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Abstract

Resulis of a comparative analysis of actual vs. estimated uncertainty in several
data sets derived from natural and social sciences are presented. Data sets include:
i) time trends in the sequential measurements of the same physical quantity;
ii) environmental measurements of uranium in soil; iii) national population pro-
Jections; iv) projectinns for the United States' energy secior. Probabilities of
large deviations from i true values are parametrized by an exponential distribu-
tion with the slope determined by the data. One can hedge against unsuspected
uncertainties by inflating reported uncertainty range by a default safety factor
determined from the relevant historical data sets. This empirical approack can be
used in the uncertainty analysis of the low probability/high consequence evenss,
such as risk of global warming.

1. INTRODUCTION

Science policy often hinges on reliable assessment of the uncertainty in predictions derived from
various models. Analysis of events with low probability but high consequences (such as probabi!-
ity of extreme global warming) is crucial for decision making. However it is well known that there
is a strong tendency for researchers to underestimate uncertainties in results, thus decreasing their
reliability and increasing the probability of "surprises”.16 The history of natural and social sci-
ences contains a wealth of data about reliability of models and estimates of parametric uncertainty.

Empirical methods of building confidence intervals around point estimates are used in the weather,
population, and economic forecasting.’-11 They rely on the assumption that the distribution of
errors in future forecasts is the same as the distribution of these errors in the past forecasts. In
many other fields, however (such as physical measurements and environmental risk assessment),
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upper confidence limits for health risks are often calculated theoretically without empirical valida-
tion. In this paper, I present the results of a systematic analysis of actual errors in the datasets
derived from nuclear physics, environmenrtal measurements, energy and population projec-
tions.12-19 The goal is to show how historic data on past overconfidence can be used io develop
the empirical safety factors that can be applied to uncertainty estimates in current models.

Error in a physical measurement is an additive function of three types of errors: random errors,
systematic errors, and blunders. Random errors come from statisiical fluctuations of thc inean val-
ues obtained with a finite number of trials. Systematic errors are errors that have the same sign in
different trials, for example, errors caused by unknown thermal expansion of a measuring rod,
Blunders are gross errors usually caused by trivial mistakes (such as errors in entering the daia).
Routine scientific data sets contain 5-10% of blunders.?

If the total uncertainty is dominated by random errors, then by the Central Limit Theorem (CLT)
the distribution of the aritimetic mean of nany observations around the true value is asymptoticaily
normal. Uncertainty is usvally reported as an average of many trial ineasurements (corrected for ali
recognized sysemaatic effects), A, and an associated standard deviation, A. If the actual vaiue of
this quantity 18 a then the normalized deviation x = (a - A)/A follows the standard normal distribu-
tion. In that distribution, the range A * 1.964 has a 95 percent probability of including a.

The presence of systematic errors violates the assumptions necessary for use of the CLT. If most
of the uncertainty comes from systematic errors, the usual justfication for normal distribution does
not apply. Despite this fact, the normal distribution remains implicit when researchers report mea-
sured values and the corresponding ancertainties.

In Sections 2 and 3, I present the distribution of the actual errors in several datasets derived from
physical and environmental measurements. In Sections 4, 5, and 6, I present the methodology and
the results of the analysis of the distribution of errors in population and energy projccuons. In all
cases the observed distributions o errors have long tails that can be approximately described by the
exponential distribution.

In Section 7, I show how underestimation of uncertainty can be quantified by the ratio of the total
uncertainty to the reported standard deviation, A. Assuming that this ratio is a normally distributed
random variable with the standard deviation u, I derive a compound distribution which is normal
for u = 0 and is exponential for u 2 1. In Section 8, I show how one can use the exponential dis-
tribution to hedge against unsuspected uncertainties in estimating the risk of global warming.

2. TRENDS IN PHYSICAL MEASUREMENTS
The first attempis to quantify overconfidence in physical measurements come from the work of

Bukhvostov20 and Henrion and Fischoff.* They compared elementary particle properties and fun-
damental constants in carly compilations with much more accurate values taken from a more recent
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compilation. A convenient measure of the deviation of "new" values from the "old" values is the
normalized deviation x = (a - A)i A, with a the new value, A the old value, and A the old standard
deviation.

Shlyakhter ez al. 124 ¢xtended these original studies by following trends in data sets derived from
nucleai and particle physics: masses and lifetimes of elementary particles, magnetic moments and
lifetimes of the excited nuclear states, and neutron scattering lengths (see Figure 1). All data sets
were first converted into a standard formai. Successive measurements of the same quantity com-
prised a block of data; a data set typically consisted of several hundred such blocks. In order to
limit the effects of "noise” in the data on final results, two selection criteria were applied: i) new
staied uncertainty had to be much smaller than the old one: Agy/Anew = 4; and ii) only cases where
deviation from the true value did not exceed ten standard deviations were included in the analysis
(in this way most blunders were excluded). Criterion (i) ensures that the new measured value, a,
is close to the unknown true value. Neglecting Ayey introduces a small bias into the calculated x
values. However, since the errors are combined in quadrature, this bias is only about 3%.
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Fig. 1. Probability of unexpected results in physical measurements. The plots show the cumulative
probability, S(x) = I:p(t)dt that new measurements (2) will be at least lxl standard deviations (4) away from the
old results (A); x = (a - A)/4 as defined in the text. The cumulative probability distributions of Ll are shown for the
three data sets: particle data (elementary particles!; heavy solid line); magnetic moments of excited nuclear states22
(dotted line); neutron scattering !engths23 (heavy dashed line). Also plotted is cumulative normal distribution,
exfc(x/"l‘ﬁ), (thin solid line with markers), and compound exponential distribution with parameter 4 = 1 from Figure
5 (thin solid line).
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The results confirm the earlier findings that a normal distribution grossly underesiimates
probability of large deviations from the expected values. A new finding is that the pattern of
overconfidence is similar in different kinds of measurements.

3. TRIENDS IN ENVIRONMENTAL MEASUREMENTS

Environmental measurements are rarely repeated with the same samples and it is hard to estimate
how widespread are the unaccounted errors in routinely collected data. An opportunity to address
this issue is provided by the data on the excess uranium in the soil around the former Feed
Materials Production Center at Fernald, Ohio, which had been a key uranium metals fabrication
facility for U.S. defense projects until it was closed in 1989.24 The data set was requalified at the
request of the legal counsel te establish its credibility for litigation purposes. About 200 pairs of
measurements of the radioactivity of three uranium isotopes (234U, 235U, and 238U) in the same
samples have been provided to me by K.A. Stevenson (U.S. Department of Energy Environmental
Measurements Laboratory).

[ ]

=

: :

[}

i

[=~%

L -

. ]

é ]
7

Ixi

Fig. 2. Distribution of errors i m~=asurement of excess uranium in soil. Presentation is similar
to Figure 1. The cumulative probability distributions of b are shown for the three uranium isotopes (234U, beavy
dotted line; 235U, heavy dashed line; and 238U, heavy solid line). Also plotted are compound exponential distri-
butions from Figure 5: u = 0 (Gaussian, thin solid line with markers) and u = 1 (thin solid line).
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The distribution of deviaticns between the original and requalified measurements normalized by the
reported standard error of the old measurement is shown in Figure 2. The distribution is similar to
the dictributioi oi arrors in the mezsurements in nuclear physics shown in Figure 1. This similar-
ity indicates that the fraction of unsuspected uncertainties may be similar in a wide variety of rou-
tine measurements.

4. UNCERTAINTY IN FUTURE FROJECTIONS

Uncertainty in future projections is defined less formally than uncertainty in physical measure-
ments. In this section an 2igorithm for analysis of uncertainty in historical projections is presented.
One can estimate the standard deviation 4 of an equivalent normal distribution and then draw the
empirical probability distributions of the deviations of the old projections from the true values nor-
malized by A. Experts may not necessarily imply the normally distributed error terms. However,
the users of the results tend to base their decisions on the assuraption that deviations exceeding
seveial uncertainty ranges are improbab'e. Coraparison of errors in historical data sets with those
predicted by the normal distribuiion provides & useful measure of the credibility of current uncer-
tainty estimates.

Uncertrint in the projections is usually presented in the form of "seference,” "lower" and "upper”
estimates (R, L, and U respectively) that are obtained by running a model with different sets of
cxogenous parameters (¢.g. the annual rate of growth). The range of scatter around the reference
value R does not formally define a Gaussian standard deviation because the fundamental uncertain-
ties involved (e.g. the rate of future econcmic growth) are frequently not stochastic. However, it
is reasonable to assume that the rang: of parameter variation presented by a forecaster represents a
subjective judgment about the probability that the true value T'e [L,U]. Gererally, lower and
upper bounds present what is believed to be en "envelope” most likely to bracket the true vaiue and
inchude the majority of possible outcomes.

Note that bounded distributions (such as the triangular distribution) which are sometimes used to
describe the probabilities of various scenarios assign zero probability to the outliers. This incor-
rectly implies that L and U are real bounds rather than the estimates of plausible range. Historical
data presented below, however, suggests that deviations exceeding the expected uncertainty range
are not uncommon. Therefore, using a normal (unbounded) distribution as a frame of reference
underestimates true overconfidence.

The standacd deviation of the equivalent normal distribution is calculated as follows:

&) Specify the subjective probabihity ot that the true value will lie between the low (L) and high
(U) estimates. I assume o = 68%; larger values of & increase the discrepancy between the
Gaussias model and that cziculated by this method.

b) Draw an equivalent norical distribution that would have a specified cur-ulative probability
o between L and U. For o = 68% the standard deviation of the equivalent normal distribu-
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tion is (U - L)/2 so that x = 2-(T - R)/(U - L). Therefore this choice of a corresponds to
the usual practice of splitting the uncerteinty range in half and using it as a surrogate for the
standard deviation.

c) If the reference value (R) is not in the middle of the (L,U) interval use two separate normal
distributions truncated at zero: "left half" for (L,R) interval and "right half" for (R,U)
interval each having o/2 as the cumulative probability.

5. POPULATION PROJECTIONS

The history of population projections provides an opportunity to test the reliability of uncertainty
estimates in demographic models. Shlyakhter and Kammen!2-14 analyzed United Nations popula-
tion projections, made in 1972, for the year 1985 that can serve as the set of "exact" values, a.

The population data base includes projections from 164 nations with population exceeding 100,000
presented in the form of "high" and "medium" and "low" variants for each nation.?6 Data for 31
countries were excluded due to extreme errors resuiting for example from unanticipated interna-
tional migration; such cases can be considered as the use of a wrong model. Data for 133 nations
satisfying the criteria Ixl < 10 were included in the analysis.

The results are shown in Figure 3. Because all the population estimates come from an authoritative
soarce, namely the United Nations, it raight be expected that systematic errors would be small,
representing a well-calibrated model. The unsuspected uncertainty, however is very large. Data
for 37 industrialized conntries (where data are generally more reliable) show little less surprise, but
probability of large errors is still grossly underestimated by the norraal distribution.

é. ENERGY PROJECTIONS

Forecasts of future energy consumption are a prerequisite for many major economic and policy
decisions such as how best to reduce carbon dioxide emissions to alleviate global warming, or how
best to stimulate the pace of development of alternate sources of energy. An analysis of credibility
of uncertainty estimates was performed in Refs. 16 and 17 using the largest coherent set of US
energy projections for the year 1990, the Annual Energy Outlook (AEQC).27

AEOQ projections ‘or 1990 made in 1983, 1985, and 1987 consist of 182, 185, and 177 energy
producing or consuming sectors of the U.S. economy respectively. The variation in the nurnber of
sectors resulted because the low and high projections coincided in some cases, and no correspond-
g unceriainty range could be derived.
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¥ig. 3. Population projections. The plots depict the cumulative probability, S(x)= [’ p(t)dt, that true

values (7) will be at least lx| standard deviations (4) away from the reference value of old projections (R). The
population data base is described in the text. The cumulative probability distributions of Ixi are shown for the total
dataset of 133 countries (beavy solid line) and for a subset of 37 industriglized countries (heavy dashed line). Also
shown is the nonnal distribution (thin solid line with markers) and the compound distribution with 4 = 3 from

Figure 5 (thin solid line).

In 47, 50, and 47 cases respeciively, the values of Ix| (calculated as described in Section 3)
exceeded 100; such cases were omitted as they were outside any reasonable range of parametric
uncertainty of the AEO model. For all remaining cases the x values were calculated and the fre-
quency distributions analyzed. The distribution of signed x values is approximately symmetric
with respect to zero. There is no large systematic bias (e.g. a gross underestimation of energy
consumption in all or many sectors) and no strong trends in the scatiergrams of x values; this indi-
cates that the projections are generally independent.

Figure 4 shows the cumulative probability distributions of Ixl for the projections made for 1990 in
1983, 1985, and 1987 together with the Gaussian and exponential distributions. The tiree empiri-
cal disivibutions are strikingly similar. Althongh the absolute error in projections made in 1987 for
1990 is soraewhat sialler than made in 1983 for 1990, the range of uncertainty is also smaller so
that probability of "large" deviations relative to the observed uncertainiy is ronghly the same as for
il other iwo yeass. One wonld expect that energy projections for aggregaied sectors of economy
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would be more reliable than projections for individual sectors. However, this appears not to be the
case (Figure 4, heavy dashed line).

cumulative probability
=
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Fig. 4. Annual Energy Outlcok projections. The presentation is as in Figure 3: 1983 to 1990 (heavy
solid linc); 1985 to 1990 (heavy dashed line); 1987 to 1990 (heavy dotted line), aggregated sectors of economy (very
heavy dashed line); normal distribution (thin 80ii¢ line with markers); compound distribution with u = 3.4 (thin solid
Iine).

7. EXPONENTIAL PARAMETRIZATION OF OBSERVED DISTRIBUTIONS

Bukhvostov20 and Shlyakhter and Kammen!4 suggested simple heuristic arguments to describe
how an exponential distribution of errors might arise. Let us assume that the estimate of the mean,
A, is unbiased but that the estimate of the true standard deviation, 4’ is randomly biased with a
distribution f(¢) where ¢ = A’/A. Here A is the estimated standard deviation. In other words, I
assume that the deviations normalized by 4", x”= (a - A)/4’ follow the standard normal distribution
while the deviations normalized by 4, x = (a - A)/A, follow a normal distribution with a randomly
chosen standard deviation £

1 x*
(x) = —p==—exXpy — <= M
P 2t P 212 ’
Imte;, ug over all values of ¢ gives a compound disiribution:
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P(x)—ﬁ‘(‘;dttf(t)exp{ 2t2} @

If £(¢) has a sharp peak near ¢ = 1, Eq. (2) reduces to the normal distribution. If f(£) is broad, how-
ever, the result is different. For simplicity, let us assume that for large ¢, f(¢) follows the Gaussian
distribution with standard deviation «: f(£) o< exp[-t2/(2u)]. The main contribution to the integral in
Eq.(2) comes from the vicinity of the saddle point where the exponential term reaches a maximum
(for 1 = 2,y 124, = ubxl). It is straightforward to show that, for large values of x, the probability
distribution p(x) is not Gaussian but exponential: p(x) o< exp(-x/u ). In order to reflect the fact
that experts are mostly overconfident (4’ 2 4), I use a truncated normal form of £(¢):

f(t)=0, t<1

2
f(t)= —--—-exp{ St—zlulz)—}, t>1 @

Integrating Eq. (2) with f(r) from Eq. (3) gives the cumulative probability S(x) of deviations ex-

ceeding Ixl;
S(x)= \[_ I { ) }erfc{g%}dr )

The normnal (4 = 0) and exponential distributions (« > 1) are members of a single-parameter family
of curves (Figure 5). For quick estimates for u 2 1, x 2 3. one can use the approximation
¢ W(0.Tu+0.9), In this framework the parametric uncertainty can be quantified by analyzing the
record of prior projections and estimating the value of 1. Data presented in Figures 1-4 show that
u = 1 for physical and environmental measurements and u = 3 for population and energy

projecticns.

Parameterization with the one-parameter family of compound exponential distributions described
above is not the only one possible. Trying to find the standard deviation that best fits the data
while keeping the parametric form of the normal distribution produces a very poor fit. A good-
ness-of-fit analysis of the data sets presented in Figure 1 (Sakharov, private communication,
February 1994) gave a good two-parameter fit when the distributions of negative and positive
deviations were analyzed separately (with two different u values). Another good two-parameter fit
was obtained with a sum of an inflated Gaussian distribution and a constant background erm.
Although increasing the number of free parameters improves the quality of fit to the data, it also
complicates comparisons between datasets. Safety factors for unceriainty estimates should depend
only on the general form of the distribution of errors, and for this purpose a simplc one-parametcr
expoi ntial parameterization is sufficient.
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Figure 5. One-parameter family of compound distributions. Parameter 4 is defined in Eq. (3); it is a
measure of unceriainty in the standard deviation 4). The values of 4 are indicated in the figure. The curves demon-
strate the continuum of probability distributicns, from Gaussian (u=0) to exponential (x> 1).

There exists a broad spectrum of uncertainties extending from the negligible parametric uncertain-
ties to a crucial uncertainty which of several models to choose. An analyst usually has a scale in
mind for "important” uncertainties: smaller uncertainties are assumed to be negligible and are
excluded from the detailed analysis. For example, in measurements of the excess uranium in soil,
radioactive decay of 25U introduces a negligible error because the characteristic time scale for this
decay is billion years. "Important” uncertainties (such as detector efficiency) are carefully evalu-
ated and combined to produce the published estimate of the combined standard uncertainty.
However, errors of larger scales, particularly those arising from the use of a wrong model, are also
possible. For example an isaportant uncertainty that was overlooked in the old measurements of
excess uranium was the uncertainty in the overall chemical yield of the procedure used to leach
uranium from the s0il.2* This heuristic model is an attempt to describe the human thought pro-
cesses that are responsible for the observed pattern of overconfidence. It can be also formulated as
a fracial model with the distribution of errors described by Levy stable distribution (a long-tail gen-
¢.lization of the normal distribution).?
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8. APPLICATION: RISK OF GLOBAL WARMING

Choosing appropriate safety factors as a hedge against unsuspected errors is particularly important
in the uncertainty analysis of many situations in public policy. These describe events with low
probability but high consequences that are determined by the tails of the probability distributions. I
illustrate possible applications using the current debate about possible rise in global temperature in
response to the emissions of greenhouse gases. For applications of the inflated confidence inter-
vals to population and energy projections, sea-level rise, estimates of health risks, and epidemio-

logic studies see Refs. 14-19.

The causal sequence leading to sea-level rise is as follows: population — energy production —
CO; emissions — greenhouse warming. One can present the temperature rise as a product of four
roughly independent factors:

h = Population [ 1¢%8Y. |.(-€02_|.[ AT )
person ) \ energy ) | CO,

The first factor is the world population; the second factor is energy production per capita; the third
factor is CO, emissions per unit energ;’ production; the fourth factor is temperature increase AT per
unit rise in CO,. For each factor there are uncertainies in its respective model. In particular, the
last factor includes a key scientific uncertainty of climate inodels, the global-mean surface tempera-
ture increase, AT;, that would follow from a doubling of CO, concentrations.

If the Earth was dry, the global-mean surface temperature would increase by ATy = 1.2°C and this
estimate is quite reliable. However, numerous interactive feedbacks from water (most importantly,
water vapor, snow-ice albedo, and cioud's), introduce considerable uncertainties into AT; esti-
mates. The value of AT; is roughly related to ATy by the formula AT, = ATy/(! - f), where f
denotes the sum of all feedbacks. The water vapor feedback is relatively simple: warmer atmo-
sphere contains more water vapor which is itself a greenhouse gas. This results in a positive feed-
back as an increase in one greenhouse gas, CO,, induces an increase in another greenhouse gas,
water vapor. On the other hand, cloud feedback is the difference between the warming caused by
the reduced emission of infrared radiation irom the Earth into outer space and by the cooling
through reduced absorption of solar radiation. The net effect is determined by cloud amount, alti-
tude, and cloud water content. As a result, the values of AT, from different models vary from
ATs= 1.9°C 10 AT; = 5.2°C.28

Note that two models with comparable AT, values can have different strength of the feedback
mechanisms. For example two models (labelled GFDL and GISS) show an unequal temperature
increase as clouds are included (from 1.7°C and 2.0°C to 2.0°C and 3.2°C respectively).?8 The
effccis of ice albedo are different betwoen models but opposiiely, so that the results converge
(4.0°C versus 4.2°C, respectively). Therefore, agreement between models may be spurious, and
both could be wrong.
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The analyst has thus been placed in a position for which he or she has not been trained, does not

desize, and should not be asked to take on. The opinion was expressed that because there is no

vy o know with ceriainty whether a regulatory requirement based on a probability has been met,

such - regulation might be regarded as meaningless. Ideally, regulations are siated in ierms of

conditions in ~vhich both the regulaior and the regulated individual or entity can know whether the
suk o individual or entity is in compliance.
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One can view the collection of all AT; predictions as a random sample derived from the population
of all possible models. We do not know whether current models cover all possible values of AT,
I assume that with probability « the true value is within the range of reported values. Let us
assume o = 99%; the standard deviation is then 2:2.575 times less than the reported range. Note
that in estimating ¥ values for measurementis and projections I used o = 68% for the reported
uncertainty range. Therefore I assume that the collection of current climate models almost certainly
covers the true value of AT,;. Had I assumed o = 99% for the old forecasts, the derived standard
deviations would be smaller and all x values would be larger. The resulting u values and the corre-
sponding inflation factors would be also larger than the ones I used.

Since AT is determined by the value of the sum of all feedbacks, f, I assume the normal distribu-
tion for f and convert the range of AT, values into the range of f values. For example, AT; = 1.9°C
gives = 0.37 and AT; = 5.2°C gives f=0.77. This range of f values can be used to estimate the
standard deviation cf the equivalen normal distribution in the same way as for the population and
energy projections above.

The corresponding distribution of AT, values is shown in Figure 6 together with the exponential
distribution for u = 1 and the distribution of AT; from 21 global circulation models compiled in
Ref. 28. By using the exponential distribution with u = 1, I assume that the fraction of
unsuspected errors in clirmate models is similar to the fraction of unsuspected errors in physical
measurements. With the normal distribution, there is a 1% chance that the true value of AT;
exceeds 5°C while with the exponential distribution this same probability corresponds to a
catastrophic increase of more than 10°C. In a simple feedback description, f= 1 would result in a
catastrophic runaway warming. Although the true picture will be much more complex, and
negative feedbacks will ultimately limit the warreing, the pcssibility of CO, atmospheric buildup
that could lead to a runaway warming and a switch to a ditferent climate equilibrium must be
avoided by all means. In my view, prudent policy decisions should be based on the exponential as
the "default” distribution, rather than the normal distribution. Any policy based on a more
optimistic view of future temperature rise would have to be justified.

9. SUMMARY

Statistical analysis of the distributions of the actual parametric errors and frequency of model mis-
specification in natural and social sciences can provide valuable information about the credibility of
the estimates of parametric uncertainzy in the current models. Data sets for such analysis can be
derived, for example, from time trends in sequential measurements of the same physical quantity or
the same sample (for parametric uncertainty of the models used in natural sciences), or from the
comparison of energy and population projections with actual values that became available later (for
models of social parameters). For all data sets analyzed so far, distributions of errors show the
same paitern: they have long tails that do not follow a normal distribution but can be pragmatically
parametrized by an exponential distribution with the slope determined by the data.
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Fig. 6. Estimates of the mean-surface global temperature rise in response to coubling CO;
comcentration. The probability of 2 temperature rise, AT,, greater than a given threshold is plotted for the normal
distr’bution of uncertainty in the feedback factor f (heavy solid line); the exponential distribution with u = 1 (thin
solid line); the distribution of AT, values from 21 climate models?8 (heavy dotted line).

The additional component of uncertainty derived from such analyses can be viewed as a safety
factor accounting for overconfidence of the experts. It therefore incorporates the possibility of
human error into the framework of uncertainty analysis. Although data on past misunderstanding
of a given situation cannot prevent our current misunderstanding of a significantly different
situation, statistical analysis of the frequency of past underestimates of uncertainty can provide
useful clues to the choice of the appropriate safety factors.

A legitimate concern about the use of the default inflation factors for the confidence intervals is that
this procedure ignores the specifics of particular studies. Some of the studies may be of much
higt.er quality than an average study in the data set from which the inflation coefficient was
derived. Unfortunately, elicitation of expert opinions about all significant uncertainties is rarely
feasible. The user can hedge against unsuspected uncertainties multiplying the reported uncertainty
range by a safety factor. Such factor should be clearly specified and applied only after the uncer-
tainty has been determined by a standard method, so that the operation may be easily reversed.?®

Interestingly, the u values derived from our data sets cover a rather narrow interval: u = 1 for
physical constants and u = 3 for current models of population growth and energy projections.
Although these are many different scientific models with specific sources of unceriainty, it may be
possible to combine them in several distinct groups according to reliability of past uncertainty
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estimates. This would allow to use default inflation factors when no historical data sets are
available.
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