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Nearest Neighbor Search

Given: a set P of n distinct points in a

d-dimensional space R® under some e
norm ||.||

Goal: build a data structure which,

given any query q<R returns a pomt

peP minimizing ||p-ql ./D
What is a data structure ? q

— A data structure of size M is an array D[1 ... M] of ®
numbers (“the memory”), together with an associated
algorithm A that, given a point g, returns a point in P as
specified above

— Example in a moment
— See [Fefferman-Klartag’09] for an exposition

Want:
— Fast running time of the algorithm A
— Small data structure size M



Nearest Neighbor Search

. Best match problem [Minsky- ’

Papert'69], Post office problem

[Knuth'73]
* Broad applications in computer ,/D
science, machine learning etc q

— E.g., searching for similar audio files, ©
Images, videos, etc

— Google “wiki” “nearest neighbor search”
— Think n >>10°, d>50

* Many connections to geometric
functional analysis, discrete metric
spaces, etc.



Example: d=1

Pointset P: x, < X, ... <X, x,eR
Query: geR
Nearest neighbor: equivalent to finding smallest x; greater
than g (“successor” of q)
Performance:
— Query time: O(log n) (binary search)
— Space: O(n) (suffices to store sorted input)
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Example: d=2

« Space partitioning: VVoronoi
diagram
— Combinatorial complexity O(n)

* Given q, find the cell g |
belongs to (point location)

* Performance [Lipton-Tarjan’80]
— Query time: O(log n)

— Space: O(n)




The case of d>2

Voronoi diagram has size nl9?|

— n°@space, (d+ log n)°") time [Dobkin-
Lipton78,Meiser'93,Clarkson’88]

We can also perform a linear scan: O(dn)
space, O(dn) time
— Can speedup the scan time by roughly O(n'"/d)

These are pretty much the only known
general solutions !

In fact, exact algorithm with n'* query time for
some 3>0 and poly(n) preprocessing would

violate certain complexity-theoretic conjecture
(SETH)

— See next lecture by V. V. Williams



Approximate Nearest Neighbor

* Given: a set P of n points in a d- o
dimensional space RY under

some norm ||.||, parameter c>1 7 o
 Goal: data structure which, ’
given any query q returns p'eP, :

where 0 °
Ip™-ql| = ¢ min,_p |[p-q]|



(c,r)-Approximate Near Neighbor

Given: a set P of n points in a d- O
dimensional space R under some norm
|.||, parameters c>1 and r>0

Goal: build a data structure D which, for

any query q:
— If there is peP s.t. |[g-p|| =,

— Then return p'eP s.t ||g-p|| = cr
Decision version of approximate nearest
neighbor

— Equivalent up to (log n)°(" factors in space
and query time

Randomized version (c,r,6)-ANN: for any

query q
Pry[D answers g as above]>1-§




Approximate Near(est)
Neighbor Algorithms

» Space/time exponential in d [Arya-

Mount'93],[Clarkson’94], [Arya-Mount-Netanyahu-
Silverman-Wu'98] [Kleinberg'97], [Har-Peled'02], ....

» Space/time polynomial in d [indyk-
Motwani’98], [Kushilevitz-Ostrovsky-Rabani’98], [Indyk’98],
[Gionis-Indyk-Motwani’99], [Charikar'02], [Datar-Immorlica-
Indyk-Mirrokni’04], [Chakrabarti-Regev’'04], [Panigrahy’06],
[Ailon-Chazelle’06], [Andoni-Indyk’06],...., [Andoni-Indyk-
Nguyen-Razenshteyn'14], [Andoni-Razenshteyn’15] [Andoni-
Indyk-Laarhoven-Razenshteyn-Schmidt’15], [Andoni-
Nguyen-Nikolov-Razenshteyn-Waingarten’17], [Andoni-
Naor-Nikolov-Razenshteyn-Waingarten’18], ...



Plan

* Non-adaptive approach: [, [, and friends
— Dimensionality reduction

— Randomized space partitions (a.k.a. Locality-
Sensitive Hashing)

» Adaptive approach: faster, more general



Non-adaptive data structures



Dimensionality reduction

Consider approximation c=1+¢ < 2

Two steps:

— Design a data structure with ¢
« Space: (1/£)°©) :
* Query time: O(d) :

— Use random projection [Johnson-
Lindenstrauss’84]

« Dimension: d — O(log(n)/?)
« All distances preserved up to 1+¢ (inl, )
. 2 .
Yields space n?*/¢7) and query time
O(d log(n)/?) [Ostrovski-Rabani’98]

Space too large to be practical



Locality-Sensitive Hashing




Locality-Sensitive Hashing

« A family H of functions h: R — U is
called (P,,P,,r,cr)-sensitive for ||.||, if

for any pair of points p,q:

— If [|p-ql[ = then Pr,_,[ h(p)=h(q) ] =P,
— If ||p-q|| = cr then Pr,,_, [ h(p)=h(q) 1= P,

Theorem [Indyk-Motwani’'98]: Suppose %o
there is an H as above. Then there is

a (c,r,0.17)-ANN data structure
space O(dn+nL) and time O(d
where L=nr/P., p=log(P,)/log(

* Non-adaptive: the memory cel

with
)
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accessed to answer queries depend

on query g but not on data set
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LSH: examples

« {0,1}9 under ||.||:
— H={h; - hi(p)=p; , i=1..d}

— Pricq [hi(P)=hi(q)]=1- [p-qll, /d
— Yields exponent p=1/c

- Works for R% under ||. |[,, p[1,2]

p for 4
c=2
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LSH: examples

» R9 under ||. ||, [Datar-Indyk-Immorlica-Mirrokni’04]

— Project on a random 1-dimensional space

and round o P

— Yields exponent p<1/c \
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LSH: examples

« R9under |||,

* Project (on a t-space) and round
[Charikar et al’98, Andoni-Indyk’06]

— Intervals — lattice of balls
— Can hit empty space, so hash until

a ball is hit
— Yields exponent p—1/c?as t— o

p for [, 4 _
= t=2

0.5 | P

0.45 [----mmmmmmmomooo oo @ [Motwani-Naor-Panigrahy’06, O’Donnell-

025 ° Wu-Zhou’09]:

' Any LSH in I, must have p = 1/c?— 0o(1) or
P.<exp(-a d) for some a>0
>
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Adaptive data structures



The “idea”

What if the data
structure depended
on ...the data ?

* Why is the answer not obvious ?

* |t is often possible to get a data structure that works
well when the data has some structure (clusters, low-
dimensional subspace, i.i.d. from some distribution,etc)

* The tricky part is what to do when the data does not
have that structure, or any structure in particular



The actual idea

» Every point-set has some
structure that can be exploited
algorithmically °

* Details depend on the
context/problem, but at a high
level:

— Either there is dense cluster of small @
radius, or

— Points are “spread” out
* Applications:
— Faster algorithms for [, , [,
— Algorithms for general norms



Faster Algorithms



Basic Data Adaptive Method

P=input pointset, r=radius, c=approximation

Preprocessing: ®
1. Aslong as there is a ball B, of radius O(cr) )
containing T points in P Py
- PP _
— i=i+1

2. Build LSH data structure on P
No dense clusters — most points are >>cr from q

3. For each ball B, build a specialized data
structure for B, (P

Diameter bounded by O(cr) — better LSH\functions @

Query procedure:
1. Query the main data structure
2. Query all data structures for
balls that are “close” to the query



Results (for [,)

* For c-approximation:

Algorithm Query Time Index Space
Non-adaptive LSH dnl/c? nlti/c?
Andoni, Indyk, Nguyen, dn0-87/c?+0(1)/c? nlt0.87/c+0(1)/c?

Razenshteyn’14

Andoni-Razenshteyn’15 dnl/(2c?-1) nl+1/(2c*-1)
o for i, 4
c=2

0.5 ____.
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More general algorithms



Generality

Non-adaptive methods:

— Dimensionality reduction: mostly [,

« No dimensionality reduction in [, [Brinkman-Charikar'03, Lee-
Naor’'04]

* Any space supporting dimensionality reduction with low
distortion is “very close” to [, [Johnson-Naor’'09]

— Locality-sensitive hashing: [, for p<[1,2], Jaccard
coefficient, Angular dlstance etc
* Does not work e.g., for [,

— Reductions:

« Small powers of the above

» Low-distortion embeddings into the above (edit distance,
Ulam metric, transportation norm,..)

What about general norms ?



General norms

. Every d-dimensional normed space is within +/d from
¢4 (after a linear transformation) [John'48]

— Yields approximation factor of O(+/d ) — pretty large

« Low-distortion embedding of any symmetric norm
[Andoni-Nguyen-Nikolov-Razenshteyn-Waingarten’17]

— Embedding into €, @, 7.

— Yields approximation factor of poly(loglogn)
 Algorithms for any norm via cutting modulus [Andoni-

Naor-Nikolov-Razenshteyn-Waingarten’18]

— Yields approximation factor of O(log d)

— The algorithm operates in the "cell-probe” model (counts
only memory accesses, not computation)

— Can be converted into an “"actual” algorithm for specific
norms or with a weaker guarantee



Cutting modulus

« Parameter =Z(M, o) defined for any metric
space M = (X, D) and “error parameter”
a>0

e |tis at most O(log(d)/a*) for any normed
space ||.|| over RY [Naor'17]

» Related to non-linear spectral gaps
— See the talk by Assaf Naor next week



The core partitioning procedure

 Theorem:
— Let M = (X, D) with | X| = N and take
a,r>0
— There is a “small” collection F < 2% s.t. for

every n-point dataset P — X:

« Either there exists a ball of radius = Z(M, a) - r
with (0(n) points
* Orthere is a distribution D over “few” sets from
F that partition P (approximately) evenly and,
for every x,,x, € X with D(x, x,) < r:
Afi%[A separates x; and x,| S «

* ANN data structure can be constructed
using divide and conquer approach




Conclusions + Open Problems

Approximate Nearest Neighbor Search
— Non-adaptive approach l1 , I, and frie \

nctional

analysis
Open question \é
— Determigjs I 0 s ? Very little known

ure for edit distance ?
)space n'® query time, poly(log(d))-approx. known
e for transportation norm, but replace poly(log(d))
with poly(loglog(d))

Software: google “FALCONN"

Connections to geometrl




