Approximate Nearest Neighbor Search in High Dimensions

Piotr Indyk MIT

Nearest Neighbor Search

 \bigcirc

()

 \bigcirc

 \bigcirc

- Given: a set P of n distinct points in a d-dimensional space R^d under some norm ||.||
- Goal: build a data structure which, given any query q∈R^d returns a point p∈P minimizing ||p-q||
- What is a data structure ?
 - A data structure of size M is an array D[1...M] of numbers ("the memory"), together with an associated algorithm A that, given a point q, returns a point in P as specified above
 - Example in a moment
 - See [Fefferman-Klartag'09] for an exposition
- Want:
 - Fast running time of the algorithm A
 - Small data structure size M

Nearest Neighbor Search

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

- Best match problem [Minsky-Papert'69], Post office problem [Knuth'73]
- Broad applications in computer science, machine learning etc
 - E.g., searching for similar audio files, images, videos, etc
 - Google "wiki" "nearest neighbor search"
 - Think n $>>10^{6}$, d>50
- Many connections to geometric functional analysis, discrete metric spaces, etc.

Example: d=1

- Pointset P: $x_1 < x_2 ... < x_n, x_i \in R$
- Query: $q \in R$
- Nearest neighbor: equivalent to finding smallest x_i greater than q ("successor" of q)
- Performance:
 - Query time: O(log n) (binary search)
 - Space: O(n) (suffices to store sorted input)

Example: d=2

- Space partitioning: Voronoi diagram
 - Combinatorial complexity O(n)
- Given q, find the cell q belongs to (point location)
- Performance [Lipton-Tarjan'80]
 - Query time: O(log n)
 - Space: O(n)

The case of d>2

- Voronoi diagram has size n^[d/2]
 - n^{O(d)} space, (d+ log n)^{O(1)} time [Dobkin-Lipton'78,Meiser'93,Clarkson'88]
- We can also perform a linear scan: O(dn) space, O(dn) time
 - Can speedup the scan time by roughly $O(n^{1/d})$
- These are pretty much the only known general solutions !
- In fact, exact algorithm with n^{1-β} query time for some β>0 and poly(n) preprocessing would violate certain complexity-theoretic conjecture (SETH)
 - See next lecture by V. V. Williams

Approximate Nearest Neighbor

- Given: a set P of n points in a ddimensional space R^d under some norm ||.||, parameter c>1
- Goal: data structure which, given any query q returns p'∈P, where

 \bigcirc

 $||p'-q|| \leq c \min_{p \in P} ||p-q||$

(c,r)-Approximate Near Neighbor

- Given: a set P of n points in a ddimensional space R^d under some norm ||.||, parameters c>1 and r>0
- Goal: build a data structure D which, for any query q:
 - If there is $p \in P$ s.t. $||q-p|| \leq r$,
 - Then return $p' \in P$ s.t $||q-p'|| \leq cr$
- Decision version of approximate nearest neighbor
 - Equivalent up to $(\log n)^{O(1)}$ factors in space and query time
- Randomized version (c,r,δ)-ANN: for any query q

 $\Pr_{D}[D \text{ answers } q \text{ as above}] > 1 - \delta$

 \bigcirc

Approximate Near(est) Neighbor Algorithms

- Space/time exponential in d [Arya-Mount'93],[Clarkson'94], [Arya-Mount-Netanyahu-Silverman-Wu'98] [Kleinberg'97], [Har-Peled'02],
- Space/time polynomial in d [Indyk-Motwani'98], [Kushilevitz-Ostrovsky-Rabani'98], [Indyk'98], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06], [Andoni-Indyk'06],...., [Andoni-Indyk-Nguyen-Razenshteyn'14], [Andoni-Razenshteyn'15] [Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt'15], [Andoni-Nguyen-Nikolov-Razenshteyn-Waingarten'17], [Andoni-Naor-Nikolov-Razenshteyn-Waingarten'18], ...

Plan

- Non-adaptive approach: l_1 , l_2 and friends
 - Dimensionality reduction
 - Randomized space partitions (a.k.a. Locality-Sensitive Hashing)
- Adaptive approach: faster, more general

Non-adaptive data structures

Dimensionality reduction

- Consider approximation $c=1+\varepsilon \leq 2$
- Two steps:
 - Design a data structure with
 - Space: (1/ε)^{O(d)}
 - Query time: O(d)
 - Use random projection [Johnson-Lindenstrauss'84]
 - Dimension: $d \rightarrow O(\log(n)/\epsilon^2)$
 - All distances preserved up to $1\pm\varepsilon$ (in l_2)
- Yields space $n^{O(1/\epsilon^2)}$ and query time O(d log(n)/ ϵ^2) [Ostrovski-Rabani'98]
- Space too large to be practical

Locality-Sensitive Hashing (LSH)

Locality-Sensitive Hashing

- A family H of functions h: R^d → U is called (P₁,P₂,r,cr)-sensitive for ||.||, if for any pair of points p,q:
 - If $||p-q|| \le r$ then $Pr_{h \in H}[h(p)=h(q)] \ge P_1$
 - If $||p-q|| \ge cr$ then $Pr_{h \in H}[h(p)=h(q)] \le P_2$
- Theorem [Indyk-Motwani'98]: Suppose there is an H as above. Then there is a (c,r,0.1)-ANN data structure with space O(dn+nL) and time O(dL) where L=n^ρ/P₁, ρ=log(P₁)/log(P₂)
- Non-adaptive: the memory cells accessed to answer queries depend on query q but not on data set P

LSH: examples

- {0,1}^d under ||.||₁:
 - $H=\{h_i: h_i(p)=p_i, i=1..d\}$
 - $\Pr_{h \in H} [h_i(p)=h_i(q)]=1- ||p-q||_1/d$
 - Yields exponent ρ =1/c
- Works for \mathbb{R}^d under $||. ||_p, p \in [1,2]$

LSH: examples

р

Ŵ

W

- R^d under ||. ||₂ [Datar-Indyk-Immorlica-Mirrokni'04]
 - Project on a random 1-dimensional space and round
 - Yields exponent $\rho < 1/c$

LSH: examples

• R^d under ||.||₂

 ρ for l_2

- Project (on a t-space) and round [Charikar et al'98, Andoni-Indyk'06]
 - Intervals \rightarrow lattice of balls
 - Can hit empty space, so hash until a ball is hit

– Yields exponent $\rho \rightarrow 1/c^2$ as $t \rightarrow \infty$

Adaptive data structures

The "idea"

- Why is the answer not obvious ?
- It is often possible to get a data structure that works well when the data has some structure (clusters, lowdimensional subspace, i.i.d. from some distribution, etc)
- The tricky part is what to do when the data does not have that structure, or any structure in particular

The actual idea

- Every point-set has some structure that can be exploited algorithmically
- Details depend on the context/problem, but at a high level:
 - Either there is dense cluster of small radius, or
 - Points are "spread" out
- Applications:
 - Faster algorithms for l_1 , l_2
 - Algorithms for general norms

Faster Algorithms

Basic Data Adaptive Method

рC

Q

P=input pointset, r=radius, c=approximation

Preprocessing:

- 1. As long as there is a ball B_i of radius O(cr) containing T points in P
 - P=P-B_i
 - i=i+1
- 2. Build LSH data structure on P No dense clusters – most points are >>cr from q
- 3. For each ball B_i build a specialized data structure for $B_i \cap P$

Diameter bounded by O(cr) – better LSH functions

Query procedure:

- 1. Query the main data structure
- 2. Query all data structures for balls that are "close" to the query

Results (for l_2)

• For c-approximation:

Algorithm	Query Time	Index Space
Non-adaptive LSH	dn^{1/c^2}	n^{1+1/c^2}
Andoni, Indyk, Nguyen, Razenshteyn'14	$dn^{0.87/c^2+O(1)/c^3}$	$n^{1+0.87/c^2+O(1)/c^3}$
Andoni-Razenshteyn'15	$dn^{1/(2c^2-1)}$	$n^{1+1/(2c^2-1)}$

More general algorithms

Generality

- Non-adaptive methods:
 - Dimensionality reduction: mostly l_2
 - No dimensionality reduction in l₁ [Brinkman-Charikar'03, Lee-Naor'04]
 - Any space supporting dimensionality reduction with low distortion is "very close" to l₂ [Johnson-Naor'09]
 - Locality-sensitive hashing: l_p for $p \in [1,2]$, Jaccard coefficient, Angular distance etc
 - Does not work e.g., for l_{∞}
 - Reductions:
 - Small powers of the above
 - Low-distortion embeddings into the above (edit distance, Ulam metric, transportation norm,..)
- What about general norms ?

General norms

- Every *d*-dimensional normed space is within \sqrt{d} from ℓ_2^d (after a linear transformation) [John'48]
 - Yields approximation factor of $O(\sqrt{d})$ pretty large
- Low-distortion embedding of any symmetric norm [Andoni-Nguyen-Nikolov-Razenshteyn-Waingarten'17]
 - Embedding into $\bigoplus_{\ell_{\infty}} \bigoplus_{\ell_1} \ell_{\infty}$
 - Yields approximation factor of poly(log log n)
- Algorithms for any norm via cutting modulus [Andoni-Naor-Nikolov-Razenshteyn-Waingarten'18]
 - Yields approximation factor of O(log d)
 - The algorithm operates in the "cell-probe" model (counts only memory accesses, not computation)
 - Can be converted into an "actual" algorithm for specific norms or with a weaker guarantee

Cutting modulus

- Parameter $\Xi(M, \alpha)$ defined for any metric space M = (X, D) and "error parameter" $\alpha > 0$
- It is at most O(log(d)/α²) for any normed space ||.|| over R^d [Naor'17]
- Related to non-linear spectral gaps
 See the talk by Assaf Naor next week

The core partitioning procedure

- Theorem:
 - Let M = (X, D) with |X| = N and take $\alpha, r > 0$
 - There is a "small" collection $\mathcal{F} \subset 2^X$ s.t. for every *n*-point dataset $P \subset X$:
 - Either there exists a ball of radius $\leq \Xi(M, \alpha) \cdot r$ with $\Omega(n)$ points
 - Or there is a distribution \mathcal{D} over "few" sets from \mathcal{F} that partition P (approximately) evenly and, for every $x_1, x_2 \in X$ with $D(x_1, x_2) \leq r$: $\Pr_{A \sim \mathcal{D}}[A \text{ separates } x_1 \text{ and } x_2] \leq \alpha$

 ANN data structure can be constructed using divide and conquer approach

Conclusions + Open Problems

- Approximate Nearest Neighbor Search
 - Non-adaptive approach: l_1 , l_2 and friends
 - Adaptive approach: faster, more general
- Connections to geometric and metric functional analysis
- Open questions
 - Deterministic algorithms ? Very little known
 - Bettel data structure for edit distance ?
 - No poly(n) space, $n^{1-\beta}$ query time, poly(log(d))-approx. known
 - Same for transportation norm, but replace poly(log(d)) with poly(loglog(d))
- Software: google "FALCONN"