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Nearest Neighbor Search

The nearest neighbour search problem arises in numerous fields of application,
including:

e Pattern recognition — in particular for optical character recognition

o Statistical classification — see k-nearest neighbor algorithm

e Computer vision

o Computational geometry — see Closest pair of points problem

o Databases — e.g. content-based image retrieval

e Coding theory — see maximum likelihood decoding

e Data compression — see MPEG-2 standard

« Robotic sensing(?

e Recommendation systems, e.g. see Collaborative filtering

¢ Internet marketing — see contextual advertising and behavioral targeting

e DNA sequencing

e Spell checking — suggesting correct spelling

¢ Plagiarism detection

e Similarity scores for predicting career paths of professional athletes.

e Cluster analysis — assignment of a set of observations into subsets (called

clusters) so that observations in the same cluster are similar in some sense,
usually based on Euclidean distance

BRI



Relaxation: Theory

* Given: a set P of n points in ©
some space X under some metric
d, parameter £>0

* Goal: data structure which, given
any query q returns p'eP, where

d(p’,q) = (1+€) min,p d(p,q)

“(1+¢)-approximate nearest neighbor”



Relaxation: Practice

Given: a set P of n points in some space o
X under some metric d, parameter k

Goal: data structure which returns as
many top k nearest neighbors as
possible

— Recall@k: the fraction of top k nearest

neighbors returns
k=2

These two relaxations are correlated, but Recall@k=0.50
distinct

We will use either, depending on the
context



Graph-based algorithms



Graph-based algorithms

Main ideas:
— Create a graph G=(P,E) over points P

— Greedy search: in each step, move
from p to argmin, e d(q,p)

» Generalized version uses bounded priority
queue of size L

ldeas go back to:
— Orchard’91 (complete graph) ®
— Arya-Mount'93 (for the Euclidean space)

— Navarro’02 (for exact search)

— Krauthgammer-Lee’04 (not quite greedy
search)

— See Clarkson’06 for a survey

Recent wave: HNSW, NSG, DiskANN,
NGT, SSG, Kgraph, DPG, NSW,
SPTAG-KDT, EFANNA ....



Landscape in 2025
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Vignettes/challenges

1. Correctness and/or performance guarantees
(Indyk-Xu, NeurlPS'23)

2. Diversity-aware search (Anand, Indyk,

Krishnaswamy, Mahabadi, Raykar, Shiragur,
Xu, ICML'25)

3. Exploit the power of searching in arbitrary

metrics to improve re-ranking (Xu-Silwal-
Indyk'24)



Correctness/performance
guarantees

with Haike Xu
MIT



Quantifying intrinsic dimension:
doubling constant

« Consider a general metric
M=(X,d)

* A doubling constant of M is the
smallest value A such that any
ball B(p,2r) can be covered using O

at most A balls B(p4,r)...B(pa,r)
— dim=log A is called doubling 0
dimension N

 We will also use A to denote the
ratio of diameter to closest pair
distance



Past results

Authors Space Query Time
Krauthgamer, Lee’04 20dm)n jog A 20dim)|og A
Krauthgamer, Lee’04 n2 20(dim) |og2 n
Har-Peled, Mendel’05 20dm)n Jog n 20(dim) Jog n
Beygelzimer, Kakade, Langford’06 n 20(dim) |og A
Cole, Gottlieb’06 n 20(dim) |og n

Constant approximation factor; bounds up to O(.)

Can we obtain similar approximation/performance
guarantees for popular graph-based algorithms “?

Indyk, Xu’23: DiskANN 20dm)n jog A 20(dim)|og2 A
(slow preprocessing)



Can we obtain guarantees for
popular graph-based algorithms
 Two answers:

— Yes: for DiskANN with “slow” preprocessing
— No (empirically): for everything else



DiskANN

(slow version)

Building the Graph (with parameter oo =>1)
For each point u, perform “Robust FPruning”:

» Create a sorted list of all points v according
to d(u, v)

* For each point v in the sorted list, add(u, v)
and prune all w such that

dlv,w) < i -d(u,w)
Space: The out degree of each vertex is
< (4a)¥™ . log A

Greedy search: yields a (Z—j + e) — approx.

solution in log,, iterations

A
a(l1—¢€)



“Fast” DiskANN: Preprocessing

* Initialize the graph to a random R-out graph

» Repeat twice

— For each peP

« Perform greedy search for the nearest neighbor of p

« Connect p to/from the vertices scanned by greedy
search

» Perform Robust Pruning on any node that has >R
neighbors, keeping at most R of them

* Does this offer provable guarantees?



DiskANN with fast preprocessing
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Hard data set for DiskANN

_________________________________________________________________________



HNSW, NSG
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Similar results hold for NGT, SSG, Kgraph, DPG, NSW, SPTAG-KDT,

EFANNA



Wrap up correctness

» Correctness/runtime guarantees exist for one
variant of one graph-based algorithm

* ...but not (empirically) for many others

 Questions:

— Empirically fast algorithm with provable
guarantees ?

— Other notions of dimensionality (e.g., LID ?)
— Generic counterexamples with proofs ?



Diversity-aware search
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Diverse Nearest Neighbor Search

* Given: a set P of n points in metric
space , with colors and a parameter k

» Goal: build a data structure which,
given any query q returns k points of %
different color minimizing the distance
to g

* Motivation?




Prior work and our results

Authors Comment Space Query Time

Abbar, Amer-Yahia, Indyk, @ d=Hamming logk n'*lc k2 log k nt/c
Mahabadi, Varadarajan’13  approx=0(c)

We were able to modify existing non-diverse DiskANN

graph-based algorithm to give the first graph-based algorithms for the diverse problem.
« Space: multiplied by k
« Time: multiplied by k? (or k for the colorful version)



Diverse DiskANN

Building the Graph:
* Pruning
—Ifd(v,w) < % d(u,w)
* Prune the edge (u, w) only if either
1. col|v] = col[w]
2. Or we have connected u to at least k different
colors in the ball of radius%{ -d(u,w) around w



Diverse DiskANN

* Query answering algorithm:

— Start from k points that all have different colors
Aq, -, Ap

— In each iteration, swap one point a; with a
neighbor point a’ that

* Is closer to the query
» has a different color from the rest of the points



Experiments

Algorithms:
Baseline: Standard DiskANN + Postprocessing to ensure diversity

Our algo 1: Standard DiskANN Build + Diverse DiskANN Search s
Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search

Datasets:
« Ads dataset: 20 Million vectors, 5000 queries, 64 dimensions

« Semi-Synthetic Arxiv: 2 Million, 1536 dimensions, 1000 colors
(uniform on {1,2,3} w.p. 0.9 and uniform on the rest w.p. 0.1)

« Semi-Synthetic SIFT: 1 Million, 128 dimensions, 1000 colors
(one color w.p. 0.8 and uniform on the rest w.p. 0.2)

Parameters:
e k=100
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Wrap up diversity

» Extended (slow) DiskANN to diverse nearest
neighbor
« Space: multiplied by k. Time: multiplied by k? (or k
for colorful variant).

 Questions:

— Better space/time bounds” Recent result by
Samson Zhou's group for the colorful version:
« Space: multiplied by log k. Time: multiplied by k.
(but randomized)
» Constant space overhead?



FOCS 2025 workshop

(with Raj Jayaram, Ravi Krishnaswamy)
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