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Low-distortion geometric embeddings

—
© m ]

Formally: a mapping f : P4 — Pg:
e P,4: points from metric space with distance D(-,-)
e Ppg: points from some normed space, e.g., [4

e Forany p,q € Py

1/c-D(p,q) < ||f(p) — f(@)| < D(p,q)

Parameter ¢ is called “distortion” .



Other embedding definitions possible
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Why embeddings

e Reductions from “hard” to “easy” spaces:

"Hard" "Easy"

e Widely applicable

e Many tools available
(combinatorics, functional analysis)



Example: diameter in [

e Given: a set P of n points in [¢

e Goal: the diameter of P, i.e.,

max, P — ¢l



Algorithms for diameter in [

e Easy: O(dn?) time

e Can we reduce the dependence on n
(e.g., if d constant) 7

We will show O(2%n)-time algorithm via:

e Embedding ¢ into 12

e Solving the problem in [



Algorithm for diameter in lg;

max [|p — g

max max |p; — q|
p,qeP i=1...d

max (max D — qz|)

1=1...d" \p,qeP

max | maxp; — min g;
i=1...d (pEP qeEP

Running time: O(d'n).



Embedding ¢ into 2

The mapping f is defined as:

f(p) =<S0pP, S1°Py «+.,89d_1 D >

where s; is the ith vector in {—1,1}¢. Then

1f(2) = F(@)lloo = 1f(p = @)l oo = max|s - (p — q)

d d
= max | ZSZ- -(p—q)i| = | ngn((p —q)i)(p — q)il

= Z [(p—q)il = llp —qllx

1=1

Running time: O(d2%).



Properties of the embedding

Isometry (distortion ¢ = 1)

Linear

Oblivious: f(p) does not depend on P
Deterministic

Explicit
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Embeddings of finite metrics into norms

Embeddings of M = (X, D) into ¢

e X - finite set,

X|=n

e D - distance metric (symmetry, triangle inequality
etc)

e D(p,q) - shortest distance between p and ¢ in some
graph:

— general graphs = general metrics
— planar graphs, trees etc = more specialized
metrics
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General finite metric into norms

Bourgain's theorem (1985):

Any M = (X, D) can be embedded into ¢ with
distortion O(logn).

e d: originally exponential in n, can be reduced to
O(log®n) [Linial-London-Rabinovitch'94]

e Proof yields randomized algorithm with O(n?log” n)
running time, can be derandomized

Seminal result:

e |nitiated the investigation of embedding finite
metrics

e Introduced proof technique which works for other
norms and graph classes
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The [, version

Matousek's theorem (1996):

For any b > 0, any metric M = (X, D) can be
embedded into [2 with distortion ¢ = 2b — 1 for
d = O(bn'/*logn).

e Implies O(log n)-distortion embedding into l}%gzn
= O(log® n)-distortion embedding into 5

e Proof somewhat easier than Bourgain's proof

e Same technique
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Proof: no-distortion case

Assume ¢ = 1. Will show d = n (Frechet, 1777).

Let X = {p1,...,pn}. Consider a mapping f defined
as:

f(p) =< D(p,p1),...,D(p,pn) >

Need to show |f(p) — f(4q)|ec = D(p; ).

e f is a contraction, since for any p;, € X

|D(p7pz) o D(Qapz)‘ < D(p7 Q)

= [/ (P)=f(@)loc = max |D(p, pi)=D(q. pi)| < D(p.q)
e f does not “shrink” too much, since
1f(p) = f(9)lo0 = max|D(p, pi) — D(q;pi)l
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Proof: general distortion

Modifications:

e "“Witness’ is a set, not a point, i.e.,

— Define D(p, A) = mingca D(p,a)
— Define

f(p) =< D(p,A1),...,D(p, Aq) >
for carefully chosen sets A; C X
e Advantage: can achieve d = o(n)

e Drawback: “non-shrinking” only approximate, i.e.,
for any p, g there exists A; such that

‘D(p, Az) o D(Qa Az)‘ > D(pa Q)/C
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Matousek’s proof by picture

For each p, q:

1. There are 7,7, >0, 7, >, + D(p,q)/c, and A;,
such that

e A; hits the ball B, of radius 7, around p
e A, avoids the ball B, of radius r, around ¢

(or the same for p swapped with ¢).This implies

|1 D(p, A;) — D(q, A;)| > D(p,q)/c, for some A;

2. |D(p,A;) — D(q,A;)| < D(p,q) for all A,
(follows from triangle inequality)
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Matousek’s proof, ctd.

:’/Krp/.p

Need to construct the sets A; (the red dots).

Main ideas:

1. Ensure existence of r,, 7, such that the volume of
B, is not much smaller than the volume of B, and

B,, B, disjoint (volume = cardinality)
2. Choose A;'s at random with proper density, so that

with good probability it hits B, and avoids B,
(prob. of including each point ~ 1/vol. of B,)
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Main lemma

Lemma: For each p, q there exists r such that

|B(p,7)|
|B(q,7 + D(p,q)/c)|

or vice-versa, and the two balls are disjoint.
(recall that ¢ = 2b—1)

Proof: Start from r = 0. Check if |B(p,0)| not much
smaller than |B(q, D(p, q)/c)|.

\
\
\
|
ol
!
/

If so, we are done.
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Main lemma: proof ctd.

Otherwise, swap the roles of p,q and take r =
D(p,q)/c.

\
\
\
ol
I
1
/

Check if B(q,r) not much smaller than B(p,r +
D(p,q)/c). If so, we are done. Otherwise, repeat.

Observations:

e The process could take b steps until B, B, overlap

e If the balls grew by > n'/? each time, they would
have > n volume at the end
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Matousek’s proof: the end

We know that there exists r such that

[B(g,r + D(p,q)/c)

|B(p,r)| > /b

and the two balls are disjoint.

If we choose A; by including each point to A;
with probability ~ 1/|B(q,r + D(p,q)/c)|, then with
probability ~ 1/n'/b:

e A; hits B(p,r)

e A; avoids B(q,7 + D(p,q)/c)

Now:

e Generate A;s using logn different probabilities

1/2,1/4,...1/n (to make sure we are OK for all
densities)
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e For each probability, generate O(n'/?logn) sets A;,
to get a high probability of success

o Total number of sets: O(n'/®log®n) (can be
improved by a factor of logn/b using slightly
different method)
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Summing up

e Any metric can be embedded into [ with distortion
c=2b—1,d=0(bn'’logn)

e For b = logn we get ¢ = O(logn), d = O(log®n)
= O(log? n)-distortion embedding into I

e Proof of Bourgain's theorem requires more
“counting”
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From To Distortion Reference

any I O(logn) Bourgain’'85
’I’Ll/b ogn !

any (Qlon " logn) 2b — 1 Matousek'96

expanders ly,p=0(1) Q(logn) LLR'94

high girth any norm with Matousek 96

graphs dim Q(n'/?) 20 — 1 (Erdos conj.)

planar [y O(y/logn) Rao’'99, Newman-

Rabinovich'02

planar lé%gZ” O(1)

outerplanar | [ O(1) GNRS'99

trees [ 1 folklore

trees AR 1 LLR'94

trees lo O(y/loglogn) | Matousek

(1,2)-metric | (B los™) 1 Trevisan'97,

with B 1's | (also [,'s) '00
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Volume-respecting embeddings [Feige'98]

e Stricter notion of embedding
e Ensures low distortion of k-dimensional “volumes”
e Specializes to ordinary embedding for k = 2

e Proof uses Bourgain's technique in elaborate way
(and implies Bourgain's theorem for k = 2)
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Applications (of embeddings into norms)

e Approximation algorithms: Bourgain's theorem,
volume-respecting embeddings

e Proximity-preserving labelling: Matousek's theorem

e Hardness results: (1,2)-metrics
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App |: Approximation algorithms

Sparsest cut problem:

Given:
e graph G = (V,E), cost c: E — RT

e k terminal pairs {s;,t;}, with demands d(%)

Goal: find S C V minimizing

ZUES,’UGV—S c({u, U})

pS) =
( ) Zi:SiES,tiEV—Sd(Z)
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Sparsest cut: algorithm

Long history, starting from [Leighton-Rao’88]

Best so far: O(log k)-approximation [Linial-London-

Rabinovich'94, Aumann-Rabani'94]

Method:

— Solve linear relaxation of the problem - the

solution forms a metric
— Embed the metric into 4

— Solve the problem optimally assuming a metric

induced by [4

Comments:

— O(log k) comes from Bourgain's theorem

— Easier metric = better bounds (e.g., planar

graphs)

— Embedding does not provide a straightforward

reduction
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Applications of v. r. embeddings

O(1)

e Min graph bandwidth: log n-approximation

[Feige'98, Dunagan-Vempala'01]

e VLSI design problems [Vempala'98]

Again, embeddings do not provide straightforward
reductions.
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App II: Proximity-preserving labelling

Proximity-preserving labelling [Peleg'99]

e Given: a metric M = (X, D), distortion ¢

e Goal: to find a labelling f : X — {0,1}% such that

— given f(p), f(q) we can estimate D(p,q) up to a
factor of ¢
— d as small as possible

29



Proximity-preserving labelling

Immediate application of low-distortion embeddings:

e Matousek's theorem gives best bound for general
metrics

e Best isometric labelling scheme for trees also follows

from embeddings
(but not for constant tree-width graphs)

Implications in other direction [GPPR’'01]:

e Q(n'/?/logn) dimension lower bound for isometric
embeddings of bounded degree graphs

e Q(n'/3/logn) for bounded degree planar graphs
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App lll: Hardness

Necessity of double exponential dependence on d of
PTAS's in I¢ (e.g., for TSP) [Trevisan'97, 1'00]

e Consider (1,2)-B metrics:

— Distances 1 and 2,

— At most B 1's per vertex, B = O(1)

e (1 + €)-approximating TSP in such metrics is
NP-hard [Papadimitriou-Yannakakis'87]

e But such metrics can be embedded into ZS(BIOW

— With very small distortion (and somewhat weaker
def of embedding) for p < oo [Trevisan'97]
— With no distortion for p = oo [I'00]

o(d .
e Therefore, cannot have 22 @ time unless

NP ¢ DTIME (22"“"“)) c DTIME (2°(™)
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A digression

Embeddings used for all of the aforementioned
applications:

e Approximation algorithms
e Proximity-preserving labelling

e Hardness (for I,)

are based on Bourgain's technique of “witness sets”.
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Embeddings into probabilistic trees

Probabilistic metric is a convex combination of metrics,
l.e.,

o if Th,..., T} are metrics, T; = (X, D;)
e and aj...ap >0, ) o; =1

e then the prob. metric M = (X, D) is defined by

D(p,q) = Z a;D;(p, q)

If T} chosen with probability «;, then

E[D;(p,q)] = D(p,q)
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Probabilistic embeddings

For

e a metric My = (Y, D), and

e probabilistic metric M x = (X, D) defined

a mapping f : Y — X is a probabilistic embedding of
My into M x with distortion c if for any p,q € Y:

1. f expands by at most a factor of ¢ on the average,
l.e.,

D(f(p), f(q)) < e¢D(p,q)

2. f never contracts, i.e,

min D;(f(p), f(q)) > D(p,q)

1

This is more than just an ordinary embedding of My
into M !
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Why embed into probabilistic trees ?

Not possible to embed a cycle metric into a tree metric
[Rabinovitch-Raz, Gupta’01] with o(n) distortion.

Can do much better for probabilistic trees !
(for any metric)

o [AKPW'91]: 20(Vlcgnloglogn) distortion

e |Bartal'96] and [Bartal'98]:

— O(log®n) and O(lognloglogn) distortion
— Simpler class of trees

(Hierarchically Well-Separated Trees)
— Many applications

Imply identical results for embeddings into [y
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Proof of weaker bound

We'll “show” O(log®n - log A) distortion
(A - furthest/closest pair ratio)

Contains essential elements of [Bartal'96], with
additional ideas.

Proof:

e Embed M = (Y, D) into I% with distortion logn,
d = O(log® n)

e From now on, we assume M induced by [, multiply
final distortion by logn

e Partition the [ space probabilistically into clusters
of different diameters

e “Stitch” the clusters together into a tree
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Probabilistic partitions

e [-partition: any partition of Y into clusters of
diameter <[

e (r,p)-partition: a distribution over r - p partitions,
such that for any p,q € Y, the prob. that p,q go
to different clusters is at most D(p, q)/r

In 19, (r,d)-partitions are easy to get by randomly
shifting a grid of side r - d

dr

Probability of a cut < d - %
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Probabilistic tree construction

Recursive construction of a random tree. Initially
r = A.

e Generate an r - p-partition P from a (r, p)-partition

e Within any cluster Y; of P, generate a random tree
T; with root u; using r/2

e Create artificial node u and connect u to u;'s using
edges of length p - r/2

39



Construction: |

e Create a root

e We will create subtrees recursively
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Construction: |l

Subdivide using a randomly shifted grid

Create nodes for each cell

Edge length proportional to the side of the grid cell

Close points unlikely to be separated
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Construction: Il

T

e Further subdivide within each cell

e Stop when single points are reached

42



Construction: 1V

®
o
°
e
®
e |
°
Distortion:

e One factor logn comes from embedding into [
e One factor comes from log A levels in the tree

e One factor log?n comes from p (ratio between
probability of cutting and the edge length)
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Non-contraction

No tree contracts the distances:

e Consider any cluster Y of diameter < rp

e Adding new node u with distance rp/2 to all points
in Y cannot increase the distance
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Distortion

Fix pair p,g € Y. The pair p, q,:

e |s separated by (A, p)-partition with prob. —D(g’Q)

= tree distance A - p

e |s separated by (A/2, p)-partition with prob. —DA(%(J)

= tree distance A/2 - p, etc...

Expected distance:

o 2r.p- D(p 9 — = p-D(p,q) per level

e times O(log A) levels

= O(plogA) - D(p,q)
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Summing up

Overall distortion: O(log® n - log A)

Trees have special structure (HST):

— On the way from the root to a leaf distances
decrease exponentially

— All distances from a node to its children are the
same

Can get rid of the additional nodes = X =Y
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Summary of the prob. emb. into HSTs

From Distortion Reference
any O(lognloglogn) | Bartal'98
high-girth | Q(logn) Bartal'96
planar O(logn) GKR

14 O(v/dlogn) CCGGP'98
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Applications (of embeddings into prob. trees)

Algorithms (approximate, on-line):

e Prob. embeddings provide fairly general reductions
from problems over metrics to problems over trees

e Approximation algorithm for metric M:

— Let A be an a-approximation algorithm for trees

— Replace M by a random tree T’

— Use A on T to produce a solution for 1" with cost
<a-OPTr<a-c-OPTyy

— Interpret it as a solution for M

— Final cost < a-c-OPT)y,

e Similar approach works for on-line problems

e The structure of HST makes the task even easier

48



Applications: on-line algorithms

Metrical task systems [Borodin,Linial,Saks'87]:

e Defined by a metric M = (X, D), initial server
position p € X

e Input: a sequence of tasks 7 = 71, 7o, . . .,
70 X — [0,00)

e Given next task 7;, the algorithm:

— Moves the server from its current position = to a
new position y

— Serves the task from y

— Incurred cost: D(z,y) + 7(y)

e Want: to design an algorithm A with small
competitive ratio, I.e.,

Cost incurred by A on 7
max : :
= Optimal cost of serving
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Prob. embeddings for MTS

e We have seen prob. embedding of M = (X, D)
into (X, D), where (X, D) is a convex combination
of HSTs

e Can use it to reduce the problem over general
metrics to problem over HSTs:

— Let A be a b-competitive algorithm for HST
— Choose a random HST T

— Feed all tasks to A

— Interpret all server moves of A as moves in M

e (Cost estimations:

— Let OPT be optimal server trajectory in M with
cost C

— It corresponds to a server trajectory in 1" with
expected cost < ¢ - C', where c is the distortion

— A will find a solution S for T with cost < b-¢-C

— Interpreting S as a solution for M only decreases
the cost
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Applications of prob. embeddings

e For “metric’ problems, a b-competitive algorithm
for HSTs implies a (randomized) O(blog®™M n)-
competitive algorithm for general metric:

— O(logO(1> n)-competitive algorithm for metrical
task systems [BBBT'98,FM’'00]
— distributed problems [Bartal'98]

e Same holds for approximation algorithms:

— "“Buy-at-bulk” network design [Azar-Awerbuch'97]
— Group Steiner problem
— ...( &= 10 problems)
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Embeddings of norms into norms

Different from finite metrics:

e Embeddings of infinite spaces

e Advantage: we do not have to know all points in
advance

e Drawback: sometimes guarantees only randomized
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Randomized embeddings

For metrics M = (X,D), M = (X',D’), a
distribution F over mappings f : X — X' is a
randomized embedding with

e distortion c
e contraction probability P,.,,
e expansion probability P,

if for any p,q € X we have

° D/(f(p),f(Q)> < 1/6 . D(p, q) with prob. < Pcon

o D'(f(p), f(q)) > D(p,q) with prob. < Py,

P = P.,p, + Peyp is called failure probability
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Dimensionality reduction in [,

Johnson-Lindenstrauss (1984):

There is a randomized embedding from ¢ into

lg/ with distortion 1 + € and failure probability
o—d'/€%)

Corollary:  For any set P C 1§ there exists an
embedding of (P,l5) into I¢ with distortion 1 + e,
where d' = €25t . In | P)|.

( const = 4 for small enough € > 0)
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Proof

e Several proofs known [JL'84,FM’'88,IM"'98,DG'99,AV'99]

e All of them proceed by showing:

Take any u € R?, |Jull2 = 1.

Let A;,... Ay be “random” vectors from R¢,
and let A = [A;...Az]". Then ||Auls is
sharply concentrated around its mean (equal
to 1).

e Linearity of A implies that for p,q € I, we have
[Ap—Aqll2 = |[A(p—q)l|2 = [Ip—all2- | Aull2 = [Ip—q]|2

where u = (p — q)/|lp — q||2-
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Proof (sketch)

We show a proof when all entries in A chosen from
Gaussian distribution N (0, 1) [I-Motwani'98]

e Sum of independent random variables from Gaussian
distribution has Gaussian distribution
— each A;u has Gaussian distribution

e The variance of a sum is a sum of variances
= the variance of each A;uis ) . u? =1
= each A,u is indep. chosen from N (0, 1)

o ||Aul3 is a sum of squares of independent Gaussians

— sum of squares of two Gaussians has exponential
distribution

— sum of squares of many Gaussian has chi-square
distribution

— the distributions well understood

— "Plug and Play”
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Summary of the results

e Distortion: 1 + ¢
e Prob. of contraction: P.,,
e Prob. of expansion: P,

e Failure probability P = P,y + Peyp

Norm Dimension Reference

l5 O(log(1/P)/€?) JL'84

l5 Q(1/log(1/e) -log(1/P)/€e?) | A+C+M

I (10g(1/ Peon) + 1/ P.2p) /) | 100

Hamming O(log(1/P)/€?) KOR'98
1’00

(dist. range)
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Techniques used

e [5 upper bound: random projection on a plane
spanned by set of random vectors

— chosen i.i.d. from d-dim Gaussian distribution
(can be efficiently derandomized [EIO'02])

— chosen i.i.d. from uniform dist. over a sphere

— forced to be orthonormal (Haar measure) [JL,FM]

— chosen i.id. from {-1,1}¢ or {-1,0,1}¢
[Achlioptas’'01]

Can be derandomized using [Shivakumar'02]

e [ lower bound: upper bound on “almost
orthogonal” vectors in R4 [Alon, Charikar,
Matousek]

e [ upper bound: 1-stable distributions, i.e., generate
A such that ||Ax||; estimates ||x||1

e Hamming metric: random linear mapping over

GF(2)
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Application of dimensionality reduction

e “Straightforward” applications
e Faster embedding computation
e Continuous (clustering) problems
e Sublinear-storage computation

e Miscellaneous:

— learning robust concepts [Arriaga-Vempala'99]

— deterministic approximation algorithms using
semidefinite programming [Engebretsen-I1-O'Donnell'02,
Shivakumar’'02]
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App |: Straightforward applications

Running time:
T(n,d) = T(n,logn) + dlogn - (# points to embed)

e Linear improvement: closest pair, nearest neighbor,
diameter, MST etc.
— time: O(dn®) = O(logn - n?) + O(dnlogn)

e Exponential improvement: nearest neighbor

[Kushilevitz-Ostrovsky-Rabani’98, I-Motwani'98]

— space: n29(d) = pO1)
— query: (d+1logn)°® = O(dlogn + log®M n)
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App ll: Faster embedding computation

e Computing embedding in o(dn) time

e Feasible if the pointset defined implicitly, e.g., as a
set of all d-substrings of a given string

e A substring difference problem: preprocess the data
to estimate (quickly) the distance between two given
d-substrings [I-Koudas-Muthukrishnan'00]

— dim.  reduction gives O(nlogn) space and
O(logn) query time
... but ©(dnlogn) preprocessing time

— embedding linear = can use FFT to get
O(nlogdlogn) preprocessing time

string:

random () ()

vector :
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App ll: Faster embedding computation, ctd.

e Other string problems: variable d, string nearest
neighbor problem [I-Koudas-Muthukrishnan'00]

e Line crossing metric [Har-Peled-1'00]
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App llI: Continuous (clustering) problems

e Generic problem:

— Given: n points in lg

— Find: k& centers in R? to minimize the total
distance between the points and their nearest
centers

(total distance € {max dist., sum of dist.,...})

e Simple dimensionality reduction does not work!
(solution in the reduced space could be bogus)

e |dea [Dasgupta’'99]:

— Reduce the dimension

— Identify (or guess) the clusters (not centers!) in
the low-dimensional space

— For each cluster, find its center in original space

e Works for learning mixtures of Gaussians [D'99],
k-median for small k£ [OR’00], k-center
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Low-storage computation

e Dimensionality reduction reduces space as well

e Prototypical example: vector maintenance

— Data structure maintaining € R¢

(z; - counter for element 7)
— Enables increments/decrements of coordinates
— Reports estimation of ||z,

e Applications:

— p = 0: # non-zero positions (distinct elements)
— p = 2: self-join size
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Norm maintenance: results

(1 + €)-approximation in (logn + 1/¢)?() space:

e p =0 (but x > 0): Flajolet-Martin'85

e p = 2: Alon-Matias-Szegedy'96
(also any integer p with sublinear storage)

e p €10,2]: '00, Cormode-Muthukrishnan'01
(earlier FKSV'99,FS’00)
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Norm maintenance: approach

e Maintain low-dimensional Ax to represent x
e Reduce the amount of randomness used in A

e Implementation:

— [AMS’96]:
x 4-wise independent entries of A
+ Use median (not sum) to estimate the norm
— [I'00]:
x Use Nisan's generator to generate A
x Can “simulate” JL lemma
* Works for any p € [0,2] via p-stable
distributions
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Other low-storage results

e Maintaining string properties [CM'01]
e Norm maintenance in fixed window [DGIM'02]

e Maintaining approximations of a vector
(wavelet [GKMS'01], piecewise-linear [GGIKMS'01])
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Overview of the talk

Motivation

— General

— Example: diameter in [
Embeddings of graph-induced metrics

— into norms (Bourgain’s theorem, Matousek's
theorem, etc.)
— into probabilistic trees (Bartal's theorem)

Embeddings of norms into norms

— dimensionality reduction (Johnson-Lindenstrauss
lemma, etc.)
— switching norms

Embeddings of special metrics into norms

— string edit distance
— Hausdorff metric
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Switching norms

We have seen one already (11 — l)

Mostly ordinary embeddings, at last!

(although  often constructed using random
mappings)

Switch from “hard” to “easy” norms (l1 or l)

All constructed using linear mappings

Topic extensively investigated in functional analysis
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Embeddings

Embeddings from lg into ljl/

From Dist. | d’ Reference
p=2 1+¢ | O(dlog(1/e)/e?) | FLM'77 ala JL
V2 | O(d?) Berger'97 | explicit
1+4¢€ | d90ogd) '00 explicit
pe[l,2] | 1+e¢ | O(dlog(1/e)/e?) | JS'82
Embeddings from lg into lgl;
From Dist. | d’ Reference
p=1 1 2d—1 folklore
polyhedral | 1 F/2 folklore
norm (F' = +# faces)
any norm | 1+¢€ | O(1/€)%/? folklore
(Dudley’s theorem)
p =2 14 € | (log(1/Peon) + 1/]363,;}9)0(1/€> 1’01
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Applications of norm switching

e Embeddings into [{ norm

— [y — [ — Hamming: approx. nearest neighbor

algorithms

[Kushilevitz-Ostrovsky-Rabani'98, |-Motwani’98]
— same route: k-median algorithm [Ostrovsky-

Rabani'00]

e Embeddings into [, norm

— Diameter/furthest neighbor in [y, I5
— Nearest neighbor in product of I3 norms [I'01]

72



Overview of the talk

e Embeddings of graph-induced metrics

— into norms (Bourgain’s theorem, Matousek's
theorem, etc.)
— into probabilistic trees (Bartal’s theorem)

e Embeddings of norms into norms

— dimensionality reduction (Johnson-Lindenstrauss
lemma, etc.)
— switching norms

e Embeddings of special metrics into norms

— string edit distance
— Hausdorff metric
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Special metrics

e Hausdorff metric: for any two sets A, B C X in a
metric M = (X, D), define

Dy (A, B) = max min D(a,b)

Du(A, B) = max(Dg (A, B), Dy (B, A))

Applications: vision, pattern recognition
(M =13,15)

e Levenstein metric: Dp(s,s’) = minimum number

of insertions/deletions/substitutions/etc. needed to
transform s into &’

Applications: computational biology, etc.
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Special metrics

Would like to solve problems (e.g., nearest neighbor,
clustering) over Dy, Dy,

However, these metrics are more complex than
normed spaces

— Dy “contains’ [

— Dy, “contains’ Hamming metric

Thus, would like to embed them into proper normed
spaces

Additional benefit: if embedding is fast, can get
fast approximate algorithm for computing D(-, )
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Embeddings of special metrics

From To Dist. Dim. Ref

Dy over (X, D) | ls 1 | X | FI'99

Dy over 14 oo 1+e | s2/e9D | FI'99
(s-subsets)

Dy, with Hamm. | = logd CPSC'00,
block moves MS'00,CM'01

Other metrics:

e Permutation distances
[Cormode-Muthukrishnan-Sahinalp’01]
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Conclusions

e We have seen lots of embeddings!

e But also main techniques used:

— Finite metrics: “witness sets”

— Normed spaces: random linear mappings

— Probabilistic trees: stitching prob. partitions into
trees

e Tools mostly taken from combinatorics and
functional analysis
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Open problems

e General open problems:

More embeddings
More applications of embeddings

e Specific problems:

Planar graph metrics into [;

O(logn) distortion for embedding metrics into

probabilistic trees
Dimensionality reduction for [;
Embeddings of Levenstein metric
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