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Results of a systematic analysis of actual vs. estimated uncertainty in scientific models are 
presented. Data sets include: i) time trends in the sequential measurements of the same 
physical quantity; ii) national population projections; iii) projections for the United States’ 
energy sector. Probabilities of large deviations from the true values are parametrized by an 
exponential distribution with the slope determined by the data. An alternative parametrization 
by Levy stable distributions, based on the fractal model for the distribution of errors, is 
described. In practice, one can hedge against unsuspected uncertainties by inflating the 
reported uncertainty range by a default safety factor determined from the relevant historical 
data sets. This empirical approach can be used in the uncertainty analysis of the low 
probability/high consequence events (such as risk to public health from exposure to 
electromagnetic fields or risk of extreme sea-level rise resulting from global warming). 

1. INTRODUCTION: THE USE OF PAST ERRORS 
TO PREDICT FUTURE ONES 

It is well known that there is a strong tendency for researchers to underestimate 
uncertainties in results, thus decreasing their reliability and increasing the probability of 
“surprises” (Pat-rat 1961; McDonald 1972; Lichtenstein et al. 1982; Henrion and Fischoff 
1986; Morgan and Hem-ion 1990; Cooke 1991). In this chapter, I present an overview of 
recent systematic analysis of actual errors in physical measurements, energy and population 
projections (Shlyakhter and Kammen 1992a,b; 1993, Shlyakhter ef al. 1993, Kammen et al. 
1993, Shlyakhter et al. 1994, Shlyakhter 1994). Standard uncertainty analysis is often plagued 
with its own uncertainties, which can have a profound effect on the tails of probability 
distributions. In particular, the commonly used 95 pe-cent confidence intervals are determined 
by the tails of distributions which are very sensitive to the underestimation of the true 
uncertainty. The history of natural and social sciences contains a wealth of data about 
reliability of uncertainty estimates in measurements and models. 

Empirical methods of building confidence intervals around point estimates are widely 
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used in weather, population, and economic forecasting (Murphy and Winkler 1977; Williams 
and Goodman 1971; Stoto 1983; Keilman 1990; Zamowitz 1992). They rely on the 
assumption that the distribution of errors in future forecasts is the same as the distribution of 
these errors in past forecasts. In engineering, the importance of empirical control of experts’ 
probability assessments is also well recognized (Cooke 1991). Science policy often hinges on 
reliable assessment of the uncertainty in predictions derived from various models. For 
example, uncertainty analysis of the low probability/high consequence events (such as 
estimating the probability of extreme sea-level rise resulting from global warming) is crucial 
for decision making in global climate change problem. It is the goal of this chapter to show 
how historic data on past overconfidence can be used to develop safety factors that can be 
applied to uncertainty estimates in current models. 

2. PHYSICAL MEASUREMENTS 

2.1 RANDOM ERRORS, SYSTEMATIC ERRORS, AND BLUNDERS 

The general concept of error in physical measurements can be conveniently subdivided 
into three broad types: random errors, systematic errors, and blunders (Parrat 1961, IS0 
1993). In general, the reported experimental error is some additive function of all three. 
Reported random errors mostly come from statistical fluctuations of the mean values obtained 
with finite number of trials (such as measurements of the length of a wire). These fluctuations 
are assumed to occur around the “true” values that would be obtained if the number of trials 
were infinite. Another source of random errors is the inherent variability of the system under 
study. In different trials, random errors can be positive or negative with equal probability. 

Systematic errors (such as changes in dimensions due to thermal expansion) are common 
to a system and usually have the same algebraic sign in different trials. Various sources of 
systematic errors become known gradually with time as results obtained by independently 
working groups are compared. Therefore, some fraction of unsuspected systematic errors is 
always present in published uncertainty estimates. Blunders are outright mistakes (such as 
errors in transcription of the data). They are supposed to be identified and discarded before 
the uncertainty of the result is evaluated, but this is not always feasible. Routine scientific 
data sets contain 510% of gross errors (Hampel et al. 1986). 

Uncertainties associated with random and systematic errors (“type A” and “type B” 
uncertainties) are combined using first-order Taylor series. This “combined standard 
uncertainty” (IS0 1993) then serves as the basis for calculating intervals corresponding to the 
required level of confidence. If the combined standard uncertainty is not dominated by type 
B uncertainty, then by the Central Limit Theorem (CLT) the distribution of the arithmetic 
mean of mary observations around the true value is asymptotically normal. 

Combined uncertainty is usually reported as an average of many trial measurements 
(corrected for all recognized systematic effects), A, and an associated standard deviation, A. 
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If the actual value of this quantity is a then the normalized deviation x = (a - ,4)/A follows 
the standard normal distribution. In that distribution, the range A f 1.96A has a 95 percent 
probability of including a. The presence of systematic errors, however, violates the 
assumptions necessary for use of the CLT. If most of the uncertainty comes from systematic 
errors, the usual justification for normal distribution does not apply. Despite this fact, the 
normal distribution is often a reasonable approximation for small deviations and remains 
implicit when researchers report measured values and their corresponding uncertainties. 

2.2 ANALYSIS OF TRJ2NDS IN PHYSICAL MEASUREMENTS 

The first attempts to quantify overconfidence in physical measurements come from the 
work of Bukhvostov (1973) and Henrion and Fischoff (1986). They compared elementary 
particle properties and fundamental constants in early compilations with much more accurate 
values taken from a more recent compilation. A convenient measure of the deviation of 
“new” values from the “old” values is the normalized deviation x = (a - A)/A, with Q the 
exact value, A the measured value, and A the old standard deviation. 

" -'--0.0 1.0 2.0 3.0 4.0 5.0 6.0 
1x1 

Figure 1. Probability of unexpected results in physical measurements. The plots show the 
cumulative probability, S(x)= S ,“p(t)dt, that new measurements (a) will be at least 1 x 1 
standard deviations (A) away from the old results (A); x = (a - A)/A as defined in the text. 
The cumulative probability distributions of lx 1 are shown for the three dam sets: particle data 
(LBL (1991); heavy solid line); magnetic moments of excited nuclear states (Avotina (1982); 
dotted line), neutron scattering lengths (Koester et al. (1991); heavy dashed line). Also 
plotted is a cumulative normal distribution, erfc(xfl) (thin solid line with markers), and 
compound exponential distribution with parameter u= 1 from Figure 5 (solid line). 
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Shlyakhter et al. (1992a,b; 1993) expanded original studies by following trends in data 
sets derived from nuclear and particle physics: masses and lifetimes of elementary particles, 
magnetic moments and lifetimes of excited nuclear states, and neutron scattering lengths. All 
data sets were first converted into a standard format. Successive measurements of the same 
quantity comprised a block of data; a data set typically consisted of several hundred such 
blocks. In order to limit the effects of “noise” in the data on final results, two selection 
criteria were applied: i) new stated uncertainty had to be much smaller than the old one: 
AO,,,l& 2 4; ii) only cases in which deviation from the true value did not exceed ten 
standard deviations were included in the analysis (in this way most blunders were excluded). 
The results confirm the earlier findings that a normal distribution grossly underestimates the 
probability of large deviations from the expected values. A new finding is that the pattern of 
overconfidence is similar in different kinds of measurements. 

One can also look at the trends in the measurements of the same quantity in order to see 
whether experts become less overconfident with time. This is shown in Figure 2, where the 
results of successive measurements of a fundamental quantity, neutron lifetime, are presented 
together with the corresponding x values (data compiled by Yerozolimsky 1993). The “true” 
value a is calculated as the weighted average of the most recent measurements. Absolute 
errors decrease with time, but normalized errors, x, do not decrease. 

year of publication 

Figure 2. Trends in the measured values of the neutron lifetime. The error, a-A(t), decreases 
with time and the measured values converge to a “true” value (heavy solid line; see scale on 
the left Y axis). Here a is the “true” value calculated as the weighted average of four 
measurements done in 1990; A(t) is the value measured at time t. Trends in the normalized 
deviations from the true value (heavy dashed line; see scale on the right Y axis). Plotted is 
the quantity x(t) =[a-A(t)]/A(t) vs. time; A(t) is the standard error estimated at time t. 
Normalized errors do not decrease with time and many deviations exceed two standard errors. 
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3. MODELS OF SOCIAL PARAMETERS: 
POPULATION AND ENERGY PROJECTIONS. 

3.1 UNCERTAlNTY IN FUTURE FORECASTS 

Uncertainty in future forecasts is defined less formally than uncertainty in physical 
measurements. In this section an algorithm for analysis of uncertainty in historical forecasts 
is presented. One can estimate the standard deviation A of an equivalent normal distribution 
and then draw the empirical probability distributions of the deviations of the old forecasts 
from the true values normalized by A. Experts may not necessarily imply the normally 
distributed error terms, however, the users of the results tend to base their decisions on the 
assumption that deviations exceeding several uncertainty ranges are improbable. Comparison 
of errors in historical data sets with those predicted by the normal distribution provides a 
useful measure of the credibility of current uncertainty estimates. 

Uncertainty in the forecasts is usually presented in the form of “reference,” “lower” and 
“upper” estimates (R, L, and U respectively) that are obtained by running a model with 
different sets of exogenous parameters (e.g. the annual rate of growth). The range of scatter 
around the reference value R does not formally define a Gaussian standard deviation because 
the fundamental uncertainties involved (e.g. the rate of future economic growth) are 
frequently not stochastic. However, it is reasonable to assume that the range of parameter 
variation presented by a forecaster represents a subjective judgment about the probability that 
the true value T E [L, U]. Generally, lower and upper bounds present what is believed to 
be an “envelope” most likely to bracket the true value and include the majority of possible 
outcomes. 

Note that using the bounded distributions (such as triangular) assigns zero probability to 
large deviations. Historical data presented below, however, suggests that deviations far 
exceeding the expected uncertainty range are not uncommon. Therefore, using a normal 
(unbounded) distribution as a frame of reference underestimates true overconfidence. 

The standard deviation of the equivalent normal distribution is calculated as follows: 

a) Specify the subjective probability (Y that the true value will lie between the low (L) and 
high (U) estimates. I assume o=68%; larger values of a! increase the discrepancy between 
the Gaussian model and that calculated by this method. 

b) Draw an equivalent normal distribution that would have a specified cumulative 
probability (Y between L and U. For 01 = 68 % the standard deviation of the equivalent normal 
distribution is (U - L)/2 so that x=2 . (T-R)I(lJ-L). Therefore this choice of QI corresponds 
to the usual practice of splitting the uncertainty range in half and using it as a surrogate of 
standard deviation. 



482 

c) If the reference value (R) is not in the middle of the (L, U) interval, x is defined using 
the uncertainty range on the same side of R as T: x=(T-R)I(R-L) for R > T and 
x = (T-R)/(lJ-R) for R < T . 

3.2 POPULATION PROJECTIONS 

The history of population projections provides an opportunity to test the reliability of 
uncertainty estimates in demographic models. Shlyakhter and Kammen (1992a,b; 1993) 
analyzed United Nations population projections, made in 1972, for the year 1985, census data 
for which can serve as the set of “exact” values, a. 

The population data base includes projections from 164 nations with population exceeding 
100,000 presented in the form of “high” and “medium” and “low” variants for each nation 
(UN 1991). Data for 31 countries were excluded due to extreme errors resulting for example 
from unanticipated international migration and cases of politically motivated reporting bias. 
Data for 133 nations satisfying the criteria 1 x 1 < 10 were included in the analysis. 

0.01 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 

IXI 

Figure 3. Population projections. The plots depict the cumulative probability, 
S(x) = j YJp(t)dt, that true values 0 will be at least 1 x ( standard deviations (A) away from 
the reference value of old projections (R). The population data base is described in the text. 
The cumulative probability distributions of 1x1 are shown for the total dataset of 133 
countries (solid line) and for a subset of 37 industrialized countries (heavy dashed line). Also 
shown are the normal distribution (solid line with markers) and the compound distribution 
with u=3 from Figure 5 (heavy solid line). 
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The results are shown in Figure 3. Because all the population estimates come from an 
authoritative source - namely, the United Nations - it might be expected that systematic errors 
would be small, representing a well-calibrated model. The unsuspected uncertainty, however, 
is very large. Data for 37 industrialized countries (where data are generally more reliable) 
show a little less surprise, but probability of large errors is still grossly underestimated by 
the normal distribution. 

3.3 ENERGY PROJECTIONS 

Forecast of future energy consumption is a prerequisite for many major economic and 
policy decisions, such as how best to reduce carbon dioxide emissions to alleviate global 
warming, or how best to stimulate the pace of development of alternate sources of energy. 
Analysis of credibility of uncertainty estimates was performed using the largest coherent set 
of US energy forecasts for the year 1990 A.D., the Annual Energy Outlook (AEO 1992; 
Kammen et al. (1993) and Shlyakhter et al. (1994)). 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
IXI 

Figure 4. Annual Energy Outlook projections. The presentation is as in Figure 3: 1983 to 
1990 (solid line); 1985 to 1990 (dashed line); 1987 to 1990 (heavy dotted line), aggregated 
sectors of economy (heavy dashed line); normal distribution (solid line with markers); 
distribution with u=3.4 (heavy solid line). 

AEO projections for 1990 made in 1983, 1985, and 1987 consist of 182, 185, and 177 
energy producing or consuming sectors of the U.S. economy respectively. The variation in 
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the number of sectors resulted because the low and high projections coincided in some cases, 
and no corresponding uncertainty range could be derived. 

In 47, 50, and 47 cases respectively, the x values (calculated as described in section 3.1) 
exceeded 100; such cases were omitted as they apparently could not be due to parametric 
uncertainty of the AEO model. For all remaining cases the x values were calculated and the 
frequency distributions analyzed. The distribution of signed x values is approximately 
symmetric with respect to zero. There is no large systematic bias (e.g. a gross 
underestimation of energy consumption in all or many sectors) and no strong trends in the 
scattergrams of x values; this indicates that the forecasts are generally independent. 

Figure 4 shows the cumulative probability distributions of 1 x 1 for the projections made 
for 1990 in 1983, 1985, and 1987 together with the Gaussian and exponential distributions. 
The three empirical distributions are strikingly similar. Although the absolute error in 
forecasts made in 1987 for 1990 is somewhat smaller than that made in 1983 for 1990, the 
range of uncertainty is also smaller so that the probability of “large” deviations relative to the 
observed uncertainty is roughly the same as for the other two years. One would expect that 
energy forecasts for aggregated sectors of economy would be more reliable than forecasts for 
individual sectors. However, this appears not to be the case (Figure 4, heavy dashed line). 

4. PARAMETRIZATION OF THE OBSERVED DI!3TRIBUTION OF ERRORS 

4.1 EXPONENTIAL PARAMETRIZATION 

Bukhvostov (1973) and Shlyakhter and Kammen (1993) suggested simple heuristic 
arguments to describe how an exponential distribution of errors might arise. Let us assume 
that the estimate of the mean, A, is unbiased but that the estimate of the true standard 
deviation, A’, is randomly biased with a distribution f(t) where t=A’/A. Here A is the 
estimated standard deviation. In other words, I assume that the deviations normalized by A’, 
x ‘=&4)/A’, follow the standard normal distribution while the deviations normalized by A, 
~=(a-A)/A, follow a normal distribution with a randomly chosen standard deviation t: 

X2 

p,(x)= l e-3 

fit 

Integrating over all values oft gives a compound distribution: 

X2 

p(x)=& o 
s 

-+f(t)e-~ 

(1) 

(1) 
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If f(t) has a sharp peak near t = 1, Eq. (2) reduces to the normal distribution. If f(t) is 
broad, however, the result is different. For simplicity, let us assume that for large t, f(f) 
follows the Gaussian distribution with the standard deviation u: f(t) - txp[-f/(2u2)]. The 
main contribution to the integral in Q.(2) comes from the vicinity of the saddle point where 
the exponential term reaches a maximum (for t=t-: trW=u 1 x 1 ). It is straightforward to 
show that, for large values of x, the probability distribution p(x) is not Gaussian but 
exponential: p(x) - expf-lxl/u). In order to reflect the fact that experts are mostly 
overconfident (A’ r: A), I use a truncated normal form off(t): 

f(t)=O,tsl 

d-- 

(t-l) 2 
f(t)= $$e-T , t>1 

(3) 

0.01 - I I I ! II 3:O t 11 11 ' 1 
0.0 1.0 2.0 4.0 5.0 6.0 7.0 
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Figure 5. One-parameter family of compound distributions. Parameter u is defined in 
Eq. (3); it is a measure of uncertainty in the standard deviation A). The values of u are 
indicated in the figure. The curves demonstrate the continuum of probability distributions, 
from Gaussian (u=O) to exponential (U > 1). 
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Integrating Eq. (2) with f(t) from Eq. (3) gives the cumulative probability S(x) of 
deviations exceeding 1 x ) : 

(t-l)’ -- 
m2 erfct +ck (0 

The normal (U = 0) and exponential distributions (U > 1) are members of a single- 
parameter family of curves (Figure 5). For quick estimates for u 2 1, x L 3, one can use 
the approximation e- 1 x 1 ‘(O.‘” + O@. In this framework, the parametric uncertainty can be 
quantified by analyzing the record of prior projections and estimating the value of U. Data 
presented in Figures 1,3,4 show that u - 1 for physical constants and u - 3 for population 
and energy projections. 

Parametrization with compound distributions described above is not the only one possible. 
For the data sets of physical measurements shown in Figure 1, formal tests for exponentiality 
based on Shapiro-Wilk W-statistics (Shapiro and Gross 1981) cannot reject exponential 
parametrization at the 95% level, but only if the data set is limited to ( x 1 < 4. Further work 
on parametrizations for different types of data is needed. One possibility is discussed below. 

4.2 LEVY DISTRIBUTION AND FRACTAL MODEL FOR ANALYSIS OF ERRORS 

The total error in a physical measurement or in the value of a model parameter is a sum 
of many random variables. Each single source of error is represented by one term in the sum. 
It is important to realize that there is no upper limit for possible errors. In fact, there is a 
wide spectrum of uncertainties extending from negligible systematic uncertainties to gross 
errors caused by the use of a wrong model or by a blunder. An analyst usually has a scale 
in mind for “important” uncertainties: smaller uncertainties are assumed to be negligible and 
are excluded from the detailed analysis. “Important” uncertainties are carefully evaluated and 
combined to produce the final estimate of the combined standard uncertainty. However, errors 
of larger scales, particularly those arising from the unrecognized uncertainties, are also 
possible. Although such gross errors are much less frequent than small errors, their effect on 
the total error can be large. This heuristic model is an attempt to describe the human thought 
processes that are responsible for the observed pattern of overconfidence. 

Levy generalized the Central Limit Theorem for the case of sums of random variables 
which may have infinite second moments. Consider a random walk where each jump length 
is chosen from the distribution p(x). Levy asked when the distribution of the sum of n steps 
p,,(x) will have the same functional form as p(x). This is the basic question of the theory of 
fractals: when does the whole (the sum) look like any of its parts? Levy discovered the 
general solution to this problem (Mandelbrot 1983; Shlesinger et al. 1993). 



A stable Levy distribution is a long-tail generalization of a normal distribution. It is the 
only possible limiting distribution for sums of independent identically distributed random 
variables (Feller 1966; Fama and Roll 1968,197l). For symmetric stable Levy distributions, 
the characteristic function is exp(-lctl”). Probability density, p(x), has two parameters: c, 
scale and (Y, characteristic exponent. 

(5) 

X 

Figure 6. Probability densities for Levy distribution with c= lb/T: cr=2 (normal, heavy solid 
line); (Y = 1.5 (dotted line); (Y = 1 (Cauchy, solid line). 

For Levy distributions, the generalized form of the reproductive property holds: for any 
two independent quantities, X1 and X,, each following the Levy distribution with parameter 
Q, the sum X=X, +X2 also follows the Levy distribution with parameter (Y and average value 
of X” is the sum of the average values of X,” and X2”. The case (u=2 is normal distribution 
with the standard deviation c . a, p(x)=1/(2c . t/;j’exp(-2/Q). For comparison with 
the standard normal distribution, I consider Levy distributions with c=lh/z and one free 
parameter, (Y. For o= 1, Levy distribution is reduced to Cauchy distribution, 
p(x) =c/[r(c?+,?]/. For 2 > Q 2 l/2, Levy distributions are tabulated (Fama and Roll 1968). 

A special example of a random walk described by a Levy distribution is provided by 
Weierstrass random walks, in which jumps of size f 1, fb, fb2 and so on can occur but 
jumps an order of magnitude longer in base b occur an order of magnitude less often in 
base a (Shlesinger et al. 1993). The characteristic exponent (fractal dimension of the random 
walk path) is given in this case by a=ln(u)/ln(b). When b2 I a, this random walk will 
produce a Gaussian distribution; when bZ > a, it will produce a Levy distribution. 
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Figure ‘7. Cumulative Levy stable distributions with c= l/&? for three values of parameter 
(Y and three data sets shown in Figure 1: o=2 (normal, solid line with markers); CX= 1.5 
(dotted line); (Y = 1 (Cauchy, solid line); particle data (heavy solid line); magnetic moments 
of excited nuclear states (heavy dotted line), neutron scattering lengths (heavy dashed line). 

Cumulative Levy stable distributions for three values of parameter (Y are shown in 
Figure 7 together with the empirical distributions for three data sets: magnetic moments, 
neutron scattering and particle data. It appears that Levy stable distributions suggest a useful 
tool for modeling the observed distributions of errors. 

5. APPLICATIONS: LOW PROBABLLITY/HIGH CONSEQUENCE EVENTS 

Choosing appropriate safety factors as a hedge against unsuspected errors is particularly 
important in the uncertainty analysis of many situations in public policy. These describe 
events with low probability but high consequences that are determined by the tails of the 
probability distributions. I illustrate possible applications using two open questions derived 
from risk analysis: estimates of risk to public health from exposure to electromagnetic fields 
and the risk of extreme sea-level rise resulting from global warming. For applications of the 
inflated confidence intervals to population and energy projections see Shlyakhter and Kammen 
(1993), Kammen et al. (1993), and Shlyakhter et al. (1994). 
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5.1 HOW CONVINCING ARJ3 OBSERVED ASSOCIATIONS OF LEUKEMIA CASES 
WITH THE EXPOSURE TO ELECTROMAGNETIC FIELDS? 

Epidemiologic studies provide the basis for many public health decisions. Results of such 
studies are usually presented in the form of the 95 percent confidence interval (CI) for 
relative risk, RR (or odds ratio, OR, for case-control studies), which accounts for the 
uncertainty caused by the finite sample size. The result is termed “statisticaIly significant 
positive finding” if the lower bound of the confidence intervaI lies above one. The trouble 
here is that possible sources of -bias are only taken into account on the basis of plausible 
assumptions which cannot be independently tested for the population under study. 
Heterogeneity of case and control groups, misclassification, and confounding in the 
observational studies are the analogues of systematic uncertainties in physical measurements 
(Armstrong et al. 1992). One can present the results of many epidemiological studies of the 
same outcome as a probability distribution of normalized deviations from RR= 1. Comparison 
with distributions of errors in other situations can help us to better understand how convincing 
the evidence of elevated risk really is. 

To illustrate this point, consider the occupational studies of the effects of electromagnetic 
fields (EMF) on leukemia compiled in a recent study (ORAU 1992, Table V-10). These are 
reported as risk ratios with 95% confidence intervals and are shown in Figure 8. The data 
set consists of 31 studies for which RR values for all types of leukemia were reported and a 
subset of 15 studies for which RR values for acute myelogenous leukemia were also reported. 
In 20 out of 31 studies, were RR values above one; in 13 of the set of 15 were RR values 
above one. Four studies out of 20 and another four studies out of 15 can be considered 
statistically positive findings. By chance alone, one would expect only 2.5% such findings 
when real risk is not elevated. However, when compared with physical measurements, this 
is less surprising. In order to perform such a comparison I assume that the true relative risk 
is RR= 1 .O and plot the probability distribution of the normalized deviations of In(RR) from 
zero. 

For example, in the study of leukemia among electricians exposed to EMF (shown,as 
study #I2 in Fig. 8; Stem et al. l!B6), an RR of 3.0 was reported. The 95% CI reported was 
1.3-7.0. Since relative risk can .ake any value from zero to infinity, transformation to the 
natural logarithm.is used to make the range of RR values symmetric around RR=I. For large 
samples, ln(RR) follows a normal distribution (Rothman 1986). The confidence interval of 
ln(RR) in the study #12 is 0.26-1.95. The standard deviation of ln(RR) is equal to ln(GSD) 
where GSD is the geometric standard deviation ofRR; ln(GSD) = (1.95-0.26)/2/1.96=0.43. 
The middle of the confidence interval, ln(R.R)= 1.10, is x= 1.10/0.43=2.56 standard 
deviations away from the postulated true value, ln(RR)=O.O. 
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Figure 8. Risks of leukemia from occupational exposure to EMF. Data for 31 studies (1 to 
31) in which combined RR for all leukemia was reported (solid error bars) and a subset of 
15 studies (32 to 45) in which RR for acute myelogenous leukemia was reported (heavy dotted 
error bars) compiled in ORAU (1992) are shown. 

. 
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Figure 9. Data from Figure 8 presented in a different format. Distributions of the normalized 
deviations of ln@R) from zero for 31 studies of all types of leukemia (solid line) and for 15 
studies of acute myelogenous leukemia (heavy dotted line) are shown together with the curves 
for u=O (normal distribution, solid line with markers), and u= 1 (heavy solid line). 
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The cumulative probability distribution of x values is shown in Figure 9 together with the 
curves for u=O (normal distribution) and u=l (for both positive and negative x). The 
observed distributions of x have longer tails than the normal distribution and are better 
described by the curve u= 1. This could be due to a truly elevated risk, a positive bias (such 
as increased chance for a positive finding to be published) or a combination of the above. 

The fraction of statistically significant positive findings is similar to the fraction of large 
deviations from the true values in physical measurements. Since the quality of data used in 
epidemiological studies is lower than the quality of data used in experimental science 
(Feinstein 1988), one is tempted to conclude from Figure 9 that the distribution of RR values 
is compatible with the null hypothesis of RR=I. However, such a conclusion would be 
premature. Epidemiologists may argue that most of the unaccounted systematic uncertainties 
(such as non-random misclassification of exposure status) move RR closer to the null value 
RR=1 (Rothman 1986) so that the observed fraction of statistically significant positive 
findings must be caused by a truly elevated risk. 

In order to find the answer, it is necessary to analyze in a similar fashion the distribution 
of RR values in several sets of observational studies where it is known that the true relative 
risk is not elevated. A comparison with the normal distribution will show if a default safety 
factor for the 95% confidence intervals could be derived. One possible source of data for 
such analysis is provided by the numerous studies of the effects of very low doses of radiation 
(Shihab-Eldin et al. 1992). Interestingly, the distribution of AML studies exibits longer tails 
than the distribution for all types of leukemia, although the systematic errors for these types 
of study should be similar; this issue deserves further analysis. 

Note that for large case-control studies that produce tight statistical confidence intervals, 
systematic errors are relatively more important than random errors. For a weakly positive 
finding even a small inflation of the confidence intervals can push the lower bound of the 
confidence interval for RR below one and make the conclusions of a study much less 
convincing (Shlyakhter et al. 1993). Epidemiologists have been generally aware of this and 
the authors of the ORAU (1992) report cited above do not consider the collection of 
occupational studies as convincing; I merely confirm and describe this statement. 
Nonepidemiological scientists, who are the consumers of such results need more than just 
reported confidence intervals. These users must retain their own common sense in evaluating 
how convincing the reported evidence is. My recommended procedure for presenting the 
results of epidemiological studies may help in this. 

5.2. PROBABILITY OF EXTREME SEA-LEVEL RISE 

Estimating the probability of extreme sea-level due to greenhouse warming is a natural 
application of the proposed technique of uncertainty characterization. The causal sequence 
leading to sea-level rise is as follows: population - > energy production - > CO2 emissions - 
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> greenhouse warming - > m-level rise. One can present the sea-level rise as a product of 
five factors which are roughly independent: 

(6) 

The first factor is the world population; the second factor is energy production per capita; 
the third factor is CO2 emissions per unit energy production; the fourth factor is temperature 
increase AT per unit rise in CQ; the fifth factor is sea-level rise per unit temperature 
increase AT. For each factor there are uncertainties in its respective model. In particular, the 
last two factors include uncertainties in physical models of climate system and sea-level rise. 
Shlyakhter and Kammen (1992a,b; 1993) applied inflated confidence intervals to the results 
of Oerlemans (1989), who assumed a normal distribution of uncertainties in the physical 
model for sea-level rise. He used a simple fit for the temperature rise based on a “Business- 
as-Usual” scenario (Houghton et al. 1990): T = ct(t - 1850)), where t is time (yrs), 01 = 27 
x 10e8 “K yrJ and assumed that A for each parameter was 35% of the mean value. 

threshold rise (cm) 

Figure 10. Projections of sea-level rise for 2050 A.D. and 2100 A.D. The probability of a 
sea-level rise greater than a given threshold is plotted for the normal probability (2050: thin 
solid line; 2100: thin dashed line) and for distribution with u= 1 in Figure 5. (2050: heavy 
solid line; 2100: heavy dashed line). Note that a fall in sea-level is also possible. 

An important assumption is that the uncertainty in individual contributions to changes in 
sea-level is characterized by combining independent normal probability distributions, hence: 
A2 = A2,, + AZ-, + A2,, f A’,& + AZ,, + internal variability. The subscripts refer to 
the effect of glaciers, the Antarctic, Greenland and West Antarctic ice sheets and thermal 
expansion of sea water. Uncertainties that are not reflected in @e combined standard 
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uncertainty in Gerlemans’ model include possible feedbacks linking the 5 factors in Eq.(6), 
and uncertainties in future emissions of greenhouse gases which are determined by population 
growth and energy demand. Since no historical datasets of actual errors in the predictions of 
sea-level rise are available, I use the value u= 1 derived from physical measurements as a 
lower estimate of unsuspected uncertainty. 

Oerlemans (1989) projects a sea-level rise with errors comparable to the estimates 
themselves: 33 f 32 cm in 2050 and 65 f 57 cm in 2100. Extreme sea-level rise, of 
perhaps 150 cm in 50 years, is of prime regulatory concern. A comparison of Gaussian and 
exponential threshold probabilities for sea-level rise by 2050 and 2100 A.D. is presented in 
Figure 10. The probability of sea level rise greater than 150 cm by the year 2050 is 5.llob 
according to Gerlemans’ model, but with the inflated standard deviations, the probability is 
1.8 percent (3,400 times greater). In my view, any policy decision should be based on the 
second, rather than the first number. 

6. SUMMARY 

Empirical analysis of actual uncertainties in scientific models can provide valuable 
information about the credibility of current uncertainty estimates. Data sets for such analysis 
can be derived, for example, from time trends in sequential measurements of the same 
physical quantity (for models used in natural sciences) or comparison of energy and 
population projections with actual values that became available later (for models of social 
parameters). For all data sets analyzed so far, distributions of deviations from the true values 
show the same pattern: long tails that do not follow normal distribution but can be 
pragmatically parametrized by exponential distribution, with the slope determined by the data. 
A more promising description is based on Levy distribution. 

The additional component of uncertainty derived from such analyses can be viewed as 
a safety factor accounting for overconfidence of the experts. It therefore incorporates the 
possibility of human error into the framework of uncertainty analysis. Although data on past 
misunderstanding of a given situation cannot prevent our current misunderstanding of a 
significantly different situation, statistical analysis of the frequency of past underestimates of 
uncertainty can provide useful clues to the choice of the appropriate safety factors. 

A legitimate concern about the use of the default inflation factors for the confidence 
intervals is that this procedure ignores the specifics of particular studies. Some of the studies 
may be of much higher quality than an average study in the data set from which the inflation 
coefficient was derived. Unfortunately, elicitation of expert opinions about each study is 
rarely feasible. The user can hedge against unsuspected uncertainties, multiplying the reported 
uncertainty range by a safety factor. As recommended in the IS0 (1993) report, this factor 
should be clearly specified and applied only after the uncertainty has been determined by a 
standard method, so that the operation may be easily reversed. 
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Another interesting question is how to truncate the long tails of the inflated probability 
distributions in order to avoid absurd conclusions. This involves the imposition of the 
constraints external to the model itself. If the constraints are sharp, it is easy to truncate the 
tails of the probability distribution (and renormalize it accordingly). However, in many cases 
available additional evidence is not sharp (such as upper limits on health risks resulting from 
the negative epidemiological studies). Such “fuzzy” external restrictions should be reflected 
in the uncertainty estimates. This question is important both for the standard uncertainty 
analysis and the improved version proposed here. 

Interestingly, the u values derived from the data sets presented here cover a rather narrow 
interval: u - 1 for physical constants and u - 3 for current models of population growth 
and energy projections. Although there are many different scientific models with specific 
sources of uncertainty, it may be possible to combine them in several distinct groups 
according to reliability of past uncertainty estimates. This would allow the use of default 
inflation factors when no historical data sets are available. 
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