

Towards overcoming the re-ranking bottleneck

Piotr Indyk (MIT)

Piyush Anand, Piotr Indyk, Ravishankar Krishnaswamy, Sepideh Mahabadi, Vikas C Raykar, Kirankumar Shiragur, Hake Xu, [Graph-Based Algorithms for Diverse Similarity Search](#), ICML 2025.

Hake Xu, Sandeep Silwal, Piotr Indyk, [A Bi-metric Framework for Fast Similarity Search](#), The 1st Workshop on Vector Databases, ICML 2025.

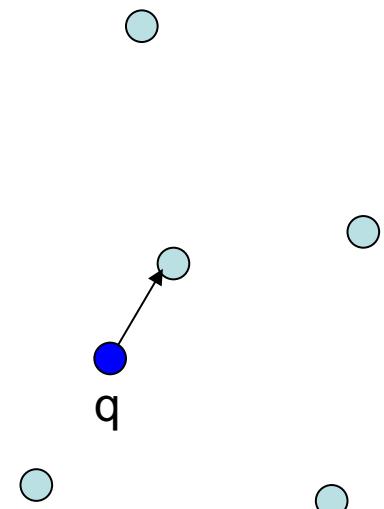
Piotr Indyk, Hake Xu, [Worst-case performance of popular approximate nearest neighbor search implementations: Guarantees and limitations](#), NeurIPS 2023.

Plan

- Nearest neighbor search
- Filtering/re-ranking
- Improving over re-ranking
 - Digression: graph-based algorithms
 - Case 1: Searching with cheap proxy metrics
 - Case 2: Diverse nearest neighbor

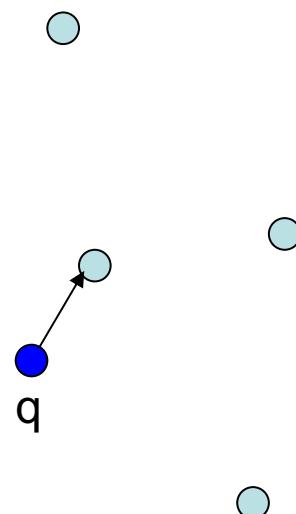
What: Nearest Neighbor Search

- **Given:** a set P of n points in a d -dimensional space \mathbb{R}^d
- **Goal:** build a data structure which, given any query $q \in \mathbb{R}^d$ returns a point $p \in P$ minimizing the distance $D(p, q)$
- **Want:**
 - Fast running time
 - Small data structure size



The nearest neighbour search problem arises in numerous fields of application, including:

- Pattern recognition – in particular for [optical character recognition](#)
- Statistical classification – see [k-nearest neighbor algorithm](#)
- Computer vision
- Computational geometry – see [Closest pair of points problem](#)
- Databases – e.g. [content-based image retrieval](#)
- Coding theory – see [maximum likelihood decoding](#)
- Data compression – see [MPEG-2 standard](#)
- Robotic sensing^[2]
- Recommendation systems, e.g. see [Collaborative filtering](#)
- Internet marketing – see [contextual advertising](#) and [behavioral targeting](#)
- DNA sequencing
- Spell checking – suggesting correct spelling
- Plagiarism detection
- Similarity scores for predicting career paths of professional athletes.
- Cluster analysis – assignment of a set of observations into subsets (called clusters) so that observations in the same cluster are similar in some sense, usually based on [Euclidean distance](#)
- Chemical similarity
- Sampling-based motion planning

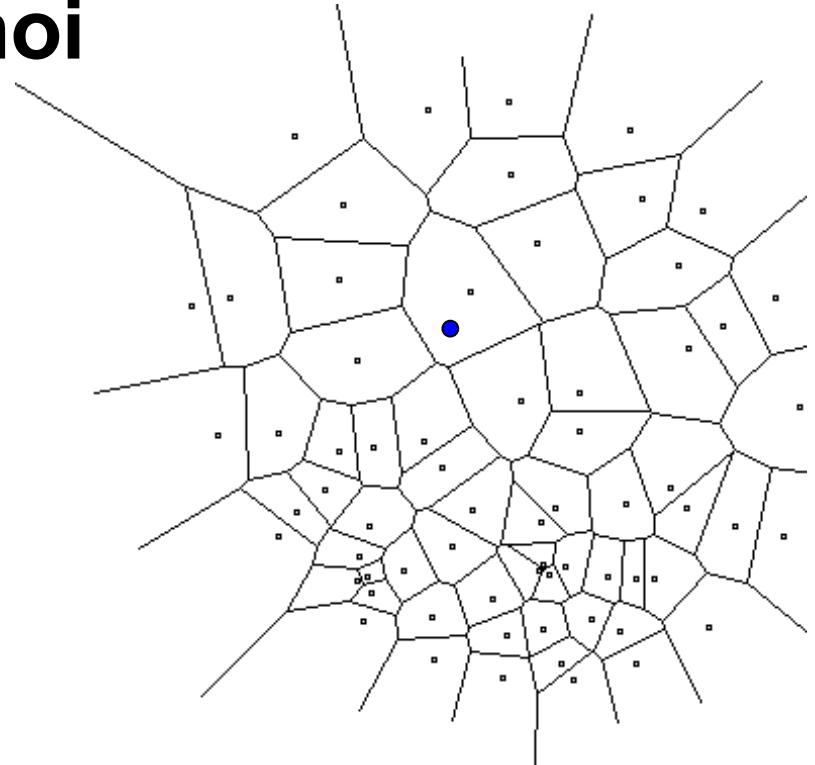


How: Nearest neighbor for $d=1$

- Pointset P : $x_1 < x_2 \dots < x_n$, $x_i \in \mathbb{R}$
- Query: $q \in \mathbb{R}$
- Sufficient to find the interval that q belongs to
- Algorithm:
 - During the preprocessing, sort and store the input: $O(n)$ space
 - To answer query, perform binary search: $O(\log n)$ time

Nearest neighbor for $d=2$

- Space partitioning: **Voronoi diagram**
- Given q , find the cell q belongs to
- Performance:
 - Query time: $O(\log n)$
 - Space: $O(n)$

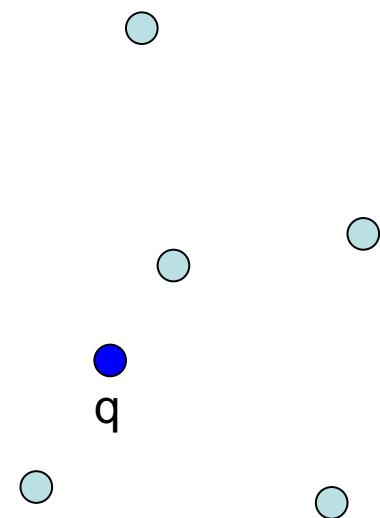


The case of $d > 2$

- Problem: Voronoi diagram has size

$$n^{\lceil d/2 \rceil}$$

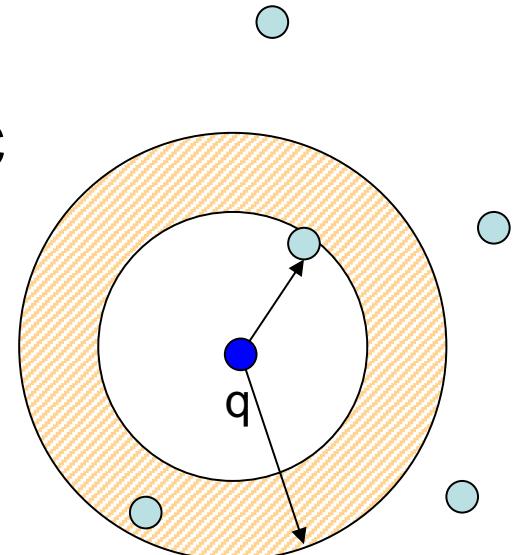
- This is a lot of space!
(again, think $n \gg 10^6$, $d > 50$)



- We can also perform a linear scan: $O(dn)$ space, $O(dn)$ time
- These are pretty much the only known general solutions
- “The curse of dimensionality”

Relaxation 1: Theory

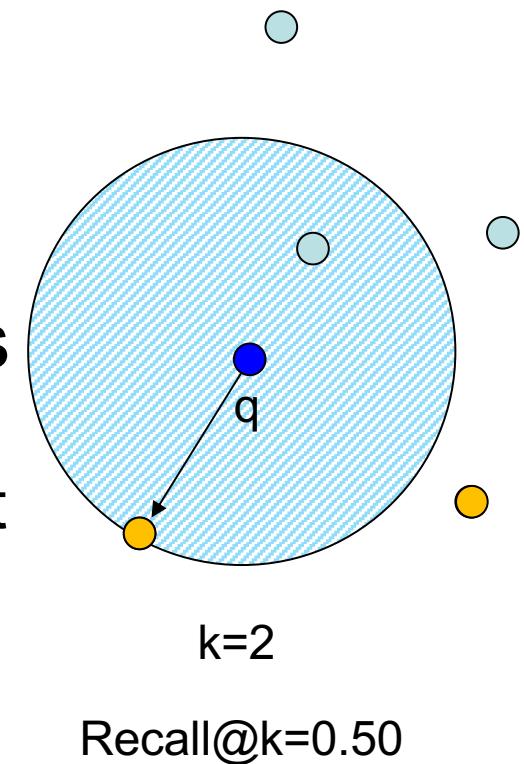
- **Given:** a set P of n points in some space X under some metric d , parameter $\varepsilon > 0$
- **Goal:** data structure which, given any query q returns $p' \in P$, where $d(p', q) \leq (1 + \varepsilon) \min_{p \in P} d(p, q)$



“(1+ ε)-approximate nearest neighbor”

Relaxation 2: Practice

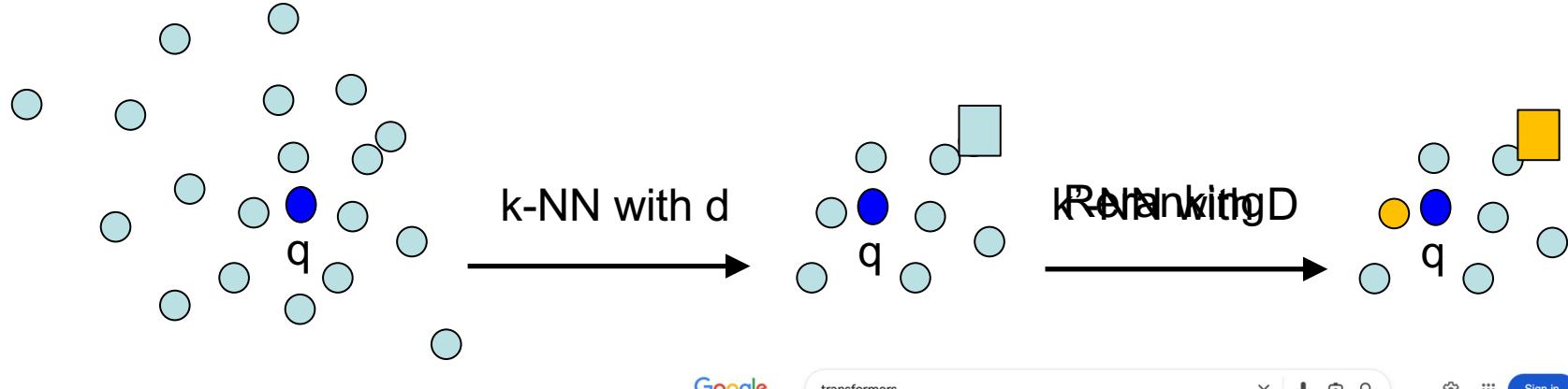
- **Given:** a set P of n points in some space X under some metric d , parameter k
- **Goal:** data structure which returns as many top k nearest neighbors as possible
 - Recall@ k : the fraction of top k nearest neighbors returns
- These two relaxations are correlated, but distinct
- We will use either, depending on the context



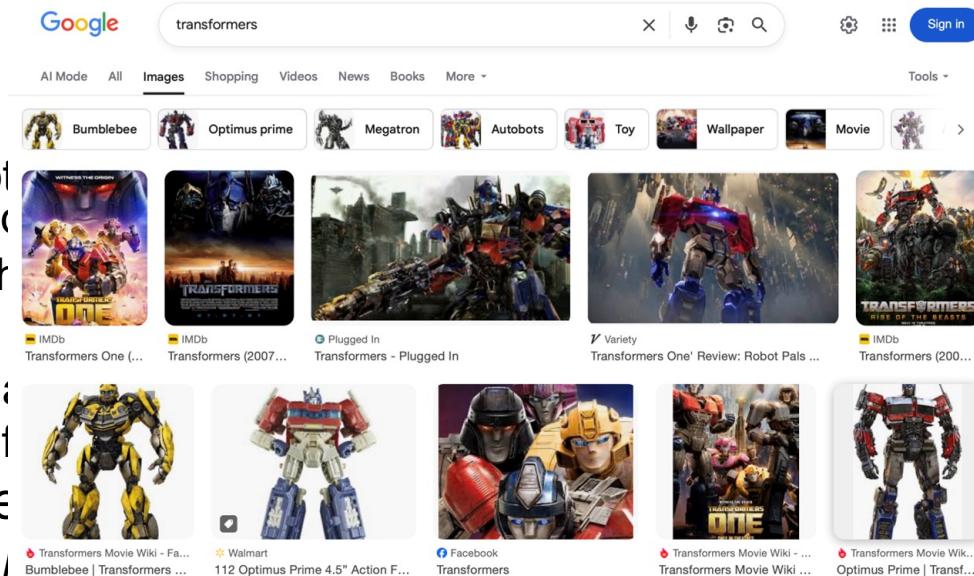
Plan

- Nearest neighbor search: defs
- **Filtering/re-ranking**
- Improving over re-ranking
 - Digression: graph-based algorithm
 - Case 1: Searching with cheap proxy metrics
 - Case 2: Diverse nearest neighbor

Using nearest neighbor search: filtering/re-ranking



- Examples:
 - Diversity constraints
 - Refining results using another metric induced by the Euclidean distance
 - Thousands of papers on this topic
- Benefits:
 - Query time much faster than traditional search
 - Preprocessing also much faster
- Drawback: Accuracy limited

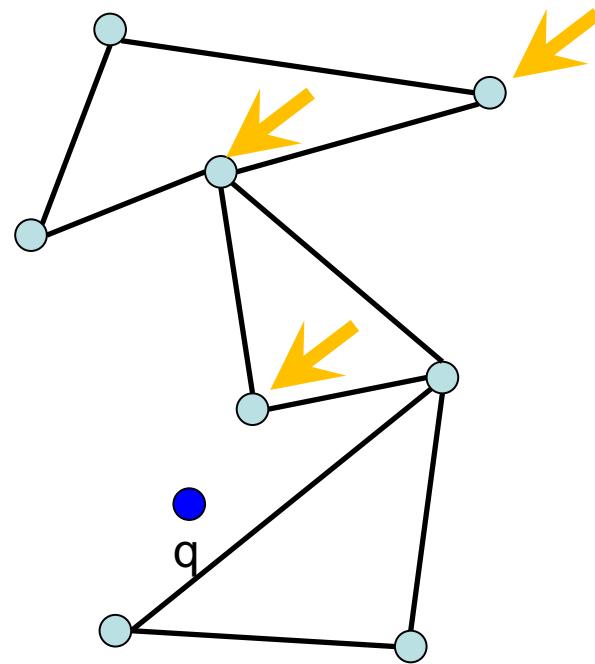


“The performance of a re-ranking is limited, however. This is because documents that were not found by the initial ranking function have no chance of being re-ranked.” (MacAvaney, Tonello, Macdonald. 2022)

Plan

- Nearest neighbor search: defs
- Filtering/re-ranking
- **Improving over re-ranking**
 - Case 1: Searching with cheap proxy metrics
 - Case 2: Diverse nearest neighbor

Graph-based algorithms



Since 2017: HNSW, NGT, NSG, DiskANN, SSG, Kgraph, DPG, NSW, SPTAG-KDT...

Plan

- Nearest neighbor search: defs
- Filtering/re-ranking
- Improving over re-ranking
 - Digression: graph-based algorithm
 - **Case 1: Searching with cheap proxy metrics**
 - Case 2: Diverse nearest neighbor

Improving over reranking: theory

Informal Theorem [Xu-Silwal-Indyk'25]: given an accurate approximate graph-based algorithm, if we

- build a data structure **using a proxy metric \mathbf{d}** , but then
- switch and answer queries **using the ground truth metric \mathbf{D}** , and run it slightly longer,

then we get an accurate approximate answers with respect to the ground truth \mathbf{D} .

(even if \mathbf{d} and \mathbf{D} are not that close).

This gives us a template for constructing data structures that use cheap proxy metrics \mathbf{d} to speed-up search using expensive ground truth metrics \mathbf{D} .

Experiments on text

- **d**: bge-micro-v2 (open source):
 - Embeds text into Euclidean vectors
 - 0.00043 secs per embedding
- **D**: SFR-Embedding-Mistral (open source):
 - Also embeds text into Euclidean vectors
 - 0.13 seconds per embedding
- **D**: Gemini-2.0-Flash (proprietary):
 - Compares $d(q,p)$ vs. $d(q,p')$
(could use it to compute $d(q,p)$, but does not work that well)
 - 0.01 cents per comparison

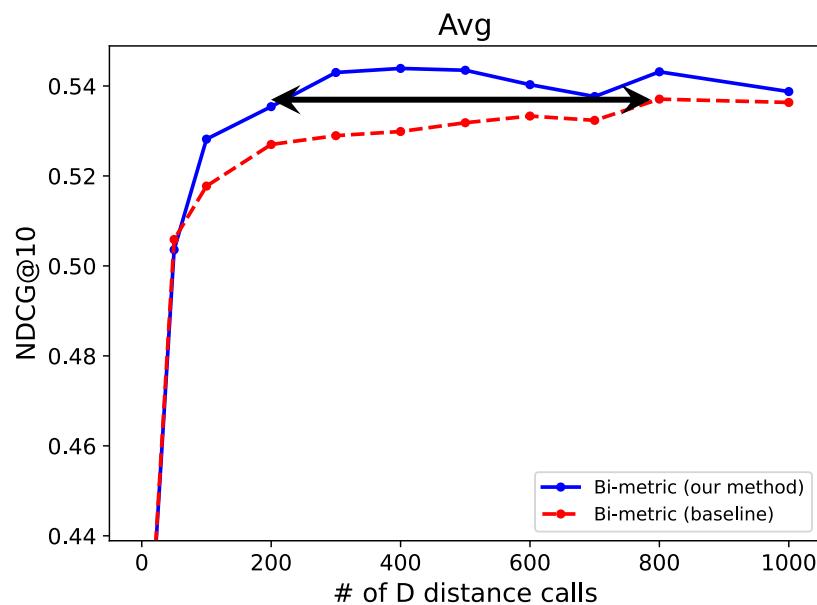
Text retrieval setup

- MTEB benchmark data sets, models from Hugging Face leaderboard (below)

Model	Model Size (Million Parameters)	Memory Usage (GB, fp32)	Average	ArguAna	ClimateFEVER	CQADupstackRetrieval	DBpedia	FEVER	FiQA2018	HotpotQA
<u>Ling-Embed-Mistral</u>	7111	26.49	60.19	69.65	39.11	47.27	51.32	92.42	61.2	76.24
<u>NV-Embed-v1</u>	7851	29.25	59.36	68.2	34.72	50.51	48.29	87.77	63.1	79.92
<u>SFR-Embedding-Mistral</u>	7111	26.49	59	67.17	36.41	46.49	49.06	89.35	60.4	77.02
<u>voyage-large-2-instruct</u>			58.28	64.06	32.65	46.6	46.03	91.47	59.76	70.86
<u>gte-large-en-v1.5</u>	434	1.62	57.91	72.11	48.36	42.16	46.3	93.81	63.23	68.18
<u>GritLM-7B</u>	7242	26.98	57.41	63.24	30.91	49.42	46.6	82.74	59.95	79.4
<u>e5-mistral-7b-instruct</u>	7111	26.49	56.89	61.88	38.35	42.97	48.89	87.84	56.59	75.72
<u>LLM2Vec-Meta-Llama-3-supervised</u>	7505	27.96	56.63	62.78	34.27	48.25	48.34	90.2	55.33	71.76
<u>voyage-lite-02-instruct</u>	1220	4.54	56.6	70.28	31.95	46.2	39.79	91.35	52.51	75.51
<u>gte-Qwen1.5-7B-instruct</u>	7099	26.45	56.24	62.65	44	40.64	48.04	93.35	55.31	72.25
<u>LLM2Vec-Mistral-supervised</u>	7111	26.49	55.99	57.48	35.19	48.84	49.58	89.4	53.11	74.07
...										
<u>bge-micro-v2</u>	17	0.06	42.56	55.31	25.35	35.07	32.25	74.99	25.59	53.91

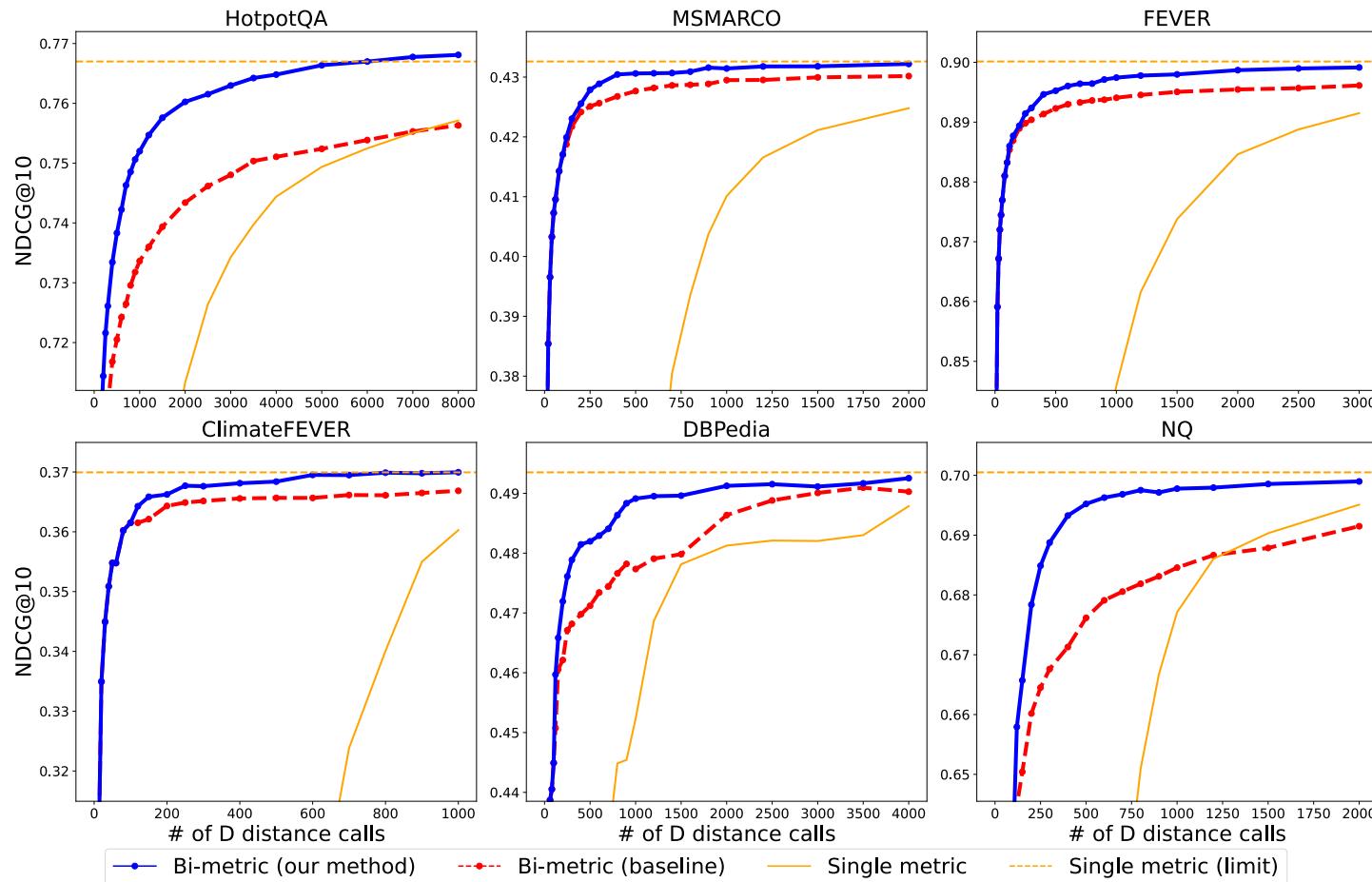
Results 1

- Setup:
 - Algorithm: modified DiskANN
 - $d=bge$ -micro, $D=Gemini$
 - Data: large (>1 MB) MTEB benchmark data sets
 - Use only 500 queries, so that we can afford it
- Results (averaged over all data sets)



Results 2

$d=bg\text{-}micro$, $D=SFR\text{-}Embedding\text{-}Mistral$

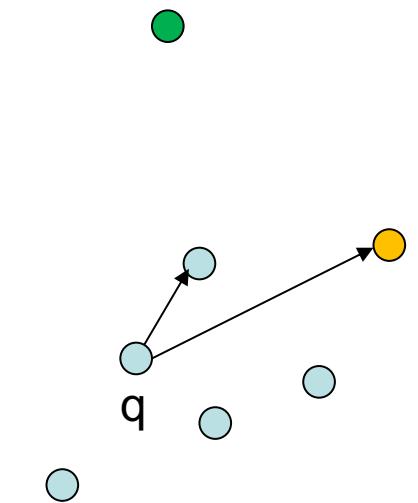
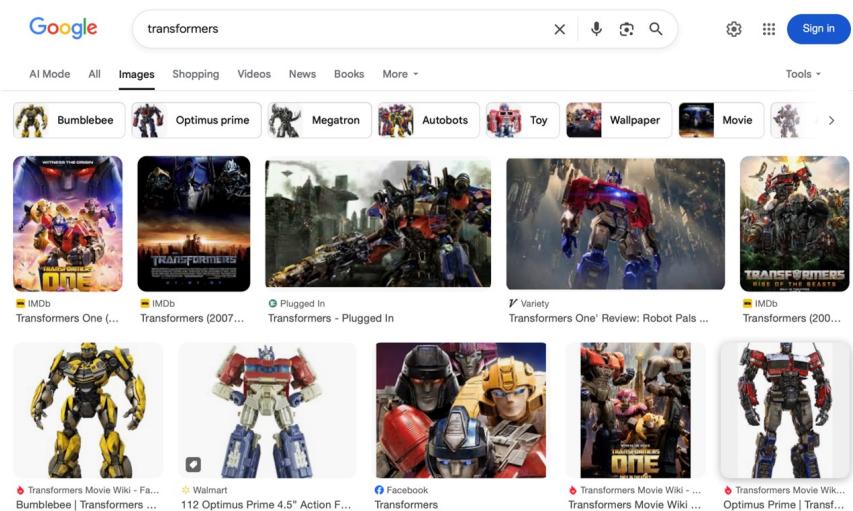


Plan

- Nearest neighbor search: defs
- Filtering/re-ranking
- Improving over re-ranking
 - Digression: graph-based algorithm
 - Case 1: Searching with cheap proxy metrics
 - **Case 2: Diverse nearest neighbor
(with another digression to graph-based algos)**

Diverse Nearest Neighbor Search

- **Given:** a set P of n points in a d -dimensional space \mathbb{R}^d , **with colors** and a parameter k
- **Goal:** build a data structure which, given any query $q \in \mathbb{R}^d$ returns k points **of different color** minimizing the distance to q



Our results

Authors	Comment	Space	Query Time
Anand, Indyk, Krishnaswamy, Mahabadi, Raykar, Shiragur, Xu'25	diverse	$k 2^{O(\dim)} n \log \Delta$	$k^2 2^{O(\dim)} \log^2 \Delta$
Indyk, Xu'23: DiskANN (non-diverse)	non-diverse	$2^{O(\dim)} n \log \Delta$	$2^{O(\dim)} \log^2 \Delta$

We were able to modify existing **non-diverse** DiskANN graph-based algorithm to solve the diverse problem.

- Space: multiplied by k
- Time: multiplied by k^2

Diverse DiskANN

Building the Graph:

- Pruning
 - If $d(v, w) \leq \frac{1}{\alpha} \cdot d(u, w)$
 - Prune the edge (u, w) only if either
 1. $col[v] = col[w]$
 2. Or we have connected u to at least k different colors in the ball of radius $\frac{1}{\alpha} \cdot d(u, w)$ around w

Diverse DiskANN

- **Query answering algorithm:**
 - Start from k points **that all have different colors**
 a_1, \dots, a_k
 - In each iteration, **swap one point** a_i with a neighbor point a' that
 - is closer to the query
 - **has a different color from the rest of the points**

Experiments

Algorithms:

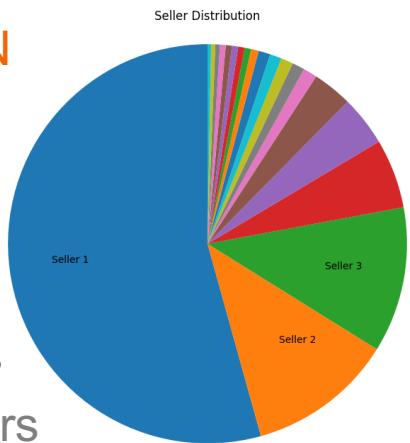
- Standard DiskANN Build & Search + Postprocessing to ensure diversity
- Our algo 1: Standard DiskANN Build + Diverse DiskANN Search
- Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search

Datasets:

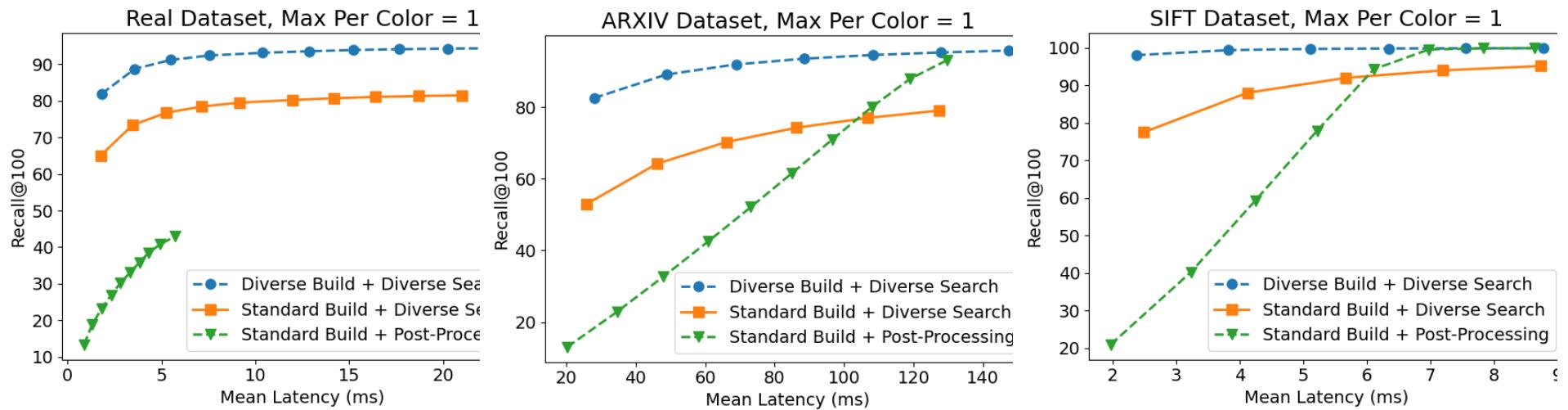
- **Ads dataset:** 20 Million vectors, 5000 queries, 64 dimensions
- **Semi-Synthetic Arxiv:** 2 Million, 1536 dimensions, 1000 colors (uniform on $\{1,2,3\}$ w.p. 0.9 and uniform on the rest w.p. 0.1)
- **Semi-Synthetic SIFT:** 1 Million, 128 dimensions, 1000 colors (one color w.p. 0.8 and uniform on the rest w.p. 0.2)

Parameters:

- $k = 100$



Recall vs Latency



Baseline: Standard DiskANN + Postprocessing to ensure diversity

Our algo 1: Standard DiskANN Build + Diverse DiskANN Search

Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search

Note: the experiments are run on “standard preprocessing” DiskANN, while the analysis is for “slow preprocessing” DiskANN

Conclusions

- Can improve over re-ranking
 - Diversity
 - Proxy vs accurate metrics
- Other cases where such an improvements are possible?
- Other problems:
 - Better algorithms for diverse NN?
 - Reduce the dependence on k
 - Tri-metric setting?

THANKS!