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Range Searching in 2D

• Given a set of n points,  
build a data structure 
that for any query 
rectangle R, reports all 
points in R
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Kd-trees [Bentley]

• Not the most efficient solution in theory
• Everyone uses it in practice
• Algorithm:

– Choose x or y coordinate (alternate)
– Choose the median of the coordinate; this defines a horizontal or 

vertical line
– Recurse on both sides

• We get a binary tree:
– Size: O(N)
– Depth: O(log N)
– Construction time: O(N log N)
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Kd-tree: Example

Each tree node v corresponds to a region Reg(v).
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Kd-tree: Range Queries

1. Recursive procedure, starting from v=root

2. Search (v,R):
a) If v is a leaf, then report the point stored in v if it lies 

in R
b) Otherwise, if Reg(v) is contained in R, report all 

points in the subtree of v
c) Otherwise:

• If Reg(left(v)) intersects R, then Search(left(v),R)
• If Reg(right(v)) intersects R, then Search(right(v),R)
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Query demo
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Query Time Analysis

• We will show that Search takes at most 
O(n1/2+P) time, where P is the number 
of reported points
– The total time needed to report all points in 

all sub-trees  (i.e., taken by step b) is O(P)
– We just need to bound the number of nodes 

v such that Reg(v) intersects R but is not 
contained in R. In other words, the boundary 
of R intersects the boundary of Reg(v)

– Will make a gross overestimation: will bound 
the number of Reg(v) which are crossed by 
any of the 4 horizontal/vertical lines
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Query Time Continued

• What is the max number Q(n)
of regions in an n-point kd-tree 
intersecting (say, vertical) line ?
–If we split on x, Q(n)=1+Q(n/2)

–If we split on y, Q(n)=2*Q(n/2)+2
–Since we alternate, we can write 

Q(n)=3+2Q(n/4)

• This solves to O(n1/2)
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Analysis demo
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A Faster Solution

• Query time: O(log2 n+P)
• Space: O(n log n)
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Idea I: Ranks

• Sort x and y coordinates of input 
points

• For a rectangle R=[x1,x2]×[y1,y2],
we have point (u,v)∈R iff
– succx(x1) rankx(u) predx (x2)
– succy(y1) ranky(v) predy (y2) 

• Thus we can replace
– Point coordinates by their rank
– Query boundaries by succ/pred; this 

adds O(log n) to the query time
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Dyadic intervals

• Assume n is a power of 2. Dyadic intervals are:
– [1,1] , [2,2] … [n,n]
– [1,2] , [3,4] … [n-1,n]
– [1,4] , [5,8] … [n-3,n]  
– ….
– [1…n]

• Any interval {a…b} can be decomposed into  
O(log n) dyadic intervals:
– Imagine a full binary tree over {1…n}
– Each node corresponds to a dyadic interval
– Any interval {a…b} can be “covered” using O(log n)

sub-trees
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Range Trees

• For each level 
l=1…log n, partition 
x-ranks using level-l
dyadic intervals

• This induces vertical 
strips

• Within each strip, 
construct a BST on y-
coordinates
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Range Trees
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Range Trees
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Analysis

• Each point occurs in log n different levels
• Space: O(n log n)
• How do we implement the query ?
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Query procedure

• Consider query 
R=X×Y

• Partition X into 
dyadic intervals

• For each interval, 
query the 
corresponding 
strip BST using Y
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Query procedure
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Query procedure
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Analysis ctd.

• Query time:
– O(log n + output) time per strip
– O(log n) strips
– Total: O(log2 n+P)

• Faster than kd-tree, but space O(n log n)
• Recursive application of the idea gives

– O(logd n) query time
– O(n logd-1 n) space

for the d-dimensional problem



September 18, 2003 Lecture 5: Orthogonal Range 
Queries

Approximate Nearest Neighbor 
(ANN)

• Given: a set of points P
in the plane

• Goal: given a query point 
q, and  ε>0, find a point 
p’ whose distance to q is 
at most (1+ε) times the 
distance from q to its 
nearest neighbor
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Our “solution”

• We will “solve” the problem using kd-trees…

• …under the assumption that all leaf cells of the 
kd-tree for P have bounded aspect ratio 

• Assumption somewhat strict, but satisfied in 
practice for most of the leaf cells

• We will show
– O(log n/ε2) query time
– O(n) space (inherited from kd-tree)



September 18, 2003 Lecture 5: Orthogonal Range 
Queries

ANN Query Procedure

• Locate the leaf cell 
containing q

• Enumerate all leaf cells C
in the increasing order of 
distance from q (denote it 
by r)
– Update p’ so that it is the 

closest point seen so far 
– Note: r increases, dist(q,p’)

decreases 

• Stop if dist(q,p’)<(1+ε)*r
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Analysis

• Running time:
–All cells C seen so far (except maybe for the 

last one) have diameter > ε*r
–…Because if not, then p(C) would have been a 

(1+ε)-approximate nearest neighbor,  and we 
would have stopped

–The number of cells with diameter ε*r, bounded 
aspect ratio, and touching a ball of radius r is at 
most O(1/ε2)


