Towards overcoming the
re-ranking bottleneck
Piotr Indyk (MIT)

Piyush Anand, Piotr Indyk, Ravishankar Krishnaswamy, Sepideh Mahabadi,
Vikas C Raykar, Kirankumar Shiragur, Haike Xu, Graph-Based Algorithms for
Diverse Similarity Search, ICML 2025.

Haike Xu, Sandeep Silwal, Piotr Indyk, A Bi-metric Framework for Fast
Similarity Search, The 1st Workshop on Vector Databases, ICML 2025.

Piotr Indyk, Haike Xu, Worst-case performance of popular approximate
nearest neighbor search implementations: Guarantees and limitations,
NeurlPS 2023.

https://arxiv.org/abs/2502.13336
https://arxiv.org/abs/2502.13336
https://arxiv.org/abs/2502.13336
https://arxiv.org/abs/2502.13336
https://arxiv.org/abs/2406.02891
https://arxiv.org/abs/2406.02891
https://arxiv.org/abs/2406.02891
https://arxiv.org/abs/2406.02891
https://papers.nips.cc/paper_files/paper/2023/hash/d0ac28b79816b51124fcc804b2496a36-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/d0ac28b79816b51124fcc804b2496a36-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/d0ac28b79816b51124fcc804b2496a36-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/d0ac28b79816b51124fcc804b2496a36-Abstract-Conference.html

Plan

* Nearest neighbor search
* Filtering/re-ranking
* Improving over re-ranking
— Digression: graph-based algorithms

— Case 1: Searching with cheap proxy metrics
— Case 2: Diverse nearest neighbor

What: Nearest Neighbor Search

* Given: a set P of n points in a d-
dimensional space R°

* Goal: build a data structure
which, given any query qeR° ./D
returns a point peP minimizing q
the distance D(p,q)

e \WWant:

— Fast running time
— Small data structure size

O

O

The nearest neighbour search problem arises in numerous fields of application,
including:

o Pattern recognition — in particular for optical character recognition

o Statistical classification — see k-nearest neighbor algorithm

e Computer vision

o Computational geometry — see Closest pair of points problem

e Databases — e.g. content-based image retrieval

e Coding theory — see maximum likelihood decoding

e Data compression — see MPEG-2 standard

« Robotic sensing!?!

e Recommendation systems, e.g. see Collaborative filtering

¢ Internet marketing — see contextual advertising and behavioral targeting

e DNA sequencing

e Spell checking — suggesting correct spelling

e Plagiarism detection

o Similarity scores for predicting career paths of professional athletes.

e Cluster analysis — assignment of a set of observations into subsets (called

clusters) so that observations in the same cluster are similar in some sense,
usually based on Euclidean distance

e Chemical similarity

e Sampling-based motion planning

BRI

How: Nearest neighbor for d=1

Pointset P: X, < x, ... <X, xeR
Query: geR
Sufficient to find the interval that g belongs to

Algorithm:

— During the preprocessing, sort and store the input: O(n)
space

— To answer query, perform binary search: O(log n) time

q
o
4

w O
o 0O
oo O

 Performance:

Nearest neighbor for d=2

* Space partitioning: Voronoi
diagram

* Given g, find the cell g
belongs to

— Query time: O(log n)
— Space: O(n)

The case of d>2

Problem: Voronoi diagram has
SilZe
n[d/Z]
— This is a lot of space!
(again, think n >>10°, d>50)

We can also perform a linear
scan: O(dn) space, O(dn) time

These are pretty much the only
known general solutions

“The curse of dimensionality”

Relaxation 1: Theory

* Given: a set P of n points in ©
some space X under some metric
d, parameter £>0

* Goal: data structure which, given
any query q returns p'eP, where

d(p’,q) = (1+€) min,p d(p,q)

“(1+¢)-approximate nearest neighbor”

Relaxation 2: Practice

Given: a set P of n points in some o
space X under some metric d,
parameter k

Goal: data structure which returns
as many top k nearest neighbors as
possible

— Recall@k: the fraction of top k nearest
neighbors returns

These two relaxations are k=2
correlated, but distinct Recall@k=0.50

We will use either, depending on the
context

Plan

* Nearest neighbor search: defs
* Filtering/re-ranking
* Improving over re-ranking
— Digression: graph-based algorithm

— Case 1: Searching with cheap proxy metrics
— Case 2: Diverse nearest neighbor

Using nearest neighbor search:
filtering/re-ranking

o ©
O o o ©
o & o o o
o QQQ K-NN with d o]l Ne RenkitttD 0@ o
O O
O
Google transformers X & @ Q & @
« Examples:
— Diversity constraints 1Ry smonn Y cvimaine B g B roooe (5 v G e [e
— Refining results using anol g NFED | R =~

induced by the Euclidean ¢ 5=

— Thousands of papers on tf : p 8
Benefits:

— Query time much faster th:

— Preprocessing also much 1

Drawback: Accuracy limite

“The performance of a re-ranking | el o . 252 e R, ottt 101,
however. This is because documents that were not found by the initial rank/ng functlon
have no chance of being re-ranked.” (MacAvaney, Tonellotto, Macdonald. 2022)

& MDb O Plugged In

Transformers One (... Transformers (2007... Transformers - Plugged In

Plan

* Nearest neighbor search: defs
* Filtering/re-ranking
* Improving over re-ranking

— Case 1: Searching with cheap proxy metrics
— Case 2: Diverse nearest neighbor

Graph-based algorithms

Since 2017: HNSW, NGT, NSG, DiskANN, SSG,
Kgraph, DPG, NSW, SPTAG-KDT...

Plan

* Nearest neighbor search: defs
* Filtering/re-ranking
* Improving over re-ranking
— Digression: graph-based algorithm

— Case 1: Searching with cheap proxy metrics
— Case 2: Diverse nearest neighbor

Improving over reranking: theory

Informal Theorem [Xu-Silwal-Indyk’25]: given an accurate
approximate graph-based algorithm, if we

 build a data structure using a proxy metric d, but then

« switch and answer queries using the ground truth metric D,
and run it slightly longer,

then we get an accurate approximate answers with respect to
the ground truth D.

(even if d and D are not that close).

This gives us a template for constructing data structures that
use cheap proxy metrics d to speed-up search using expensive
ground truth metrics D.

Experiments on text

* d: bge-micro-v2 (open source):
— Embeds text into Euclidean vectors
— 0.00043 secs per embedding
» D: SFR-Embedding-Mistral (open source):
— Also embeds text into Euclidean vectors
— 0.13 seconds per embedding
* D: Gemini-2.0-Flash (proprietary):
— Compares d(q,p) vs. d(q,p’)

(could use it to compute d(q,p), but does not work that well)
— 0.01 cents per comparison

Text retrieval setup

« MTEB benchmark data sets, models from Hugging Face
leaderboard (below)

Model Size z::;:y
Model (Million (GB, Average ArguAna ClimateFEVER CQADupstackRetrieval DBPedia FEVER FiQA2018 HotpotQA

Parameters) £p32)
Ling-Embed-Mistral 7111 26.49 60.19 69.65 39.11 47.27 532! 92.42 61.2 76.24
NV-Embed-v1 7851 29.25 59.36 68.2 34.72 50.51 48.29 87.77 63.1 79.92
SFR-Embedding-Mistral 7111 26.49 59 67.17 36.41 46.49 49.06 89.35 60.4 77.02
voyage-large-2-instruct 58.28 64.06 32.65 46.6 46.03 91.47 59.76 70.86
gte-large-en-vi.5 434 1.62 57.91 72.11 48.36 42.16 46.3 93.81 63823 68.18
GritlLM-78B 7242 26.98 57.41 63.24 30.91 49.42 46.6 82.74 59.95 79.4
e5-mistral-7b-instruct 7111 26.49 56.89 61.88 38.35 42.97 48.89 87.84 56.59 75.72
LLM2Vec-Meta-Llama-3-supexrvis 7505 27.96 56.63 62.78 34.27 48.25 48.34 90.2 55.33 71.76
voyage-lite-02-instruct 1220 4.54 56.6 70.28 2l 46.2 39.79 2Bl 215 o1l 5 2L
gte-Qwenl.5-7B-instruct 7099 26.45 56.24 62.65 44 40.64 48.04 93.35 55.31 72.25
LLM2Vec-Mistral -supervised 7111 26.49 55.99 57.48 35.19 48.84 49.58 89.4 =gl 74.07

bge-micro-v2 17 0.06 42.56 55831 25.35 35.07 32.25 74.99 25859, 5301

Results 1

Setup:

— Algorithm: modified DiskANN

— d=bge-micro, D=Gemini

— Data: large (>1 MB) MTEB benchmark data sets

» Use only 500 queries, so that we can afford it

Results (averaged over all data sets)

Avg

NDCG@10

—e— Bi-metric (our method)
—e— Bi-metric (baseline)

0 200 400 600 800 1000
of D distance calls

Results 2
d=bg-micro, D=SFR-Embedding-Mistral

HotpotQA MSMARCO FEVER
0.77
0.901
0.431 e e S
0.76 [~ fre o
0.891
0.421
© 0.75
= 0.88
© 0.411
8 0.74
la) 0.871
= 0.401
073
0.861
0.391
0.72
0.851
0.381
0 1000 2000 3000 4000 5000 6000 7000 8000 0 250 500 750 1000 1250 1500 1750 2000 0 500 1000 1500 2000 2500 3000
ClimateFEVER DBPedia NQ
0.37 0.70
0.36 0.691
o
@0-35 0.68
Q
O
0 034 0.671
=
0.33 0.66
0.451
0.32 0.65
0.441
0 200 400 600 800 1000 0 500 1000 1500 2000 2500 3000 3500 4000 0 250 500 750 1000 1250 1500 1750 2000
of D distance calls # of D distance calls # of D distance calls

—e— Bi-metric (our method) --=-- Bi-metric (baseline) Single metric Single metric (limit)

Plan

* Nearest neighbor search: defs
* Filtering/re-ranking
* Improving over re-ranking
— Digression: graph-based algorithm

— Case 1: Searching with cheap proxy metrics

— Case 2: Diverse nearest neighbor
(with another digression to graph-based algos)

Diverse Nearest Neighbor Search

* Given: a set P of n points in a d-

dimensional space R¢ , with colors °
and a parameter k
 Goal: build a data structure which, %
given any query g<RY returns k
points of different color minimizing - 10

the distance to o

Our results

Authors Comment Space Query Time

Anand, Indyk, diverse k 20(dim)n Jog A k2 20(dim) |og2 A
Krishnaswamy, Mahabadi,
Raykar, Shiragur, Xu’25

Indyk, Xu’23: DiskANN non-diverse 20(dim) 0 log A 20(dim) [og2 A
(non-diverse)

We were able to modify existing non-diverse DiskANN
graph-based algorithm to solve the diverse problem.

» Space: multiplied by k

« Time: multiplied by k?

Diverse DiskANN

Building the Graph:
* Pruning
—Ifd(v,w) < % d(u,w)
* Prune the edge (u, w) only if either
1. col|v] = col[w]
2. Or we have connected u to at least k different
colors in the ball of radius%{ -d(u,w) around w

Diverse DiskANN

* Query answering algorithm:

— Start from k points that all have different colors
Aq, -, Ap

— In each iteration, swap one point a; with a
neighbor point a’ that

* Is closer to the query
» has a different color from the rest of the points

Experiments

Algorithms:
« Standard DiskANN Build & Search + Postprocessing to
ensure diversity
Our algo 1: Standard DiskANN Build + Diverse DiskANN

Seller Distribution

Search
* Our algo 2: Diverse DiskANN Build + Diverse DiskANN
Search
Datasets:

« Ads dataset: 20 Million vectors, 5000 queries, 64 dimensions

« Semi-Synthetic Arxiv: 2 Million, 1536 dimensions, 1000 colors
(uniform on {1,2,3} w.p. 0.9 and uniform on the rest w.p. 0.1)

« Semi-Synthetic SIFT: 1 Million, 128 dimensions, 1000 colors
(one color w.p. 0.8 and uniform on the rest w.p. 0.2)

Parameters:
e k=100

Recall@100
~ (o] (o]
o o o

B])]
o
L

w
o
L

20 +
104

Recall vs Latency

Real Dataset, Max Per Color =1

o
|

o

ARXIV Dataset, Max Per Color =1

Mean Latency (ms)

PSR Thte uinh sk duinh Al o-—--0-———@-——"§ -0
¥ 4 " -
' - 7
[]
/-/./I*"_‘H_"—' 80
o
S 601
®
©
v]
’1" & 40 -
v -®- Diverse Build + Diverse Sez //' -@- Diverse Build + Diverse Search
iv —— Standard Build + Diverse Se¢ 204 ,x’ —#— Standard Build + Diverse Search
-¥- Standard Build + Post-Proce v -¥- Standard Build + Post-Processing
5 10 15 20 20 40 60 80 100 120 140

Mean Latency (ms)

Recall@100

100 -
90
80
70
60
50 -
40
30
20 | V

SIFT Dataset, Max Per Color =1

- -———- o-——-- - N~ F—V0
/
/
/7
/7
b4
/7
/
/7
/7
/7
b 4
/7
/7
7/
/7
-@- Diverse Build + Diverse Search

—— Standard Build + Diverse Search
-¥- Standard Build + Post-Processing

4 5 6
Mean Latency (ms)

Baseline: Standard DiskANN + Postprocessing to ensure diversity
Our algo 1: Standard DiskANN Build + Diverse DiskANN Search
Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search

Note: the experiments are run on “standard preprocessing” DiskANN,
while the analysis is for “slow preprocessing” DiskANN

7

8

¢

Conclusions

« Can improve over re-ranking
— Diversity
— Proxy vs accurate metr =s

» Other cases wheare s <l an improvements
are possib'«:?
* Other proble ms:

— Better algorithms for diverse NN?
» Reduce the dependence on k

— Tri-metric setting?

