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Convex Hulls
In 3-space

(sdlides mostly by Jason C. Y ang)
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Problem Statement

e Glven P: set of n pointsin 3D

e Return:
— Convex hull of P: cH(P), i.e.

smallest polyhedron s.t.

al elementsof Ponor in
the interior of cH(P).
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‘L Complexity

o Complexity of c#for npointsin 3D isO(n)

o ..because the number of edges of a convex
polytope with n verticesis at most 3n-6 and
the number of facetsis at most 2n-4

o ..because the graph defined by vertices and
edges of a convex polytope is planar

 Euler'sformula n—n,+n,=2

October 7, 2003 Lecture 10: Convex Hullsin 3D 3/41



i Complexity

 Eachfacehasat least 3 arcs
e Each arcincident to two faces
2ng2 3N,
e Using Euler
n < 2n-4 n,< 3n-6
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‘_L Algorithm

e Randomized incremental algorithm

o Steps:
— Initialize the algorithm

— Loop over remaining points
Add p, to the convex hull of P,_; to transform

Cﬂ( Pr-l) o Cﬂ( Pr)

[for integer r=1, let P.:={p,,....p,} ]
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i Initialization

e Need a cH'to start with

» Build atetrahedron using 4 pointsin P
— Start with two distinct pointsin P, say, p, and p,

— Walk through P to find p, that does not lie on the line
through p, and p,

— Find p, that does not lie on the plane through p,, p,, p;
— Specia case: No such points exist? Planar case!
» Compute random permutation p,...,p,, of
the remaining points
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‘L Inserting Points into CH

 Add p, to the convex hull of P, ,to
transform cH(P. ) to cH(P,)
e Two Cases:
1) P, isinside or on the boundary of c#(P,_,)
— Smple: cH(P,) = cH(P, ,)
2) P, Isoutside of cH(P,_,) —the hard case
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* Case 2. P, outside CH(P. ,)

* Determine horizon of p. on cH(P,_,)

— Closed curve of edges enclosing the visible
region of p, on CH(P, ,)

: .

CH(FPr_y)
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i Visibility

* Consider plane h,containing afacet fof
CH(P, 1)

* fisvisible from apoint p If that point liesin
the open half-space on the other side of h,

o)

f is visible from p,
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‘L Rethinking the Horizon

— Boundary of polygon obtained from projecting
CH(P,_,) onto a plane with p, as the center of

projection

_ } g horizon
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‘L CHP.,) CcHP,)

» Remove visible facets from c#(P._,)

e Found horizon: Closed curve of edges of c#(P._,)

* Form CH(P,) by connecting each horizon
edge to p, to create anew triangular facet

P Py
H(f

CH(Fr—1)

October 7, 2003 Lecture 10: Convex Hullsin 3D 11/41



‘L Algorithm So Far...

 Initialization
— Form tetrahedron c#H(P,) from 4 pointsin P
— Compute random permutation of remaining pts.

e For each remaining point in P

— p, IS point to be inserted
— If p, isoutside c#H(P,_,) then
* Determine visible region
 Find horizon and remove visible facets

« Add new facets by connecting each horizon edge to p,

How do we determine the visible region?
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‘L How to Find Visible Region

« Naive approach:

— Test every facet with respect to p,
— O(n?) work

e Trick isto work ahead:

Maintain information to aid in determining
visible facets.
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‘L Conflict Lists

* For each facet f maintain

Pconflict(f) D{ pr+1’ e pn}
containing points to be inserted that can see £

e For each p,, wheret>r, maintain F__ (P,
containing facets of CH(P,) visible from p,

* pand farein conflict because they cannot
coexist on the same convex hull
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Conflict Graph G

conflicts  Bipartite graph
points facels — pts not yet Inserted
‘ | — facetson c#H(P,)

o Arcfor every
point-facet conflict

il  Conflict setsfor a
T point or facet can be
J Feonflict( Pr) returned in linear time
Peonmiad /At any step of our algorithm, we know all conflicts

between the remaining points and facets on the current CH
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‘L Initializing G

 Initialize g with cH(P,) In linear time

« Walk through P, _, to determine which facet

each point can see
G

P,
P,

.
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‘L Updating G

 Discard visible facets from p. by removing
neighborsof p, In G

 Removep, from G
» Determine new conflicts G

.
Pe
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‘L Determining New Conflicts

* |f p, can see new #, it can see edge e of 1.

* eon horizon of p,, so e was already in and
visible from p, in c#H(P, )

o If p, seese, it saw either f, or f, in CH(P, )
° I:)t wasin Pcor_lfl__i.c_t(fl) or Pconflict(fz) In Cﬂ(Pr-l)

{.-'

\ £y
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‘L Determining New Conflicts

» Conflict list of #can befound by testing the
points in the conflict lists of £, and £,
incident to the horizon edge e in cH(P, )

.pt
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‘L What About the Other Facets?

P.nict(f) fOr any funaffected by p, remains
unchanged

» Deleted facets not on horizon already
accounted for

L J o)
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‘_L Final Algorithm

 Initialize c#H(P,) and G

e For each remaining point
— Determine visible facets for p. by checking G
— Remove Fqo(P;) from 74
— Find horizon and add new facetsto c#and G

— Update G for new facets by testing the pointsin
existing conflict listsfor facetsin cH(P,_,)

Incident to e on the new facets
— Delete Pr and |:conflict(pr) from G
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‘L Fine Point

 Coplanar facets
— p, liesin the plane of aface of c#H(P,,)

r ____---—__'.'.F"_" — Irjr
T L s e
————— -

* fisnot visible from p. so we merge created
triangles coplanar to 1

e New facet has same conflict list as existing facet

October 7, 2003 Lecture 10: Convex Hullsin 3D 22/ 41



Analysis
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i Expected Number of Facets Created

o Will show that expected number of facets
created by our algorithm is at most 6n-20

e |nitialized with atetrahedron = 4 facets
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i Expected Number of New Facets

e Backward analysis:
— Remove p, from cH(P,)

— Number of facets removed same as those
created by p,

— Number of edgesincident to p, in C#H(P,) is
degree of p,:

deg(p,, CH(P,))
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i Expected Degree of p,

o Convex polytope of r vertices has at most 3r-6 edges
» Sum of degrees of vertices of CH(P,) is6r-12

 Expected degree of p, bounded by (6r-12)/r

I !

E(deg(p,,CH(P,))] = e 4?::.“‘?”]”{‘:” (Fr))
l idcufﬂ CH(P,)) ? — 12
f'_"l’ [= I - E : | : .-.
6r—-12—-12
< - = 6
r—4
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i Expected Number of Created Facets

e 4 from initial tetrahedron

* Expected total number of facets created by
adding p,...,p,

M
4 4 Z Eldeg(p,, CH (P, )| <4+4+6(n—4)=6n-20.
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‘L Running Time

 |nitialization = O(nlogn)
* Creating and deleting facets = O(n)
— Expected number of facets created is O(n)

» Deleting p, and facetsin F__ i«(p,) from G
along with incident arcs = O(n)

e Finding new conflicts = O(?)
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i Total Timeto Find New Conflicts

 For each edge e on horizon we spend
O(|P(¢]) time
where P(e) :Pconfict(fl) N I:)conflict(fZ)
» Tota timeisO(Z.,, IP(e)|)

 Lemma 11.6 The expected value of 2 |P(e)|, wherethe
summation is over all horizon edges that appear at some
stage of the algorithm is O(nlogn)
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* Randomized Insertion Order
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‘L Running Time

 |nitialization = O(nlogn)

* Creating and deleting facets = O(n)
e Updating G = O(n)

e Finding new conflicts = O(nlogn)

o Total Running Timeis O(nlogn)
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‘L Convex Hullsin Dual Space

o Upper convex hull of aset of pointsis
essentially the lower envelope of a set of
lines (similar with lower convex hull and
upper envelope)

primal plane dual plane
IH(F
' gt —
. T
B e
” LE(F)
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‘L Half-Plane Intersection

e Convex hulls and intersections of half
planes are dual concepts

« An algorithm to compute the intersection of
half-planes can be given by dualizing a
convex hull algorithm. Isthistrue?
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‘L Half-Plane Intersection

Duality transform cannot handle vertical lines

 |f we do not leave the Euclidean plane, there cannot be any
general duality that turns the intersection of a set of half-
planes into a convex hull. Why?
Intersection of half-planes can be empty!
And Convex hull iswell defined.

e Conditions for duality:
— Intersection is not empty
— Point in the interior is known.
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i Voronol Diagrams Revisited

o U:=(z=x°+y?)
a paraboloid

e pispoint on plane z=0

* h(p) isnon-vert plane
Z:2pxX+2pyy'(p2x+p2y)

e (isany point on z=0

» vdist(q',q(p)) = dist(p,0)?

* h(p) and paraboloid
encodes any distance p to Fa(p)
any point on z=0 |

dist( p, g )2
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‘L Voronol Diagrams

* H:={h(p) |p U P}
* 1IE(H) upper envelope of the planesin H

* Projection of UZE(H) on planez=01s
Voronol diagram of P
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Simplifjed Case

Voronoi cell of py

Voronoi cell of Pl

h(p2)  h(p3) h(p1) Voronoi cell of p>
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‘L Demo

o http://www.cse.unsw.edu.au/~lambert/javal
3d/delaunay.html
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* Delaunay Triangulations from CH

|
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i Higher Dimensional Convex Hulls

o Upper Bound Theorem:
The worst-case combinatorial complexity
of the convex hull of n pointsin d-dimensional
spaceis ©(nlLd2)),

« Our algorithm generalizes to higher
dimensions with expected running time of

@(nLdIZJ)
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i Higher Dimensional Convex Hulls

e Best known output-sensitive algorithm for
computing convex hullsin R is:

O(nlogk +(nk) 1-1/( d/i2 +1)] OgO(n))

where k is complexity
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