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I use an analogy with the history of physical measurements, population and energy projections, 
and analyze the trends in several data sets to quantify the overconfidence of the experts in the 
reliability of their uncertainty estimates. Data sets include (i) time trends in the sequential meas- 
urements of the same physical quantity; (ii) national population projections; and (iii) projections 
for the U.S., energy sector. Probabilities of large deviations for the true values are parametrized 
by an exponential distribution with the slope determined by the data. Statistics of past errors can 
be used in probabilistic risk assessment to hedge against unsuspected uncertainties and to include 
the possibility of human error into the framework of uncertainty analysis. By means of a sample 
Monte Carlo simulation of cancer risk caused by ingestion of benzene in soil, I demonstrate how 
the upper 95th percentiles of risk are changed when unsuspected uncertainties are included. I 
recommend to inflate the estimated uncertainties by default safety factors determined from the 
relevant historical data sets. 

KEY WORDS: Uncertainty analysis; physical measurements; population projections; energy projections; 
Monte Carlo simulations. 

1. INTRODUCTION 

Probabilistic analysis of uncertainty and variability 
is receiving growing acceptance as a vital part of risk 
assessment.(‘) However, such analysis is often plagued 
with its own uncertainties that have profound effect on 
the tails of the probability distributions. In particular, the 
commonly used 95% bounds for normal and lognormal 
distributions of exposure variables are very sensitive to 
the underestimation of the true uncertainty. The history 
of natural sciences offers many examples of overconfi- 
dence of the experts in the reliability of their uncertainty 
estimates.Q*3) The goal of this paper is to show how a 
systematic analysis of the trends in historical data sets 
of measurements and projections can be used to quantify 
the effects of unsuspected uncertainties in current mod- 
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els. I analyze several data sets derived from three dif- 
ferent fields: nuclear physics, energy, and population 
projections. It appears that empirical probability distri- 
butions of the normalized deviations of the measured 
quantities from the true values do not follow the usually 
implied normal distribution. These distributions are bet- 
ter described by an exponential distribution with one ad- 
ditional parameter, U. To illustrate how the statistics of 
past errors can be used in the development of improved 
safety factors for current uncertainty estimates, I con- 
sider Monte Carlo simulation of cancer risk caused by 
ingestion of benzene in soil. 

2. OVERCONFIDENCE IN PHYSICAL 
MEASUREMENTS 

If the uncertainty in a measurement is dominated 
by random errors, then by the central limit theorem 
(CLT), the distribution of the arithmetic mean, A, of 
many observations around the true value, a, is asymp- 
totically normal with standard deviation A. In this dis- 
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Fig. 1. Probability of unexpected results in physical measurements. 
The plots depict the cumulative probability, S(x) = f,“p(f)&, that new 
measurements (a) will be at least M standard deviations (A) away from 
the old results (A); x = (a - A)/A as defined in the text. The cumu- 
lative probability distributions of M are shown for the three data sets: 
particle data from the LBL data file,(lz) magnetic momenW) of excited 
nuclear states, and neutron scattering lengths.(“) Also plotted is a cu- 
mulative normal distribution, erfc(x/d2), and compound exponential 
distribution with parameter u = 1 from Fig. 5. 

tribution, the range A + 1.96A has a 95% probability 
of including a.c4) The presence of systematic errors, how- 
ever, violates the assumptions necessary for use of the 
CLT. If much of the uncertainty comes from systematic 
errors, the usual justification for the norma distribution 
does not apply. Despite this fact, the normal distribution 
is often a reasonable approximation for small deviations 
and remains implicit when researchers report measured 
values and their corresponding uncertainties. 

A clear message from the history of physical meas- 
urements is that unsuspected systematic errors are quite 
common, and new measurements are often far from the 
previous values. The long record of measurements of 
elementary particle properties has prompted several 
early studies of the temporal evolution of errors.(s-7) 
Shlyakhter et aZ. W-W expanded these original studies by 
following trends in severa data sets. Here I present the 
results of the analysis of masses and lifetimes of ele- 
mentary particlesJ*2) magnetic moments,(13) of the ex- 
cited nuclear states, and neutron scattering lengths.(14) 

All data sets were first converted into a standard 
format. Each measurement that produced an experimen- 
tal value, A, and an estimate of uncertainty, A, together 
with the date of publication (or incorporation into an 
electronic data bank) formed a separate line (record). For 
each quantity, the earliest measurement was paired with 
the most recent one. I defined the early value as A,,d and 
the recent vaIue as A,, (assuming that A,, is a good 
surrogate for the true value a) with the corresponding 
uncertainties Aold’ and 4,. I also define the normalized 
deviation x=(A,,, - Aold)/Aold. For example, the recom- 
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mended value for the electron mass in the year 1961 
was A,, f Ahold = (0.510976 -C 0.000007) MeV/c2, 
while in 1990 it was A,, f An, = (0.51099906 + 
0.00000015) MeV/c* (1 MeV/cZ = .1.782676*10+ kg). 
Therefore the old mean value was x=3.3 times its ex- 
timated standard error away from the presently accepted 
value. 

To limit the effects of “noise” in the data on the 
final results, two selection criteria were applied. First, 
the standard error of the recent measurement, A,, had 
to be much smaller than the old error, Aold, so that the 
value A,,, is close to the true value a: A,JA.,, 2 r; the 
value r=4.0 was used. Second, only those measurements 
were considered for which the deviation from the true 
value was not too large: 1 x 1 < m; m= 10 was used. This 
ensured that no major mistake occurred in the old meas- 
urement. The selection procedure considerably reduced 
the number of records remaining in each data set; the 
distribution of errors in the remaining data was stable 
with respect to variations in the values of the parameters 
T and m. 

All the data satisfying the selection criteria were 
analyzed. There were 79 pairs of old and new measure- 
ments in elementary particle data, 185 pairs for nuclear 
moments, and 76 pairs for neutron scattering. For each 
pair of measurements of a given quantity the normalized 
deviation x=(A,,-AO,,)/AO,, was calculated and the em- 
pirical probabilities of /xi were derived. As Fig. 1 shows, 
normal distribution underestimates the probability of 
large deviations; instead of the predicted 5% there is a 
15 to 30% chance of bl >2 for the empirical probability 
distributions. These distributions also suggest that there 
is a 5% chance of b1>4, while the normal distribution 
predicts the value 6.8.10+, about 700 times less. A bet- 
ter fit to the data at large values of /xl is obtained with 
a compound exponential distribution, described below, 
which is close to a straight line on the semilogarithmic 
graph of the cumulative probability, S(x), vs the number 
of standard deviations, kl. 

Environmental measurements are rarely repeated 
with the same samples, and it is hard to estimate how 
widespread the unaccounted errors are in routinely col- 
lected data. An opportunity to address this issue is pro- 
vided by the data on the excess uranium in the soil 
around the former Feed Materials Production Center at 
Femald, Ohio, which had been a key uranium metals 
fabrication facility for the U.S. defense projects until it 
was closed in 1989.0s) The measurements were repeated 
at the request of the legal counsel to establish their cred- 
ibility for litigation purposes. About 200 pairs of meas- 
urements of the radioactivity of three uranium isotopes 
(““U, u5U, and ““U) in the same samples have been 
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Fig. 2. Distribution of errors in measurement of excess uranium in 
soil. Presentation is similar to that in Fig. 1. The cumulative proba- 
bility distributions of bI are shown for the three uranium isotopes: 
TJ, ‘-W, and -U. 

provided by K. A. Stevenson (U.S. DOE Environmental 
Measurements Laboratory). 

The distribution of deviations between the original 
and new measurements, normalized by the reported stan- 
dard error of the oId measurement, is shown in Fig. 2. 
The distribution is similar to the distribution of errors in 
the measurements in nuclear physics shown in Fig. 1. 
This similarity suggests that the pattern of overconfi- 
dence may be similar in a wide variety of measurements. 

4. OVERCONFIDENCE: LESSONS FROM 
ENERGY AND POPULATION PROJECTIONS 

Uncertainty in future forecasts is defined less for- 
mally than uncertainty in physical measurements. Un- 
certainty in the projections is usually presented in the 
form of “reference,” “lower,” and “upper” estimates 
(R, L, and U respectively). I assume that the range of 
parameter variation presented by a forecaster represents 
a subjective judgment about the probability that the true 
value T E [L, U]. Generally, lower and upper bounds 
present what is believed to be an “envelope” most 
likely to bracket the true value and include the majority 
of possible outcomes. 

One can estimate the standard deviation A of an 
equivalent normal distribution, as shown below, and 
then draw the empirical probability distributions of the 
deviations of the old projections from the true values 
normalized by A. Experts may not necessarily imply the 
normally distributed errors, nevertheless, the users of the 
results tend to base their decisions on the assumption of 
a normal or triangular distribution. Note that bounded 
distributions (such as triangular) assign zero probability 
to the outliers. Historical data presented below, however, 

suggest that deviations exceeding the expected uncer- 
tainty range are not uncommon. Using a normal (un- 
bounded) distribution as a frame of reference under- 
estimates true overconfidence. 

The standard deviation of the equivalent normal 
distribution is calculated as follows: 

(a) Specify the subjective probability a that the 
true value will lie between the low (L) and the 
high (U) estimates. I assume a=68%; larger 
values of a increase the discrepancy between 
the Gaussian model and the data. 

(b) Draw an equivalent normal distribution that 
would have a specified cumulative probability 
a between L and U. For a = 68% the standard 
deviation of the equivaIent normal distribution 
is (U - L)/2, so that x=2 l (‘I.-R)/(U-L). There- 
fore this choice of a corresponds to the usual 
practice of splitting the uncertainty range in 
half and using it as a surrogate of standard de- 
viation. 

(c) If the reference value (R) is not in the middle 
of the (L, U) interval, use two separate normal 
distributions truncated at zero: “left half” for 
the (L, R) interval and “right half” for the (R, 
U) interval, each with a/2 as the cumulative 
probability. 

Shlyakhter and Kammen(8~pJh) used this algorithm in 
their analysis of the United Nations population projec- 
tions made in 1973l’ for the year 1985. The data sub- 
sequently obtained in 1985 can serve as the set of 
“exact” values, a. The population database includes 
projections for 164 nations, each with a population ex- 
ceeding 100,000, presented in the form of “high,” “me- 
dium,’ ’ and “low” estimates for each nation. Data for 
114 nations satisfying the criteria [ x ] < 10 were in- 
cluded in the study. Although the population estimates 
came from an authoritative source, there is a consider- 
able number of very large deviations from the projected 
vaIues (Fig. 3). 

A similar analysis was conductedo8) for the history 
of recent projections for the U.S. energy sector.op) Figure 
4 shows the cumulative probability distributions of ] x 1 
for the projections made for 1990 in 1983, 1985, and 
1987, together with the Gaussian and exponential distri- 
butions. The three empirical distributions are strikingly 
similar. Although the absolute error in projections made 
in 1987 for 1990 is somewhat smaller than that made in 
1983 for 1990 because of the shorter time interval, the 
estimated uncertainty is also smaller, so that the proba- 
bility of the deviations from the true values normalized 
by A are roughly the same as for the other 2 years. One 
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Fig. 3. Population projections. The plots depict the cumulative prob- 
ability, S(x) = J~$@& that true values (T) will be at least PI standard 
deviations (A) away from the reference value of old projections (R). 
The population database is described in the text. The cumulative prob- 
ability distributions of bl are shown for the total dataset of 114 coun- 
tries (solid line) and for a subset of 37 industrialized countries. Also 
shown are the normal distribution and the compound distribution with 
u = 3 from Fig. 5. 
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Fig. 4. Annual Energy Outlook projections. The presentation is as in 
Fig. 3: Projections from 1983 to 1990, 1985 to 1990, and 1987 to 
1990, aggregated sectors of economy for all three forecast years; nor- 
mal distribution and exponential distribution with u = 3.4. 

would expect that energy projections for aggregated sec- 
tors of the economy would be more reliable that projec- 
tions for individual sectors. However, this is not the case 
(Fig. 4, heavy dashed line). As shown in Figs. 3 and 4 
(heavy solid line), the empirical distributions for both 
energy and population projections fit the exponential 
curves very well. 

5. PARAMETRIZATION OF THE OBSERVED 
DISTRIBUTIONS 

The nature of uncertainties considered above is 
very diverse: from genuine measurement errors in phys- 
ics to subjective estimates of uncertainty in population 
and energy forecasts. However, the data sets analyzed in 

the previous sections share one common feature: Long 
tails in the distributions of the normalized deviations 
from the true values are grossly underestimated by the 
normal distribution and are better described by the ex- 
ponential functions. 

Bukhvostov@) and Shlyakhter et aL@J*Js) suggested 
simple heuristic arguments to describe how an exponen- 
tial distribution of errors might arise. Let us assume that 
the estimate of the mean, A (which I have been calling 
Aold), is unbiased but that the estimate (A) of the true 
standard deviation, (A’) is randomly biased with a dis- 
tribution f(t), where t=A’/A. Here A is the estimated 
standard deviation, which I have been calling Aold. In 
other words, I assume that the deviations normalized by 
A’, X ‘= (a-A)/A’, fohow the standard normal distribution, 
while the deviations normalized by A, ~=(a-A)lA, fol- 
low a normal distribution with a randomly chosen stan- 
dard deviation t: 

Integrating over all values of t gives a compound 
distribution: 

If f(t) has a sharp peak near t=l, Eq. (2) reduces 
to the normal distribution. If f(t) is broad, however, the 
result is different. For simplicity, let us assume that for 
large t, f(t) follows the Gaussian distribution with the 
standard deviation u: f(t) - exp [-t2/(2uz)]. The main 
contribution to the integral in Eq. (2) comes from the 
vicinity of the saddle point where the exponential term 
reaches a maximum (at P = w~I). It is straightforward 
to show that, for large values of x, the probability dis- 
tribution p(x) is not Gaussian but exponential: p(x) - 
exp(-bl/u). To reflect the fact that experts are mostly 
overconfident (A 2 A), I use a truncated normal form 
of f(t): 

f(t) = 0, t<l 
- 

f(t) = g i ~-K’-v/2u~1, 01 

Integrating Eq. (2) with f(t) from Eq. (3) gives the cu- 
mulative probability S(x) of deviations exceeding 1 x I: 

Here erfc(x) is the complementary error function.@) The 
normal (U = 0) and the exponential distributions (U > 
1) are members of a single-parameter family of curves 
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Fig. 5. One-parameter family of compound distributions. Parameter u 
is defined in Eq. (3); it is a measure of uncertainty in the standard 
deviation A. The values of I( are indicated. The curves demonstrate 
the continuum of probability distributions, from Gaussian (U = 0) to 
exponential (U > 1). Note that the number of standard deviations for 
95% confidence intervals is 1.96 for normal distribution and 3.8 for 
exponential distribution. 

(Fig. 5). For quick estimates for u 2 1, X 2 3, one can 
use the approximation e- w(“.7u+o.6). Uncertainty estimates 
can be improved by analyzing the record of prior pro- 
jections and estimating the value of u. Data presented in 
Figs. l-4 show that u - 1 for laboratory and environ- 
mental measurements and u - 3 for population and en- 
ergy projections fit the empirical data best. 

Parametrization with the one-parameter family of 
compound exponential distributions described above is 
not the only one possible. Another one-parameter fit is 
provided by a fractal model of errors described by Levy 
stable distribution.ol) A goodness-of-fit analysis of the 
data sets presented in Fig. l(*Q suggests that an inflated 
Gaussian distribution with the standard deviation, a, as 
a free parameter describes the combined data very 
poorly and can be excluded. Exponential parametrization 
for the distribution of the absolute deviations ] x ] with 
u as a free parameter produces a much better fit. This 
fit can be further improved with two independent ex- 
ponential distributions if negative and positive errors are 
analyzed separately; this takes into account the asym- 
metry of the probability distributions. A good fit was 
also obtained with a sum of the inflated Gaussian dis- 
tribution and a constant background term. Increasing the 
number of free parameters improves the quality of the 
fit to the data, however, it also makes it harder to de- 
scribe the distribution of errors with a single formula. 
Safety factors for uncertainty estimates should depend 
only on the general form of the distribution of errors and 

for estimating these factors a simple one-parameter ex- 
ponential parametrization is sufficient. 

6. EXAMPLE: MONTE CARLO SIMULATIONS 
OF CANCER RISKS 

To illustrate how the statistics of past errors can be 
used in the development of improved safety factors for 
risk estimates let us consider the Incremental Lifetime 
Cancer Risk (ILCR) for children due to benzene inges- 
tion with soil.C”) One can write a model for ILCR in the 
form 

ILCR 

= C, * SingR l RBA * DpW l WpY l YpL * CF. CPF 
BW l DinY l YinL 

(5) 

Here C, is the benzene concentration in soil (mg/kg) de- 
scribed by a lognormal distribution with ~=0.84, 
0=0.77; SingR is the soil ingestion rate (mg/day) 
described by the lognormal distribution with ~=3.44, 
a=0.80; RBA= 1 is the relative bioavailability; DpW= 1 
day/week is the number of exposure days per week; 
WpY=20 weeks/year is the number of exposure weeks 
per year; YpL=lO years/life is the number of exposure 
years per life; CF= lo+ kg/mg is the conversion factor; 
and BW is the body weight (kg). It is described by the 
normal distribution with the mean value m=47.0 and the 
standard deviation s=8.3; DinY=7 (days/week) * 52 
(weeks/year) is the total number of days per year; 
YinL=70 years is the total number of years per lifetime; 
and CPF is the cancer potency factor (kgday/mg) de- 
scribed by the lognormal distribution with CL= -4.33, 
a=0.67). 

To simplify the discussion, let us assume that the 
probability distribution of body weights is well known. 
Assume that uncertainty in the values of o=ln(GSD) in 
the lognormal distributions of cancer potency factor, 
benzene concentration in soil, and soil ingestion rate can 
be characterized by a single u value applicable to the 
combined uncertainty of ILCR. Here I assume that the 
underestimation of uncertainty in measurements and pro- 
jections also apply to the exposure variables described 
by lognormal distribution. I define x as x=[ln(a) - 
ln(A)]/ln(GSD), and generate the distributions for x and 
t using Eq. (1) and Eq. (3) respectiveIy. Figure 6 shows 
the results of 1000 Monte Carlo simulation trials of Eq. 
(5) for different u values. For comparison, the ILCR ob- 
tained by multiplying the upper 95th percentiles for the 
distributions of benzene concentration, soil ingestion, 
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Fig. 6. Monte Carlo simulation of the incremental lifetime cancer risk 
(ILCR) for children caused by ingestion of benzene in soil (data from 
Ref. 22). The plot depicts cumulative probability that ILCR exceeds 
given value. Multiplying the upper 95th percentiles for the distribu- 
tions of benzene concentration, soil ingestion, and cancer potency fac- 
tor and the lower 5th percentile for body weight gives ILCR = 
8.8*10+, which is close to the ILCR value for I( = 1. 

and cancer potency factor and the lower 5th percentile 
for body weight is 8.8 l 10m9. Interestingly, in this case 
multiplying the 95th percentile upper limits gives about 
the same result as using the exponential curve with u=l. 
However, this is coincidental, and in other cases multi- 
plying the upper limits may not be conservative. The 
value u=l is typical for physical measurements but 
higher values of u will be necessary if unaccounted un- 
certainties in the lifetime exposure estimates are similar 
to those in energy and population projections. 

7. DISCUSSION OF THE RESULTS 

Statistical analysis of the distributions of the actual 
errors in natural and social sciences can provide valuable 
information about the credibility of the uncertainty es- 
timates in the models used in risk assessment. Unsus- 
pected uncertainties are probably widespread in the en- 
vironmental health risk assessments. For example, Hattis 
and BurmasteP) mention several sources of potential 
bias in the measurements of the emissions of dioxins and 
dibenzofurans from solid waste incinerators. 

Data sets for the analysis of errors can be derived, 
for example, from time trends in sequential measure- 
ments of the same physical quantity (for models used in 
natural sciences) or comparison of energy and popula- 
tion projections with actual values that become available 
later (for models of social parameters). For all data sets 
analyzed so far, distributions of deviations from the true 
values show the same pattern: Long tails that do not 
follow a normal distribution but can be pragmatically 

parametrized by an exponential distribution, with the 
slope determined by the data. 

The additional component of uncertainty derived 
from such analyses can be viewed as a safety factor ac- 
counting for overconfidence of the experts. It therefore 
incorporates the possibility of human error into the 
framework of uncertainty analysis. The observed simi- 
larities might indicate the existence of some common 
human thought processes that are responsible for the ob- 
served pattern of overconfidence.ol) Although data on 
past misunderstanding of a given situation cannot pre- 
vent our current misunderstanding of a significantly dif- 
ferent situation, statistical analysis of the frequency of 
past underestimates of uncertainty can provide useful 
&es for the choice of appropriate safety factors. 

One can hedge against unsuspected uncertainties by 
multiplying the reported uncertainty range by a default 
safety factor. The proposed procedure is as follows. 
First, find a data set of oId measurements (prior projec- 
tions) with uncertainty estimates together with more re- 
cent results. Calculate x = (a - A)/A for each estimate 
and plot the cumulative probability. Second, estimate u 
by comparing this empirical cumulative probability dis- 
tribution with the compound distribution curves shown 
in Fig. 5. Finally, use the derived u value to expand the 
confidence intervals appropriately. 

Real life is not quite that simple because only par- 
tially relevant historical databases are usually available. 
One has to select a value of u based on a data set that 
most closely resembles the data in question. From our 
previous analysis, trends in physical constants give u-1, 
and energy and population projections give u 23. More 
historical data sets, particularly from environmental 
studies, should be analyzed. In some situations, partic- 
ularly when variability is dominant and well-known, the 
derived u values will be small, indicating that unsus- 
pected uncertainties are not important. As more and 
more data are available, it will be easier to find relevant 
data sets for each particular problem and to get defen- 
sible estimates of the unsuspected uncertainties. 

A legitimate concern about the use of the default 
safety factors is that they ignore the specifics of partic- 
ular studies. Therefore these factors should be cIearly 
specified and applied only afier the uncertainty has been 
determined by a standard method, so that the operation 
may be easily reversedA4) It is important to develop ways 
of incorporating data on past overconfidence, particu- 
larly in studies where elicitation of expert opinions is 
involved. In many situations it would be preferable if 
the experts themselves-not the decision makers-could 
include safety factors appropriate for different confi- 
dence levels into their uncertainty estimates. 
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