its respective model. In particular, the 
last factor includes a key scientific uncertainty of climate lndels, the global-mean swfiace tempera- 
ture increase, AT,, that would follow from a doubling of C 4  concentrations. 

If the Earth was dry, the global-mean surface temperature would inciease by A& = 1.2'C and this 
estimate is quite reliable. However, numerous interactive feedbacks from water (most importantly, 
water vapor, snow-ice albedo, and clouds), introduce considerable uncertainties into AT, esti- 
mates. The value of AT, is roughly related to ATd by the formula ATs = ATd/(l - fi, where f 
denotes the sum of all feedbacks. The water vapor feedback is relatively simple: warmer ahno- 
sphere contains more water vapor which is itself a greenhouse gas. This results in a positive feed- 
back as an increase in one greenhouse gas, C4, induces an increase in another greenhouse gas, 
water vapor. On the other hand, cloud feedback is the difference between the warming caused by 
the reduced emission of infrared radiation rrom the Eanh into outer space and by the cooling 
through reduced absorption of solar radiation. The net effect is determined by cloud amount, alti- 
tude, and cbsad water content. As a result-, the values of AT, from different models vary from 
AT, = 1.9"C to ATs 5.2OC.28 

Note dlat two models with comparable ATs values can have different strength of the feedback 
mecha_nisms. For example two models (labelled GFDL and GISS) show an unequal temperature 
incrmse as clouds are included (from 1.7"C md 2.0°C to 20°C and 3.2'C rcspectively).28 The 
effcc~s of ice dbcdo are different betni,;ca rn-dels but oppositely, so that the results converge 
(4.0°C v~:-~-sus 4.2OC, respcxtively). Therefore, agavxrnent beewen models may be spuriorrs, andl 
both COUICI be. v~roi3g. 



The causal sequence leading to sea-level rise is as follows: population -+ energy production + 
C02 emissions -t p n h o u s e  warming. One can present the temperature rise as a product of four 
roughly independent factors: 

The f i s t  factor is the world population; the second factor is energy production per capita; the third 
factor is C02 emissions per unit e n e r c  production; the fourth factor is temperature inc- AT per 
unit rise in @02. For each factor there are u n m d e s  in its respective model. In particular, the 
last factor includes a key scientific u n ~ M t y  of climate models, the global-mean surface tempeta- 
ture increase, AT8, that would follow f'rom a doubling of C 4  concentrations. 

If the Earth was dry, the global-mean surface temperature would increase by ATd = 1.2.C and this 
estimate is quite reliable. However, numerous interactive feedbacks from water (most importantly, 
water vapor, snow-ice albedo, and clouFs), introduce considerable uncertainties into ATs esri- 
mates. The value of AT, is roughly related to ATd by the fomlula ATs = ATdl(l - j), wlrere f 
demotes the sum of all feedbacks. The water vapor feedback is relatively simple: warmer atmo- 
sphere contains more water vapor which is itself a greenhouse gas. This results in a positive feed- 
back as an increase in one greenhouse gas, COz, induces an increase in another greenhouse gas, 
water vapor. On the other hand, cloud feedback is the difference between the warming caused by 
the reduced emission of i n f d  radiation itom the Earth into outer space and by the cooling 
through reduced absorption of solar radiation. The net effect is determined by cloud amount, alti- 
tude, and cloud water content As a result, the vdws of AT8 from different models vary from 
AT, = 1.9OC to AT, = 5.2OC.28 

Note that two models with comparable AT, values can have different strength of the feedback 
mechanisms. For example two models (labelled GFDL and GISS) show an unequal temperature 
increase as clouds are included (from 1.7'C and 2.0°C to 2.0°C and 3.2'C n?spcctively).2* The 
effects of ice albedo are different b e t w ~ n  models but oppositely, so that the results converge 
(4.0°C versus 4.2'C, nespectively). Therefore, agreement between models may be, spurious, and 
both could be wrong. 

I 
i 

I 
Tlae ~ilnlyst  has thus been1 placed in a position for which he or she h a  not been tmineti, docs not 
dcsirc. a ~ d  should not be asked to take on. The opinion was expreswd h a t  becruse there i s  no 

$->;: to ltnow with c~rrpinty v~!i!letl~er a reeralatory requirement b a e d  on a probability has b r ~ n  mcr, 
srrcil ~cgl~Iarion migirt be reg~rded a s  meaningless. I~leaUy, regularion.; axe si-qed in tmms of  
concinnt~mis ii! .[lxicb both fi?e ~-egt~la_'@x' ~ n ( i  cdtc regulated hd iv idud  or entie: c m  !=:now whether the 
, I !E i ~ ~ d i v i r i ~ ~ z i  oi. cni'ity is BPI v o m p b a ~ ~ r ~ , .  



One can view the collection of all ATs predictions as a random sample derivcd from the population 
of all possible modds. We do not kn~w whether c m i ~ t  models cover aP1 possible values of ATs. 
I assume that with probability a the true value is within the range of reported values. Let us 
assume a = 99%; the standard deviation is then 292.575 times less than the reported range. Note 
that in estimating u values for measurements and projections I used a = 68% for the reported 
uncertainty range. Themfore I assume that the collection of current climate models almost certainly 
covers the true value of ATs. Had I assumed a = 99% for the old forecasts, the derived standard 
deviations would be smaller and all x values would be larger. The resulting u values and the corre- 
sponding inflation factors would be also larger than the ones I used. 

Since AT. is determined by the value of the sum of all feedbacks, f, I assume the normal distribu- 
tion for f and convert the range of AT, values into the range off values. For example, ATs = 1.9'C 
gives f = 0.37 and ATs = 5.2% gives f = 0.77. This range off values can be used to estimate the 
standard deviation of the equivalen normal distribution in the same way as for the population and 
energy projections above. 

The corresponding distribution of ATs values is shown in Figure 6 together with the exponential 
distribution for u = 1 and the distribution of ATs from 21 global circula~tion models compiled in 
Ref. 28. By using the exponential distribution with u = 1, I assume that the fraction of 
unsuspected errors in climate models is similar to the fraction of unsuspected errors in physical 
measurements. With the normal distribution, here is a f % chance that the true value of AT, 
exceeds 5'C while with the exponential distribution this same probability corresponds to a 
catastrophic increase of more than 10'C. In a simple feedback description, f = 1 would m u l t  in a 
catastrophic runaway warming. Although the true picture will be much more complex, and 
negative feedbacks will ultimately h i t  the warming, the pcssibility of C02 atmospheric buildup 
that could lead to a m a w a y  warming and a switch to a different c h i a t e  equilibrium must be 
avoided by all means. In my view, prudent policy decisions should be bawd on the exponential as 
the "default" distribution, rather than the normal distribution. Any policy based on a more 
optimistic view of future temperature rise would have to be justifid. 

9. SUMMARY 

St;p&ctical analysis of the distributions of the actual parametric errors and frequency of model mis- 
specification in natural and sociai sciences can provide valuable infomation about the credibility of 
the estimates of parametric uncertah:y in the current models. Data sets for such analysis can be 
derived, for example, from time trends in sequential meswments  of the same physical quantity or 
the same sample (for parametric uncertainty of the models used in natural sciences), or from the 
comparison of energy and population projections with actual values that became available later (for 
models of social parameters). For all data sets analyzed so far, distributions of errors show the 
same pattern: they have long tails that do not follow a normal distribution but can be pragmatically 
pa-ametrized by an exponential distribution with the slope &termined by the dala 



rhreshold rise, AT ("C) 

Fig. 6. Estimates of the lmcan-surface global tempratare r k  in response to danblling CO2 
c o m e c n h h .  aBe pubability of a t@anpmtm aise, ATs, gmfa thaa a given ttmdmld is plotted for the aKwmal 
Wbutim of mxxmhty in tbc: fadback W,P f (heavy solid line); the ex.pomntial Wbut ion  with u = 1 (thin 
sow be); cbc dblxihtioll of ATs values horn 21 climate modelsB (heavy Qtted line). 

The additional component of uncertainty derived from such analyses can be viewed as a safety 
factor accounting for o v e ~ ~ ~ o ~ & n c e  of the experts. it therefore incorporates the possibility of 
human error into the h e w o r k  of uncef.tahty analysis. Although data on past misunderstanding 
of a given situation cannot prevent our current misunderstanding of a significantly different 
sitwltion, statistical end;ysis of the frequency of past undemthates of uncertainty can provide 
useful clues to the choice of the appropriate safety factors. 

A Legithate concern about the use of the default W o n  factors for the confidence intervals is that 
this procedure ignores the specifics of particular studies. Some of the studies may be of much 
higl,cr quality than an raverage study in the data set from which the inflation coefficient was 
derived. Unfortunately, elicitation of expert opinions about all s igmfi i t  uncefiainh is rarely 
feasible. The user can hedge against unstspected uncertainties multiplying the reported uncertainty 
range by a safety factor. Such factor should be clearly speafkd  aad applied only afer the uncer- 
tainty has been &te&eIQ by a standard method, so that the o p t i o n  may be easily reversxi.29 

InteiSx.sestingly, the is values derived from our data sets cover a rather narrow interval: u = 1 for 
p11y:;icasl constants and M = 3 for cmr l t  models of population growth and energy projections. 
d U b ~ ~ &  &erg are nmny different scie~bfic models with s c fxu-ces sf mma-@hQ'? it may @C 

posibBe to combine &elm in several distinct groups according to reliability of past unertflinty 



estimates. This would allow to use default inflation factors when no historical data sets are 
available. 
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