
Lower Bounds in Streaming

Piotr Indyk
MIT

Adversary 



Streaming Algorithms

• Norm estimation: (1+ε)-approximation of
||x||p,    x∈Rm, under a sequence of n
updates
– O(log(n+m)/ε2) bits for p∈(0,2]

(excluding randomness)

• Heavy hitters/sparse approximations
• Question: are these algorithms (nearly)

optimal ?



Lower Bounds in Streaming
• Two techniques:

– Pigeonhole principle: need enough space to
distinguish “different” inputs

– Communication complexity
• PP is really a special case of CC

(but is often easier to apply)
• Today:

• Randomness and approximation are both necessary for
estimating ||x||0 in polylog (n+m) space (even in the
insertions-only case)

• Need Ω(1/ε2) bits to (1+ε)-approximate ||x||2
• Need Ω(k log (m/k)) measurements for the l1/l1 guarantee

[Indyk-Khanh-Price’08]
New!



Pigeonhole Principle



Estimating ||x||0
• Warmup theorem: any deterministic exact algorithm for computing

||x||0 needs Ω(m) bits of space
• Proof:

– Assume there is an algorithm A using M=o(m) bits of space
– Take any vector y∈{0,1}m, ||y||0=m/2
– Feed the coordinates of y to A
– Let A[y] be the state of A at the end of this process, and E be the

estimation of ||y||0 (i.e., E= ||y||0 )
– We can decode y from A[y]:

• For any z∈{0,1}m, ||z||0=m/2, feed z to A in state A[y], obtaining A[y ◦ z]
• The algorithm computes an estimation E’ of  ||y+z||0 (i.e., E’= ||y+z||0 )
• We have y=z iff E=E’

– Therefore
2M ≥  number of y’s = exp(Ω(m))



Estimating ||x||0, ctd.
• Upgraded theorem: any deterministic c-approximate

algorithm for computing ||x||0 needs Ω(m) bits of space,
for c<2
– Estimation E such that ||x||0 ≤ E < c||x||0

• Proof:
– For any y∈{0,1}m , let ECC(y)∈{0,1}m’ , m’=O(m) be such that:

• ||ECC(y)||0=m’/a, a=Θ(1)
• For any y≠z, the distance ||ECC(y)-ECC(z)||0  ≥ 2m’(c-1)/a
   (which implies that ||ECC(y+z)||0 ≥ m’/a + m’(c-1)/a = m’c/a )

– Take any y
– Feed the coordinates of ECC(y) to A
– The remainder of the argument essentially as before

(except that y=z iff E’ <m’c/a)



Estimating ||x||0, ctd.
• Upgraded theorem 2: any randomized exact

algorithm for computing ||x||0 needs Ω(m) bits of
space

• Proof:
– Assume o(m) space, and the probability of error <1/8
– Take any ECC with minimum distance m’/4
– Take any y
– Feed the coordinates of ECC(y) to A
– With prob. 1/2 we can recover z such that  ||z-ECC(y)||0 < m’/4
    → can recover y

• In parallel, for any i=1..m’ , feed ei to A  with state A[ECC(y)], obtaining
estimate Ei

• Set zi=0 iff Ei > m/a’ (works correctly with prob. 1-1/8)
• Markov inequality implies that the fraction of errors is <1/4 with prob. 1/2

– There is a choice of random coin tosses which works for half of the vectors y
(i.e., for those y’s, we can recover y from A[ECC(y)] )

– The rest of the argument as before



Communication Complexity



Communication Complexity

Alice: x∈{0,1}m Bob: y∈{0,1}m

…

• Resources:
– # bits
– # rounds

• Today, we will be only interested in one-round protocols
• Probability of error: some constant δ>0
• See [Kushilevitz-Nisan] for more
      (and there is much more)

F(x,y)



Indexing

• (Balanced) indexing problem:
– Alice: a vector x∈{0,1}m , ||x||0 =m/2
– Bob: an index i=1…m
– Goal: compute f(x,i)=xi

• Theorem: any randomized one-round
protocol for indexing has Ω(m) bit
complexity

• Proof: pigeonhole principle as applied
earlier



Gap Dot Product
• (Gap) parameter Δ
• Alice: a vector u∈Rm , ||u||2=1  (with O(log m) bits)
• Bob: a vector v∈Rm, ||v||2=1
• Goal:

–  If u*v=0, return 0
– If u*v≥Δ, return 1

• Theorem: the randomized one-round CC of GDP with gap
Δ=1/(m/2)1/2 is Ω(m)

• Proof: via reduction from indexing:
‒ Alice: computes u= Δx

‒ Bob: computes v=ei
‒ Fact: u*v= Δxi



Space complexity of L2 norm
estimation

• Theorem: any streaming algorithm for estimating the L2
norm of an m-dimensional vector x up to a factor of 1±Δ,
Δ=c/m1/2, requires Ω(m) bits for some constant c>0

    (even if coordinates of x have O(log m) bits)
• Proof:

– Assume we have an M-space streaming algorithm that computes
(1±Δ)¦¦x¦¦2

– Then we have an M-space streaming algorithm that, given a
stream u◦v, ||u||2=||v||2=1, computes u*v±O(Δ)  (Lecture 4)

• Using the equality ||u-v||22=||u||22+||v||22-2u*v
– Then we have an M-bit one-round protocol that solves GDP with

gap 1/(m/2)1/2  (assuming c small enough)
– Ergo, M= Ω(m)



Back to Pigeonhole Principle



Lower bound for l1/l1

• Compressive sensing setup: want an Mxm
sketch matrix A such that:
– Given: Ax for an arbitrary vector x
– Can obtain: an approximation x* such that

 ||x*-x||1≤ C Err1
k(x)

where Err1
k(x)=minx’ ||x’-x||1 over all x’ that are k-sparse

• Will show that M= Ω(k log(m/k))
   (if C is an absolute constant)



Error-correcting code

• Let E⊆ {0,1}m be a set of k-sparse vectors
such that for any distinct y1,y2∈E we have

||y1-y2||1 >k
• We can have |E|>exp(c k log (m/k)) for

some absolute constant c
• Define r=k/(2C+2)
• We consider signals x = y + z where y∈E

and ||z||1≤r
– Clearly, Err1

k(x) ≤ ||z||1≤r



Distinctness
• Lemma: For any x1=y1+z1 and x2=y2+z2 as in the

earlier slide, we have
Ax1 ≠ Ax2

• Proof:
– Suppose we have Ax1 = Ax2
– We know:

• Given Ax1, our algorithm decodes x1* s.t. ||x1-x1*||1 ≤Cr
• Given Ax2, our algorithm decodes x2* s.t. ||x2-x2*||1 ≤Cr

– But if Ax1 = Ax2 then x1* = x2*
– This would imply ||x1-x2||1 ≤2Cr
– Therefore ||y1-y2||1 ≤2Cr+2r=k   - a contradiction

• Corollary: Let B=B1(0,r). Then for any distinct y1,y2∈E
the “affine balls” A(y1+B) and A(y2+B) are disjoint



Pigeonhole
• All “affine balls” A(y1+B) and A(y2+B) are disjoint
• At the same time, for all y∈E we have

   y+B ⊆ BB = B1(0,R),
    where R=k+r = (2C+3)r
• Therefore, A(y+B) ⊆ A(BB), so vol(A(BB)) ≥ |E| vol(A(B))
• Altogether
exp(c k log(m/k))  < |E| ≤  vol(A(BB)) / vol(A(B)) ≤ (2C+3)M

• After applying logarithm on both sides we get
M= Ω(k log(m/k))


