
September 18, 2003 Lecture 5: Orthogonal Range
Queries

Orthogonal Range Queries

Piotr Indyk

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Range Searching in 2D

• Given a set of n points,
build a data structure
that for any query
rectangle R, reports all
points in R

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Kd-trees [Bentley]

• Not the most efficient solution in theory
• Everyone uses it in practice
• Algorithm:

– Choose x or y coordinate (alternate)
– Choose the median of the coordinate; this defines a horizontal or

vertical line
– Recurse on both sides

• We get a binary tree:
– Size: O(N)
– Depth: O(log N)
– Construction time: O(N log N)

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Kd-tree: Example

Each tree node v corresponds to a region Reg(v).

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Kd-tree: Range Queries

1. Recursive procedure, starting from v=root

2. Search (v,R):
a) If v is a leaf, then report the point stored in v if it lies

in R
b) Otherwise, if Reg(v) is contained in R, report all

points in the subtree of v
c) Otherwise:

• If Reg(left(v)) intersects R, then Search(left(v),R)
• If Reg(right(v)) intersects R, then Search(right(v),R)

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Query demo

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Query Time Analysis

• We will show that Search takes at most
O(n1/2+P) time, where P is the number
of reported points
– The total time needed to report all points in

all sub-trees (i.e., taken by step b) is O(P)
– We just need to bound the number of nodes

v such that Reg(v) intersects R but is not
contained in R. In other words, the boundary
of R intersects the boundary of Reg(v)

– Will make a gross overestimation: will bound
the number of Reg(v) which are crossed by
any of the 4 horizontal/vertical lines

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Query Time Continued

• What is the max number Q(n)
of regions in an n-point kd-tree
intersecting (say, vertical) line ?
–If we split on x, Q(n)=1+Q(n/2)

–If we split on y, Q(n)=2*Q(n/2)+2
–Since we alternate, we can write

Q(n)=3+2Q(n/4)

• This solves to O(n1/2)

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Analysis demo

September 18, 2003 Lecture 5: Orthogonal Range
Queries

A Faster Solution

• Query time: O(log2 n+P)
• Space: O(n log n)

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Idea I: Ranks

• Sort x and y coordinates of input
points

• For a rectangle R=[x1,x2]×[y1,y2],
we have point (u,v)∈R iff
– succx(x1) rankx(u) predx (x2)
– succy(y1) ranky(v) predy (y2)

• Thus we can replace
– Point coordinates by their rank
– Query boundaries by succ/pred; this

adds O(log n) to the query time

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Dyadic intervals

• Assume n is a power of 2. Dyadic intervals are:
– [1,1] , [2,2] … [n,n]
– [1,2] , [3,4] … [n-1,n]
– [1,4] , [5,8] … [n-3,n]
– ….
– [1…n]

• Any interval {a…b} can be decomposed into
O(log n) dyadic intervals:
– Imagine a full binary tree over {1…n}
– Each node corresponds to a dyadic interval
– Any interval {a…b} can be “covered” using O(log n)

sub-trees

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Range Trees

• For each level
l=1…log n, partition
x-ranks using level-l
dyadic intervals

• This induces vertical
strips

• Within each strip,
construct a BST on y-
coordinates

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Range Trees

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Range Trees

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Analysis

• Each point occurs in log n different levels
• Space: O(n log n)
• How do we implement the query ?

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Query procedure

• Consider query
R=X×Y

• Partition X into
dyadic intervals

• For each interval,
query the
corresponding
strip BST using Y

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Query procedure

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Query procedure

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Analysis ctd.

• Query time:
– O(log n + output) time per strip
– O(log n) strips
– Total: O(log2 n+P)

• Faster than kd-tree, but space O(n log n)
• Recursive application of the idea gives

– O(logd n) query time
– O(n logd-1 n) space

for the d-dimensional problem

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Approximate Nearest Neighbor
(ANN)

• Given: a set of points P
in the plane

• Goal: given a query point
q, and ε>0, find a point
p’ whose distance to q is
at most (1+ε) times the
distance from q to its
nearest neighbor

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Our “solution”

• We will “solve” the problem using kd-trees…

• …under the assumption that all leaf cells of the
kd-tree for P have bounded aspect ratio

• Assumption somewhat strict, but satisfied in
practice for most of the leaf cells

• We will show
– O(log n/ε2) query time
– O(n) space (inherited from kd-tree)

September 18, 2003 Lecture 5: Orthogonal Range
Queries

ANN Query Procedure

• Locate the leaf cell
containing q

• Enumerate all leaf cells C
in the increasing order of
distance from q (denote it
by r)
– Update p’ so that it is the

closest point seen so far
– Note: r increases, dist(q,p’)

decreases

• Stop if dist(q,p’)<(1+ε)*r

September 18, 2003 Lecture 5: Orthogonal Range
Queries

Analysis

• Running time:
–All cells C seen so far (except maybe for the

last one) have diameter > ε*r
–…Because if not, then p(C) would have been a

(1+ε)-approximate nearest neighbor, and we
would have stopped

–The number of cells with diameter ε*r, bounded
aspect ratio, and touching a ball of radius r is at
most O(1/ε2)

