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What: Nearest Neighbor Search
• Given: a set P of n points in a d-

dimensional space Rd 
• Goal: build a data structure 

which, given any query qÎRd 
returns a point pÎP minimizing 
the distance D(p,q)

• Want: 
– Fast running time
– Small data structure size

q



Why: Applications
• A surprising number of problems 

can be modeled as searching for 
similar vectors in high-dimensional 
space

• If I have time, I will show an 
application to earthquake 
detection 

• Think n ≫106, d>50

q



How: Nearest neighbor for d=1
• Pointset P: x1 < x2 … < xn, xiÎR  
• Query: qÎR
• Sufficient to find the interval that q belongs to
• Algorithm: 

– During the preprocessing, sort and store the input: O(n) 
space

– To answer query, perform binary search: O(log n) time

1 3 4 6 8
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Nearest neighbor for d=2
• Space partitioning: Voronoi 

diagram
• Given q, find the cell q 

belongs to 
• Performance:

– Query time: O(log n)
– Space: O(n)



The case of d>2

• Problem: Voronoi diagram has 
size 

n⌈d/2⌉

– This is a lot of space!
   (again, think n ≫106, d>50)

• We can also perform a linear 
scan: O(dn) space, O(dn) time

• These are pretty much the only 
known general solutions 

• “The curse of dimensionality”

q



Relaxation 1: Theory
• Given: a set P of n points in 

some space X under some metric 
d, parameter ε>0

• Goal: data structure which, given 
any query q returns p’ÎP,  where 
   d(p’,q) ≤ (1+ε) minpÎP d(p,q)

q

“(1+ε)-approximate nearest neighbor”



Relaxation 2: Practice
• Given: a set P of n points in some 

space X under some metric d, 
parameter k

• Goal: data structure which returns 
as many top k nearest neighbors as 
possible
– Recall@k: the fraction of top k nearest 

neighbors returns
• These two relaxations are 

correlated, but distinct
• We will use either, depending on the 

context

q

k=2

Recall@k=0.50
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Using nearest neighbor search: 
filtering/re-ranking

• Examples:
– Diversity constraints
– Refining results using another (expensive but accurate) metric D. E.g., d 

induced by the Euclidean distance, while D defined by LLM
– Thousands of papers on this topic

• Benefits:
– Query time much faster than if reranking done on the whole set
– Preprocessing also much faster, and “stable” 

• Drawback: Accuracy limited by the first stage
“The performance of a re-ranking pipeline is limited by the recall of the candidate pool, 
however. This is because documents that were not found by the  initial ranking function 
have no chance of being re-ranked.” (MacAvaney, Tonellotto, Macdonald. 2022)

q
k-NN with d

q
Reranking

q
k’-NN with D
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Graph-based algorithms

Since 2017: HNSW, NGT, NSG, DiskANN, SSG, 
Kgraph, DPG, NSW, SPTAG-KDT… 

q
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Improving over reranking: theory
Informal Theorem [Xu-Silwal-Indyk’25]: given an accurate       
approximate graph-based algorithm, if we 
• build a data structure using a proxy metric d, but then
• switch and answer queries using the ground truth metric D, 

and run it slightly longer,
then we get an accurate approximate answers with respect to 
the ground truth D.
(even if d and D are not that close).

This gives us a template for constructing data structures that 
use cheap proxy metrics d to speed-up search using expensive 
ground truth metrics D.   



Experiments on text
• d: bge-micro-v2 (open source): 

– Embeds text into Euclidean vectors
–  0.00043 secs per embedding

• D: SFR-Embedding-Mistral (open source):
– Also embeds text into Euclidean vectors
– 0.13 seconds per embedding

• D: Gemini-2.0-Flash (proprietary):
– Compares d(q,p) vs. d(q,p’)  
   (could use it to compute d(q,p), but does not work that well)
– 0.01 cents per comparison



Text retrieval setup
• MTEB benchmark data sets, models from Hugging Face 

leaderboard (below)

…



Results 1
• Setup:

– Algorithm: modified DiskANN 
– d=bge-micro, D=Gemini
– Data:  large (>1 MB) MTEB benchmark data sets

• Use only 500 queries, so that we can afford it

• Results (averaged over all data sets)

…



Results 2
d=bg-micro,  D=SFR-Embedding-Mistral 
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Diverse Nearest Neighbor Search
• Given: a set P of n points in a d-

dimensional space Rd , with colors 
and a parameter k

• Goal: build a data structure which, 
given any query qÎRd returns k 
points of different color minimizing 
the distance to q

q



Our results

Authors Comment Space Query Time

Anand, Indyk, 
Krishnaswamy, Mahabadi, 
Raykar, Shiragur, Xu’25

diverse k 2O(dim) n log Δ k2 2O(dim) log2 Δ

Indyk, Xu’23: DiskANN 
(non-diverse)

non-diverse 2O(dim) n log Δ 2O(dim) log2 Δ

We were able to modify existing non-diverse DiskANN 
graph-based algorithm to solve the diverse problem.
• Space: multiplied by k
• Time: multiplied by k2



Diverse DiskANN
Building the Graph:
• Pruning

– If 𝑑 𝑣,𝑤 ≤ !
"
⋅ 𝑑(𝑢,𝑤)

• Prune the edge (𝑢,𝑤) only if either
1.  𝑐𝑜𝑙 𝑣 = 𝑐𝑜𝑙[𝑤]
2.  Or we have connected 𝑢 to at least 𝑘 different 

colors in the ball of radius !
"
⋅ 𝑑(𝑢,𝑤) around 𝑤



Diverse DiskANN

• Query answering algorithm:
– Start from 𝑘 points that all have different colors 
𝑎!, … , 𝑎"

– In each iteration, swap one point 𝑎# with a 
neighbor point 𝑎′ that 

• is closer to the query
• has a different color from the rest of the points



Experiments
Algorithms:

• Standard DiskANN Build & Search + Postprocessing to 
ensure diversity

• Our algo 1: Standard DiskANN Build + Diverse DiskANN 
Search

• Our algo 2: Diverse DiskANN Build + Diverse DiskANN 
Search

Datasets:
• Ads dataset: 20 Million vectors, 5000 queries, 64 dimensions
• Semi-Synthetic Arxiv: 2 Million, 1536 dimensions, 1000 colors 

(uniform on {1,2,3} w.p. 0.9 and uniform on the rest w.p. 0.1)
• Semi-Synthetic SIFT: 1 Million, 128 dimensions, 1000 colors 

(one color w.p. 0.8 and uniform on the rest w.p. 0.2)
Parameters:
• 𝑘 = 100



Recall vs Latency

Note: the experiments are run on “standard preprocessing” DiskANN, 
while the analysis is for “slow preprocessing” DiskANN

Baseline: Standard DiskANN  + Postprocessing to ensure diversity
Our algo 1: Standard DiskANN Build + Diverse DiskANN Search
Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search



Conclusions

• Can improve over re-ranking
– Diversity
– Proxy vs accurate metrics

• Other cases where such an improvements 
are possible?

• Other problems:
– Better algorithms for diverse NN?

• Reduce the dependence on k
– Tri-metric setting?
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