
Similarity Search in High 
Dimensions III 

Piotr Indyk 
MIT 



Approximate Near Neighbor 
•  c-Approximate r-Near Neighbor: 

build data structure which, for 
any query q:  
–  If there is a point p∈P, ||p-q|| ≤ r 
–  it returns  p’∈P,  ||p-q|| ≤ cr q 

r 

cr 



LSH 

•  A family H of functions h: Rd → U is called 
(P1,P2,r,cr)-sensitive, if for any p,q: 
–  if ||p-q|| <r   then Pr[ h(p)=h(q) ] > P1  
–  if ||p-q|| >cr then Pr[ h(p)=h(q) ] < P2 

•  Example: Hamming distance 
– h(p)=pi, i.e., the i-th bit of p 

•  Probabilities: Pr[ h(p)=h(q) ] = 1-H(p,q)/d 

p=10010010 
q=11010110 



Algorithm 
•  We use functions of the form  

g(p)=<h1(p),h2(p),…,hk(p)>  
•  Preprocessing: 

–  Select g1…gL 
–  For all p∈P, hash p to buckets g1(p)…gL(p) 

•  Query: 
–  Retrieve the points from buckets g1(q), g2(q), … , until 

•  Either the points from all L buckets have been retrieved, or 
•  Total number of points retrieved exceeds 3L 

–  Answer the query based on the retrieved points 
–  Total time: O(dL) 



Analysis [IM’98, Gionis-Indyk-Motwani’99] 

•  Lemma1: the algorithm solves c-approximate 
NN with: 
– Number of hash functions: 

 L=C nρ, ρ=log(1/P1)/log(1/P2) 
   (C=C(P1,P2) is a constant for  P1 bounded away 

from 0) [O’Donnell-Wu-Zhou’09] 
– Constant success probability per query q 

•  Lemma 2: for Hamming LSH functions, we 
have ρ=1/c  



Proof 

•  Define: 
– p: a point such that ||p-q|| ≤ r 
– FAR(q)={ p’∈P: ||p’-q|| >c r } 
– Bi(q)={ p’∈P: gi(p’)=gi(q) } 

•  Will show that both events occur with >0 
probability: 
– E1: gi(p)=gi(q) for some i=1…L 
– E2: Σi |Bi(q) ∩ FAR(q)| < 3L 



Proof ctd. 

•  Set k= ceil(log1/P2 n) 
•  For p’∈FAR(q) ,   

Pr[gi(p’)=gi(q)] ≤ P2
k ≤1/n 

•  E[ |Bi(q)∩FAR(q)| ] ≤ 1 
•  E[Σi |Bi(q)∩FAR(q)| ] ≤ L 
•  Pr[Σi |Bi(q)∩FAR(q)|≥3L ] ≤ 1/3 



Proof, ctd. 

•  Pr[ gi(p)=gi(q) ]  ≥ 1/P1
k ≥ P1 

log1/P2 (n)+1  
     ≥ 1/(P1 nρ)=1/L 

•  Pr[ gi(p)≠gi(q), i=1..L] ≤ (1-1/L)L ≤ 1/e 



Proof, end 

•  Pr[E1 not true]+Pr[E2 not true]  
   ≤ 1/3+1/e =0.7012. 
•  Pr[ E1 ∩ E2 ] ≥ 1-(1/3+1/e) ≈0.3 



Proof of Lemma 2 

•  Statement: for  
– P1=1-r/d 
– P2=1-cr/d 

   we have ρ=log(P1)/log(P2) ≤ 1/c 
•  Proof:  

– Need P1c ≥ P2 

– But (1-x)c ≥ (1-cx) for any 1>x>0, c>1 



Recap 
•  LSH solves c-approximate NN with: 

–  Number of hash fun: L=O(nρ), ρ=log(1/P1)/log(1/P2) 
–   For Hamming distance we have ρ=1/c 

•  Questions: 
–  Beyond Hamming distance ? 

•  Embed l2 into l1     (random projections) 
•  l1 into  Hamming (discretization) 

–  Reduce the exponent ρ ? 



Projection-based LSH for L2 
[Datar-Immorlica-Indyk-Mirrokni’04] 

•  Define hX,b(p)=⎣(p*X+b)/w⎦: 
–  w ≈ r 
–  X=(X1…Xd) , where Xi is 

chosen from: 
•  Gaussian distribution  
   (for l2 norm)* 

–  b is a scalar 

X 
w 

w 

p 



Analysis 

•  Need to: 
– Compute Pr[h(p)=h(q)] as a function of ||p-q|| 

and w; this defines P1 and P2 
– For each c choose w that minimizes 

ρ=log1/P2(1/P1)  

•  Method: 
– For l2: computational 
– For general ls: analytic 

w 

w 



ρ(c) for l2 

1234567891000.10.20.30.40.50.60.70.80.91Approximation factor crho1/c

•  Improvement not dramatic 
•  But the hash function very simple and works 

directly in l2 

•  Basis for the Exact Euclidean LSH 
package (E2LSH) 



New LSH scheme  
[Andoni-Indyk’06] 

•  Instead of projecting onto R1, 
    project onto Rt , for constant t 
•  Intervals → lattice of balls 

–  Can hit empty space, so hash until 
a ball is hit 

•  Analysis: 
–   ρ=1/c2 + O( log t / t1/2 )  
–  Time to hash is tO(t)  

–  Total query time: dn1/c2+o(1) 

•  [Motwani-Naor-Panigrahy’06]: 
LSH in l2 must have ρ ≥ 0.45/c2 

•  [O’Donnell-Wu-Zhou’09]:  
    ρ ≥ 1/c2 – o(1) 
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New LSH scheme, ctd. 
•  How does it work in practice ? 
•  The time tO(t)dn1/c2+f(t) is not very 

practical 
–  Need t≈30 to see some improvement 

•  Idea: a different decomposition of Rt 
–  Replace random balls by Voronoi 

diagram of a lattice 
–  For specific lattices, finding a cell 

containing a point can be very fast 
→fast hashing 



Leech Lattice LSH 
•  Use Leech lattice in R24 , t=24 

–  Largest kissing number in 24D: 196560 
–  Conjectured largest packing density in 24D 
–  24 is 42 in reverse… 

•  Very fast (bounded) decoder: about 519 
operations [Amrani-Beery’94] 

•  Performance of that decoder for c=2: 
–  1/c2            0.25 
–  1/c            0.50 
–  Leech LSH, any dimension:   ρ ≈ 0.36 
–  Leech LSH, 24D (no projection):  ρ ≈ 0.26 



LSH Zoo 
•  Have seen: 

–  Hamming metric: projecting on coordinates 
–  L2 :random projection+quantization 

•  Other (provable): 
–  L1 norm: random shifted grid [Andoni-Indyk’05] (cf. [Bern’93]) 
–  Vector angle [Charikar’02] based on [Goemans-Williamson’94] 

–  Jaccard coefficient [Broder’97] 
J(A,B) = |A ∩ B| / |A u B| 

•  Other (empirical): inscribed polytopes [Terasawa-Tanaka’07], 
orthogonal partition [Neylon’10]   

•  Other (applied): semantic hashing, spectral hashing, 
kernelized LSH, Laplacian co-hashing, , BoostSSC, 
WTA hashing,…  



Open questions 
•  Practically efficient LSH scheme for L2 with 
ρ= 1/c2 

•  Theoretically more efficient, e.g., decoder 
with tO(1) time 

•  Understand data adaptation (a.k.a. semantic 
hashing, spectral hashing, kernelized LSH, 
Laplacian co-hashing, , BoostSSC, WTA 
hashing,… ) 
– Would like an algorithm that is 

•   correct (with desired probability) for any query 
•   “efficient” on “good” data  



Min-wise hashing 

•  In many applications, the vectors tend to be 
quite sparse (high dimension, very few 1’s) 

•  Easier to think about them as sets 
•  For two sets A,B, define the Jaccard coefficient: 

J(A,B)=|A ∩ B|/|A U B| 
–  If A=B then J(A,B)=1 
–  If A,B disjoint then J(A,B)=0 

•  How to compute short sketches of sets that 
preserve J(.) ?  



Hashing 
•  Mapping:  

g(A)=mina∈A h(a) 
   where h is a random permutation of the elements 

in the universe 
•  Fact:  Pr[g(A)=g(B)]=J(A,B) 
•  Proof:  Where is min( h(A) U h(B) ) ? 

A B 



Random hyperplane 

•  Let u,v be unit vectors in Rm 
•  Angular distance: 

A(u,v)=angle between u and v 
•  Sketching: 

– Choose a random unit vector r 
– Define s(u)=sign(u*r) 



Probabilities 
•  What is the probability of  

sign(u*r)≠sign(v*r) ? 
•  It is   A(u,v)/π  

u 

v 

A(x,y) 


