Similarity Search in High Dimensions III

Piotr Indyk MIT

Approximate Near Neighbor

 c-Approximate r-Near Neighbor: build data structure which, for any query q:

- If there is a point p∈P, $||p-q|| \le r$
- it returns p'∈P, ||p-q|| ≤ cr

LSH

- A family H of functions h: R^d → U is called (P₁,P₂,r,cr)-sensitive, if for any p,q:
 - $\text{ if } ||p-q|| < r \text{ then } Pr[h(p)=h(q)] > P_1$
 - $\text{ if } ||p-q|| > \text{cr then Pr}[h(p)=h(q)] < P_2$
- Example: Hamming distance
 - $-h(p)=p_i$, i.e., the i-th bit of p
 - Probabilities: Pr[h(p)=h(q)] = 1-H(p,q)/d

Algorithm

We use functions of the form

$$g(p) = \langle h_1(p), h_2(p), ..., h_k(p) \rangle$$

- Preprocessing:
 - Select g₁...g_L
 - For all $p \in P$, hash p to buckets $g_1(p)...g_1(p)$
- Query:
 - Retrieve the points from buckets $g_1(q)$, $g_2(q)$, ..., until
 - Either the points from all L buckets have been retrieved, or
 - Total number of points retrieved exceeds 3L
 - Answer the query based on the retrieved points
 - Total time: O(dL)

Analysis [IM'98, Gionis-Indyk-Motwani'99]

- Lemma1: the algorithm solves c-approximate NN with:
 - Number of hash functions:

```
L=C n^{\rho}, \rho = log(1/P1)/log(1/P2)
```

(C=C(P1,P2) is a constant for P1 bounded away from 0) [O'Donnell-Wu-Zhou'09]

- Constant success probability per query q
- Lemma 2: for Hamming LSH functions, we have ρ=1/c

Proof

- Define:
 - p: a point such that $||p-q|| \le r$
 - $FAR(q) = \{ p' \in P: ||p'-q|| > c r \}$
 - $B_i(q) = \{ p' \in P: g_i(p') = g_i(q) \}$
- Will show that both events occur with >0 probability:
 - $-E_1$: $g_i(p)=g_i(q)$ for some i=1...L
 - $-E_2$: $\Sigma_i |B_i(q) \cap FAR(q)| < 3L$

Proof ctd.

- Set k= ceil(log_{1/P2} n)
- For p'∈FAR(q) ,

$$Pr[g_i(p')=g_i(q)] \le P_2^k \le 1/n$$

- $E[|B_i(q) \cap FAR(q)|] \le 1$
- $E[\Sigma_i | B_i(q) \cap FAR(q) |] \le L$
- $Pr[\Sigma_i | B_i(q) \cap FAR(q)] \ge 3L] \le 1/3$

Proof, ctd.

- $\Pr[g_i(p)=g_i(q)] \ge 1/P_1^k \ge P_1^{\log_{1/P_2}(n)+1} \ge 1/(P1 n^p)=1/L$
- $Pr[g_i(p)\neq g_i(q), i=1..L] \le (1-1/L)^L \le 1/e$

Proof, end

- Pr[E₁ not true]+Pr[E₂ not true]
 ≤ 1/3+1/e =0.7012.
- $Pr[E_1 \cap E_2] \ge 1-(1/3+1/e) \approx 0.3$

Proof of Lemma 2

Statement: for

```
-P1=1-r/d
```

we have $\rho = \log(P1)/\log(P2) \le 1/c$

- Proof:
 - Need P1^c ≥ P2
 - But $(1-x)^c \ge (1-cx)$ for any 1>x>0, c>1

Recap

- LSH solves c-approximate NN with:
 - Number of hash fun: L=O(n^{ρ}), ρ =log(1/P1)/log(1/P2)
 - For Hamming distance we have $\rho=1/c$
- Questions:
 - Beyond Hamming distance ?
 - Embed I₂ into I₁ (random projections)
 - I₁ into Hamming (discretization)
 - Reduce the exponent ρ?

Projection-based LSH for L2

[Datar-Immorlica-Indyk-Mirrokni'04]

- Define $h_{X,b}(p) = \lfloor (p*X+b)/w \rfloor$:
 - $w \approx r$
 - $X=(X_1...X_d)$, where X_i is chosen from:
 - Gaussian distribution (for l₂ norm)*
 - b is a scalar

Analysis

- Need to:
 - Compute Pr[h(p)=h(q)] as a function of ||p-q||
 and w; this defines P₁ and P₂
 - For each c choose w that minimizes

$$\rho = \log_{1/P2}(1/P_1)$$

- Method:
 - For ₂: computational
 - For general I_s: analytic

$\rho(c)$ for I_2

- Improvement not dramatic
- But the hash function very simple and works directly in l₂
 - Basis for the Exact Euclidean LSH package (E2LSH)

New LSH scheme

[Andoni-Indyk'06]

- Instead of projecting onto R¹,
 project onto R^t, for constant t
- Intervals → lattice of balls
 - Can hit empty space, so hash until a ball is hit
- Analysis:
 - $\rho = 1/c^2 + O(\log t / t^{1/2})$
 - Time to hash is t^{O(t)}
 - Total query time: dn^{1/c²+o(1)}
- [Motwani-Naor-Panigrahy'06]: LSH in I₂ must have ρ ≥ 0.45/c²
- [O'Donnell-Wu-Zhou'09]:

$$\rho \ge 1/c^2 - o(1)$$

New LSH scheme, ctd.

- How does it work in practice?
- The time t^{O(t)}dn^{1/c²+f(t)} is not very practical
 - Need t≈30 to see some improvement
- Idea: a different decomposition of R^t
 - Replace random balls by Voronoi diagram of a lattice
 - For specific lattices, finding a cell containing a point can be very fast
 →fast hashing

Leech Lattice LSH

- Use Leech lattice in R²⁴, t=24
 - Largest kissing number in 24D: 196560
 - Conjectured largest packing density in 24D
 - 24 is 42 in reverse...
- Very fast (bounded) decoder: about 519 operations [Amrani-Beery'94]
- Performance of that decoder for c=2:

```
\begin{array}{ll} -\ 1/c^2 & 0.25 \\ -\ 1/c & 0.50 \\ -\ Leech\ LSH,\ any\ dimension: & \rho \approx 0.36 \end{array}
```

- Leech LSH, 24D (no projection): $\rho \approx 0.26$

LSH Zoo

- Have seen:
 - Hamming metric: projecting on coordinates
 - L₂:random projection+quantization
- Other (provable):
 - L₁ norm: random shifted grid [Andoni-Indyk'05] (Cf. [Bern'93])
 - Vector angle [Charikar'02] based on [Goemans-Williamson'94]
 - Jaccard coefficient [Broder'97]

$$J(A,B) = |A \cap B| / |A \cup B|$$

- Other (empirical): inscribed polytopes [Terasawa-Tanaka'07], orthogonal partition [Neylon'10]
- Other (applied): semantic hashing, spectral hashing, kernelized LSH, Laplacian co-hashing, , BoostSSC, WTA hashing,...

Open questions

- Practically efficient LSH scheme for L₂ with ρ= 1/c²
- Theoretically more efficient, e.g., decoder with t^{O(1)} time
- Understand data adaptation (a.k.a. semantic hashing, spectral hashing, kernelized LSH, Laplacian co-hashing, BoostSSC, WTA hashing,...)
 - Would like an algorithm that is
 - correct (with desired probability) for any query
 - "efficient" on "good" data

Min-wise hashing

- In many applications, the vectors tend to be quite sparse (high dimension, very few 1's)
- Easier to think about them as sets
- For two sets A,B, define the Jaccard coefficient:

$$J(A,B)=|A \cap B|/|A \cup B|$$

- If A=B then J(A,B)=1
- If A,B disjoint then J(A,B)=0
- How to compute short sketches of sets that preserve J(.)?

Hashing

Mapping:

$$g(A)=\min_{a\in A} h(a)$$

where h is a random permutation of the elements in the universe

Fact: Pr[g(A)=g(B)]=J(A,B)

Proof: Where is min(h(A) U h(B))?

Random hyperplane

- Let u,v be unit vectors in R^m
- Angular distance:
 - A(u,v)=angle between u and v
- Sketching:
 - Choose a random unit vector r
 - Define s(u)=sign(u*r)

Probabilities

- What is the probability of
 - sign(u*r)≠sign(v*r)?
- It is $A(u,v)/\pi$

