
Dynamic Multidimensional Histograms 

Nitin Thaper 
MIT 

nitin@theory.lcs.mit.edu 

Piotr Indyk 
MIT 

indyk@theory.lcs.mit.edu 

Sudipto Guha 
University of Pennsylvania 

sudipto@cis.upenn.edu 

Nick Koudas 
AT&T Research 

koudas@research.att.com 

ABSTRACT 
Histograms are a concise and flexible way to construct sum- 
mary structures for large data sets. They have attracted 
a lot of attention in database research due to their utility 
in many areas, including query optimization, and approxi- 
mate query answering. They are also a basic tool for data 
visualization and analysis. 

In this paper, we present a formal study of dynamic multi- 
dimensional histogram structures over continuous data streams. 
At the heart of our proposal is the use of a dynamic summary 
data structure (vastly different from a histogram) maintain- 
ing a succinct approximation of the data distribution of 
the underlying continuous stream. On demand, an accu- 
rate histogram is derived from this dynamic data structure. 
We propose algorithms for extracting such an accurate his- 
togram and we analyze their behavior and tradeoffs. The 
proposed algorithms are able to provide approximate guar- 
antees about the quality of the estimation of the histograms 
they extract. 

We complement our analytical results with a thorough 
experimental evaluation using real data sets. 

1. INTRODUCTION 
The explosive growth of networking in recent years has 

impacted the way we carry our every day tasks. We trans- 
mit enormous amounts of information through the internet, 
in forms of emalls, streaming media (audio, video), images 
or documents on a daily basis. It is estimated that  approxi- 
mately 2.5 x 1016 bits flows through the internet on a single 
day. 

This increase in network connectivity and usage has in- 
evitably exacerbated the complexity of network manage- 
ment operations. Network operators are faced with challeng- 
ing tasks including capacity planning, fault management, 
alarm and fault correlation and dynamic bandwidth allo- 
cation on a large number of network elements. Operators, 
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as well as network management applications, rely increas- 
ingly on data analysis to facilitate these tasks. For example, 
commonly, operators require to understand or visualize the 
network traffic between two or more entities at various lev- 
els of detail. Such entities include internet domains, routers 
or even individual IP addresses. Traffic can be represented 
either as total number of bytes or packets from one entity 
to the other. Consider for example two network domains 
each encompassing a number of IP addresses. It  is often 
desired to understand the traffic volume between individual 
IP addresses in the two domains. Analysis of such informa- 
tion in terms of visualization, can provide valuable insight 
about congestion, bandwidth allocation or planning. More- 
over, query capabilities are also desirable, such as requesting 
the aggregate traffic from a range of addresses to another. 
Clearly, such a scenario can be generalized to more than 
two domains. A similar scenario could involve other net- 
work entities, such as individual routers and their interfaces 
etc. 

A natural  way to view information flow through a net- 
work, is that  of a continuous data stream. The manage- 
ment solution consists of inspecting the data  as it flows by 
and perform necessary computation for purposes of analysis 
without storing most of the data. Each entity in the stream 
or stream tuple, consists of a number of attributes. For ex- 
ample, in the network traffic domain, the stream tuple might 
have as attributes the source and destination of the packet 
information as well as a a measure attr ibute,  such as bytes 
sent t 

The database community has been on the forefront of pro- 
viding the data management solutions. However much re- 
mains to be done in this context. Network elements generate 
enormous amount of data at very high rates. The amounts 
of data as well as their generation rates render materializa- 
tion of data in secondary storage impossible. Even logging 
or accumulating the information for a small period of time 
can give rise to hundreds of gigabytes of data. As a result, 
we are seeking techniques that can effectively approximate 
the distribution of continuous streams of data in an incre- 
mental and highly efficient way. In particular, the techniques 
have to be able to maintain important  traffic statistics and 
summary diagrams without storing all (or even a significant 
fraction of) the data. 

One of the most natural  and useful summary represen- 

~This is exactly the way data is represented on IP packet 
headers. 
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tat ions of the da ta  for the purpose of da ta  visualization 
and analysis are histograms. Histograms are a very pop- 
ular and flexible way to track the distribution of the da ta  
in a database.  They have been studied extensively and a 
plethora of algorithms exists for their efficient construction 
on a single [22, 28, 7, 31, 14, 13] or on multiple [30, 33, 25, 16, 
5, 35] at tr ibutes.  Wi th  a few exceptions however, the bulk of 
the work in this area, has addressed the static version of the 
problem; that  is, given a multi  a t t r ibute  da ta  set which is 
assumed static and materialized on secondary storage, and 
a fixed amount of space, construct the "best" histogram, 
i.e., the histogram minimizing estimation error, for suitably 
defined notions of error, depending on the particular appli- 
cation context. A common assumption in various works in 
this direction is that  a new histogram is re-computed from 
the data,  when changes in the da ta  take place. As such, 
these proposals for approximating da ta  distributions do not 
gracefully address the problem in a continuous da ta  stream 
context. This is because (a) it is impossible to access the 
da ta  in a stream on demand, while storing all the da ta  on 
disk for future use is infeasible and (b) stream tuples arrive 
dynamically, so the distribution needs to be upda ted  all the 
time. 

In this paper, we address the problem of computing and 
maintaining dynamic histogram structures in a continuous 
da ta  s tream context. The techniques presented in this pa- 
per enable us to compute multi-dimensional histograms of 
the da ta  2. At the heart  of our proposal is the use of a 
dynamic summary data structure, which we refer to as a 
sketch. The sketch maintains succinctly the stream tuple 
distribution. Arrivals of new stream tuples are very effi- 
ciently reflected on the sketch. The sketch essentially acts 
as a dynamic snapshot of the s tream tuple distribution. A 
histogram structure of the mul t i -a t t r ibute  stream, can be 
efficiently and on demand derived from the sketch. 

This approach opens numerous opportunit ies for effective 
management of continuous streams. For example, assuming 
that  a sketch is associated with each network element, query- 
ing, analysis or visualization of the continuous streams from 
each network element can be efficiently performed by exam- 
ination of the histogram extracted from the corresponding 
sketch. Moreover, it offers an efficient way of comparing 
continuous streams temporally. This can be done by com- 
paring the histograms extracted from the sketches tracking 
the distribution of the same streams at different t ime peri- 
ods. For example, consider comparing the histogram of the 
traffic distribution on a router today with the corresponding 
histogram of yesterday. Alternatively, consider observing 
correlations between traffic, in terms of number of bytes ver- 
sus number of packets, by comparing the histograms of byte 
and packet distributions, and so on. In addition, sketches of 
different da ta  streams can be composed (by simply adding 
them together), yielding a sketch of the union of the indi- 
vidual da ta  streams. This becomes useful in scenarios where 
the da ta  is gathered by many separate agents (e.g., routers) 
and needs to be combined together to obtain a summary of 
the overall da ta  flow. Figure 1 presents an overview of our 
approach. 

This paper is organized as follows: In Section 2 we review 
related work. Section 3 provides definitions necessary for 

2Thus we axe able to maintain e.g., overall summary of the 
amount  of traffic from each source to each destination, by 
maintaining a two-dimensional histogram of the traffic data. 
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Figure 1: Overview of our approach: A ske tch  is in- 
cremental ly  updated from the stream, tracking the 
stream distribution succinctly. A multidimensional  
histogram is efficiently derived from the  sketch on 
demand.  

our subsequent discussions. Section 4 introduces sketches for 
multidimensional distributions and presents their operation, 
propert ies and incremental behavior. In Section 5 we present 
algorithms with approximate guarantees, to extract  a mul- 
t idimensional histogram from the sketch, and analyze their 
complexity as well as introduce various improvements on the 
basic algorithmic approaches introduced. Section 6, builds 
on the algorithmic intuition gained, and proposes empiri- 
cal approaches, improving the performance of the proposed 
algorithms further. Section 7 presents a thorough experi- 
mental evaluation of the algorithms presented herein using 
real da ta  sets. Section 8 concludes the paper  and points to 
problems of interest for further study. 

2. RELATED WORK 
Histogram structures have been studied extensively in the 

database community, due to their uti l i ty in selectivity esti- 
mation for query optimization and approximate  query an- 
swering. Early approaches to selectivity estimation and 
approximate query answering, focused on the problem of 
maintaining the distribution of a single a t t r ibute  using his- 
tograms [24]. A large body of work addresses this problem 
with the use of sampling [19, 17, 18]. Various histogramming 
algorithms [31, 27, 34, 2] as well as the provably optimal, [22] 
and near-optimal [14, 13], approaches have been proposed 
in the case of a single at tr ibute.  Dynamic maintenance of 
histograms in one dimension has also been addressed [1, 7, 
28, 10, 8]. The last two papers used sketches as a way of 
summarizing the data. 

Unlike the one-dimensional case, constructing optimal his- 
tograms in multiple dimensions is NP-hard  [29]. Thus, many 
proposals exist for this problem. Poosala and Ioannidis [30] 
proposed algorithms for multidimensional histogram con- 
struction. Several heuristics with provable worst-case guar- 
antees have been also proposed in [23, 29]. In particular,  the 
algorithm of [23] used greedy approach to solve a histogram 
construction problem in 2D. Others studied the application 
of various transforms [25, 33] to this problem. Kollios et. 
al., [16] proposed a kernel based algorithm to construct his- 
tograms in many dimensions and experimentally showed the 
algorithm superior in accuracy to previous approaches. Wu 
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et al., [35] applied the golden rule of sampling to query es- 
timation. 

All these works deal with the static version of the multidi- 
mensional histogram construction problem; that is, a com- 
mon assumption is that a histogram is rebuilt periodically 
from the data to reflect changes in the underlying data dis- 
tribution. Recently Bruno et al., [5] studied the problem of 
dynamic histogram construction in multiple dimensions by 
observation of query results. They proposed an algorithm 
named STHoles and experimentally demonstrated that  it is 
comparable in accuracy to the best algorithm proposed for 
the static version of the multidimensional histogram con- 
struction problem. 

Continuous data streams, have attracted lots of recent 
research attention in both the database [4, 26, 13, 10, 32, 
12] as well as the theory community [6, 3, 20, 15, 14, 9, 8]. 
We mention that the paper [9] investigated stream problems 
occurring in networking. Also, the paper [8] presented a 
method for reconstructing one-dimensional histograms from 
sketches. Their algorithms were obtained either by recon- 
structing histogram from wavelet representation (obtained 
as in [10]), or via greedy reconstruction of histogram (as 
in [23] or in this paper). However, their paper deals exclu- 
sively with histograms in one dimension. 

3. DEFINITIONS 
Let r be a continuous data stream on an attribute set 3 

{ A , , . . .  At}.  Without loss of generality assume that each at- 
tribute Ai, 1 < i < ~ has a numerical domain A = {1. . .  n}. 
A tuple t 6 r can be viewed as a multidimensional point 
in {1 . . .  n} t. The frequency distribution of r is a function 
D : { 1 . . . n }  t --~ { 1 . . . m } .  For t 6 { 1 . . . n }  t the value O(t) 
measures the number of times tuple t appears in r. This 
function D(t) defines a distribution over the tuples. The 
streaming data we will encounter will be a sequence of tu- 
pies ti. A simple generalization of the data would be to 
represent the data as a sequence (tl, ±) where the positive 
symbol would signal the arrival of a new tuple tl and the 
negative symbol would indicate that  the tuple ti has ex- 
pired and is no longer relevant. If we are conceptualizing a 
snapshot of the distribution at a point of time, an arrival 
corresponds to an insert operation and an expiry, a delete 
operation. We can model an update by a combination of the 
two. Thus the streaming model already captures dynamic 
databases, if we inspect the stream of transactions on the 
database. 

In this paper we address the problem of approximating 
the multidimensional frequency distribution of a stream of 
tuples. Our discussion equally applies if D is a general distri- 
bution over some discrete domain, as it would be appropriate 
for approximating a datacube [11, 33]. We restrict the bulk 
of our discussion on the use of piecewise-constant functions 
as basis functions for the approximation; we generalize to 
other functions of interest in section 5.2. 

Our goal is to approximate the distribution D by a his- 
togram. Formally a histogram is a function H : {1 . . .  n} t --r 
{1 . . .  M}. Each histogram is defined by a sequence of hy- 
perrectangles S1 . . .  Sk each Si C {1 . . .  n} t and a sequence 
of values vl . . .  v~, each corresponding to a hyperrectangle. 

3We can view the stream as a dynamic realization of the 
relation schema R(A1 , . . .  At)  but  since we will not be storing 
the relation we will avoid this representation. 

For t E {1 . . .  n} t, H(t)  represents an estimate to D(t). De- 
pending on the type of histogram, as explained below, H(t)  
is derived from one or more vi values. In practice we repre- 
sent histogram H as a sequence {(St, Vl) . . .  (S~,vk)}. We 
will consider the following classes of histograms: 

Tiling histograms: the hyperrectangles form a tiling of 
{1 . . .  n} t (i.e., they are disjoint and cover the whole 
domain). For any t we have H(t )  = vi, where t 6 Si 

Non-overlapping histograms: the hyperrectangles are 
disjoint. For any t we have H(t )  = vi, if there exists 
Si containing t; H(t)  = 0 otherwise. 

Priority histograms: the hyperrectangles can overlap. 
For any t we have H(t )  = vi where i is the largest 
index such that  t C Si; if none exists, H(t )  = O. 

Additive histograms: the hyperrectangles can overlap. 
For any t we have H(t )  = ~i:tes~ vi (the value of H(t)  
is 0 if there is no Si containing t). 

Commonly each hyperrectangle S~ is referred to as a bucket. 
We will refer to a histogram that  consists of k buckets, as 
a k-histogram. Observe that in all the above models, if we 
increase k we can capture the distribution more accurately, 
and if we were to store n t buckets, we would capture the 
data exactly. 

Observe that  both the distributions and the histograms 
can be viewed as vectors in an N-dimensional space. This 
observation is immediate for one-dimensional distributions, 
since they are represented by a vector of N = n numbers. 
However, a similar situation holds for the multidimensional 
case. For example a two-dimensional distribution D de- 
fined over an n x n square can be viewed as a point in an 
N-dimensional space for N = n 2 and in general for an e- 
dimensional distribution as a point in an N = n t space. To 
view a distribution D this way however, we assume a fixed 
way to linearize the domain, such as row major. The same 
holds for de-dimensional histograms; in this case the coordi- 
nates corresponding to regions of the n t space covered by a 
hyperrectangle Si have the same value vi. In this case we 
also assume a row major linearization order. 

In the remainder of this paper we will treat D and H both 
as functions (represented as sets) as well as N-dimensional 
vectors derived from a row major linearization, whenever 
convenient. The multidimensional histogram construction 
problem is defined as follows: 

DEFINITION 1 (OPTIMAL MULTIDIMENSIONAL HISTOGRAMS). 
Given a distribution D : {1 . . .  n} t --r {1 . . .  M} and a fixed 
budget of buckets k, construct the k-histogram, H,  minimiz- 
ing IID-HII2 (the L2 distance between the two distributions) 

Each stream operation, in the form of a tuple arrival or 
expiry, can potentially change D. Such operations can be 
interleaved arbitrarily and take place on subsets of at tr ibute 
values of a set of tuples in r. In fact this is an important 
aspect of stream analysis. Even if a k-histogram according 
to definition 1 is identified, this histogram no longer satisfies 
the criteria of the definition, when distribution D changes. 
A new histogram has to be identified using the new distribu- 
tion resulting from the change. We will present algorithms 
to maintain a snapshot of D under any sequence of changes 
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and subsequently to extract  a k-histogram according to def- 
inition 1 with approximate  guarantees. We will present our 
proposal in the  following steps: 

Firs t  we introduce a summary da ta  structure,  which 
we refer to as a sketch, capable of maintaining suc- 
cinctly a snapshot of D whenever changes occur, show- 
ing its propert ies  and incremental behavior. 

We will introduce algorithms to extract a k-histogram 
according to definition 1 with approximate guarantees 
and analyze the running t ime of these algorithms. 

Building on the intuition gained from these algorithms, 
we will propose heuristic approaches to extract  multi-  
dimensional histograms from a sketch and s tudy their 
performance and tradeoffs. 

4. SKETCHING MULTIDIMENSIONAL DIS- 
TRIBUTIONS 

We will show how to maintain an accurate snapshot of 
any distr ibution D, and show how to incrementally maintain 
it, so it remains accurate under arbi t rary modifications to 
D. For this purpose, we introduce the following Johnson- 
Lindenstrauss theorem. 

THEOREM 1. Consider a random linear mapping A : ~N 
~d, such that each entry of the matrix A is chosen indepen- 
dently from a certain distribution 4. I f  d = O(log(1/P)/e2) ,  
then the mapping A has the property that for  any fixed x E 
~N we have [[x[[2 _< ][Ax[[2 < (1 + e)Hx[l~ with probability at 
least 1 - P .  

Consider any distr ibution D viewed as a vector in an N 
dimensional space. Similarly consider a set K of N di- 
mensional vectors. A straightforward application of the 
union bound implies tha t  a random mapping, A, for d = 
O(log([KJ/e2)) has (with high probabili ty) the proper ty  tha t  
for any vector v E K,  I lv -Dl l2  _< IIAv-ADll2 _< ( l + e ) l l v -  
DIll. Thus, if we maintain only the "sketch" AD,  by mini- 
mizing IIAv-AD[[2 we can recover the element v E K which 
is closest to D in L2 sense. We will show how to perform 
this minimization in section 5. Notice however, that  this is 
clearly beneficial, because both D and v are N dimensional 
vectors, but  A D  and Av  are d-dimensional. Also, the  ma- 
trix A doesn' t  have to be stored explicitly. Its entries can be 
generated by using a pseudorandom number generator with 
jumpahead  capability. Provided that  d _< N, significant sav- 
ings in space and computat ion time can be achieved. 

Now consider the distribution D under dynamic changes 
(arrivals,expiry). Recall that  we modeled distr ibution D as 
an N dimensional vector. An arrival corresponds to an en- 
t ry  (ti, +)  in the stream; this can be represented by an N 
dimensional vector (say U), which is only non-zero at the co- 
ordinate corresponding to ti. The same approach works for 
( t i , - ) .  The non zero value determines the type  of change, 
being positive for an arrival operation and negative for an 
expiry. The change is reflected to D by a linear operation 
between the two vectors. 

4 . . . . . .  Many distr ibutions can be used here, e.g., Gausslan distri- 
bution or uniform distribution over { -1 ,  1} (after scaling). 
We use a variant of the latter.  

Matrix h 

0.61 0.13 0.67 -0.39 
0.86 0.24 -0.38 -0.21 
0.91 -0.17 0.33 -0.16 

Data D Sketch of D 

pl 11  
p2 1 2 -1.35 
p3 1 1 D as a vector (2 2 0 1) 1.99 
p4 1 2 1.32 
p5 22  

(a) 

One pass sketch computation A1 ffi A x pl A5 = A4 + h x p5 

pt -- (1 0 0 o) -0.61 -1.35 
p2 = (0 1 0 o) 0.86 1.99 
p3 = (1 0 0 o) 0.91 1.32 
p4 = (0 1 0 O) 
p5 = (0 0 0 1) 

(b) 

F i g u r e  2: A t w o  d i m e n s i o n a l  f r e q u e n c y  d i s t r i b u -  
t i o n  (a) C o m p u t i n g  t h e  s k e t c h  o f  a k n o w n  fre- 
q u e n c y  d i s t r i b u t i o n  a n d  (b)  O n e  p a s s  s k e t c h  c o m -  
p u t a t i o n  v ia  i n c r e m e n t a l  changed for each  d a t a  p o i n t  
Pi, Ai = Ai -x  + Api 

EXAMPLE 1. Consider a two-dimensional distribution D 
expressed as a four dimensional vector D = (1, 3, 4, 1). In- 
crementing 3 to $ as a result of an arrival of a value (which 
is the linear index numbering the tuple) can be performed 
via a vector U = (0,1, O, O) with the linear operation D + U. 
Similarly for  expiry operations. Observe that the result is 
an insert or delete in the linear realization. However as 
mentioned before, this is only an analogy. Since the data 
is not stored in this model of computation, an insert is not 
concretely defined. Thus we will stick to our description of 
arrival/expiry. 

Clearly, such an operation can be performed in O(1) time. 
Notice, that  this way of reflecting change to D can handle 
bulk insertions or deletions on single or multiple a t t r ibute  
values. If we compute the sketch AD,  we can maintain it 
efficiently since for any vector U expressing change we have, 
A ( D  + U) = A D  + AU. If U is non-zero only at one position 
as before, we can compute AU in O(d) time. Bulk arrivals or 
expiry are handled in a similar way. Given a specific relation 
r, of known frequency distribution, deriving A D  involves a 
simple matr ix  multiplication. Since sketches are amenable 
to incremental updates,  this suggests a strategy to compute 
the sketch of a multidimensional da ta  set from scratch with a 
single pass on r, without knowing r ' s  frequency distribution 
in advance. Provided tha t  the domain of each a t t r ibute  is 
known, we initialize matr ix  A according to Theorem 1 and 
a sketch S of size d setting each coordinate to zero. For 
each tuple t of r we perform incremental updates  to S by 
adding vector At. This operation, requires a single scan of r 
and can be performed in main memory requiring O(d × [r D 
operations. Figure 2 shows an example of this operation. 

5. EXTRACTING A HISTOGRAM FROM 
THE SKETCH 
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The key idea behind our algorithms is to t reat  the dis- 
tr ibution and the histograms as points in high-dimensional 
space. By maintaining a sketch of the distr ibution,  the prob- 
lem of finding the opt imum histogram can be solved by com- 
puting a histogram whose sketch is "close to" the  sketch of 
the da ta  distribution. Consider any distr ibution D and the 
set 7-/ of all k-histograms. Recall that  we view D and ele- 
ments of 7-/ as points in an N-dimensional  space. Observe 
that  the number of all k-histograms is at  most n2lkM ~ , since 
there are n 2t possible hyperrectangles to be considered for 
the k-histogram and each possible k hyperrectangle collec- 
tion, is a candidate.  Moreover in each collection of k hyper-  
rectangles there are M k possible values to assign. There- 
fore, a random mapping A for d = O(log(n2tkMk)/e 2) = 
O(k* log n /e  2) has (with high probabil i ty)  the proper ty  tha t  
for any histogram H we have [[H - D[[2 _< [[AH - AD[[2 < 
(1 + e ) [ [ H -  D[[ 2. Thus, by maintaining the "sketch" AD, we 
can recover the best k-histogram by minimizing [[AH-AD[[2 
over all histograms H.  

To recover the "best" histogram, we need to solve an 
optimization problem over the space of histograms. Ob- 
serve tha t  if we knew the intervals in the domain of each 
a t t r ibute  defining the histogram (without knowing the func- 
tions within each interval), we could solve the optimizat ion 
problem via the Least Squares method.  This immediately 
gives an n2~td °(1) algorithm by enumerating all possible 
subsets of hyperrectangles and finding the best  value to set 
them to. Unfortunately, such algorithms have unreasonably 
large running time. 

We will present a technique to extract  a histogram with 
provable properties from the sketch AD of a mult idimen- 
sional frequency distr ibution D, where A is chosen accord- 
ing to Theorem 1. We will show tha t  if we change the sketch 
error making it 1 + elk instead of 1 + e as dic ta ted by The- 
orem 1, we can recover approximately the s tructure of the 
best  k-histogram by extract ing only one bucket at  a time. 
This effectively allows us to apply greedy search methods 
and reduce the t ime of histogram construction. 

In the remainder of this section we focus on the problem 
of retrieving the best histogram from the sketch AD. Con- 
sider the t-dimensional distr ibution D defined over N = n l.  
Algorithm GREEDY shown in Figure 3 retrieves a priority 
histogram from the sketch AD. The algori thm will output  
an opt imum histogram with B buckets for B > k. The exact 
relationship of B to k will be established in Theorem 2. 

At first, the algorithm initializes histogram H to empty. 
The main loop of the algorithm iterates B times, and at  each 
iteration a bucket of the histogram is extracted. In each it- 
eration, the algorithm enumerates all hyperrectangles in the 
domain space {1 . . .  n} *. There are n 2t such hyperrectangles. 
Given a currently opt imum histogram H,  it considers each 
hyperrectangle S for addit ion to the opt imum histogram so- 
lution. Let Hs be the histogram obtained by adding S to 
the opt imum solution H. The value that  hyperrectangle S 
will assume, if added to the opt imum solution, is yet to be 
determined and is initialized to the indeterminate variable 
X. 

The algorithm proceeds computing the sketch of Hs. Con- 
ceptually, the sketch of Hs can be computed by viewing the 
histogram Hs as a vector / i s  of size N.  Each coordinate 
of this vector is a point p in the domain of D. I f p  g S, 
then the value of this coordinate is H(p), exactly the same 

as the est imate for p in the current opt imum histogram H. 
To compute value H(p)  from H,  since H is a priority his- 
togram, we have to search the buckets of H and find the 
bucket (hyperrectangle) with the largest index, containing 
p. Searching through the buckets of H can be performed in 
O(B) t ime in the worst case. If however, the point p belongs 
to S, then the corresponding coordinate is set to the (yet to 
be determined) value x. In step (2) of the algorithm, the 
sketch AHs is computed by mult iplying the d x N matr ix  
A with vec tor /~s-  This multiplication is performed in t ime 
O(ntd). 

Then, in step (3) the  algori thm assesses the L2 error be- 
tween the sketch of the new histogram and the sketch of the  
distribution. The resulting function Cs(x) is a quadrat ic  
function which is minimized in step (4). Notice tha t  this 
corresponds to computing minx (ax-b) 2 for some coefficients 
a, b and thus the minimum is achieved by sett ing x = 2b/a, 
which takes constant t ime. The factors in the running t ime 
are, the number of repeti t ions in the  outer  loop of the  algo- 
r i thm, B, the number of hyperrectangles,  n 2l, the  number  of 
coordinates of the sketch, d and the t ime needed to compute  
the sketch of Hs, ntB. The complexity of the algori thm is 
O(n3tdB2). Figure 4 presents an example showing the op- 
eration of the algorithm. 

The guarantee for the quali ty of the  histogram returned by 
algorithm OREEDY is established by the following Theorem. 

THEOREM 2. Let D be the distribution and let H* be the 
tiling k-histogram which minimizes HD-H*H]. If the sketch- 
ing procedure preserves the distances exactly, then the pri- 
ority histogram H reported by GREEDY satisfies [[D- Hilt <_ 
liD - H * [ I ~ .  

PROOF. The initial squared error of H is at  most  N M  2, 
since all coordinates of D are smaller than  or equal to M. 
Consider H at  any stage of the algorithm. If we added 
all rectangles from H* to H with appropr ia te  values, the 
error of H would be reduced from HD - H[[~ to [[D -- H*[[~. 
Thus, one of the rectangles must  reduce the error by at  least 
1/k. ( l iD- HI]22 - H D -  H* H~). Therefore, if we add the best  
rectangle S to H with the best  value (forming Hs) ,  we have 
that  

2 D • 2 ][D- Hsi]2--[[ - H ]]2_< ( 1 - 1 / k ) ( l i D -  Hli~ - i l D -  H*[]2 2) 

After i stages we have, 

lID - Hil ~ - []D - H ' [ [ ]  _< (1 - 1/k ) 'NM 2 

If we set i ,~ kln(NM2), then the difference becomes at 
most 

( 1  - -  1/k)~I"(NM2)NM2 < e-ln(NM2)NM3 = 1 

Since the difference must be an integer, it is equal to 0. []  

In the case of our algorithm, the sketches preserve the dis- 
tances between D and H only approximately.  However, the 
following holds: 

THEOREM 3. Let D and H* be as before. If the sketching 
procedure preserves the distances up to a factor of (1 + elk), 
then the priority histogram H reported by G R E E D Y  satisfies 
f i b -  HH22 _< (1 + e ) [ [ D -  H'H22. 
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ALGORITHM GREEDY: 
Distribution D :  {1 . . .n}  t ~ {1 . . .M} 
Histogram H with B buckets, represented as a sequence o f  hyperrectangles (Si, vl) 
Matrix A chosen according to Theorem 1 
Sketch A D  of  D computed with a single pass over the data s e t  
Set N = n t 
Initialize the histogram H to empty  
F o r i =  1 to B =  k l n ( N M )  

For all hyperrectangles S C {1.. .  n} t 
(1)Create the histogram Hs[x] obtained by adding the rectangle S to H 

and set t ing its value to the indeterminate variable x 
(2)Transform H s Ix] to its vector representation H[x] 

Compute  the sketch AI-f s[x]; note that the sketch is a linear function 
in x with values in ~d 

(3)Define Cs (x )  = ]lAHs[x] - AD[[~; observe that  Cs (x )  is a quadratic 
function o f  x 

(4)Compute x which minimizes Cs(x)  and denote i t  by x s  
Let  S be the rectangle with the smallest value o f  C s ( x s )  
Add  S to H with value x s  

F i g u r e  3: A lgor i thm GREEDY 

1 

Matrix A 

40 50 

i00 90 

First Iteration Second Iteration 
SI(01,01) xSl = 70 CSi(xS1) = I00 SI(01,01) xSl = 70 CSi(xSI) = i00 
$2(00,01) xS2 = 140 CS2(xS2) = 140 $2(00,01) xS2 = 70 CS2(xS2) = 100 
$3(Ii,01} xS3 = 140 CS3(xS3) = 140 $3(11,01) xS3 = 70 CS3(xS3) = i00 
$4(01,00} xS4 = 45 CS4(xS4) = 268.7 $4(01,00) xS4 = 45 CS4(xS4) = 70.7 
$5(01,ii) xS5 = 95 CS5(xS5) = 127.2 $5(01,11) xS5 = 95 CS5(xS5) = 70.7 
$6(00,00) xS6 = 90 XS6(xS6} = 268.7 $6(00,00) xS6 = 20 CS6(xS6) = 70.7 
$7(01,00) xS7 = 90 CS7(xS7} = 268.7 $7(01,00) xS7 = 20 CS7(xS7) = 70.7 
$8(00,ii) xS8 = 190 CS8(xS8) = 127.2 $8(00,ii) xS8 = 120 CS8{xS8) = 70.7 
$9(11,11) xS9 = 190 CS9(xS9} = 127.2 $9(ii,ii) xS9 = 120 CS9(xS9) = 70.7 

-i -I -I -I 
-i -I I 1 Aasl -280 0 AHS4 -230 50 

D approximated with 

45 45 

70 70 

AD = -280 100 
Optimum Histogram { ($1, 70), ($4, 45} } 

F i g u r e  4: E x a m p l e  run o f  a l g o r i t h m  GREEDY~ us ing  d = 2, and two d imens iona l  data  space  D (n = 2). Rectang le s  
Si r e p r e s e n t e d  w i t h  t h e i r  e x t e n t  in  each d imens ion  (horizontal~vertical) .  Af ter  the  first i terat ion rectangle  81 
is a d d e d  to  t h e  o p t i m u m  h i s t o g r a m .  A t  t h e  e n d  o f  t h e  second i terat ion 84 is a d d e d .  

Thus, algorithm GREEDY provides a method for extract- 
ing a neax-optimal histogram from a sketch which can be in- 
crementally maintained under insertions, deletions and up- 
dates, in polynomial time. However, the histogram recovery 
t ime is very high. We present a sequence of modifications to 
the basic GREEDY algorithm which will allow us to decrease 
the running t ime by several orders of magnitude. 

5.1 Improving the Running Time 
We will be considering a series of improvements to the ba- 

sic s t rategy of the algorithm in order to improve the running 
time. To ease presentation we will restrict our discussion to 
the case of two dimensions (~ = 2). Generalization to more 
dimensions is straightforward. 

Our first modification involves only the way we compute 
the sketch AI-Is[x] and does not change the semantics of the 
GREEDY algorithm. The basic idea of the improvement is 
to observe that  we can compute all sketches AI-Is [x] much 
faster than in time n 6 times the cost of computing one 
sketch. Notice that  in step (2) of algorithm GREEDY, a new 
sketch is computed for each rectangle S; this computat ion 

requires t ime O ( n 2 B )  for each rectangle S, in the worst case. 
We will take advantage of the fact that  computing each co- 
ordinate of A H s [ x ]  essentially involves summing up all en- 
tries of A corresponding to points in S. By enumerating 
the rectangles S in a proper order this can be done in con- 
stant (rather than O ( n 2 B ) )  t ime per rectangle, using only 
n additional units of storage. 

The way to perform this computation is as follows. Con- 
sider a rectangle S = { 1 . . .  u} × {1 . . .  v}. We will show how 
to compute sketches for Hs,[x] for all O(n  2) S '  that  axe 
obtained by "translating" S. Given rectangle S, the set of 
all O ( n  2) rectangles obtained from S by translation, has 
as lower left coordinates i , j ,  1 _< n -  u, 1 _< j _< n -  v. 
We show how to compute the first coordinate of the sketch 
A/fs ,  Ix]; the remaining d -  1 coordinates axe computed in 
the same way. Let a be the first row of A. Our goal is to 
compute the dot product  a • I-f  s, [x] for every S' .  We will 
actually compute a • ( / f s '  [x] - H),  (where H corresponds 
to the vector representation of H)  and then use the for- 
mula a .  I-Is, Ix] = a . . H  + a -  (/-is' [x] - _H). This formula 
demonstrates the computat ion we will perform for exposi- 
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tion purposes only; as it  will become evident, we do not need 
to compute the vector representations of H and Hs, (~r and 
Ars, respectively). Notice that  if a is the first row of A, then 
a • H is the first coordinate of the sketch of H.  It remains 
to show how to compute, a .  (Ars, Ix] - ~r). 

Let T : { 1 . . . n }  2 --+ N be a function such that  T(p) = 
a~-(Ars,[x]  - H ) ( p ) ,  where k E { 1 . . . n  2} is the index in a 
corresponding to the point p. Observe tha t  a- (Afs, [x ] -  ~r) = 
T(q), where q is the upper-left corner of S'  (with lowest val- 
ues of coordinates) and T(q) = ~ , e s ,  T(p). Thus, it suf- 

fices to compute ~'(q) for all points q, using small space (i.e., 
without explicitly maintaining the matr ix  T) and in O(n 2) 
time. This is done as follows. First ,  for each i = 1 . . .  n, 
compute and store the "column sum" Ti = ~ j=l  T(j,  i). 
Note tha t  each T~ can be computed in O(nB) time, di- 
rectly from histogram H. Then T(1, 1) = ~i~--1 Ti, T(1, 2) = 
T(1, 1) + T.+i  - T1, etc. Thus we can compute all values 
T(1, .) in O(nB) time. In order to compute values ~'(2, .), we 
first update  Ti 's via assigning Ti := Ti - T ( 1 ,  i) + T ( u +  1, i). 
Then we pzoceed as before. Altogether,  we can compute all 
values of T(q) in O(n2B) time, using n units of storage. 

We remark that  although our algorithm is not in-place 
(i.e., it  uses non-constant units of storage), the storage is 
used only temporari ly for processing information. This means 
tha t  (unlike the memory used to store sketches), the same 
memory region can be used to process histograms of many 
relations. 

We can further reduce the running t ime in practice, with- 
out sacrificing the guarantees of Theorem 3. The idea is 
to choose (in the step (4) of the algorithm) a rectangle S 
which is "good-enough", as opposed to "the best  one". Let 
Hs be the histogram resulting after adding histogram S to 
H.  Specifically, we choose the first rectangle S such that  

lID - Hll= - lID - Hsl[= > ~ / k - l i D  - HI[2 

for a parameter  a > 0. Clearly, this method  generates at 
most k /a .  l n ( N M  2) rectangles in the output  histogram. At 
the same time, if no rectangle S satisfies the above inequality 
(i.e., no choice of S yields significant improvements to the 
quality of approximation),  we can conclude tha t  

5 . 2  E x t e n d i n g  IMPROVED GREEDY t o  O t h e r  B a s i s  
F u n c t i o n s  

It is possible to extend the histogram construction to other 
basis functions namely linear or quadrat ic  functions, where 
each hyperrectangle is equipped with a function tha t  com- 
putes the contribution of this hyperrectangle towards the 
distribution of the tuple ti. For this purpose, the basic algo- 
r i thm GREEDY needs to be modified, in order to optimize 
the choice of several parameters  per bucket (e.g., a linear 
function in two dimensions is represented by 3 parameters) .  
This can be done in a way similar to the 1-dimensional op- 
t imization employed for the piecewise constant case [22]. 
All the possible ways of combining hyperrectangles, namely, 
tiling, priority, non-overlap, additive etc. apply to this  case 
as well. Linear or quadrat ic  functions usually result in a 
bet ter  fit for a single hyperrectangulax area, since we have 
more than one value to represent the function. 

6 .  F A S T E R  EMPIRICAL APPROACHES 
Inspired by the operation of the algorithms and the im- 

provements presented, in this section we reduce running t ime 
further and present empirical approaches which we subse- 
quently evaluate. Again, we restrict our discussion to the  
two dimensional case (~ = 2) to ease presentation. Our dis- 
cussion generalizes in a straightforward way to more than  
two dimensions. 

We consider replacing priority histograms in algori thm IM- 
PROVED GREEDY with additive histograms. In this case, the 
running t ime can be reduced by a factor of B. In priori ty 
histograms, step (2) of IMPROVED GREEDY the sketch of the 
candidate histogram Hs is computed from the sketch of the 
currently opt imum histogram H. Recall, tha t  during this 
computation,  one requires for each p 6 S the value H(p) ,  
to assess the difference H ( p ) -  x. Computing H(p) takes 
O(B) t ime in the worst case, since we might need to scan 
all rectangles in H to find one which contains p. However 
in the case of additive histograms, for each p 6 S the  dif- 
ference between the est imate of Hs and that  of H for point  
p is x if p 6 S or 0 otherwise, and thus updat ing AHs[x] 
is much faster. This leads to an algorithm with empirical 
running time roughly O(n 2 log 2 nd) and worst-case running 
time O(n 2 log 2 ndB). 

The second modification involves restricting the search 
HD-H[]2-]ID-H*H _< k([[D--H[[2-n~n[[D--HsH2) _< o~llD-HII2for the optimal rectangle S only among rectangles whose 

which implies that  

[[D- HI[2 _< i_~IaHD- H*II 

and thus H is already an almost optimal solution. There- 
fore, we output  a histogram with at most O(kln(NM2) /a)  
buckets, with cost at most (1 + a)  larger than the cost of 
H* (for small a) .  

The benefit of using this version of the algori thm is that  
during one enumeration of all rectangles S we can choose 
several rectangles to add to H. This version of the algorithm 
is expected to have running time reduced by a factor up to 
B. We will assume the running time of O(n4dB) in further 
analysis. We will refer to algorithm GREEDY incorporating 
these improvements as IMPROVED GREEDY 

side lengths are powers of 2; we call such rectangles regular. 
This decreases the number of rectangles to consider from 
O(n 4) to O(n 2log ~ n). Furthermore, the rectangles found 
by our algorithms, usually have bounded aspect ratios and 
therefore can be represented as a union of a few squares. 
Thus, we restrict the search space in algorithm IMPROVED 
GREEDY even further, by considering all squares of various 
sizes instead of rectangles. This shaves off a factor of log n, 
giving us a running t ime of O(n 2 log ndB) . 

Finally, we adapt  the idea of considering "good-enough" 
rectangles in the approach of algorithm IMPROVED GREEDY, 
in this case as well. A drawback of the "good-enough" algo- 
r i thm is a fixed choice of the parameter  c~. If c~ is too large, 
the resulting histogram can have large error. On the other 
hand, small value of o~ creates many buckets. To circumvent 
this issue, we use the following approach: after enumerat ing 
all rectangles S as candidates for extending H, we divide a 
by 2 and proceed further. In this way we require new rect- 
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angles to produce large gains at the beginning, and much 
smaller gains at the end when we axe close to optimum. 
The empirical GREEDY algorithm (EGREEDY) we propose, 
incorporat ing these properties is shown in Figure 5. 

7. EXPERIMENTAL EVALUATION 
In order to assess the performance and accuracy of the 

proposed algorithms, we conducted a detailed performance 
evaluation. We star t  by presenting the da ta  sets used in our 
s tudy  and continue with the description and presentation of 
our evaluation. 

Data s e t s  

We used both synthetic and real da ta  sets in our experi- 
ments. The real da ta  sets that  we used, reflect real traffic 
information collected from operational  router devices. The 
first real da ta  set, which we refer to as Tragic1, represents 
the  amount of traffic information, for a specific measure of 
traffic, at  the granularity of a second, flowing through a 
number  of network elements for the durat ion of an entire 
day 5. The second da ta  set, which we refer to as Trai~ic2 
is similar, but  the measure used to quantify traffic demands 
is different. These da ta  sets can be t rea ted  as two dimen- 
sional, by computing for every network element source and 
dest inat ion pair, the total  amount of traffic for the corre- 
sponding traffic measure in each da ta  set. There are 100 
distinct  sources and destinations in these da ta  set, thus the 
domain size is 100xl00 in these da ta  sets. 

We also use synthetic da ta  sets in our experiments.  The 
synthetic da ta  sets are generated by a mixture of three Gaus- 
sians, centered at random points, with variances 3, 3 and 5, 
respectively; we refer to this da ta  set as Gauss. All of our 
experiments  were performed on a dual-processor Intel ma- 
chine (Pentium II, 300 Mhz) with 256 Mb main memory and 
512 Kb  cache on each processor, running Redhat  Linux 6.2. 

7.1 Description of Experiments 
There are two main parameters  of interest in our ap- 

proach, namely the t ime to construct the opt imum histogram 
for the various algorithms and the accuracy of the resulting 
histograms. In this section we experimentally evaluate both 
parameters  for the algorithms proposed. 

To assess the quality of our algorithms for histogram ex- 
t ract ion from a sketch, we compare them with histograms 
computed by an algorithm that  operates directly on the 
data; that  is, the algorithm does not use sketches, but  in- 
s tead assumes the distribution of the da ta  is available and 
operates directly on the da ta  distr ibution,  computing a his- 
togram from the actual data. For this purpose, we chose 
the recently proposed STHoles algorithm [5]. The nice fea- 
ture of this algorithm is that  it is dynamic in the sense that  
it learns a good multidimensional histogram from the da ta  
by  posing queries. Moreover, it  was experimentally demon- 
s t ra ted  in [5] that  the quality of the histograms constructed 
by the STHoles algorithm is comparable with the quality of 
histograms generated by other algorithms that  have been 
previously shown to compute good multidimensional his- 
tograms. Thus, STHoles is a natural  candidate to serve as a 
benchmark in our setting. As proposed by Bruno et. al., [5], 
we trained the STHoles algorithm using 1000 queries with 

5The proprietary nature of these da ta  sets prohibits us from 
providing additional details. 

1% query volume. In contrast, our algorithms assume no a 
priori knowledge of the da ta  distribution. Wi th  a single pass 
on the da t a  (as the s tream tuples arrive) we incrementally 
upda te  a sketch of a specific size and, on demand,  we run 
our algori thms to extract  a histogram from the sketch. 

For a query Q, let AQ be the exact query answer computed 
by executing the query  On the actual data,  UQ the  query 
est imate assuming a uniform da ta  distr ibution and HQ the 
query result re turned by the histogram. Following previous 
work [5, 21] we define the absolute relative A R E  error as 

A R E  = IAQ - HQI 
IAQ - UQI 

The average absolute relative error (AARE) is computed by 
averaging ARE of a large number of queries uniformly dis- 
t r ibuted,  chosen such tha t  the volume of the range is equal 
to 1% of the total  grid volume. It is given as a percentage 
in the graphs below. 

7.2 Evaluating IMPROVED GREEDY 

The first set of experiments evaluates the quality and per- 
formance of the IMPROVED GREEDY algorithm. Figure 6(a) 
presents the  accuracy of the IMPROVED GREEDY algorithm 
as the  number of buckets increases for different sizes of the 
sketch. The da ta  set Gauss in used in this experiment with 
a domain of 20 in each dimension. The sketch size varies 
from 50 bytes to 200 bytes. One can observe from the figure 
that  accuracy increases, with increasing number of buckets 
as expected. Moreover the histograms extracted by the al- 
gori thm become more accurate as the sketch size increases, 
since the sketch tracks the underlying distr ibution more ac- 
curately. F o r  a small sketch size (50) the quality of the his- 
togram remains low if we increase the number of buckets. In 
this case, the error induced by sketching is large enough to 
obscure any differences between accurate or inaccurate his- 
tograms. However, as we increase the sketch length to 100, 
we can see an improvement of the quality for larger num- 
ber of buckets. This t rend becomes even more visible for 
sketch length 200, where the error is reduced from 35% (for 
5 buckets) to 18% (for 30 buckets). Figure 6(a) presents 
also the accuracy of algorithm STHoles as the number  of 
buckets increases. For a small number of buckets and for 
various sketch sizes algorithm IMPROVED GREEDY outper-  
forms STHoles by a large factor. Notice that  STHoles has 
the exact da t a  distr ibution at its disposal, but  algori thm IM- 
PROVED GREEDY operates only on an approximation of the 
distr ibution extracted from the sketch. As the number of 
buckets increases, STHoles improves; in this case algori thm 
IMPROVED GREEDY is comparable in accuracy. 

Figure 6 presents the t ime algorithm IMPROVED GREEDY 
requires, to extract  the opt imum histogram for 10 buckets 
and a sketch of size 50 as the domain of the underlying da ta  
space increases. The running t ime is consistent with the 
analytical expectations, and increases fast as a function of 
the domain size of the underlying stream. Thus, although 
algorithm IMPROVED GREEDY is very accurate, being able 
to be comparable (as well as outperform) in accuracy algo- 
r i thms having exact knowledge of the da ta  distr ibution,  the 
t ime required to extract  the guaranteed opt imum histogram 
is high. Similar results were obtained for the real da t a  sets 
as well as addit ional  synthetic da ta  sets we experimented 
with during the course of this study. Algorithm EGREEDY 
compensates the high running time of IMPROVED GREEDY. 
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A L G O R I T H M  E G R E E D Y :  

Distribution D : {1. . .  n} t --+ {1. . .  M}, represented as an N ---- n t vector 
Histogram H with B buckets, represented as a sequence of  rectangles (S i ,v i )  
S H  the sketch of  H, a d-dimensional vector 
Matrix A chosen according to Theorem 1 
Sketch AD of D computed with a single pass over the data set 
Parameter o~ 
Initiate the histogram H to empty 
Fori  = 1 to B : k l n ( N M  2) 

For all squares S C {1. . .  n} t 
(1)Create the histogram Hs[x] obtained by adding the rectangle S to H 

and setting its value to the indeterminate variable x 
(2)Compute the sketch AI~s[x] from S H  according to section 5.1 
(3)Define Cs(x)  = [[Air[x] - AD[[~; observe that Cs(x)  is a quadratic 

function of  x. Define C = [[SH - AD[I~ 
(4)Compute x with [[C - Cs(x)ll > ~ / k  . c and denote it by x s  

Let S be the rectangle satisfying (4) and AH'  the corresponding sketch 

Add S to H with value x s ,  set S H  = A~r' and ot -- 

Figure  5: A l g o r i t h m  E G R E E D Y  
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(a) IMPROVED GREEDY accuracy (b) extract ion t ime 

Figure 6: Data  set  Gauss:  (a) Accuracy  of  IMPROVED GREEDY a lgor i thm wi th  increasing n u m b e r  o f  bucke t s  for 
various sketch  s izes  (b) H i s t o g r a m  ex trac t ion  t i m e  for the  a lgor i thm,  for a sketch  s ize  of  50 and 10 bucke t s  
as the  domain  of  the  under ly ing  data  space  increases  

We present an evaluation of this algori thm in the sequel. 

7.3 Eva lua t ing  EGREEDY 
In this section, we evaluate the performance of EGREEDY 

using real da ta  sets. Figure 7(a) presents the accuracy of 
the histograms extracted by EGREEDY as a function of the 
total  number of buckets, for different sizes of the sketch. 
Figure 7(a) presents also for comparison, the accuracy of the 
corresponding histograms computed by algori thm STHoles 
for the same range of buckets. 

As is evident in Figure 7 for all sketch sizes, the opti- 
mal number of buckets is axound 50; increasing the number 
of buckets beyond this quanti ty essentially does not reduce 
the error any further. This can be explained by the fact 
tha t  beyond certain ranges of bucket numbers, the differ- 
ences between histograms become undetectable.  A similar 
observation is evident for the STHoles algorithm as well. In 
particular,  the improvement gained by increasing the num- 
ber of buckets beyond 50 is fairly small and uneven. Algo- 
r i thm E G R E E D Y  is comparable in accuracy to STHoles for 
small sketch sizes and capable to outperform STHoles as 

the sketch size increases, for the same ranges of buckets as 
is evident in figure 7(a). 

Although the optimal number of buckets seems invaxiant 
with respect to the sketch size, the resulting error of the 
approximation decreases significantly as the sketch size in- 
creases. For a total  bucket budget of 50, we depict  the error 
as a function of the sketch size in Figure 7(b). I t  should be 
noted tha t  the error is roughly proport ional  to the square 
root of the sketch size, which is the  dependence predicted 
by the Johnson-Lindenstranss lemma ( lemma 1). This be- 
havior is very useful, since it allows us to predict  the  sketch 
length necessary for achieving certain error. 

Figure 8(a) presents the running t ime of algori thm EGREEDY 
as a function of the number of buckets for different sketch 
sizes. For exposition purposes only, we also depict  the  t ime 
to construct the STHoles histogram. The construction t ime 
for STHoles is not really comparable with tha t  of EGREEDY 
since STHoles operates assuming tha t  the  entire da ta  is 
available and issues a large number of queries to "learn" 
the distribution. Figure 8(b) presents the  running t ime of 
EGREEDY for two different bucket budgets  increasing the to- 
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F igu re  7: E r r o r  t r e n d s  for  EGREEDY a n d  S T H o l e s  for  d a t a  set  Traffic1: (a) Errors  inc reas ing  n u m b e r  o f  b u ck e t s  
for  va r ious  ske t ch  sizes (b) E r r o r  as a f u n c t i o n  o f  ske tch  size for  50 b u c k e t s  
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F igu re  9: A c c u r a c y  o f  e x t r a c t e d  h i s t o g r a m s  for  100 
bucke t s  as  t h e  ske t ch  size increases~ for  d a t a  set  
Traffics 

tal sketch size. It is evident that the time EGREEDY requires 
to extract a good histogram from the sketch is clearly im- 
proved compared to that of GREEDY, without great loss in 
accuracy. This makes algorithm EGREEDY efficiently appli- 
cable to problems of larger scale (distribution domain sizes). 

For the case of data set Tra~cP, the overall observations 
and trends where very similar to that of Trafflcl; thus, we 
omit these graphs for brevity. We present however, in Figure 
9 the accuracy of the histograms extracted by EGREEDY for 
100 buckets as the sketch size increases. 

Finally, we visually demonstrate the quality of the his- 
tograms algorithm EGREEDY is able to extract from the 
sketch of a data set. Figure 10(a) presents the distribution 
of data set Tra~cl and Figure 10(b) its histogram approx- 
imation, using algorithm EGREEDY, with 50 buckets and a 
sketch size of 1000. The quality of approximation is visu- 
ally evident; we remark that this histogram is obtained by a 
single pass over data set Tra~cl and subsequent extraction 
from the sketch. 

8. C O N C L U S I O N S  
In this paper we have introduced a very efficient method 

to track the distribution of a multiattribute continuous data 
stream. We have presented a sketch based approach amenable 
to incremental updates to maintain a snapshot of the un- 
derlying multidimensional distribution. We proposed algo- 
rithms with approximate guarantees to extract an optimum 
multidimensional histogram from the sketch and analyti- 
cally demonstrated the accuracy and guarantees of our algo- 
rithms. These axe the first algorithms proposed with these 
properties. 

Since the running time of the optimum histogram extrac- 
tion algorithm is high, we proposed efficient empirical ap- 
proaches and we have experimentally demonstrated using 
real and synthetic data sets that  the proposed methods are 
able to approximate the best histogram solution with high 
accuracy. 

This work raises a variety of interesting questions for fur- 
ther exploration and study. In particular, the sketch-based 
technique for tracking the distribution of data streams seems 
quite versatile. Initial examination indicates that many 
static algorithms known in the literature (e.g., the hierar- 
chical partitioning methods of [29]) can be re-implemented 
to work when only the sketch of the data is available, with- 
out any access to the actual data. This raises the possibility 
of improving the quality of computed histograms even fur- 
ther, by using more elaborate algorithms than the greedy 
approach used in this paper. We plan to investigate these 
approaches in our future work in this area. 
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