

Graph-based algorithms for similarity search: challenges and opportunities

Piotr Indyk (MIT)

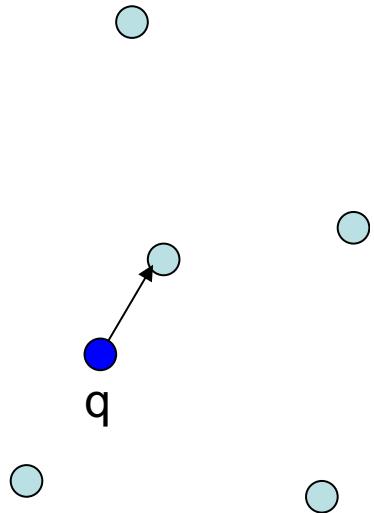
Plan

- Nearest neighbor search: definitions
- Graph-based algorithms: definitions, examples
- Two research vignettes
- Conclusions and open problems

Nearest Neighbor Search

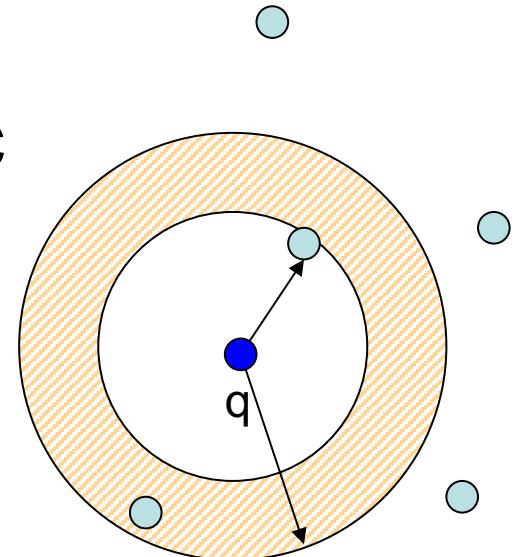
The nearest neighbour search problem arises in numerous fields of application, including:

- Pattern recognition – in particular for [optical character recognition](#)
- Statistical classification – see [k-nearest neighbor algorithm](#)
- Computer vision
- Computational geometry – see [Closest pair of points problem](#)
- Databases – e.g. [content-based image retrieval](#)
- Coding theory – see [maximum likelihood decoding](#)
- Data compression – see [MPEG-2 standard](#)
- Robotic sensing^[2]
- Recommendation systems, e.g. see [Collaborative filtering](#)
- Internet marketing – see [contextual advertising](#) and [behavioral targeting](#)
- DNA sequencing
- Spell checking – suggesting correct spelling
- Plagiarism detection
- Similarity scores for predicting career paths of professional athletes.
- Cluster analysis – assignment of a set of observations into subsets (called clusters) so that observations in the same cluster are similar in some sense, usually based on [Euclidean distance](#)



Relaxation: Theory

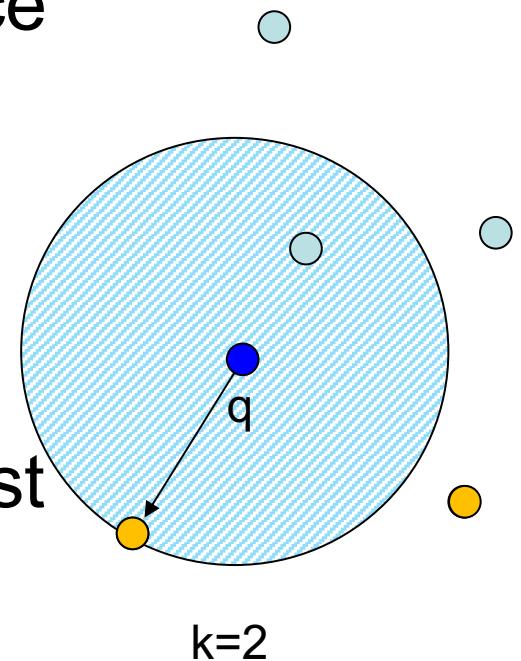
- **Given:** a set P of n points in some space X under some metric d , parameter $\varepsilon > 0$
- **Goal:** data structure which, given any query q returns $p' \in P$, where $d(p', q) \leq (1 + \varepsilon) \min_{p \in P} d(p, q)$



“(1+ ε)-approximate nearest neighbor”

Relaxation: Practice

- **Given:** a set P of n points in some space X under some metric d , parameter k
- **Goal:** data structure which returns as many top k nearest neighbors as possible
 - Recall@ k : the fraction of top k nearest neighbors returns

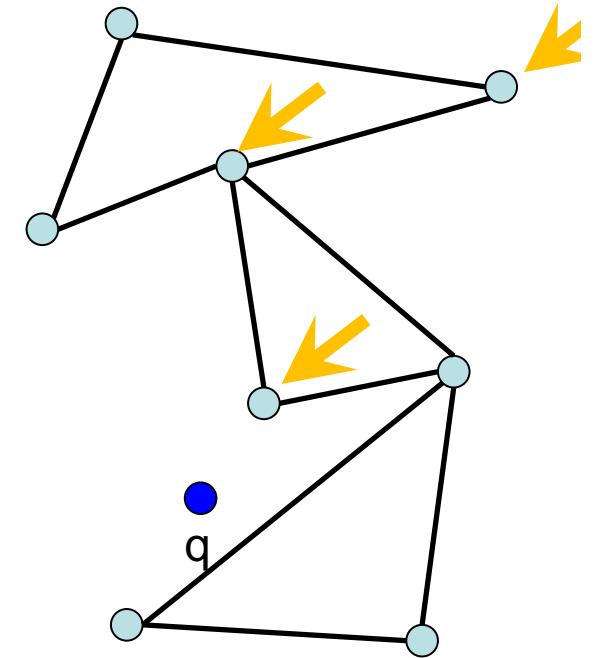


- These two relaxations are correlated, but distinct
- We will use either, depending on the context

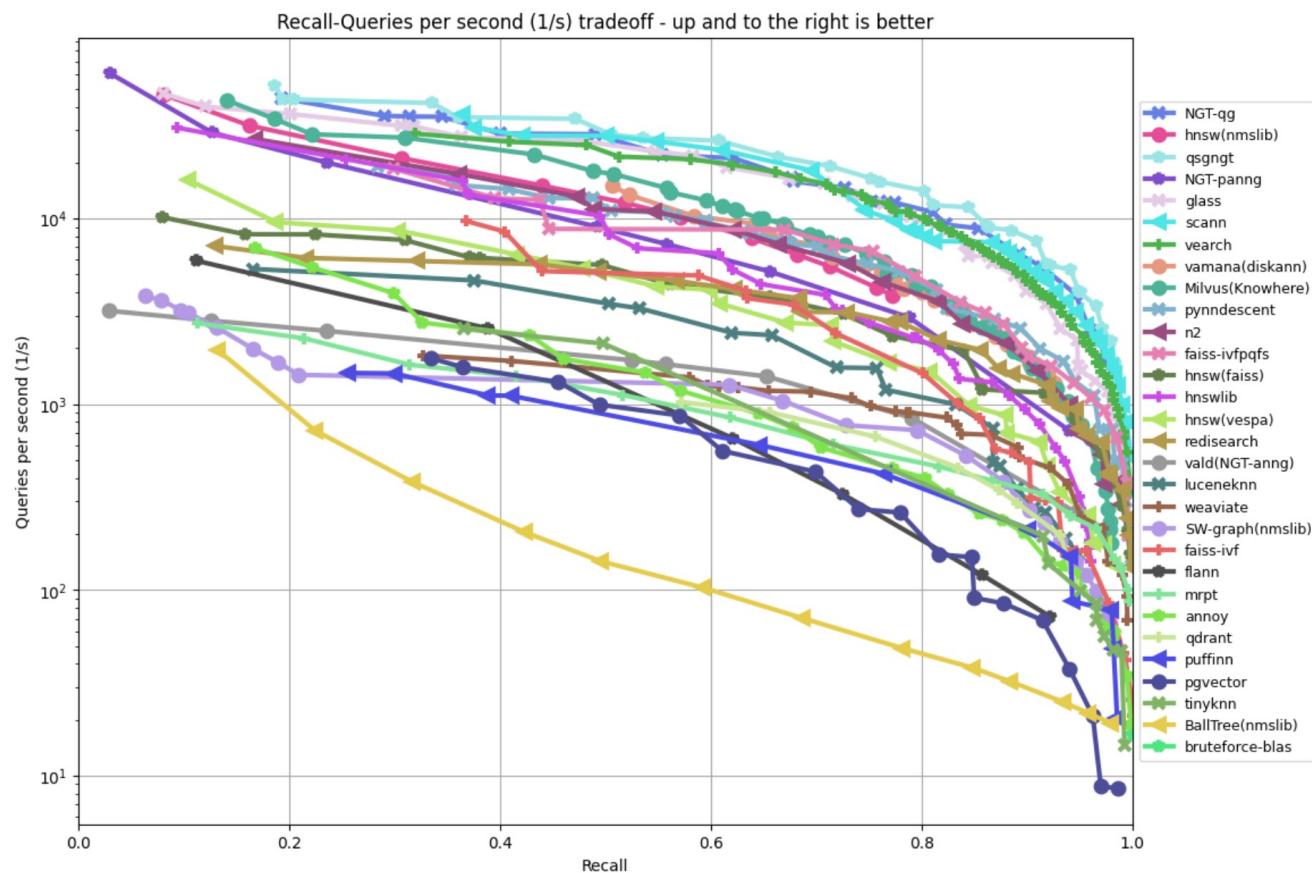
Graph-based algorithms

Graph-based algorithms

- Main ideas:
 - Create a graph $G=(P,E)$ over points P
 - **Greedy search:** in each step, move from p to $\operatorname{argmin}_{(p,u) \in E} d(q,p)$
 - Generalized version uses bounded priority queue of size L
- Ideas go back to:
 - Orchard'91 (complete graph)
 - Arya-Mount'93 (for the Euclidean space)
 - Navarro'02 (for exact search)
 - Krauthammer-Lee'04 (not quite greedy search)
 - See Clarkson'06 for a survey
- Recent wave: HNSW, NSG, DiskANN, NGT, SSG, Kgraph, DPG, NSW, SPTAG-KDT, EFANNA



Landscape in 2025



From: <https://ann-benchmarks.com>

Vignettes/challenges

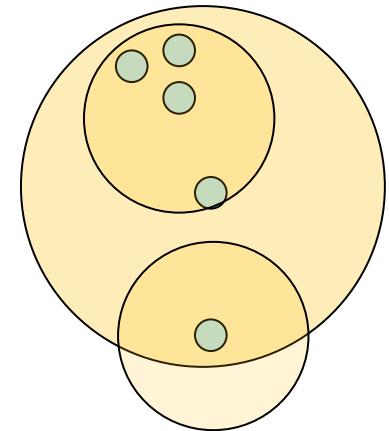
1. Correctness and/or performance guarantees (Indyk-Xu, NeurIPS'23)
2. Diversity-aware search (Anand, Indyk, Krishnaswamy, Mahabadi, Raykar, Shiragur, Xu, ICML'25)
3. Exploit the power of searching in arbitrary metrics to improve re-ranking (Xu-Silwal-Indyk'24)

Correctness/performance guarantees

with Haike Xu
MIT

Quantifying intrinsic dimension: doubling constant

- Consider a general metric $M=(X,d)$
- A **doubling constant** of M is the smallest value A such that **any** ball $B(p,2r)$ can be covered using at most A balls $B(p_1,r) \dots B(p_A,r)$
 - $\dim = \log A$ is called **doubling dimension**
- We will also use Δ to denote the ratio of diameter to closest pair distance



Past results

Authors	Space	Query Time
Krauthgamer, Lee'04	$2^{O(\dim)} n \log \Delta$	$2^{O(\dim)} \log \Delta$
Krauthgamer, Lee'04	n^2	$2^{O(\dim)} \log^2 n$
Har-Peled, Mendel'05	$2^{O(\dim)} n \log n$	$2^{O(\dim)} \log n$
Beygelzimer, Kakade, Langford'06	n	$2^{O(\dim)} \log \Delta$
Cole, Gottlieb'06	n	$2^{O(\dim)} \log n$

Constant approximation factor; bounds up to $O(\cdot)$

Can we obtain similar approximation/performance guarantees for popular graph-based algorithms ?

Indyk, Xu'23: DiskANN (slow preprocessing)	$2^{O(\dim)} n \log \Delta$	$2^{O(\dim)} \log^2 \Delta$
---	-----------------------------	-----------------------------

Can we obtain guarantees for popular graph-based algorithms ?

- Two answers:
 - Yes: for DiskANN with “slow” preprocessing
 - No (empirically): for everything else

DiskANN

(slow version)

Building the Graph (with parameter $\alpha > 1$)

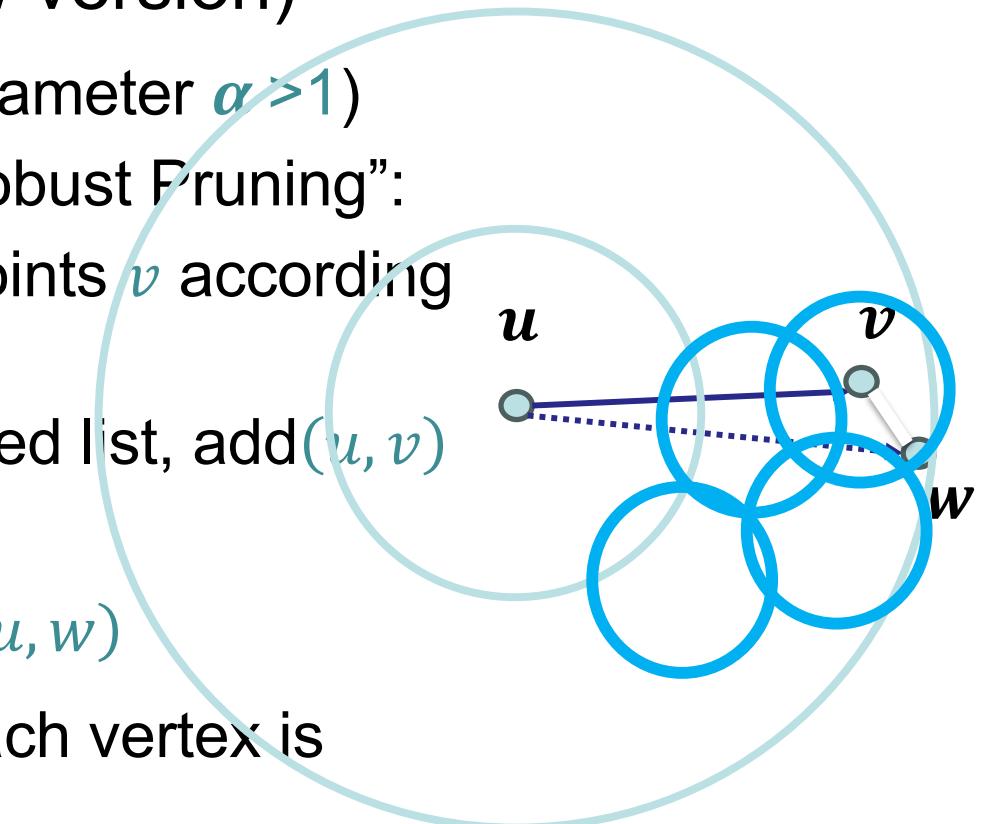
For each point u , perform “Robust Pruning”:

- Create a sorted list of all points v according to $d(u, v)$
- For each point v in the sorted list, add (u, v) and prune all w such that

$$d(v, w) \leq \frac{1}{\alpha} \cdot d(u, w)$$

Space: The out degree of each vertex is

$$\leq (4\alpha)^{\dim} \cdot \log \Delta$$



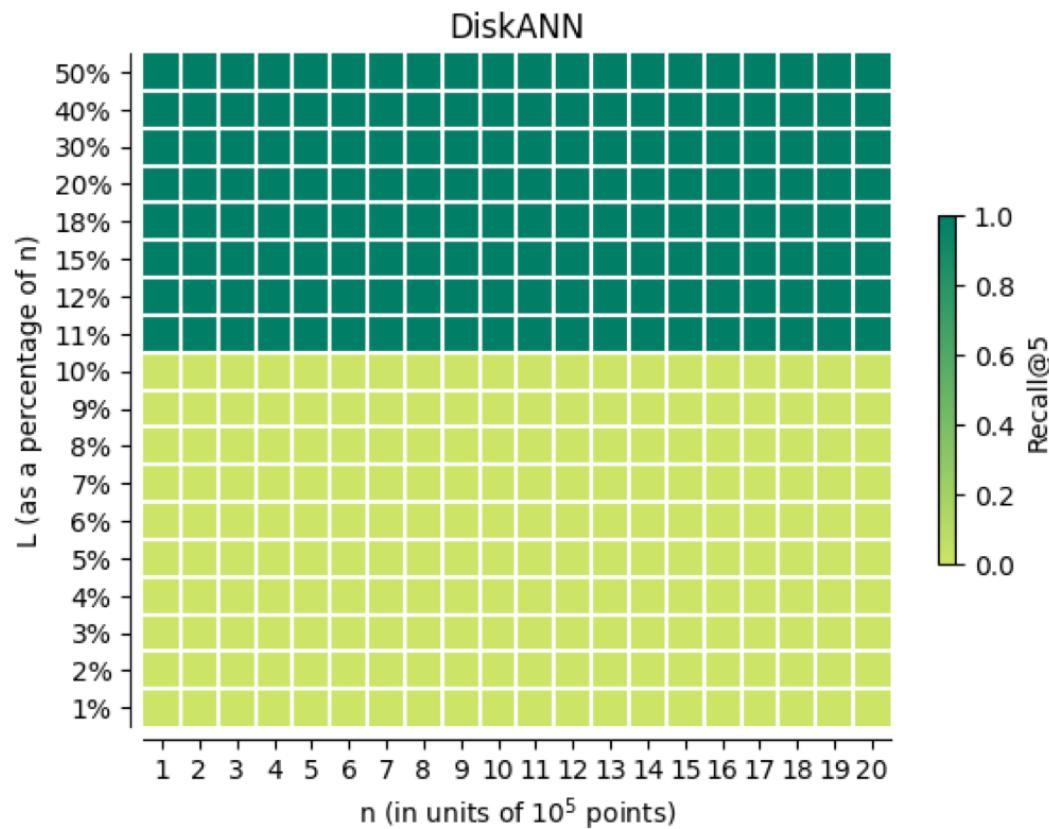
Greedy search: yields a $\left(\frac{\alpha+1}{\alpha-1} + \epsilon\right)$ – approx.

solution in $\log_{\alpha} \frac{\Delta}{\alpha(1-\epsilon)}$ iterations

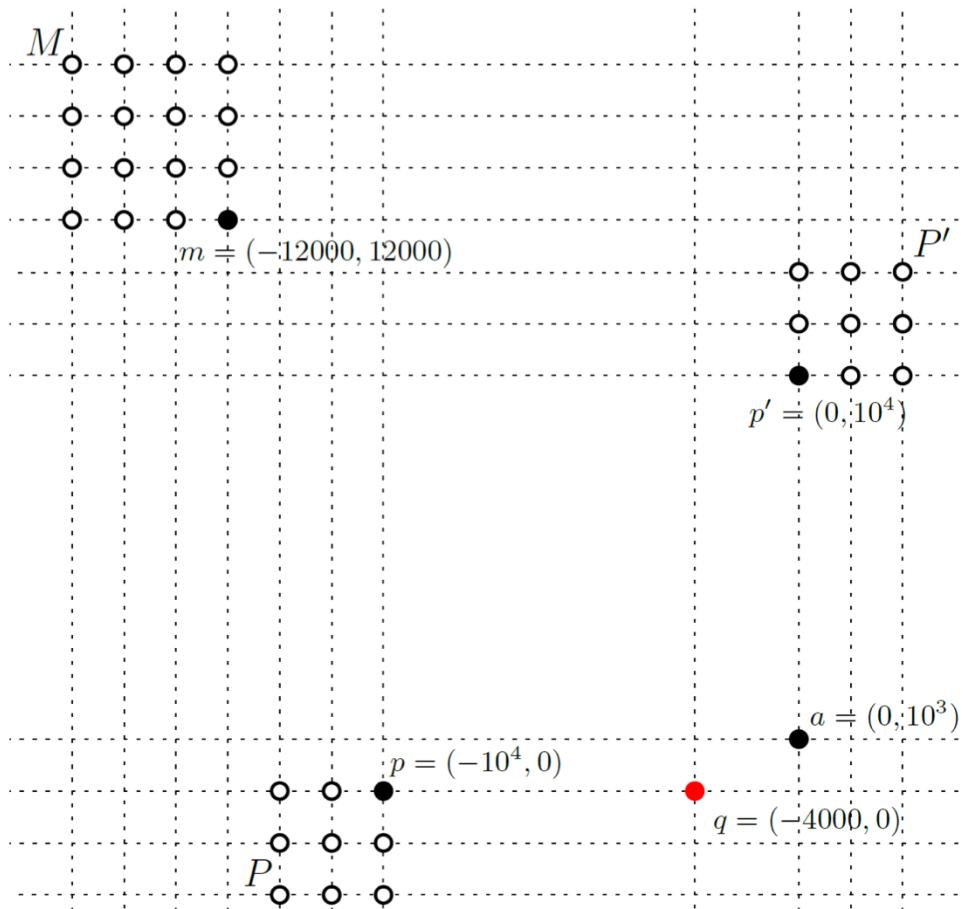
“Fast” DiskANN: Preprocessing

- Initialize the graph to a random R -out graph
- Repeat twice
 - For each $p \in P$
 - Perform greedy search for the nearest neighbor of p
 - Connect p to/from the vertices scanned by greedy search
 - Perform **Robust Pruning** on any node that has $>R$ neighbors, keeping at most R of them
- Does this offer provable guarantees?

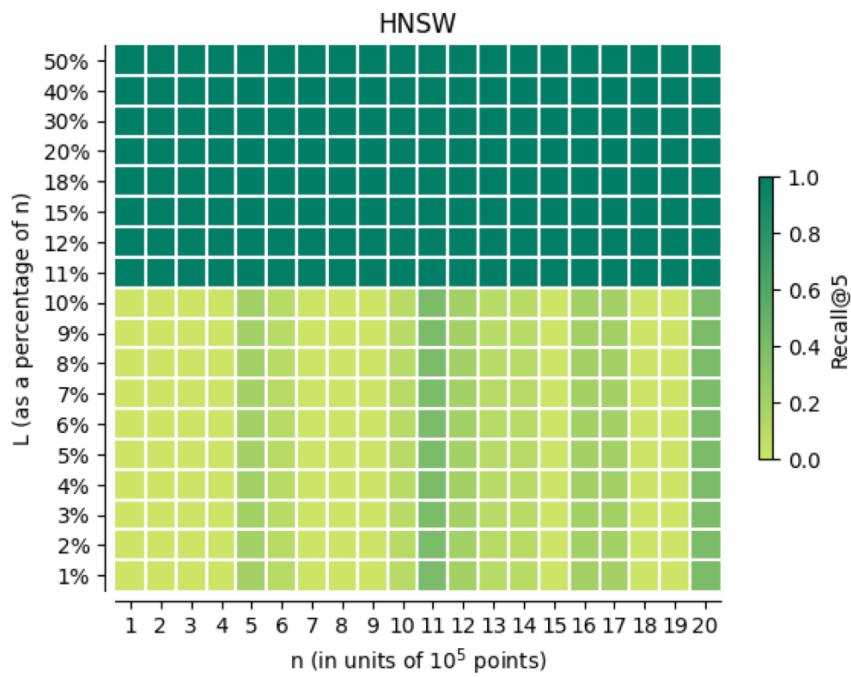
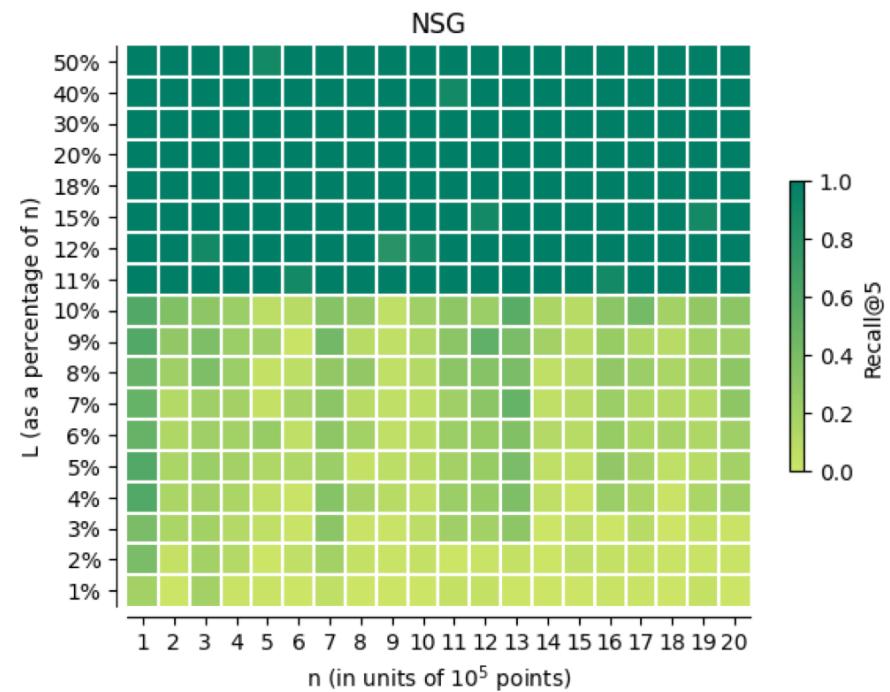
DiskANN with fast preprocessing



Hard data set for DiskANN



HNSW, NSG

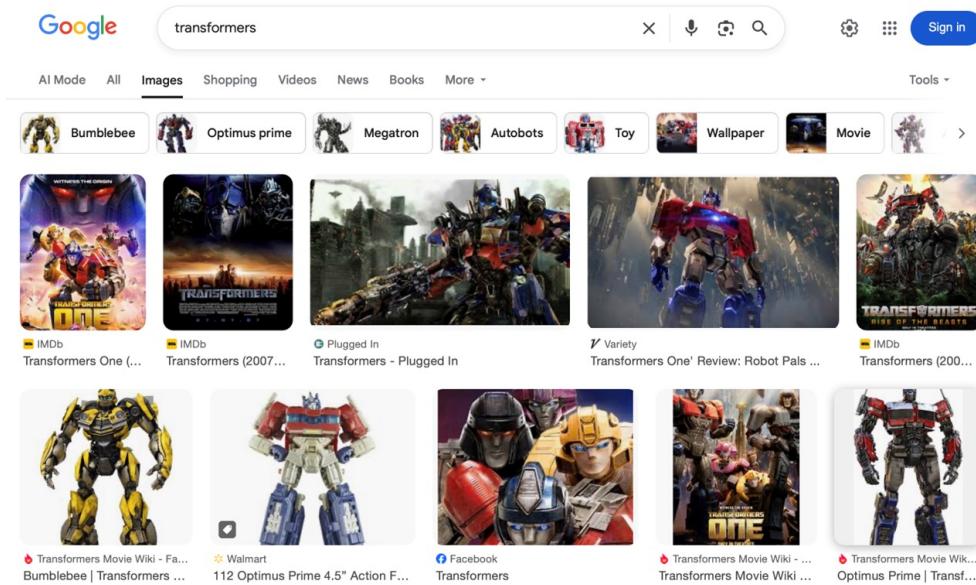


- Similar results hold for NGT, SSG, Kgraph, DPG, NSW, SPTAG-KDT, EFANNA

Wrap up correctness

- Correctness/runtime guarantees exist for **one** variant of **one** graph-based algorithm
- ...but not (empirically) for many others
- Questions:
 - **Empirically fast** algorithm with **provable** guarantees ?
 - Other notions of dimensionality (e.g., LID ?)
 - **Generic** counterexamples with **proofs** ?

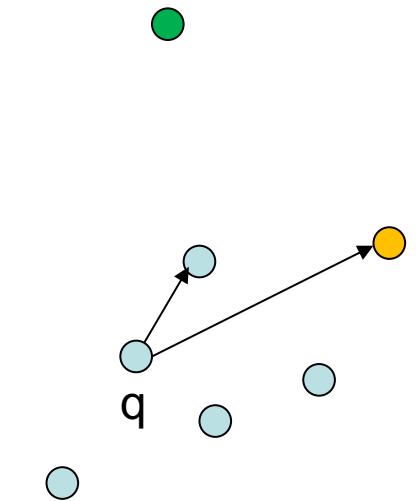
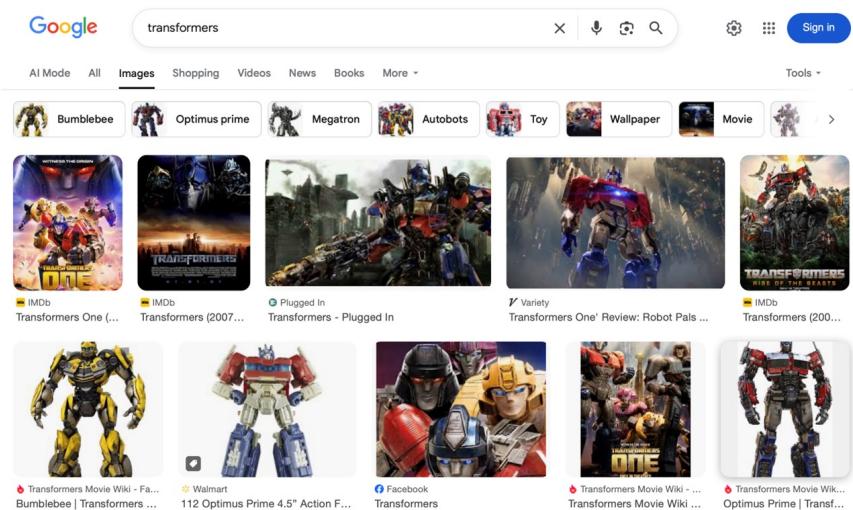
Diversity-aware search



with P. Anand, R. Krishnaswamy,
S. Mahabadi, Raykar, K. Shiragur, H. Xu

Diverse Nearest Neighbor Search

- **Given:** a set P of n points in metric space , **with colors** and a parameter k
- **Goal:** build a data structure which, given any query q returns k points **of different color** minimizing the distance to q
- Motivation?



Prior work and our results

Authors	Comment	Space	Query Time
Abbar, Amer-Yahia, Indyk, Mahabadi, Varadarajan '13	$d = \text{Hamming}$ $\text{approx} = \mathcal{O}(c)$	$\log k \ n^{1+1/c}$	$k^2 \log k \ n^{1/c}$

We were able to modify existing **non-diverse** DiskANN graph-based algorithm to give the first graph-based algorithms for the **diverse** problem.

- Space: multiplied by k
- Time: multiplied by k^2 (or k for the colorful version)

Diverse DiskANN

Building the Graph:

- Pruning
 - If $d(v, w) \leq \frac{1}{\alpha} \cdot d(u, w)$
 - Prune the edge (u, w) only if either
 1. $col[v] = col[w]$
 2. Or we have connected u to at least k different colors in the ball of radius $\frac{1}{\alpha} \cdot d(u, w)$ around w

Diverse DiskANN

- **Query answering algorithm:**
 - Start from k points **that all have different colors**
 a_1, \dots, a_k
 - In each iteration, **swap one point** a_i with a neighbor point a' that
 - is closer to the query
 - **has a different color from the rest of the points**

Experiments

Algorithms:

Baseline: Standard DiskANN + Postprocessing to ensure diversity

Our algo 1: Standard DiskANN Build + Diverse DiskANN Search

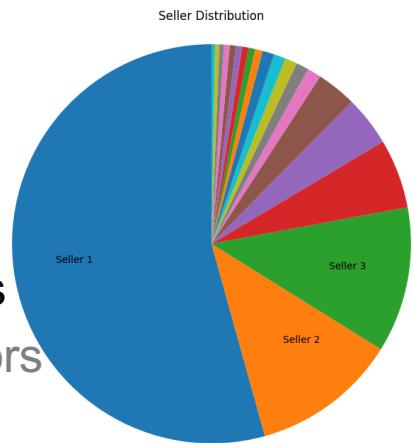
Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search

Datasets:

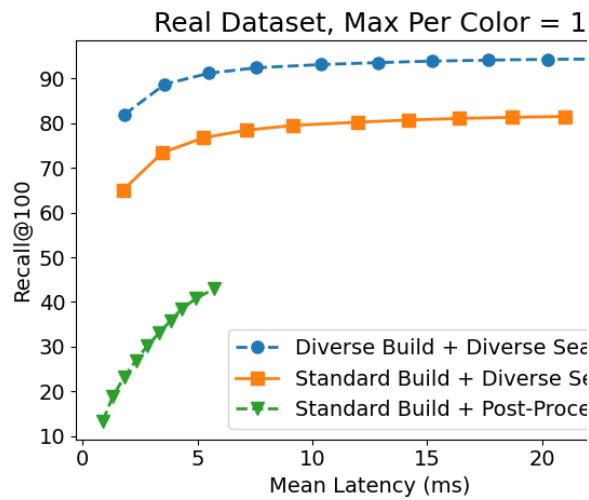
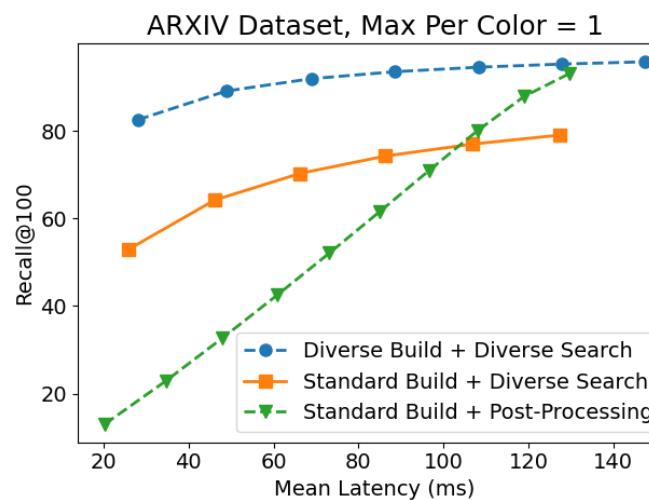
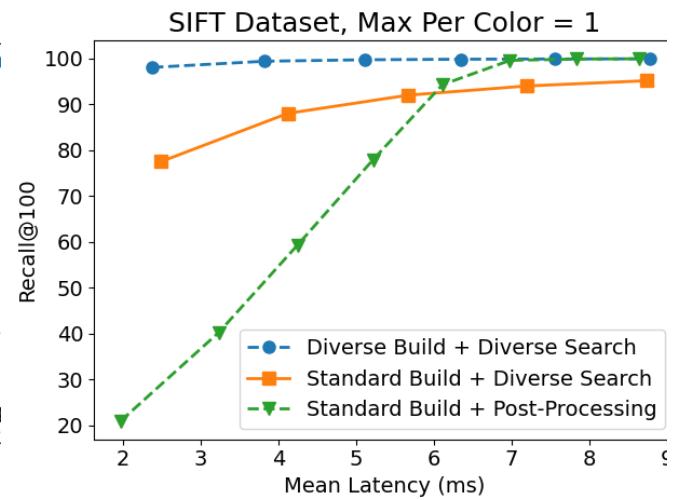
- **Ads dataset:** 20 Million vectors, 5000 queries, 64 dimensions
- **Semi-Synthetic Arxiv:** 2 Million, 1536 dimensions, 1000 colors (uniform on $\{1,2,3\}$ w.p. 0.9 and uniform on the rest w.p. 0.1)
- **Semi-Synthetic SIFT:** 1 Million, 128 dimensions, 1000 colors (one color w.p. 0.8 and uniform on the rest w.p. 0.2)

Parameters:

- $k = 100$



Experiments: Recall vs Latency



Baseline: Standard DiskANN + Postprocessing to ensure diversity

Our algo 1: Standard DiskANN Build + Diverse DiskANN Search

Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search

Wrap up diversity

- Extended (slow) DiskANN to diverse nearest neighbor
 - Space: multiplied by k . Time: multiplied by k^2 (or k for colorful variant).
- Questions:
 - Better space/time bounds? Recent result by Samson Zhou's group for the colorful version:
 - Space: multiplied by $\log k$. Time: multiplied by k . (but randomized)
 - Constant space overhead?

FOCS 2025 workshop

(with Raj Jayaram, Ravi Krishnaswamy)

Sunday, December 14, 2025 • FOCS, Sydney

Approximate Nearest Neighbor Search

Bridging Theoretical Foundations and Industrial Frontiers. A workshop bringing together researchers and practitioners to discuss the latest advancements in ANNS.

[View Schedule](#)

[Presenters](#)