Similarity Search in High
Dimensions ||

Piotr Indyk
MIT

Approximate Near Neighbor

» c-Approximate r-Near Neighbor: o
build data structure which, for

any query q:

O
— If there is a point p&P, ||p-ql| =r 4
—itreturns p'eP, ||p-ql| = cr

O O

LSH

« A family H of functions h: R? — U is called
(P4,P,,r.cr)-sensitive, if for any p,q:
—if ||p-q|| <r then Pr[h(p)=h(q) 1> P,
—if ||p-g|| >cr then Pr[h(p)=h(q)] < P,

« Example: Hamming distance

—h(p)=p, i.e., the i-th bit of p
* Probabilities: Pr[h(p)=h(q) | = 1-H(p,q)/d

p=10010010
q=11010110

Algorithm

 We use functions of the form

g(p)=<h4(p).hx(p),....h(p)>
* Preprocessing:
— Selectg,...g,
— For all peP, hash p to buckets g,(p)...g,(p)

* Query:
— Retrieve the points from buckets g.(q), 9,(q), ..., until

 Either the points from all L buckets have been retrieved, or
» Total number of points retrieved exceeds 3L

— Answer the query based on the retrieved points
— Total time: O(dL)

Analysis [IM’98, Gionis-Indyk-Motwani’99]

 Lemma1: the algorithm solves c-approximate
NN with:

— Number of hash functions:
L=C nr, p=log(1/P1)/log(1/P2)

(C=C(P1,P2)is a constant for P1 bounded away
from 0) [O’'Donnell-Wu-Zhou'09]

— Constant success probability per query g

 Lemma 2: for Hamming LSH functions, we
have p=1/c

Proof

« Define:
— p: a point such that ||p-ql| = r
— FAR(q)={ p'€P: |[p-q|| >C r }
—Bi(a)={ p'EP: gi(p')=gi(q) }
* Will show that both events occur with >0
probability:
—E,: g(p)=0,(q) for some i=1...L
— E,: %, |B(q) N FAR(q)| < 3L

Proof ctd.

» Set k= ceil(log,p, N)

» For peFAR(q),

Pr{gi(p’)=gi(q)] < Py* s1/n
* E[[Bi(q)NFAR(q)|] = 1

* E[2 [Bi(q)NFAR(Q)| | =L

* Pr[Z; |B.(q)NFAR(q)|23L 1= 1/3

Proof, ctd.

* Prigip)=gi(@)] 2 1/Pjkz P, loawm]
> 1/(P1 nP)=1/L
* Prl a(p)#g/(q), i=1..L] < (1-1/L)- < 1/e

Proof, end

* Pr[E, not true]+Pr[E, not true]
<1/3+1/e =0.7012.
 Pl[E,NE,]=1-(1/3+1/e) =0.3

Proof of Lemma 2

« Statement: for
— P1=1-r/d
— P2=1-cr/d
we have p=log(P1)/log(P2) < 1/c
* Proof:

— Need P1¢ = P2
— But (1-x)¢ = (1-cx) for any 1>x>0, c>1

Recap

 LSH solves c-approximate NN with:

— Number of hash fun: L=0(nr), p=log(1/P1)/log(1/P2)
— For Hamming distance we have p=1/c

e Questions:

— Beyond Hamming distance ?
 Embed |, into |, (random projections)
* |, into Hamming (discretization)

— Reduce the exponent p ?

Projection-based LSH for L2

[Datar-Immorlica-Indyk-Mirrokni’'04]

» Define hy ,(p)=|(p*X+b)/w]|:

—W=r
P X
— X=(X,...Xy) , where X is ® /
chosen from: \
« Gaussian distribution W

(for I, norm)*
— b Is a scalar

Analysis

* Need to:
— Compute Pr[h(p)=h(qg)] as a function of ||p-q||
and w; this defines P, and P,
— For each c choose w that minimizes /
p=logy,p(1/P4) /

 Method:

— For |,: computational
— For general |_: analytic

p(c) for I,

roximation factor c

* Improvement not dramatic

» But the hash function very simple and works
directly in |,

 Basis for the Exact Euclidean LSH
package (E2LSH)

New LSH scheme
[Andoni-Indyk'06]

Instead of projecting onto R,
project onto R!, for constant t

Intervals — lattice of balls

— Can hit empty space, so hash until
a ball is hit

Analysis:

— p=1/c?+ O(log t/ t"?)

— Time to hash is t°0

— Total query time: dn'/c*+o(1)

'Motwani-Naor-Panigrahy’06]:
| SH in |, must have p = 0.45/c?

O DonneII Wu-Zhou'09]:
p=1/c?2—0o(1)

New LSH scheme, ctd.

 How does it work in practice ?

* The time t°tdn!c**V js not very
practical
— Need t=30 to see some improvement

 |dea: a different decomposition of R!

— Replace random balls by Voronoi
diagram of a lattice

— For specific lattices, finding a cell
containing a point can be very fast
—fast hashing

Leech Lattice LSH

« Use Leech lattice in R?*, t=24
— Largest kissing number in 24D: 196560
— Conjectured largest packing density in 24D
— 24 i1s 42 in reverse...

* Very fast (bounded) decoder: about 519
operations [Amrani-Beery’94]

 Performance of that decoder for c=2:

— 1/c? 0.25
— 1/c 0.50
— Leech LSH, any dimension: 0 =0.36

— Leech LSH, 24D (no projection): p=0.26

LSH Zoo

Have seen:
— Hamming metric: projecting on coordinates
— L, :random projection+quantization
Other (provable):
— L, norm: random shifted grid [Andoni-Indyk'05] (Cf. [Bern'93])
— Vector angle [Charikar02] based on [Goemans-Williamson’94]
— Jaccard coefficient [Broder97]
JAA,B)=|ANB|/|AuB|
Other (empirical): inscribed polytopes [Terasawa-Tanaka'07],
orthogonal partition [Neyion10]
Other (applied): semantic hashing, spectral hashing,

kernelized LSH, Laplacian co-hashing, , BoostSSC,
WTA hashing,...

Open questions

. Practi%ally efficient LSH scheme for L, with
o= 1/c

* Theoretically more efficient, e.g., decoder
with t°(1) time

* Understand data adaptation (a.k.a. semantic

nashing, spectral hashing, kernelized LSH,

_aplacian co-hashing, , BoostSSC, WTA

nashing,...)

— Would like an algorithm that is
 correct (with desired probability) for any query
« “efficient” on “good” data

Min-wise hashing

In many applications, the vectors tend to be

quite sparse (high dimension, very few 1's)

Easier to think about them as sets

For two sets A,B, define the Jaccard coefficient:
J(A,B)=|A N B|/|]A U B|

— If A=B then J(A,B)=1

— If A,B disjoint then J(A,B)=0

How to compute short sketches of sets that

preserve J(.) ?

Hashing

* Mapping:
g(A)=minaEA h(a)
where h is a random permutation of the elements
In the universe

* Fact: Pr[g(A)=g(B)]=J(A,B)
* Proof: Where is min(h(A) U h(B)) ?

Random hyperplane

* Let u,v be unit vectors in R™
* Angular distance:

A(u,v)=angle between u and v
» Sketching:

— Choose a random unit vector r
— Define s(u)=sign(u*r)

Probabilities

* What is the probability of
sign(u*r)#sign(v’r) ?
o Itis A(u,v)/m

