
Polygon Triangulation

(slides partially by Daniel Vlasic )



Triangulation: Definition

• Triangulation of a simple polygon P: 
decomposition of P into triangles by a 
maximal set of non-intersecting 
diagonals
• Diagonal: an open line segment that 
connects two vertices of P and lies in the 
interior of P
• Triangulations are usually not unique 



Motivation: Guarding an Art Gallery

• An art gallery has 
several rooms 

• Each room guarded 
by cameras that see 
in all directions

• Want to have few 
cameras that cover 
the whole gallery 



Triangulation: Existence

• Theorem:
– Every simple polygon admits a triangulation
– Any triangulation of a simple polygon with n vertices 

consists of exactly n-2 triangles
• Proof: 

– Base case: n=3
• 1 triangle (=n-2) 
• trivially correct 

– Inductive step: assume theorem holds for all m<n



Inductive step

• First, prove existence 
of a diagonal: 
– Let v be the leftmost 

vertex of P
– Let u and w be the two 

neighboring vertices of 
v

– If open segment uw
lies inside P, then uw
is a diagonal 



Inductive step ctd.

• If open segment uw does 
not lie inside P
– there are one or more 

vertices inside triangle uvw
– of those vertices, let v' be 

the farthest one from uw
– segment vv' cannot 

intersect any edge of P, so 
vv' is a diagonal 

• Thus, a diagonal exists 
• Can recurse on both 

sides
• Math works out



Back to cameras

• Where should we put the cameras ?
• Idea: cover every triangle

– 3-color the nodes (for each edge, endpoints 
have different colors)

– Each triangle has vertices with all 3 colors

– Can choose the least frequent color class 
n/3 cameras suffice

– There are polygons that require n/3
cameras 



3-coloring Always Possible

• Take the dual graph G
• This graph has no cycles
• Find 3-coloring by DFS 

traversal of G:
– Start from any triangle and 3-

color its vertices
– When reaching new triangle 

we cross an already colored 
diagonal 

– Choose the third color to 
finish the triangle



How to triangulate fast

• Partition the polygon into 
y-monotone parts, i.e., 
into polygons P such that 
an intersection of any 
horizontal line L with P is 
connected

• Triangulate the monotone 
parts



Monotone partitioning

• Line sweep (top down)
• Vertices where the direction 

changes downward<>upward 
are called turn vertices

• To have y-monotone pieces, we 
need to get rid of turn vertices:
– when we encounter a turn vertex, it 

might be necessary to introduce a 
diagonal and split the polygon into 
pieces

– we will not add diagonals at all turn 
vertices



Vertex Ontology



Adding diagonals

• To partition P into y-monotone 
pieces, get rid of split and merge 
vertices 
– add a diagonal going upward from 

each split vertex 

– add a diagonal going downward 
from each merge vertex

• Where do the edges go ? 



Helpers

• Let helper(ej) be the 
lowest vertex above 
the sweep-line such 
that the horizontal 
segment connecting 
the vertex to ej lies 
inside P



Removing Split Vertices

• For a split vertex vi, let ej
be the edge immediately to 
the left of it 

• Add a diagonal from vi to 
helper(ej)



Removing Merge Vertices

• For a merge vertex vi, let ej be 
the edge immediately to the 
left of it 

• vi becomes helper(ej) once we 
reach it 

• Whenever the helper(ej) is 
replaced by some vertex vm, 
add a diagonal from vm to vi

• If vi is never replaced as 
helper(ej) , we can connect it to 
the lower endpoint of ej



The algorithm

• Use plane sweep method 
– move sweep line downward over the plane (need to 

sort first)
– halt the line on every vertex 
– handle the event depending on the vertex type 
– events: 

• edge starts (insert into a BST) 
• edge ends (add a diagonal if the helper is a merge vertex, 

remove from BST) 
• edge changes a helper (add a diagonal if old helper was a 

merge vertex) 
• new vertex is a split vertex (must add a diagonal) 

• Time: O(n log n)



Triangulating monotone polygon



Altogether

• Can triangulate a polygon in O(n log n)
time

• Fairly simple O(n log*n) time algorithms
• Very complex O(n) time algorithm


