
Similarity Search in High
Dimensions III

Piotr Indyk
MIT

Approximate Near Neighbor
•  c-Approximate r-Near Neighbor:

build data structure which, for
any query q:
–  If there is a point p∈P, ||p-q|| ≤ r
–  it returns p’∈P, ||p-q|| ≤ cr q

r

cr

LSH

•  A family H of functions h: Rd → U is called
(P1,P2,r,cr)-sensitive, if for any p,q:
–  if ||p-q|| <r then Pr[h(p)=h(q)] > P1
–  if ||p-q|| >cr then Pr[h(p)=h(q)] < P2

•  Example: Hamming distance
– h(p)=pi, i.e., the i-th bit of p

•  Probabilities: Pr[h(p)=h(q)] = 1-H(p,q)/d

p=10010010
q=11010110

Algorithm
•  We use functions of the form

g(p)=<h1(p),h2(p),…,hk(p)>
•  Preprocessing:

–  Select g1…gL
–  For all p∈P, hash p to buckets g1(p)…gL(p)

•  Query:
–  Retrieve the points from buckets g1(q), g2(q), … , until

•  Either the points from all L buckets have been retrieved, or
•  Total number of points retrieved exceeds 3L

–  Answer the query based on the retrieved points
–  Total time: O(dL)

Analysis [IM’98, Gionis-Indyk-Motwani’99]

•  Lemma1: the algorithm solves c-approximate
NN with:
– Number of hash functions:

 L=C nρ, ρ=log(1/P1)/log(1/P2)
 (C=C(P1,P2) is a constant for P1 bounded away

from 0) [O’Donnell-Wu-Zhou’09]
– Constant success probability per query q

•  Lemma 2: for Hamming LSH functions, we
have ρ=1/c

Proof

•  Define:
– p: a point such that ||p-q|| ≤ r
– FAR(q)={ p’∈P: ||p’-q|| >c r }
– Bi(q)={ p’∈P: gi(p’)=gi(q) }

•  Will show that both events occur with >0
probability:
– E1: gi(p)=gi(q) for some i=1…L
– E2: Σi |Bi(q) ∩ FAR(q)| < 3L

Proof ctd.

•  Set k= ceil(log1/P2 n)
•  For p’∈FAR(q) ,

Pr[gi(p’)=gi(q)] ≤ P2
k ≤1/n

•  E[|Bi(q)∩FAR(q)|] ≤ 1
•  E[Σi |Bi(q)∩FAR(q)|] ≤ L
•  Pr[Σi |Bi(q)∩FAR(q)|≥3L] ≤ 1/3

Proof, ctd.

•  Pr[gi(p)=gi(q)] ≥ 1/P1
k ≥ P1

log1/P2 (n)+1
 ≥ 1/(P1 nρ)=1/L

•  Pr[gi(p)≠gi(q), i=1..L] ≤ (1-1/L)L ≤ 1/e

Proof, end

•  Pr[E1 not true]+Pr[E2 not true]
 ≤ 1/3+1/e =0.7012.
•  Pr[E1 ∩ E2] ≥ 1-(1/3+1/e) ≈0.3

Proof of Lemma 2

•  Statement: for
– P1=1-r/d
– P2=1-cr/d

 we have ρ=log(P1)/log(P2) ≤ 1/c
•  Proof:

– Need P1c ≥ P2

– But (1-x)c ≥ (1-cx) for any 1>x>0, c>1

Recap
•  LSH solves c-approximate NN with:

–  Number of hash fun: L=O(nρ), ρ=log(1/P1)/log(1/P2)
–  For Hamming distance we have ρ=1/c

•  Questions:
–  Beyond Hamming distance ?

•  Embed l2 into l1 (random projections)
•  l1 into Hamming (discretization)

–  Reduce the exponent ρ ?

Projection-based LSH for L2
[Datar-Immorlica-Indyk-Mirrokni’04]

•  Define hX,b(p)=⎣(p*X+b)/w⎦:
–  w ≈ r
–  X=(X1…Xd) , where Xi is

chosen from:
•  Gaussian distribution
 (for l2 norm)*

–  b is a scalar

X
w

w

p

Analysis

•  Need to:
– Compute Pr[h(p)=h(q)] as a function of ||p-q||

and w; this defines P1 and P2
– For each c choose w that minimizes

ρ=log1/P2(1/P1)

•  Method:
– For l2: computational
– For general ls: analytic

w

w

ρ(c) for l2

1234567891000.10.20.30.40.50.60.70.80.91Approximation factor crho1/c

•  Improvement not dramatic
•  But the hash function very simple and works

directly in l2

•  Basis for the Exact Euclidean LSH
package (E2LSH)

New LSH scheme
[Andoni-Indyk’06]

•  Instead of projecting onto R1,
 project onto Rt , for constant t
•  Intervals → lattice of balls

–  Can hit empty space, so hash until
a ball is hit

•  Analysis:
–  ρ=1/c2 + O(log t / t1/2)
–  Time to hash is tO(t)

–  Total query time: dn1/c2+o(1)

•  [Motwani-Naor-Panigrahy’06]:
LSH in l2 must have ρ ≥ 0.45/c2

•  [O’Donnell-Wu-Zhou’09]:
 ρ ≥ 1/c2 – o(1)

X
w

w

p

p

New LSH scheme, ctd.
•  How does it work in practice ?
•  The time tO(t)dn1/c2+f(t) is not very

practical
–  Need t≈30 to see some improvement

•  Idea: a different decomposition of Rt
–  Replace random balls by Voronoi

diagram of a lattice
–  For specific lattices, finding a cell

containing a point can be very fast
→fast hashing

Leech Lattice LSH
•  Use Leech lattice in R24 , t=24

–  Largest kissing number in 24D: 196560
–  Conjectured largest packing density in 24D
–  24 is 42 in reverse…

•  Very fast (bounded) decoder: about 519
operations [Amrani-Beery’94]

•  Performance of that decoder for c=2:
–  1/c2 0.25
–  1/c 0.50
–  Leech LSH, any dimension: ρ ≈ 0.36
–  Leech LSH, 24D (no projection): ρ ≈ 0.26

LSH Zoo
•  Have seen:

–  Hamming metric: projecting on coordinates
–  L2 :random projection+quantization

•  Other (provable):
–  L1 norm: random shifted grid [Andoni-Indyk’05] (cf. [Bern’93])
–  Vector angle [Charikar’02] based on [Goemans-Williamson’94]

–  Jaccard coefficient [Broder’97]
J(A,B) = |A ∩ B| / |A u B|

•  Other (empirical): inscribed polytopes [Terasawa-Tanaka’07],
orthogonal partition [Neylon’10]

•  Other (applied): semantic hashing, spectral hashing,
kernelized LSH, Laplacian co-hashing, , BoostSSC,
WTA hashing,…

Open questions
•  Practically efficient LSH scheme for L2 with
ρ= 1/c2

•  Theoretically more efficient, e.g., decoder
with tO(1) time

•  Understand data adaptation (a.k.a. semantic
hashing, spectral hashing, kernelized LSH,
Laplacian co-hashing, , BoostSSC, WTA
hashing,…)
– Would like an algorithm that is

•  correct (with desired probability) for any query
•  “efficient” on “good” data

Min-wise hashing

•  In many applications, the vectors tend to be
quite sparse (high dimension, very few 1’s)

•  Easier to think about them as sets
•  For two sets A,B, define the Jaccard coefficient:

J(A,B)=|A ∩ B|/|A U B|
–  If A=B then J(A,B)=1
–  If A,B disjoint then J(A,B)=0

•  How to compute short sketches of sets that
preserve J(.) ?

Hashing
•  Mapping:

g(A)=mina∈A h(a)
 where h is a random permutation of the elements

in the universe
•  Fact: Pr[g(A)=g(B)]=J(A,B)
•  Proof: Where is min(h(A) U h(B)) ?

A B

Random hyperplane

•  Let u,v be unit vectors in Rm
•  Angular distance:

A(u,v)=angle between u and v
•  Sketching:

– Choose a random unit vector r
– Define s(u)=sign(u*r)

Probabilities
•  What is the probability of

sign(u*r)≠sign(v*r) ?
•  It is A(u,v)/π

u

v

A(x,y)

