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Nearest Neighbor Search
• Given: a set P of n distinct points in a 

d-dimensional space Rd under some 
norm ||.||

• Goal: build a data structure which, 
given any query qÎRd returns a point 
pÎP minimizing ||p-q||

• What is a data structure ?
– A data structure of size M is an array D[1 . . . M] of 

numbers (“the memory”), together with an associated 
algorithm A that, given a point q, returns a point in P as 
specified above

– Example in a moment
– See [Fefferman-Klartag’09] for an exposition

• Want: 
– Fast running time of the algorithm A 
– Small data structure size M
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Nearest Neighbor Search

• Best match problem [Minsky-
Papert’69], Post office problem
[Knuth’73]

• Broad applications in computer 
science, machine learning etc

– E.g., searching for similar audio files, 
images, videos, etc

– Google “wiki” “nearest neighbor search”

– Think n ≫106, d>50

• Many connections to geometric 
functional analysis, discrete metric 
spaces, etc.
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Example: d=1
• Pointset P: x1 < x2 … < xn, xiÎR
• Query: qÎR
• Nearest neighbor: equivalent to finding smallest xi greater 

than q (“successor” of q)
• Performance: 

– Query time:  O(log n)   (binary search)
– Space: O(n) (suffices to store sorted input)
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Example: d=2  

• Space partitioning: Voronoi 

diagram

– Combinatorial complexity O(n)

• Given q, find the cell q 

belongs to (point location)

• Performance [Lipton-Tarjan’80]

– Query time: O(log n)

– Space: O(n)



The case of d>2

• Voronoi diagram has size n⌈d/2⌉
– nO(d) space, (d+ log n)O(1) time [Dobkin-

Lipton’78,Meiser’93,Clarkson’88]  
• We can also perform a linear scan: O(dn)

space, O(dn) time
– Can speedup the scan time by roughly O(n1/d)

• These are pretty much the only known 
general solutions !

• In fact, exact algorithm with n1-β query time for 
some β>0 and poly(n) preprocessing would 
violate certain complexity-theoretic conjecture 
(SETH)
– See next lecture by V. V. Williams



Approximate Nearest Neighbor
• Given: a set P of n points in a d-

dimensional space Rd under 
some norm ||.||, parameter c>1

• Goal: data structure which, 
given any query q returns  p’ÎP,  
where 

||p’-q|| ≤ c minpÎP ||p-q|| 
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(c,r)-Approximate Near Neighbor

• Given: a set P of n points in a d-
dimensional space Rd under some norm 
||.||, parameters c>1 and r>0

• Goal: build a data structure D which, for 
any query q:

– If there is pÎP s.t. ||q-p|| ≤ r, 

– Then return p’ÎP s.t ||q-p’|| ≤ cr

• Decision version of approximate nearest 
neighbor

– Equivalent up to (log n)O(1) factors in space 
and query time

• Randomized version (c,r,δ)-ANN: for any 
query q

PrD[D answers q as above]>1-"
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Approximate Near(est) 
Neighbor Algorithms

• Space/time exponential in d [Arya-
Mount’93],[Clarkson’94], [Arya-Mount-Netanyahu-
Silverman-Wu’98] [Kleinberg’97], [Har-Peled’02], ….

• Space/time polynomial in d [Indyk-
Motwani’98], [Kushilevitz-Ostrovsky-Rabani’98], [Indyk’98], 
[Gionis-Indyk-Motwani’99], [Charikar’02], [Datar-Immorlica-
Indyk-Mirrokni’04], [Chakrabarti-Regev’04], [Panigrahy’06], 
[Ailon-Chazelle’06], [Andoni-Indyk’06],…., [Andoni-Indyk-
Nguyen-Razenshteyn’14], [Andoni-Razenshteyn’15] [Andoni-
Indyk-Laarhoven-Razenshteyn-Schmidt’15], [Andoni-
Nguyen-Nikolov-Razenshteyn-Waingarten’17], [Andoni-
Naor-Nikolov-Razenshteyn-Waingarten’18], …



Plan

• Non-adaptive approach: !", !# and friends
– Dimensionality reduction
– Randomized space partitions (a.k.a. Locality-

Sensitive Hashing)
• Adaptive approach: faster, more general



Non-adaptive data structures



Dimensionality reduction

• Consider approximation c=1+! ≤ 2
• Two steps:

– Design a data structure with 

• Space: (1/!)O(d)

• Query time: O(d)

– Use random projection [Johnson-

Lindenstrauss’84]

• Dimension: d → O(log(n)/!2)

• All distances preserved up to 1±! (in &' )

• Yields space ()(+/-2) and query time 

O(d log(n)/!2) [Ostrovski-Rabani’98]

• Space too large to be practical



Locality-Sensitive Hashing 
(LSH)

[Broder’97, Indyk-Motwani’98]

• A family H of functions h: Rd → U is called 
(P1,P2,r,cr)-sensitive for ||.||, if for any pair of 
points p,q:
– If ||p-q|| ≤ r   then PrhÎH [ h(p)=h(q) ] ≥ P1
– If ||p-q|| ≥ cr then PrhÎH [ h(p)=h(q) ] ≤ P2

• Theorem [Indyk-Motwani’98]: Suppose there is H as 
above. Then there is a (c,r,0.1)-ANN data 
structure with:
– Space: O(dn+nL)
– Time: O(dL)
where L=nr /P1, r=log(P1)/log(P2)



Locality-Sensitive Hashing

• A family H of functions h: Rd → U is 

called (P1,P2,r,cr)-sensitive for ||.||, if 

for any pair of points p,q:

– If ||p-q|| ≤ r   then PrhÎH [ h(p)=h(q) ] ≥ P1

– If ||p-q|| ≥ cr then PrhÎH [ h(p)=h(q) ] ≤ P2

• Theorem [Indyk-Motwani’98]: Suppose 

there is an H as above. Then there is 

a (c,r,0.1)-ANN data structure with 

space O(dn+nL) and time O(dL) 

where L=nr /P1, r=log(P1)/log(P2)

• Non-adaptive: the memory cells 

accessed to answer queries depend 

on query q but not on data set P

h
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LSH: examples

• {0,1}d under ||.||1 :
– H={hi : hi(p)=pi , i=1..d}
– PrhÎH [hi(p)=hi(q)]=1- ||p-q||1 /d
– Yields exponent r=1/c

• Works for Rd under ||. ||p, pÎ[1,2] 

ρ for 
c=2

Year
1998

0.5



LSH: examples

• Rd under ||. ||2 [Datar-Indyk-Immorlica-Mirrokni’04]
– Project on a random 1-dimensional space 

and round
– Yields exponent r<1/c w

w

p

Year
1998 2004

0.5
0.45

ρ for !"
c=2



LSH: examples

• Rd under ||.||2 
• Project  (on a t-space) and round 

[Charikar et al’98, Andoni-Indyk’06]

– Intervals → lattice of balls
– Can hit empty space, so hash until 

a ball is hit
– Yields exponent r→1/c2 as t→ ∞

p

Year
1998 2004 2006

0.5
0.45

0.25

t=2

[Motwani-Naor-Panigrahy’06, O’Donnell-
Wu-Zhou’09]: 
Any LSH in l2 must have r ≥ 1/c2 – o(1) or 
P1<exp(-a d) for some a>0

ρ for #$
c=2



Adaptive data structures



The “idea”

• Why is the answer not obvious ?
• It is often possible to get a data structure that works 

well when the data has some structure (clusters, low-
dimensional subspace, i.i.d. from some distribution,etc)

• The tricky part is what to do when the data does not 
have that structure, or any structure in particular

What if the data 
structure depended 

on …the data ?



The actual idea
• Every point-set has some 

structure that can be exploited 
algorithmically

• Details depend on the 
context/problem, but at a high 
level:
– Either there is dense cluster of small 

radius, or
– Points are “spread” out

• Applications:
– Faster algorithms for !" , !#
– Algorithms for general norms



Faster Algorithms



Basic Data Adaptive Method
P=input pointset, r=radius, c=approximation
Preprocessing:
1. As long as there is a ball Bi of radius O(cr) 

containing T points in P
– P=P-Bi
– i=i+1

2. Build LSH data structure on P

3. For each ball Bi build a specialized data 
structure for Bi ∩P

Query procedure:
1. Query the main data structure
2. Query all data structures for

balls that are “close” to the query 

No dense clusters – most points are >>cr from q

Diameter bounded by O(cr) – better LSH functions

q

q



• For c-approximation:

Results (for !") 

Algorithm Query Time Index Space
Non-adaptive LSH #$%/'( $%)%/'(

Andoni, Indyk, Nguyen, 
Razenshteyn’14

#$*.,-/'().(%)/'1 $%)*.,-/'().(%)/'1

Andoni-Razenshteyn’15 #$%/("'(2%) $%)%/("'(2%)

2014

0.15

2015
Year

1998 2004 2006

0.5
0.45
0.25

ρ for !"
c=2



More general algorithms



Generality

• Non-adaptive methods:

– Dimensionality reduction: mostly !"
• No dimensionality reduction in !# [Brinkman-Charikar’03, Lee-

Naor’04]

• Any space supporting dimensionality reduction with low 

distortion is “very close” to !" [Johnson-Naor’09]

– Locality-sensitive hashing: !$ for pÎ[1,2], Jaccard 

coefficient, Angular distance etc

• Does not work e.g., for !%
– Reductions:

• Small powers of the above

• Low-distortion embeddings into the above (edit distance, 

Ulam metric, transportation norm,..)

• What about general norms ?



General norms
• Every !-dimensional normed space is within ! from 
ℓ#$ (after a linear transformation) [John’48]
– Yields approximation factor of O( ! ) – pretty large

• Low-distortion embedding of any symmetric norm 
[Andoni-Nguyen-Nikolov-Razenshteyn-Waingarten’17] 
– Embedding into ⨁ℓ&⨁ℓ'ℓ(
– Yields approximation factor of poly(log log -)

• Algorithms for any norm via cutting modulus [Andoni-
Naor-Nikolov-Razenshteyn-Waingarten’18]
– Yields approximation factor of O(log d)
– The algorithm operates in the ”cell-probe” model (counts 

only memory accesses, not computation)
– Can be converted into an “actual” algorithm for specific 

norms or with a weaker guarantee



Cutting modulus
• Parameter Ξ(#, %) defined for any metric 

space # = ((,)) and “error parameter” 
%>0

• It is at most O(log(d)/%*) for any normed 
space ||.|| over Rd [Naor’17] 

• Related to non-linear spectral gaps
– See the talk by Assaf Naor next week



The core partitioning procedure
• Theorem: 

– Let ! = ($,&) with $ = ( and take 
), * > 0

– There is a “small” collection ℱ ⊂ 20 s.t. for 
every 1-point dataset 2 ⊂ $:

• Either there exists a ball of radius ≲ Ξ !, ) ⋅ *
with Ω(1) points

• Or there is a distribution 7 over “few” sets from 
ℱ that partition 2 (approximately) evenly and, 
for every 89, 8: ∈ $ with & 89, 8: ≤ *:
Pr?∼7 A separates 89 and 8: ≲ )

• ANN data structure can be constructed 
using divide and conquer approach



Conclusions + Open Problems

• Approximate Nearest Neighbor Search

– Non-adaptive approach: !" , !# and friends

– Adaptive approach: faster, more general

• Connections to geometric and metric functional 

analysis

• Open questions:

– Deterministic algorithms ? Very little known

– Better data structure for edit distance ?

• No poly(n) space, n1-β query time, poly(log(d))-approx. known

– Same for transportation norm, but replace poly(log(d)) 

with poly(loglog(d)) 

• Software: google “FALCONN”
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