
Towards overcoming the
re-ranking bottleneck

Piotr Indyk (MIT)

Piyush Anand, Piotr Indyk, Ravishankar Krishnaswamy, Sepideh Mahabadi,
Vikas C Raykar, Kirankumar Shiragur, Haike Xu, Graph-Based Algorithms for
Diverse Similarity Search, ICML 2025.

Haike Xu, Sandeep Silwal, Piotr Indyk, A Bi-metric Framework for Fast
Similarity Search, The 1st Workshop on Vector Databases, ICML 2025.

Piotr Indyk, Haike Xu, Worst-case performance of popular approximate
nearest neighbor search implementations: Guarantees and limitations,
NeurIPS 2023.

https://arxiv.org/abs/2502.13336
https://arxiv.org/abs/2502.13336
https://arxiv.org/abs/2502.13336
https://arxiv.org/abs/2502.13336
https://arxiv.org/abs/2406.02891
https://arxiv.org/abs/2406.02891
https://arxiv.org/abs/2406.02891
https://arxiv.org/abs/2406.02891
https://papers.nips.cc/paper_files/paper/2023/hash/d0ac28b79816b51124fcc804b2496a36-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/d0ac28b79816b51124fcc804b2496a36-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/d0ac28b79816b51124fcc804b2496a36-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/d0ac28b79816b51124fcc804b2496a36-Abstract-Conference.html

Plan

• Nearest neighbor search
• Filtering/re-ranking
• Improving over re-ranking

– Digression: graph-based algorithms
– Case 1: Searching with cheap proxy metrics
– Case 2: Diverse nearest neighbor

What: Nearest Neighbor Search
• Given: a set P of n points in a d-

dimensional space Rd
• Goal: build a data structure

which, given any query qÎRd
returns a point pÎP minimizing
the distance D(p,q)

• Want:
– Fast running time
– Small data structure size

q

Why: Applications
• A surprising number of problems

can be modeled as searching for
similar vectors in high-dimensional
space

• If I have time, I will show an
application to earthquake
detection

• Think n ≫106, d>50

q

How: Nearest neighbor for d=1
• Pointset P: x1 < x2 … < xn, xiÎR
• Query: qÎR
• Sufficient to find the interval that q belongs to
• Algorithm:

– During the preprocessing, sort and store the input: O(n)
space

– To answer query, perform binary search: O(log n) time

1 3 4 6 8

q

Nearest neighbor for d=2
• Space partitioning: Voronoi

diagram
• Given q, find the cell q

belongs to
• Performance:

– Query time: O(log n)
– Space: O(n)

The case of d>2

• Problem: Voronoi diagram has
size

n⌈d/2⌉

– This is a lot of space!
 (again, think n ≫106, d>50)

• We can also perform a linear
scan: O(dn) space, O(dn) time

• These are pretty much the only
known general solutions

• “The curse of dimensionality”

q

Relaxation 1: Theory
• Given: a set P of n points in

some space X under some metric
d, parameter ε>0

• Goal: data structure which, given
any query q returns p’ÎP, where
 d(p’,q) ≤ (1+ε) minpÎP d(p,q)

q

“(1+ε)-approximate nearest neighbor”

Relaxation 2: Practice
• Given: a set P of n points in some

space X under some metric d,
parameter k

• Goal: data structure which returns
as many top k nearest neighbors as
possible
– Recall@k: the fraction of top k nearest

neighbors returns
• These two relaxations are

correlated, but distinct
• We will use either, depending on the

context

q

k=2

Recall@k=0.50

Plan

• Nearest neighbor search: defs
• Filtering/re-ranking
• Improving over re-ranking

– Digression: graph-based algorithm
– Case 1: Searching with cheap proxy metrics
– Case 2: Diverse nearest neighbor

Using nearest neighbor search:
filtering/re-ranking

• Examples:
– Diversity constraints
– Refining results using another (expensive but accurate) metric D. E.g., d

induced by the Euclidean distance, while D defined by LLM
– Thousands of papers on this topic

• Benefits:
– Query time much faster than if reranking done on the whole set
– Preprocessing also much faster, and “stable”

• Drawback: Accuracy limited by the first stage
“The performance of a re-ranking pipeline is limited by the recall of the candidate pool,
however. This is because documents that were not found by the initial ranking function
have no chance of being re-ranked.” (MacAvaney, Tonellotto, Macdonald. 2022)

q
k-NN with d

q
Reranking

q
k’-NN with D

Plan

• Nearest neighbor search: defs
• Filtering/re-ranking
• Improving over re-ranking

– Case 1: Searching with cheap proxy metrics
– Case 2: Diverse nearest neighbor

Graph-based algorithms

Since 2017: HNSW, NGT, NSG, DiskANN, SSG,
Kgraph, DPG, NSW, SPTAG-KDT…

q

Plan

• Nearest neighbor search: defs
• Filtering/re-ranking
• Improving over re-ranking

– Digression: graph-based algorithm
– Case 1: Searching with cheap proxy metrics
– Case 2: Diverse nearest neighbor

Improving over reranking: theory
Informal Theorem [Xu-Silwal-Indyk’25]: given an accurate
approximate graph-based algorithm, if we
• build a data structure using a proxy metric d, but then
• switch and answer queries using the ground truth metric D,

and run it slightly longer,
then we get an accurate approximate answers with respect to
the ground truth D.
(even if d and D are not that close).

This gives us a template for constructing data structures that
use cheap proxy metrics d to speed-up search using expensive
ground truth metrics D.

Experiments on text
• d: bge-micro-v2 (open source):

– Embeds text into Euclidean vectors
– 0.00043 secs per embedding

• D: SFR-Embedding-Mistral (open source):
– Also embeds text into Euclidean vectors
– 0.13 seconds per embedding

• D: Gemini-2.0-Flash (proprietary):
– Compares d(q,p) vs. d(q,p’)
 (could use it to compute d(q,p), but does not work that well)
– 0.01 cents per comparison

Text retrieval setup
• MTEB benchmark data sets, models from Hugging Face

leaderboard (below)

…

Results 1
• Setup:

– Algorithm: modified DiskANN
– d=bge-micro, D=Gemini
– Data: large (>1 MB) MTEB benchmark data sets

• Use only 500 queries, so that we can afford it

• Results (averaged over all data sets)

…

Results 2
d=bg-micro, D=SFR-Embedding-Mistral

Plan

• Nearest neighbor search: defs
• Filtering/re-ranking
• Improving over re-ranking

– Digression: graph-based algorithm
– Case 1: Searching with cheap proxy metrics
– Case 2: Diverse nearest neighbor
 (with another digression to graph-based algos)

Diverse Nearest Neighbor Search
• Given: a set P of n points in a d-

dimensional space Rd , with colors
and a parameter k

• Goal: build a data structure which,
given any query qÎRd returns k
points of different color minimizing
the distance to q

q

Our results

Authors Comment Space Query Time

Anand, Indyk,
Krishnaswamy, Mahabadi,
Raykar, Shiragur, Xu’25

diverse k 2O(dim) n log Δ k2 2O(dim) log2 Δ

Indyk, Xu’23: DiskANN
(non-diverse)

non-diverse 2O(dim) n log Δ 2O(dim) log2 Δ

We were able to modify existing non-diverse DiskANN
graph-based algorithm to solve the diverse problem.
• Space: multiplied by k
• Time: multiplied by k2

Diverse DiskANN
Building the Graph:
• Pruning

– If 𝑑 𝑣,𝑤 ≤ !
"
⋅ 𝑑(𝑢,𝑤)

• Prune the edge (𝑢,𝑤) only if either
1. 𝑐𝑜𝑙 𝑣 = 𝑐𝑜𝑙[𝑤]
2. Or we have connected 𝑢 to at least 𝑘 different

colors in the ball of radius !
"
⋅ 𝑑(𝑢,𝑤) around 𝑤

Diverse DiskANN

• Query answering algorithm:
– Start from 𝑘 points that all have different colors
𝑎!, … , 𝑎"

– In each iteration, swap one point 𝑎# with a
neighbor point 𝑎′ that

• is closer to the query
• has a different color from the rest of the points

Experiments
Algorithms:

• Standard DiskANN Build & Search + Postprocessing to
ensure diversity

• Our algo 1: Standard DiskANN Build + Diverse DiskANN
Search

• Our algo 2: Diverse DiskANN Build + Diverse DiskANN
Search

Datasets:
• Ads dataset: 20 Million vectors, 5000 queries, 64 dimensions
• Semi-Synthetic Arxiv: 2 Million, 1536 dimensions, 1000 colors

(uniform on {1,2,3} w.p. 0.9 and uniform on the rest w.p. 0.1)
• Semi-Synthetic SIFT: 1 Million, 128 dimensions, 1000 colors

(one color w.p. 0.8 and uniform on the rest w.p. 0.2)
Parameters:
• 𝑘 = 100

Recall vs Latency

Note: the experiments are run on “standard preprocessing” DiskANN,
while the analysis is for “slow preprocessing” DiskANN

Baseline: Standard DiskANN + Postprocessing to ensure diversity
Our algo 1: Standard DiskANN Build + Diverse DiskANN Search
Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search

Conclusions

• Can improve over re-ranking
– Diversity
– Proxy vs accurate metrics

• Other cases where such an improvements
are possible?

• Other problems:
– Better algorithms for diverse NN?

• Reduce the dependence on k
– Tri-metric setting?

THA
NKS

!

