Graph-based algorithms for
similarity search: challenges and
opportunities

Piotr Indyk (MIT)

Plan

Nearest neighbor search: definitions

Graph-based algorithms: definitions,
examples

Two research vignettes
Conclusions and open problems

Nearest Neighbor Search

The nearest neighbour search problem arises in numerous fields of application,
including:

e Pattern recognition — in particular for optical character recognition

o Statistical classification — see k-nearest neighbor algorithm

e Computer vision

o Computational geometry — see Closest pair of points problem

o Databases — e.g. content-based image retrieval

e Coding theory — see maximum likelihood decoding

e Data compression — see MPEG-2 standard

« Robotic sensing(?

e Recommendation systems, e.g. see Collaborative filtering

¢ Internet marketing — see contextual advertising and behavioral targeting

e DNA sequencing

e Spell checking — suggesting correct spelling

¢ Plagiarism detection

e Similarity scores for predicting career paths of professional athletes.

e Cluster analysis — assignment of a set of observations into subsets (called

clusters) so that observations in the same cluster are similar in some sense,
usually based on Euclidean distance

BRI

Relaxation: Theory

* Given: a set P of n points in ©
some space X under some metric
d, parameter £>0

* Goal: data structure which, given
any query q returns p'eP, where

d(p’,q) = (1+€) min,p d(p,q)

“(1+¢)-approximate nearest neighbor”

Relaxation: Practice

Given: a set P of n points in some space o
X under some metric d, parameter k

Goal: data structure which returns as
many top k nearest neighbors as
possible

— Recall@k: the fraction of top k nearest

neighbors returns
k=2

These two relaxations are correlated, but Recall@k=0.50
distinct

We will use either, depending on the
context

Graph-based algorithms

Graph-based algorithms

Main ideas:
— Create a graph G=(P,E) over points P

— Greedy search: in each step, move
from p to argmin, e d(q,p)

» Generalized version uses bounded priority
queue of size L

ldeas go back to:
— Orchard’91 (complete graph) ®
— Arya-Mount'93 (for the Euclidean space)

— Navarro’02 (for exact search)

— Krauthgammer-Lee’04 (not quite greedy
search)

— See Clarkson’06 for a survey

Recent wave: HNSW, NSG, DiskANN,
NGT, SSG, Kgraph, DPG, NSW,
SPTAG-KDT, EFANNA

Landscape in 2025

Recall-Queries per second (1/s) tradeoff - up and to the right is better

< i == NGT-qg
\ ! =@~ hnsw(nmslib)
= - - = gsgngt
3 S =@= NGT-panng
- ¥ 2 - glass
. T E - . Y — scann
d—n m R == vearch
D < == vamanal(diskann)
=@- Milvus(Knowhere)
=#¢= pynndescent
= n2
=¥ faiss-ivfpgfs
=@= hnsw(faiss)
== hnswlib
hnsw(vespa)

=d= redisearch

== luceneknn
b == weaviate
=@~ SW-graph(nmslib)
wfe faiss-ivf
=@= flann
mrpt
annoy
qdrant
== puffinn
=@~ pgvector
=#= tinyknn
BallTree(nmslib)
t| =#= bruteforce-blas

104 4

103 4

Queries per second (1/s)

102 1

10! 4

0.0 0.2 0.4 0.6 0.8 1.0
Recall

From: https://ann-benchmarks.com

Vignettes/challenges

1. Correctness and/or performance guarantees
(Indyk-Xu, NeurlPS'23)

2. Diversity-aware search (Anand, Indyk,

Krishnaswamy, Mahabadi, Raykar, Shiragur,
Xu, ICML'25)

3. Exploit the power of searching in arbitrary

metrics to improve re-ranking (Xu-Silwal-
Indyk'24)

Correctness/performance
guarantees

with Haike Xu
MIT

Quantifying intrinsic dimension:
doubling constant

« Consider a general metric
M=(X,d)

* A doubling constant of M is the
smallest value A such that any
ball B(p,2r) can be covered using O

at most A balls B(p4,r)...B(pa,r)
— dim=log A is called doubling 0
dimension N

 We will also use A to denote the
ratio of diameter to closest pair
distance

Past results

Authors Space Query Time
Krauthgamer, Lee’04 20dm)n jog A 20dim)|og A
Krauthgamer, Lee’04 n2 20(dim) |og2 n
Har-Peled, Mendel’05 20dm)n Jog n 20(dim) Jog n
Beygelzimer, Kakade, Langford’06 n 20(dim) |og A
Cole, Gottlieb’06 n 20(dim) |og n

Constant approximation factor; bounds up to O(.)

Can we obtain similar approximation/performance
guarantees for popular graph-based algorithms “?

Indyk, Xu’23: DiskANN 20dm)n jog A 20(dim)|og2 A
(slow preprocessing)

Can we obtain guarantees for
popular graph-based algorithms
 Two answers:

— Yes: for DiskANN with “slow” preprocessing
— No (empirically): for everything else

DiskANN

(slow version)

Building the Graph (with parameter oo =>1)
For each point u, perform “Robust FPruning”:

» Create a sorted list of all points v according
to d(u, v)

* For each point v in the sorted list, add(u, v)
and prune all w such that

dlv,w) < i -d(u,w)
Space: The out degree of each vertex is
< (4a)¥™ . log A

Greedy search: yields a (Z—j + e) — approx.

solution in log,, iterations

A
a(l1—¢€)

“Fast” DiskANN: Preprocessing

* Initialize the graph to a random R-out graph

» Repeat twice

— For each peP

« Perform greedy search for the nearest neighbor of p

« Connect p to/from the vertices scanned by greedy
search

» Perform Robust Pruning on any node that has >R
neighbors, keeping at most R of them

* Does this offer provable guarantees?

DiskANN with fast preprocessing

DiskANN
50% 4 I} o
40% - IR o
30% 1 IR]
20% - IR o
_18% - N 7 1.0
E 15% 1 [HHE m o
o 12% 1N N -
8 1% | N I [
E 10% - v e
5 9% - 0.4 g
o 8% -
m
o 7% 0.2
3 6% -
—
5% - 0.0
4%
3% A
2%
1% -

T T T T T T T T T T T

123 45678 91011121314151617181920
(

n (in units of 10° points)

Hard data set for DiskANN

HNSW, NSG

S®|1eday

T T T
1011121314151617181920

NSG

T T T T T T T T T
12345672829

T
SEESHERLE

& N

1011121314151617181920

56789

- <

n (in units of 105 points)

n (in units of 105 points)

Similar results hold for NGT, SSG, Kgraph, DPG, NSW, SPTAG-KDT,

EFANNA

Wrap up correctness

» Correctness/runtime guarantees exist for one
variant of one graph-based algorithm

* ...but not (empirically) for many others

 Questions:

— Empirically fast algorithm with provable
guarantees ?

— Other notions of dimensionality (e.g., LID ?)
— Generic counterexamples with proofs ?

Diversity-aware search

Go gle transformers X & @ Q 15}

AlMode All Images Shopping Videos News Books More ~ Tools ~

& o
@ Bumblebee @ Optimus prime * Megatron m Autobots w Toy “ Wallpaper ﬁ Movie '? »
8) p |

& IMDb & IMDb © Plugged In V Variety & IMDb
Transformers One (... Transformers (2007... Transformers - Plugged In Transformers One' Review: Robot Pals ... Transformers (200..

® Transformers Movie Wiki - Fa.. Walmart © Facebook ® Transformers Movie Wiki - . ® Transformers Movie Wik..
Bumblebee | Transformers ... 112 Optimus Prime 4.5” Action F... Transformers Transformers Movie Wiki ... Optimus Prime | Transf...

with P. Anand, R. Krishnaswamy,
S. Mahabadi, Raykar, K. Shiragur, H. Xu

Diverse Nearest Neighbor Search

* Given: a set P of n points in metric
space , with colors and a parameter k

» Goal: build a data structure which,
given any query q returns k points of %
different color minimizing the distance
to g

* Motivation?

Prior work and our results

Authors Comment Space Query Time

Abbar, Amer-Yahia, Indyk, @ d=Hamming logk n'*lc k2 log k nt/c
Mahabadi, Varadarajan’13 approx=0(c)

We were able to modify existing non-diverse DiskANN

graph-based algorithm to give the first graph-based algorithms for the diverse problem.
« Space: multiplied by k
« Time: multiplied by k? (or k for the colorful version)

Diverse DiskANN

Building the Graph:
* Pruning
—Ifd(v,w) < % d(u,w)
* Prune the edge (u, w) only if either
1. col|v] = col[w]
2. Or we have connected u to at least k different
colors in the ball of radius%{ -d(u,w) around w

Diverse DiskANN

* Query answering algorithm:

— Start from k points that all have different colors
Aq, -, Ap

— In each iteration, swap one point a; with a
neighbor point a’ that

* Is closer to the query
» has a different color from the rest of the points

Experiments

Algorithms:
Baseline: Standard DiskANN + Postprocessing to ensure diversity

Our algo 1: Standard DiskANN Build + Diverse DiskANN Search s
Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search

Datasets:
« Ads dataset: 20 Million vectors, 5000 queries, 64 dimensions

« Semi-Synthetic Arxiv: 2 Million, 1536 dimensions, 1000 colors
(uniform on {1,2,3} w.p. 0.9 and uniform on the rest w.p. 0.1)

« Semi-Synthetic SIFT: 1 Million, 128 dimensions, 1000 colors
(one color w.p. 0.8 and uniform on the rest w.p. 0.2)

Parameters:
e k=100

Recall@100
~ (o] (o]
o o o

B])]
o
L

w
o
L

20 +
104

Experiments: Recall vs Latency

Real Dataset, Max Per Color =1

o
|

o

ARXIV Dataset, Max Per Color =1

Mean Latency (ms)

PSR Thte uinh sk duinh Al o—--—0-———@-——"§~—--0
¥ 4 " -
' - 7
[]
/./l*"'_‘H—H 80
o
S 601
®
©
v]
’1" & 40 -
v -®- Diverse Build + Diverse Sez /," -@- Diverse Build + Diverse Search
iv —— Standard Build + Diverse Se¢ 204 /x’ —#— Standard Build + Diverse Search
-¥- Standard Build + Post-Proce v/ -¥- Standard Build + Post-Processing
5 10 15 20 20 40 60 80 100 120 140

Mean Latency (ms)

Recall@100

SIFT Dataset, Max Per Color =1

1001 gee——=— - -———- o-——-- o - N—-¥F—Vo
90 A ’
,/
4 /7
80 X
701 ,’/
//
60 - ¥
/7
50 1 .
//
401 ," -@- Diverse Build + Diverse Search
4
30 1 7 —— Standard Build + Diverse Search
201 v -¥- Standard Build + Post-Processing
3 4 5 6 7 8

Mean Latency (ms)

Baseline: Standard DiskANN + Postprocessing to ensure diversity
Our algo 1: Standard DiskANN Build + Diverse DiskANN Search
Our algo 2: Diverse DiskANN Build + Diverse DiskANN Search

Wrap up diversity

» Extended (slow) DiskANN to diverse nearest
neighbor
« Space: multiplied by k. Time: multiplied by k? (or k
for colorful variant).

 Questions:

— Better space/time bounds” Recent result by
Samson Zhou's group for the colorful version:
« Space: multiplied by log k. Time: multiplied by k.
(but randomized)
» Constant space overhead?

FOCS 2025 workshop

(with Raj Jayaram, Ravi Krishnaswamy)

Sunday, December 14, 2025 FOCS, Sydney

Approximate Mear2st
Neighbor&earcin

workshop Qringins dtogy ther researchers and practitioners to
discyf s the | icst acvalicements in ANNS.

View S2hedule Presenters

