
Approximate Nearest
Neighbor Search in High

Dimensions
Piotr Indyk
MIT

Nearest Neighbor Search
• Given: a set P of n distinct points in a

d-dimensional space Rd under some
norm ||.||

• Goal: build a data structure which,
given any query qÎRd returns a point
pÎP minimizing ||p-q||

• What is a data structure ?
– A data structure of size M is an array D[1 . . . M] of

numbers (“the memory”), together with an associated
algorithm A that, given a point q, returns a point in P as
specified above

– Example in a moment
– See [Fefferman-Klartag’09] for an exposition

• Want:
– Fast running time of the algorithm A
– Small data structure size M

q

Nearest Neighbor Search

• Best match problem [Minsky-
Papert’69], Post office problem
[Knuth’73]

• Broad applications in computer
science, machine learning etc

– E.g., searching for similar audio files,
images, videos, etc

– Google “wiki” “nearest neighbor search”

– Think n ≫106, d>50

• Many connections to geometric
functional analysis, discrete metric
spaces, etc.

q

Example: d=1
• Pointset P: x1 < x2 … < xn, xiÎR
• Query: qÎR
• Nearest neighbor: equivalent to finding smallest xi greater

than q (“successor” of q)
• Performance:

– Query time: O(log n) (binary search)
– Space: O(n) (suffices to store sorted input)

1 3 4 6 8

q

Example: d=2

• Space partitioning: Voronoi

diagram

– Combinatorial complexity O(n)

• Given q, find the cell q

belongs to (point location)

• Performance [Lipton-Tarjan’80]

– Query time: O(log n)

– Space: O(n)

The case of d>2

• Voronoi diagram has size n⌈d/2⌉
– nO(d) space, (d+ log n)O(1) time [Dobkin-

Lipton’78,Meiser’93,Clarkson’88]
• We can also perform a linear scan: O(dn)

space, O(dn) time
– Can speedup the scan time by roughly O(n1/d)

• These are pretty much the only known
general solutions !

• In fact, exact algorithm with n1-β query time for
some β>0 and poly(n) preprocessing would
violate certain complexity-theoretic conjecture
(SETH)
– See next lecture by V. V. Williams

Approximate Nearest Neighbor
• Given: a set P of n points in a d-

dimensional space Rd under
some norm ||.||, parameter c>1

• Goal: data structure which,
given any query q returns p’ÎP,
where

||p’-q|| ≤ c minpÎP ||p-q||

q

r

cr

(c,r)-Approximate Near Neighbor

• Given: a set P of n points in a d-
dimensional space Rd under some norm
||.||, parameters c>1 and r>0

• Goal: build a data structure D which, for
any query q:

– If there is pÎP s.t. ||q-p|| ≤ r,

– Then return p’ÎP s.t ||q-p’|| ≤ cr

• Decision version of approximate nearest
neighbor

– Equivalent up to (log n)O(1) factors in space
and query time

• Randomized version (c,r,δ)-ANN: for any
query q

PrD[D answers q as above]>1-"

q

r

cr

Approximate Near(est)
Neighbor Algorithms

• Space/time exponential in d [Arya-
Mount’93],[Clarkson’94], [Arya-Mount-Netanyahu-
Silverman-Wu’98] [Kleinberg’97], [Har-Peled’02], ….

• Space/time polynomial in d [Indyk-
Motwani’98], [Kushilevitz-Ostrovsky-Rabani’98], [Indyk’98],
[Gionis-Indyk-Motwani’99], [Charikar’02], [Datar-Immorlica-
Indyk-Mirrokni’04], [Chakrabarti-Regev’04], [Panigrahy’06],
[Ailon-Chazelle’06], [Andoni-Indyk’06],…., [Andoni-Indyk-
Nguyen-Razenshteyn’14], [Andoni-Razenshteyn’15] [Andoni-
Indyk-Laarhoven-Razenshteyn-Schmidt’15], [Andoni-
Nguyen-Nikolov-Razenshteyn-Waingarten’17], [Andoni-
Naor-Nikolov-Razenshteyn-Waingarten’18], …

Plan

• Non-adaptive approach: !", !# and friends
– Dimensionality reduction
– Randomized space partitions (a.k.a. Locality-

Sensitive Hashing)
• Adaptive approach: faster, more general

Non-adaptive data structures

Dimensionality reduction

• Consider approximation c=1+! ≤ 2
• Two steps:

– Design a data structure with

• Space: (1/!)O(d)

• Query time: O(d)

– Use random projection [Johnson-

Lindenstrauss’84]

• Dimension: d → O(log(n)/!2)

• All distances preserved up to 1±! (in &')

• Yields space ()(+/-2) and query time

O(d log(n)/!2) [Ostrovski-Rabani’98]

• Space too large to be practical

Locality-Sensitive Hashing
(LSH)

[Broder’97, Indyk-Motwani’98]

• A family H of functions h: Rd → U is called
(P1,P2,r,cr)-sensitive for ||.||, if for any pair of
points p,q:
– If ||p-q|| ≤ r then PrhÎH [h(p)=h(q)] ≥ P1
– If ||p-q|| ≥ cr then PrhÎH [h(p)=h(q)] ≤ P2

• Theorem [Indyk-Motwani’98]: Suppose there is H as
above. Then there is a (c,r,0.1)-ANN data
structure with:
– Space: O(dn+nL)
– Time: O(dL)
where L=nr /P1, r=log(P1)/log(P2)

Locality-Sensitive Hashing

• A family H of functions h: Rd → U is

called (P1,P2,r,cr)-sensitive for ||.||, if

for any pair of points p,q:

– If ||p-q|| ≤ r then PrhÎH [h(p)=h(q)] ≥ P1

– If ||p-q|| ≥ cr then PrhÎH [h(p)=h(q)] ≤ P2

• Theorem [Indyk-Motwani’98]: Suppose

there is an H as above. Then there is

a (c,r,0.1)-ANN data structure with

space O(dn+nL) and time O(dL)

where L=nr /P1, r=log(P1)/log(P2)

• Non-adaptive: the memory cells

accessed to answer queries depend

on query q but not on data set P

h

q

LSH: examples

• {0,1}d under ||.||1 :
– H={hi : hi(p)=pi , i=1..d}
– PrhÎH [hi(p)=hi(q)]=1- ||p-q||1 /d
– Yields exponent r=1/c

• Works for Rd under ||. ||p, pÎ[1,2]

ρ for
c=2

Year
1998

0.5

LSH: examples

• Rd under ||. ||2 [Datar-Indyk-Immorlica-Mirrokni’04]
– Project on a random 1-dimensional space

and round
– Yields exponent r<1/c w

w

p

Year
1998 2004

0.5
0.45

ρ for !"
c=2

LSH: examples

• Rd under ||.||2
• Project (on a t-space) and round

[Charikar et al’98, Andoni-Indyk’06]

– Intervals → lattice of balls
– Can hit empty space, so hash until

a ball is hit
– Yields exponent r→1/c2 as t→ ∞

p

Year
1998 2004 2006

0.5
0.45

0.25

t=2

[Motwani-Naor-Panigrahy’06, O’Donnell-
Wu-Zhou’09]:
Any LSH in l2 must have r ≥ 1/c2 – o(1) or
P1<exp(-a d) for some a>0

ρ for #$
c=2

Adaptive data structures

The “idea”

• Why is the answer not obvious ?
• It is often possible to get a data structure that works

well when the data has some structure (clusters, low-
dimensional subspace, i.i.d. from some distribution,etc)

• The tricky part is what to do when the data does not
have that structure, or any structure in particular

What if the data
structure depended

on …the data ?

The actual idea
• Every point-set has some

structure that can be exploited
algorithmically

• Details depend on the
context/problem, but at a high
level:
– Either there is dense cluster of small

radius, or
– Points are “spread” out

• Applications:
– Faster algorithms for !" , !#
– Algorithms for general norms

Faster Algorithms

Basic Data Adaptive Method
P=input pointset, r=radius, c=approximation
Preprocessing:
1. As long as there is a ball Bi of radius O(cr)

containing T points in P
– P=P-Bi
– i=i+1

2. Build LSH data structure on P

3. For each ball Bi build a specialized data
structure for Bi ∩P

Query procedure:
1. Query the main data structure
2. Query all data structures for

balls that are “close” to the query

No dense clusters – most points are >>cr from q

Diameter bounded by O(cr) – better LSH functions

q

q

• For c-approximation:

Results (for !")

Algorithm Query Time Index Space
Non-adaptive LSH #$%/'($%)%/'(

Andoni, Indyk, Nguyen,
Razenshteyn’14

#$*.,-/'().(%)/'1 $%)*.,-/'().(%)/'1

Andoni-Razenshteyn’15 #$%/("'(2%) $%)%/("'(2%)

2014

0.15

2015
Year

1998 2004 2006

0.5
0.45
0.25

ρ for !"
c=2

More general algorithms

Generality

• Non-adaptive methods:

– Dimensionality reduction: mostly !"
• No dimensionality reduction in !# [Brinkman-Charikar’03, Lee-

Naor’04]

• Any space supporting dimensionality reduction with low

distortion is “very close” to !" [Johnson-Naor’09]

– Locality-sensitive hashing: !$ for pÎ[1,2], Jaccard

coefficient, Angular distance etc

• Does not work e.g., for !%
– Reductions:

• Small powers of the above

• Low-distortion embeddings into the above (edit distance,

Ulam metric, transportation norm,..)

• What about general norms ?

General norms
• Every !-dimensional normed space is within ! from
ℓ#$ (after a linear transformation) [John’48]
– Yields approximation factor of O(!) – pretty large

• Low-distortion embedding of any symmetric norm
[Andoni-Nguyen-Nikolov-Razenshteyn-Waingarten’17]
– Embedding into ⨁ℓ&⨁ℓ'ℓ(
– Yields approximation factor of poly(log log -)

• Algorithms for any norm via cutting modulus [Andoni-
Naor-Nikolov-Razenshteyn-Waingarten’18]
– Yields approximation factor of O(log d)
– The algorithm operates in the ”cell-probe” model (counts

only memory accesses, not computation)
– Can be converted into an “actual” algorithm for specific

norms or with a weaker guarantee

Cutting modulus
• Parameter Ξ(#, %) defined for any metric

space # = ((,)) and “error parameter”
%>0

• It is at most O(log(d)/%*) for any normed
space ||.|| over Rd [Naor’17]

• Related to non-linear spectral gaps
– See the talk by Assaf Naor next week

The core partitioning procedure
• Theorem:

– Let ! = ($,&) with $ = (and take
), * > 0

– There is a “small” collection ℱ ⊂ 20 s.t. for
every 1-point dataset 2 ⊂ $:

• Either there exists a ball of radius ≲ Ξ !,) ⋅ *
with Ω(1) points

• Or there is a distribution 7 over “few” sets from
ℱ that partition 2 (approximately) evenly and,
for every 89, 8: ∈ $ with & 89, 8: ≤ *:
Pr?∼7 A separates 89 and 8: ≲)

• ANN data structure can be constructed
using divide and conquer approach

Conclusions + Open Problems

• Approximate Nearest Neighbor Search

– Non-adaptive approach: !" , !# and friends

– Adaptive approach: faster, more general

• Connections to geometric and metric functional

analysis

• Open questions:

– Deterministic algorithms ? Very little known

– Better data structure for edit distance ?

• No poly(n) space, n1-β query time, poly(log(d))-approx. known

– Same for transportation norm, but replace poly(log(d))

with poly(loglog(d))

• Software: google “FALCONN”

T\H
ANK Y

OU!

