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• Nearest neighbor search: definitions
• Graph-based algorithms: definitions, 

examples
• Two research vignettes
• Conclusions and open problems



Nearest Neighbor Search
• Given: a set P of n points in 

some space X under some 
metric d

• Goal: data structure which, 
given any query q returns p’ÎP,  
where 

   d(p’,q) ≤ minpÎP d(p,q)
• Exact version pretty hard 
   (in theory and in practice)

q



Relaxation: Theory
• Given: a set P of n points in 

some space X under some metric 
d, parameter ε>0

• Goal: data structure which, given 
any query q returns p’ÎP,  where 
   d(p’,q) ≤ (1+ε) minpÎP d(p,q)

q

“(1+ε)-approximate nearest neighbor”



Relaxation: Practice
• Given: a set P of n points in some space 

X under some metric d, parameter k
• Goal: data structure which returns as 

many top k nearest neighbors as 
possible
– Recall@k: the fraction of top k nearest 

neighbors returns

• These two relaxations are correlated, but 
distinct

• We will use either, depending on the 
context

q

k=2

Recall@k=0.50



Graph-based algorithms



Graph-based algorithms
• Main ideas:

– Create a graph G=(P,E) over points P
– Greedy search: in each step, move 

from p to argmin(p,u)∈E d(q,p)
• Generalized version uses bounded priority 

queue of size L
• Ideas go back to:

– Orchard’91 (complete graph)
– Arya-Mount’93 (for the Euclidean space)
– Navarro’02 (for exact search)
– Krauthgammer-Lee’04 (not quite greedy 

search)
– See Clarkson’06 for a survey

• Recent wave: HNSW, NSG, DiskANN, 
NGT, SSG, Kgraph, DPG, NSW, 
SPTAG-KDT, EFANNA ….

q



Landscape in 2025

From: https://ann-benchmarks.com



Vignettes/challenges

1. Correctness and/or performance guarantees 
(Indyk-Xu, NeurIPS’23)

2. Diversity-aware search (Anand, Indyk, 
Krishnaswamy, Mahabadi, Raykar, Shiragur, 
Xu, ICML’25)

3. Exploit the power of searching in arbitrary 
metrics to improve re-ranking (Xu-Silwal-
Indyk’24)



Correctness/performance 
guarantees 

with Haike Xu
MIT



Quantifying intrinsic dimension: 
doubling constant

• Consider a general metric 
M=(X,d)

• A doubling constant of M is the 
smallest value A such that any 
ball B(p,2r) can be covered using 
at most A balls B(p1,r)…B(pA,r)
– dim=log A is called doubling 

dimension

• We will also use Δ to denote the 
ratio of diameter to closest pair 
distance 



Past results

Constant approximation factor; bounds up to O(.)

Can we obtain similar approximation/performance 
guarantees for popular graph-based algorithms ?
Indyk, Xu’23: DiskANN 
(slow preprocessing)

2O(dim) n log Δ 2O(dim) log2 Δ

Authors Space Query Time

Krauthgamer, Lee’04 2O(dim) n log Δ 2O(dim) log Δ

Krauthgamer, Lee’04 n2 2O(dim) log2 n

Har-Peled, Mendel’05 2O(dim) n log n 2O(dim)  log n

Beygelzimer, Kakade, Langford’06 n 2O(dim)  log Δ

Cole, Gottlieb’06 n 2O(dim)  log n



Can we obtain guarantees for 
popular graph-based algorithms ?
• Two answers:

– Yes: for DiskANN with “slow” preprocessing
– No (empirically): for everything else



DiskANN
(slow version)

Building the Graph (with parameter 𝜶	>1)
For each point 𝑢, perform “Robust Pruning”:
• Create a sorted list of all points 𝑣 according 

to 𝑑 𝑢, 𝑣
• For each point 𝑣 in the sorted list, add 𝑢, 𝑣  

and prune all 𝑤 such that

 𝑑 𝑣,𝑤 ≤ !
"
⋅ 𝑑 𝑢,𝑤

Space: The out degree of each vertex is
 ≤ 4𝛼 #$% ⋅ 𝑙𝑜𝑔 𝛥

Greedy search: yields a "&!
"'!

+ 𝜖 − approx. 

solution in log"
(

" !')
 iterations

𝒖 𝒗

𝒘



“Fast” DiskANN: Preprocessing

• Initialize the graph to a random R-out graph
• Repeat twice

– For each p∈P
• Perform greedy search for the nearest neighbor of p 
• Connect p to/from the vertices scanned by greedy 

search
• Perform Robust Pruning on any node that has >R 

neighbors, keeping at most R of them

• Does this offer provable guarantees?



DiskANN with fast preprocessing



Hard data set for DiskANN



HNSW, NSG

• Similar results hold for NGT, SSG, Kgraph, DPG, NSW, SPTAG-KDT, 
EFANNA

  



Wrap up correctness
• Correctness/runtime guarantees exist for one 

variant of one graph-based algorithm
• …but not (empirically) for many others
• Questions:

– Empirically fast algorithm with provable 
guarantees ?

– Other notions of dimensionality (e.g., LID ?)
– Generic counterexamples with proofs ?



Diversity-aware search

with P. Anand, R. Krishnaswamy, 
S. Mahabadi, Raykar, K. Shiragur, H. Xu



Diverse Nearest Neighbor Search
• Given: a set P of n points in metric 

space , with colors and a parameter k
• Goal: build a data structure which, 

given any query q returns k points of 
different color minimizing the distance 
to q

• Motivation?

q



Prior work and our results

Authors Comment Space Query Time

Abbar, Amer-Yahia, Indyk, 
Mahabadi, Varadarajan’13

d=Hamming
approx=O(c)

log k  n1+1/c k2 log k n1/c

Anand, Indyk, 
Krishnaswamy, Mahabadi, 
Raykar, Shiragur, Xu’25

d=any metric
approx=O(1)

k 2O(dim) n log Δ k2 2O(dim) log2 Δ

Indyk, Xu’23: DiskANN 
(non-diverse)

non-diverse 2O(dim) n log Δ 2O(dim) log2 Δ

We were able to modify existing non-diverse DiskANN 
graph-based algorithm to give the first graph-based algorithms for the diverse problem.
• Space: multiplied by k
• Time: multiplied by k2 (or k for the colorful version)



Diverse DiskANN
Building the Graph:
• Pruning

– If 𝑑 𝑣,𝑤 ≤ !
"
⋅ 𝑑(𝑢,𝑤)

• Prune the edge (𝑢,𝑤) only if either
1.  𝑐𝑜𝑙 𝑣 = 𝑐𝑜𝑙[𝑤]
2.  Or we have connected 𝑢 to at least 𝑘 different 

colors in the ball of radius !
"
⋅ 𝑑(𝑢,𝑤) around 𝑤



Diverse DiskANN

• Query answering algorithm:
– Start from 𝑘 points that all have different colors 
𝑎!, … , 𝑎*

– In each iteration, swap one point 𝑎$ with a 
neighbor point 𝑎′ that 

• is closer to the query
• has a different color from the rest of the points



Experiments
Algorithms:
Baseline: Standard DiskANN + Postprocessing to ensure diversity
Our algo 1: Standard DiskANN Build + Diverse DiskANN Search
Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search

Datasets:
• Ads dataset: 20 Million vectors, 5000 queries, 64 dimensions
• Semi-Synthetic Arxiv: 2 Million, 1536 dimensions, 1000 colors 

(uniform on {1,2,3} w.p. 0.9 and uniform on the rest w.p. 0.1)
• Semi-Synthetic SIFT: 1 Million, 128 dimensions, 1000 colors 

(one color w.p. 0.8 and uniform on the rest w.p. 0.2)
Parameters:
• 𝑘 = 100



Experiments: Recall vs Latency

Baseline: Standard DiskANN  + Postprocessing to ensure diversity
Our algo 1: Standard DiskANN Build + Diverse DiskANN Search
Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search



Wrap up diversity
• Extended (slow) DiskANN to diverse nearest 

neighbor
• Space: multiplied by k. Time: multiplied by k2 (or k 

for colorful variant). 
• Questions:

– Better space/time bounds? Recent result by 
Samson Zhou’s group for the colorful version: 

• Space: multiplied by log k. Time: multiplied by k.
   (but randomized)
• Constant space overhead?



FOCS 2025 workshop
(with Raj Jayaram, Ravi Krishnaswamy)
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