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Low-distortion geometric embeddings
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Formally: a mapping f : PA → PB:

• PA: points from metric space with distance D(·, ·)

• PB: points from some normed space, e.g., ld2

• For any p, q ∈ PA

1/c · D(p, q) ≤ ‖f(p) − f(q)‖ ≤ D(p, q)

Parameter c is called “distortion”.
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Other embedding definitions possible
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Overview of the remainder of the talk

• Motivation

– General
– Example: diameter in ld1

• Embeddings of finite metrics

– into norms (Bourgain’s theorem, Matousek’s
theorem, etc.)

– into probabilistic trees (Bartal’s theorem)

• Embeddings of norms into norms

– dimensionality reduction (e.g., lhigh
2 → lsmall

2 )
– switching norms (e.g., l2 → l1)

• Embeddings of special metrics into norms

– string edit distance
– Hausdorff metric
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Why embeddings

• Reductions from “hard” to “easy” spaces:
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"Hard" "Easy"

• Widely applicable

• Many tools available
(combinatorics, functional analysis)
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Example: diameter in ld1

• Given: a set P of n points in ld1

• Goal: the diameter of P , i.e.,

max
p,q∈P

‖p − q‖1
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Algorithms for diameter in l1

• Easy: O(dn2) time

• Can we reduce the dependence on n
(e.g., if d constant) ?

We will show O(2dn)-time algorithm via:

• Embedding ld1 into l2
d

∞

• Solving the problem in l∞
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Algorithm for diameter in ld
′

∞

max
p,q∈P

‖p − q‖∞

=

max
p,q∈P

max
i=1...d′

|pi − qi|
=

max
i=1...d′

(

max
p,q∈P

|pi − qi|
)

=

max
i=1...d′

(

max
p∈P

pi − min
q∈P

qi

)

Running time: O(d′n).
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Embedding ld1 into l2
d

∞

The mapping f is defined as:

f(p) =< s0 · p, s1 · p, . . . , s2d−1 · p >

where si is the ith vector in {−1, 1}d. Then

‖f(p) − f(q)‖∞ = ‖f(p − q)‖∞ = max
s

|s · (p − q)|

= max
s

|
d

∑

i=1

si · (p − q)i| = |
d

∑

i=1

sgn((p − q)i)(p − q)i|

=
d

∑

i=1

|(p − q)i| = ‖p − q‖1

Running time: O(d2dn).
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Properties of the embedding

• Isometry (distortion c = 1)

• Linear

• Oblivious: f(p) does not depend on P

• Deterministic

• Explicit
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Overview of the talk

• Motivation

– General
– Example: diameter in ld1

• Embeddings of graph-induced metrics

– into norms (Bourgain’s theorem, Matousek’s
theorem, etc.)

– into probabilistic trees (Bartal’s theorem)

• Embeddings of norms into norms

– dimensionality reduction (Johnson-Lindenstrauss
lemma, etc.)

– switching norms

• Embeddings of special metrics into norms

– string edit distance
– Hausdorff metric
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Embeddings of finite metrics into norms

Embeddings of M = (X,D) into ldp

• X - finite set, |X| = n

• D - distance metric (symmetry, triangle inequality
etc)

• D(p, q) - shortest distance between p and q in some
graph:

– general graphs ⇒ general metrics
– planar graphs, trees etc ⇒ more specialized

metrics
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General finite metric into norms

Bourgain’s theorem (1985):

Any M = (X,D) can be embedded into ld2 with
distortion O(log n).

• d: originally exponential in n, can be reduced to
O(log2 n) [Linial-London-Rabinovitch’94]

• Proof yields randomized algorithm with O(n2 log2 n)
running time, can be derandomized

Seminal result:

• Initiated the investigation of embedding finite
metrics

• Introduced proof technique which works for other
norms and graph classes
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The l∞ version

Matousek’s theorem (1996):

For any b > 0, any metric M = (X,D) can be
embedded into ld∞ with distortion c = 2b − 1 for
d = O(bn1/b log n).

• Implies O(log n)-distortion embedding into llog
2 n

∞
⇒ O(log2 n)-distortion embedding into l2

• Proof somewhat easier than Bourgain’s proof

• Same technique
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Proof: no-distortion case

Assume c = 1. Will show d = n (Frechet, 1???).

Let X = {p1, . . . , pn}. Consider a mapping f defined
as:

f(p) =< D(p, p1), . . . , D(p, pn) >

Need to show |f(p) − f(q)|∞ = D(p, q).

• f is a contraction, since for any pi ∈ X

|D(p, pi) − D(q, pi)| ≤ D(p, q)

⇒ |f(p)−f(q)|∞ = max
pi

|D(p, pi)−D(q, pi)| ≤ D(p, q)

• f does not “shrink” too much, since

|f(p) − f(q)|∞ = max
pi

|D(p, pi) − D(q, pi)|

≥ |D(p, p) − D(p, q)| = D(p, q)

14



Proof: general distortion

Modifications:

• “Witness” is a set, not a point, i.e.,

– Define D(p,A) = mina∈A D(p, a)
– Define

f(p) =< D(p,A1), . . . ,D(p,Ad) >

for carefully chosen sets Ai ⊂ X

• Advantage: can achieve d = o(n)

• Drawback: “non-shrinking” only approximate, i.e.,
for any p, q there exists Ai such that

|D(p,Ai) − D(q,Ai)| ≥ D(p, q)/c
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Matousek’s proof by picture

p

q

q

rp

r

For each p, q:

1. There are rp, rq > 0, rq ≥ rp + D(p, q)/c, and Ai,
such that

• Ai hits the ball Bp of radius rp around p
• Ai avoids the ball Bq of radius rq around q

(or the same for p swapped with q).This implies

|D(p,Ai) − D(q,Ai)| ≥ D(p, q)/c, for some Ai

2. |D(p,Ai) − D(q,Ai)| ≤ D(p, q) for all Ai

(follows from triangle inequality)
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Matousek’s proof, ctd.

p

q

q

rp

r

Need to construct the sets Ai (the red dots).

Main ideas:

1. Ensure existence of rp, rq such that the volume of
Bp is not much smaller than the volume of Bq, and
Bp, Bq disjoint (volume ≡ cardinality)

2. Choose Ai’s at random with proper density, so that
with good probability it hits Bp and avoids Bq

(prob. of including each point ≈ 1/vol. of Bq)
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Main lemma

Lemma: For each p, q there exists r such that

|B(p, r)|
|B(q, r + D(p, q)/c)| ≥ 1/n1/b

or vice-versa, and the two balls are disjoint.
(recall that c = 2b − 1)

Proof: Start from r = 0. Check if |B(p, 0)| not much
smaller than |B(q,D(p, q)/c)|.

q

p

If so, we are done.
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Main lemma: proof ctd.

Otherwise, swap the roles of p, q and take r =
D(p, q)/c.

q

p

Check if B(q, r) not much smaller than B(p, r +
D(p, q)/c). If so, we are done. Otherwise, repeat.

Observations:

• The process could take b steps until Bp, Bq overlap

• If the balls grew by > n1/b each time, they would
have > n volume at the end
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Matousek’s proof: the end

We know that there exists r such that

|B(p, r)| ≥ |B(q, r + D(p, q)/c)|
n1/b

and the two balls are disjoint.

If we choose Ai by including each point to Ai

with probability ≈ 1/|B(q, r + D(p, q)/c)|, then with
probability ≈ 1/n1/b:

• Ai hits B(p, r)

• Ai avoids B(q, r + D(p, q)/c)

Now:

• Generate Ais using log n different probabilities
1/2, 1/4, . . . 1/n (to make sure we are OK for all
densities)
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• For each probability, generate O(n1/b log n) sets Ai,
to get a high probability of success

• Total number of sets: O(n1/b log2 n) (can be
improved by a factor of log n/b using slightly
different method)
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Summing up

• Any metric can be embedded into ld∞ with distortion
c = 2b − 1, d = O(bn1/b log n)

• For b = log n we get c = O(log n), d = O(log2 n)
⇒ O(log2 n)-distortion embedding into l2

• Proof of Bourgain’s theorem requires more
“counting”
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From To Distortion Reference
any l2 O(log n) Bourgain’85

any l
O(bn1/b log n)
∞ 2b − 1 Matousek’96

expanders lp, p = O(1) Ω(log n) LLR’94

high girth any norm with Matousek’96
graphs dim Ω(n1/b) 2b − 1 (Erdos conj.)

planar l2 Θ(
√

log n) Rao’99, Newman-
Rabinovich’02

planar llog
2 n

∞ O(1)

outerplanar l1 O(1) GNRS’99

trees l1 1 folklore

trees l
O(log n)
∞ 1 LLR’94

trees l2 Θ(
√

log log n) Matousek

(1,2)-metric l
O(B log n)
∞ 1 Trevisan’97,

with B 1’s (also lp’s) I’00
23



Volume-respecting embeddings [Feige’98]

• Stricter notion of embedding

• Ensures low distortion of k-dimensional “volumes”

• Specializes to ordinary embedding for k = 2

• Proof uses Bourgain’s technique in elaborate way
(and implies Bourgain’s theorem for k = 2)
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Applications (of embeddings into norms)

• Approximation algorithms: Bourgain’s theorem,
volume-respecting embeddings

• Proximity-preserving labelling: Matousek’s theorem

• Hardness results: (1,2)-metrics
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App I: Approximation algorithms

Sparsest cut problem:

Given:

• graph G = (V,E), cost c : E → <+

• k terminal pairs {si, ti}, with demands d(i)

Goal: find S ⊂ V minimizing

ρ(S) =

∑

u∈S,v∈V −S c({u, v})
∑

i:si∈S,ti∈V −S d(i)
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Sparsest cut: algorithm

• Long history, starting from [Leighton-Rao’88]

• Best so far: O(log k)-approximation [Linial-London-
Rabinovich’94, Aumann-Rabani’94]

• Method:

– Solve linear relaxation of the problem - the
solution forms a metric

– Embed the metric into l1
– Solve the problem optimally assuming a metric

induced by l1

• Comments:

– O(log k) comes from Bourgain’s theorem
– Easier metric ⇒ better bounds (e.g., planar

graphs)
– Embedding does not provide a straightforward

reduction
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Applications of v. r. embeddings

• Min graph bandwidth: logO(1) n-approximation
[Feige’98, Dunagan-Vempala’01]

• VLSI design problems [Vempala’98]

Again, embeddings do not provide straightforward
reductions.
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App II: Proximity-preserving labelling

Proximity-preserving labelling [Peleg’99]

• Given: a metric M = (X,D), distortion c

• Goal: to find a labelling f : X → {0, 1}d such that

– given f(p), f(q) we can estimate D(p, q) up to a
factor of c

– d as small as possible
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Proximity-preserving labelling

Immediate application of low-distortion embeddings:

• Matousek’s theorem gives best bound for general
metrics

• Best isometric labelling scheme for trees also follows
from embeddings
(but not for constant tree-width graphs)

Implications in other direction [GPPR’01]:

• Ω(n1/2/ log n) dimension lower bound for isometric
embeddings of bounded degree graphs

• Ω(n1/3/ log n) for bounded degree planar graphs
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App III: Hardness

Necessity of double exponential dependence on d of
PTAS’s in ldp (e.g., for TSP) [Trevisan’97, I’00]

• Consider (1,2)-B metrics:

– Distances 1 and 2,

– At most B 1’s per vertex, B = O(1)

• (1 + ε)-approximating TSP in such metrics is
NP-hard [Papadimitriou-Yannakakis’87]

• But such metrics can be embedded into l
O(B log n)
p

– With very small distortion (and somewhat weaker
def of embedding) for p < ∞ [Trevisan’97]

– With no distortion for p = ∞ [I’00]

• Therefore, cannot have 22o(d)
time unless

NP ⊂ DTIME
(

22o(log n)
)

⊂ DTIME (2o(n))
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A digression

Embeddings used for all of the aforementioned
applications:

• Approximation algorithms

• Proximity-preserving labelling

• Hardness (for l∞)

are based on Bourgain’s technique of “witness sets”.
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Overview of the talk

• Motivation

– General
– Example: diameter in ld1

• Embeddings of graph-induced metrics

– into norms (Bourgain’s theorem, Matousek’s
theorem, etc.)

– into probabilistic trees (Bartal’s theorem)

• Embeddings of norms into norms

– dimensionality reduction (Johnson-Lindenstrauss
lemma, etc.)

– switching norms

• Embeddings of special metrics into norms

– string edit distance
– Hausdorff metric
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Embeddings into probabilistic trees

Probabilistic metric is a convex combination of metrics,
i.e.,

• if T1, . . . , Tk are metrics, Ti = (X,Di)

• and α1 . . . αn > 0,
∑

i αi = 1

• then the prob. metric M = (X,D) is defined by

D(p, q) =
∑

i

αiDi(p, q)

If Ti chosen with probability αi, then

E[Di(p, q)] = D(p, q)
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Probabilistic embeddings

For

• a metric MY = (Y,D), and

• probabilistic metric MX = (X,D) defined
by Ti = (X,Di), i = 1 . . . k

a mapping f : Y → X is a probabilistic embedding of
MY into MX with distortion c if for any p, q ∈ Y :

1. f expands by at most a factor of c on the average,
i.e.,

D(f(p), f(q)) ≤ cD(p, q)

2. f never contracts, i.e,

min
i

Di(f(p), f(q)) ≥ D(p, q)

This is more than just an ordinary embedding of MY

into MX !
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Why embed into probabilistic trees ?

Not possible to embed a cycle metric into a tree metric
[Rabinovitch-Raz, Gupta’01] with o(n) distortion.

Can do much better for probabilistic trees !
(for any metric)

• [AKPW’91]: 2O(
√

log n log log n) distortion

• [Bartal’96] and [Bartal’98]:

– O(log2 n) and O(log n log log n) distortion
– Simpler class of trees

(Hierarchically Well-Separated Trees)
– Many applications

Imply identical results for embeddings into l1
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Proof of weaker bound

We’ll “show” O(log3 n · log ∆) distortion
(∆ - furthest/closest pair ratio)

Contains essential elements of [Bartal’96], with
additional ideas.

Proof:

• Embed M = (Y,D) into ld∞ with distortion log n,
d = O(log2 n)

• From now on, we assume M induced by l∞, multiply
final distortion by log n

• Partition the ld∞ space probabilistically into clusters
of different diameters

• “Stitch” the clusters together into a tree
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Probabilistic partitions

• l-partition: any partition of Y into clusters of
diameter ≤ l

• (r, ρ)-partition: a distribution over r · ρ partitions,
such that for any p, q ∈ Y , the prob. that p, q go
to different clusters is at most D(p, q)/r

In ld∞, (r, d)-partitions are easy to get by randomly
shifting a grid of side r · d

p
q

d r

Probability of a cut ≤ d · D(p,q)
dr

38



Probabilistic tree construction

Recursive construction of a random tree. Initially
r = ∆.

• Generate an r · ρ-partition P from a (r, ρ)-partition

• Within any cluster Yi of P , generate a random tree
Ti with root ui using r/2

• Create artificial node u and connect u to ui’s using
edges of length ρ · r/2
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Construction: I
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• Create a root

• We will create subtrees recursively
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Construction: II
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• Subdivide using a randomly shifted grid

• Create nodes for each cell

• Edge length proportional to the side of the grid cell

• Close points unlikely to be separated
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Construction: III
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• Further subdivide within each cell

• Stop when single points are reached
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Construction: IV
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Distortion:

• One factor log n comes from embedding into l∞

• One factor comes from log ∆ levels in the tree

• One factor log2 n comes from ρ (ratio between
probability of cutting and the edge length)

43



Non-contraction

No tree contracts the distances:

• Consider any cluster Y of diameter ≤ rρ

• Adding new node u with distance rρ/2 to all points
in Y cannot increase the distance
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Distortion

Fix pair p, q ∈ Y . The pair p, q,:

• Is separated by (∆, ρ)-partition with prob. D(p,q)
∆

⇒ tree distance ∆ · ρ

• Is separated by (∆/2, ρ)-partition with prob. D(p,q)
∆/2

⇒ tree distance ∆/2 · ρ, etc...

Expected distance:

• 2ir · ρ · D(p,q)

2ir
= ρ · D(p, q) per level

• times O(log ∆) levels

= O(ρ log ∆) · D(p, q)
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Summing up

• Overall distortion: O(log3 n · log ∆)

• Trees have special structure (HST):

– On the way from the root to a leaf distances
decrease exponentially

– All distances from a node to its children are the
same

• Can get rid of the additional nodes ⇒ X = Y

46



Summary of the prob. emb. into HSTs

From Distortion Reference
any O(log n log log n) Bartal’98

high-girth Ω(log n) Bartal’96

planar O(log n) GKR

ld2 O(
√

d log n) CCGGP’98

47



Applications (of embeddings into prob. trees)

Algorithms (approximate, on-line):

• Prob. embeddings provide fairly general reductions
from problems over metrics to problems over trees

• Approximation algorithm for metric M :

– Let A be an a-approximation algorithm for trees
– Replace M by a random tree T

⇒ OPTT ≤ c · OPTM

– Use A on T to produce a solution for T with cost
≤ a · OPTT ≤ a · c · OPTM

– Interpret it as a solution for M
– Final cost ≤ a · c · OPTM

• Similar approach works for on-line problems

• The structure of HST makes the task even easier
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Applications: on-line algorithms

Metrical task systems [Borodin,Linial,Saks’87]:

• Defined by a metric M = (X,D), initial server

position p ∈ X

• Input: a sequence of tasks τ = τ1, τ2, . . .,
τi : X → [0,∞)

• Given next task τi, the algorithm:

– Moves the server from its current position x to a
new position y

– Serves the task from y
– Incurred cost: D(x, y) + τ(y)

• Want: to design an algorithm A with small
competitive ratio, i.e.,

max
τ

Cost incurred by A on τ

Optimal cost of serving τ
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Prob. embeddings for MTS

• We have seen prob. embedding of M = (X,D)
into (X, D), where (X,D) is a convex combination
of HSTs

• Can use it to reduce the problem over general
metrics to problem over HSTs:

– Let A be a b-competitive algorithm for HST
– Choose a random HST T
– Feed all tasks to A
– Interpret all server moves of A as moves in M

• Cost estimations:

– Let OPT be optimal server trajectory in M with
cost C

– It corresponds to a server trajectory in T with
expected cost ≤ c · C, where c is the distortion

– A will find a solution S for T with cost ≤ b · c ·C
– Interpreting S as a solution for M only decreases

the cost
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Applications of prob. embeddings

• For “metric” problems, a b-competitive algorithm
for HSTs implies a (randomized) O(b logO(1) n)-
competitive algorithm for general metric:

– O(logO(1) n)-competitive algorithm for metrical
task systems [BBBT’98,FM’00]

– distributed problems [Bartal’98]

• Same holds for approximation algorithms:

– “Buy-at-bulk” network design [Azar-Awerbuch’97]
– Group Steiner problem
– ...( ≈ 10 problems)
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Overview of the talk

• Motivation

– General
– Example: diameter in ld1

• Embeddings of graph-induced metrics

– into norms (Bourgain’s theorem, Matousek’s
theorem, etc.)

– into probabilistic trees (Bartal’s theorem)

• Embeddings of norms into norms

– dimensionality reduction (Johnson-Lindenstrauss
lemma, etc.)

– switching norms

• Embeddings of special metrics into norms

– string edit distance
– Hausdorff metric
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Embeddings of norms into norms

Different from finite metrics:

• Embeddings of infinite spaces

• Advantage: we do not have to know all points in
advance

• Drawback: sometimes guarantees only randomized
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Randomized embeddings

For metrics M = (X,D),M ′ = (X ′,D′), a
distribution F over mappings f : X → X ′ is a
randomized embedding with

• distortion c

• contraction probability Pcon

• expansion probability Pexp

if for any p, q ∈ X we have

• D′(f(p), f(q)) < 1/c · D(p, q) with prob. ≤ Pcon

• D′(f(p), f(q)) > D(p, q) with prob. ≤ Pexp

P = Pcon + Pexp is called failure probability
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Dimensionality reduction in l2

Johnson-Lindenstrauss (1984):

There is a randomized embedding from ld2 into

ld
′

2 with distortion 1 + ε and failure probability

e−Ω(d′/ε2).

Corollary: For any set P ⊂ ld2 there exists an

embedding of (P, l2) into ld
′

2 with distortion 1 + ε,
where d′ = const

ε2
· ln |P |.

( const ≈ 4 for small enough ε > 0)
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Proof

• Several proofs known [JL’84,FM’88,IM’98,DG’99,AV’99]

• All of them proceed by showing:

Take any u ∈ <d, ‖u‖2 = 1.
Let A1, . . . Ad′ be “random” vectors from <d,
and let A = [A1 . . . Ad′]

T . Then ‖Au‖2 is
sharply concentrated around its mean (equal
to 1).

• Linearity of A implies that for p, q ∈ ld2, we have

‖Ap−Aq‖2 = ‖A(p−q)‖2 = ‖p−q‖2·‖Au‖2 ≈ ‖p−q‖2

where u = (p − q)/‖p − q‖2.
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Proof (sketch)

We show a proof when all entries in A chosen from
Gaussian distribution N(0, 1) [I-Motwani’98]

• Sum of independent random variables from Gaussian
distribution has Gaussian distribution
⇒ each Aiu has Gaussian distribution

• The variance of a sum is a sum of variances
⇒ the variance of each Aiu is

∑

j u2
j = 1

⇒ each Aiu is indep. chosen from N(0, 1)

• ‖Au‖2
2 is a sum of squares of independent Gaussians

– sum of squares of two Gaussians has exponential
distribution

– sum of squares of many Gaussian has chi-square
distribution

– the distributions well understood
– “Plug and Play”
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Summary of the results

• Distortion: 1 + ε

• Prob. of contraction: Pcon

• Prob. of expansion: Pexp

• Failure probability P = Pcon + Pexp

Norm Dimension Reference
l2 O(log(1/P )/ε2) JL’84

l2 Ω(1/ log(1/ε) · log(1/P )/ε2) A+C+M

l1 (log(1/Pcon) + 1/Pexp)
O(1/ε) I’00

Hamming O(log(1/P )/ε2) KOR’98
I’00

(dist. range)
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Techniques used

• l2 upper bound: random projection on a plane
spanned by set of random vectors

– chosen i.i.d. from d-dim Gaussian distribution
(can be efficiently derandomized [EIO’02])

– chosen i.i.d. from uniform dist. over a sphere
– forced to be orthonormal (Haar measure) [JL,FM]
– chosen i.i.d. from {−1, 1}d or {−1, 0, 1}d

[Achlioptas’01]

Can be derandomized using [Shivakumar’02]

• l2 lower bound: upper bound on “almost
orthogonal” vectors in <d [Alon, Charikar,
Matousek]

• l1 upper bound: 1-stable distributions, i.e., generate
A such that ‖Ax‖1 estimates ‖x‖1

• Hamming metric: random linear mapping over
GF(2)
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Application of dimensionality reduction

• “Straightforward” applications

• Faster embedding computation

• Continuous (clustering) problems

• Sublinear-storage computation

• Miscellaneous:

– learning robust concepts [Arriaga-Vempala’99]
– deterministic approximation algorithms using

semidefinite programming [Engebretsen-I-O’Donnell’02,
Shivakumar’02]
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App I: Straightforward applications

Running time:

T (n, d) ⇒ T (n, log n) + d log n · (# points to embed)

• Linear improvement: closest pair, nearest neighbor,
diameter, MST etc.

– time: O(dn2) ⇒ O(log n · n2) + O(dn log n)

• Exponential improvement: nearest neighbor
[Kushilevitz-Ostrovsky-Rabani’98, I-Motwani’98]

– space: n2O(d) ⇒ nO(1)

– query: (d + log n)O(1) ⇒ O(d log n + logO(1) n)
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App II: Faster embedding computation

• Computing embedding in o(dn) time

• Feasible if the pointset defined implicitly, e.g., as a
set of all d-substrings of a given string

• A substring difference problem: preprocess the data
to estimate (quickly) the distance between two given
d-substrings [I-Koudas-Muthukrishnan’00]

– dim. reduction gives O(n log n) space and
O(log n) query time
... but Θ(dn log n) preprocessing time

– embedding linear ⇒ can use FFT to get
O(n log d log n) preprocessing time

string:

random
vector  :

d
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App II: Faster embedding computation, ctd.

• Other string problems: variable d, string nearest
neighbor problem [I-Koudas-Muthukrishnan’00]

• Line crossing metric [Har-Peled-I’00]
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App III: Continuous (clustering) problems

• Generic problem:

– Given: n points in ldp
– Find: k centers in <d to minimize the total

distance between the points and their nearest
centers

(total distance ∈ {max dist., sum of dist.,. . .})

• Simple dimensionality reduction does not work!
(solution in the reduced space could be bogus)

• Idea [Dasgupta’99]:

– Reduce the dimension
– Identify (or guess) the clusters (not centers!) in

the low-dimensional space
– For each cluster, find its center in original space

• Works for learning mixtures of Gaussians [D’99],
k-median for small k [OR’00], k-center
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Low-storage computation

• Dimensionality reduction reduces space as well

• Prototypical example: vector maintenance

– Data structure maintaining x ∈ <d

(xi - counter for element i)
– Enables increments/decrements of coordinates
– Reports estimation of ‖x‖p

• Applications:

– p = 0: # non-zero positions (distinct elements)
– p = 2: self-join size
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Norm maintenance: results

(1 + ε)-approximation in (log n + 1/ε)O(1) space:

• p = 0 (but x ≥ 0): Flajolet-Martin’85

• p = 2: Alon-Matias-Szegedy’96
(also any integer p with sublinear storage)

• p ∈ [0, 2]: I’00, Cormode-Muthukrishnan’01
(earlier FKSV’99,FS’00)
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Norm maintenance: approach

• Maintain low-dimensional Ax to represent x

• Reduce the amount of randomness used in A

• Implementation:

– [AMS’96]:
∗ 4-wise independent entries of A
∗ Use median (not sum) to estimate the norm

– [I’00]:
∗ Use Nisan’s generator to generate A
∗ Can “simulate” JL lemma
∗ Works for any p ∈ [0, 2] via p-stable

distributions
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Other low-storage results

• Maintaining string properties [CM’01]

• Norm maintenance in fixed window [DGIM’02]

• Maintaining approximations of a vector
(wavelet [GKMS’01], piecewise-linear [GGIKMS’01])

• ...
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Overview of the talk

• Motivation

– General
– Example: diameter in ld1

• Embeddings of graph-induced metrics

– into norms (Bourgain’s theorem, Matousek’s
theorem, etc.)

– into probabilistic trees (Bartal’s theorem)

• Embeddings of norms into norms

– dimensionality reduction (Johnson-Lindenstrauss
lemma, etc.)

– switching norms

• Embeddings of special metrics into norms

– string edit distance
– Hausdorff metric
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Switching norms

• We have seen one already (l1 → l∞)

• Mostly ordinary embeddings, at last!
(although often constructed using random
mappings)

• Switch from “hard” to “easy” norms (l1 or l∞)

• All constructed using linear mappings

• Topic extensively investigated in functional analysis
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Embeddings

Embeddings from ldp into ld
′

1

From Dist. d′ Reference
p = 2 1 + ε O(d log(1/ε)/ε2) FLM’77 ala JL√

2 O(d2) Berger’97 explicit
1 + ε dO(log d) I’00 explicit

p ∈ [1, 2] 1 + ε O(d log(1/ε)/ε2) JS’82

Embeddings from ldp into ld
′

∞

From Dist. d′ Reference

p = 1 1 2d−1 folklore
polyhedral 1 F/2 folklore
norm (F = # faces)

any norm 1 + ε O(1/ε)d/2 folklore
(Dudley’s theorem)

p = 2 1 + ε (log(1/Pcon) + 1/Pexp)
O(1/ε) I’01
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Applications of norm switching

• Embeddings into l1 norm

– l2 → l1 → Hamming: approx. nearest neighbor
algorithms
[Kushilevitz-Ostrovsky-Rabani’98, I-Motwani’98]

– same route: k-median algorithm [Ostrovsky-
Rabani’00]

• Embeddings into l∞ norm

– Diameter/furthest neighbor in l1, l2
– Nearest neighbor in product of l2 norms [I’01]
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Overview of the talk

• Embeddings of graph-induced metrics

– into norms (Bourgain’s theorem, Matousek’s
theorem, etc.)

– into probabilistic trees (Bartal’s theorem)

• Embeddings of norms into norms

– dimensionality reduction (Johnson-Lindenstrauss
lemma, etc.)

– switching norms

• Embeddings of special metrics into norms

– string edit distance
– Hausdorff metric
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Special metrics

• Hausdorff metric: for any two sets A,B ⊂ X in a
metric M = (X,D), define

→
DH (A, B) = max

a∈A
min
b∈B

D(a, b)

DH(A, B) = max(
→

DH (A, B),
→

DH (B,A))

Applications: vision, pattern recognition
(M = l22, l

3
2)

• Levenstein metric: DL(s, s′) = minimum number
of insertions/deletions/substitutions/etc. needed to
transform s into s′

Applications: computational biology, etc.
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Special metrics

• Would like to solve problems (e.g., nearest neighbor,
clustering) over DH, DL

• However, these metrics are more complex than
normed spaces

– DH “contains” l∞
– DL “contains” Hamming metric

• Thus, would like to embed them into proper normed
spaces

• Additional benefit: if embedding is fast, can get
fast approximate algorithm for computing D(·, ·)
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Embeddings of special metrics

From To Dist. Dim. Ref
DH over (X,D) l∞ 1 |X| FI’99

DH over ldp l∞ 1 + ε s2/εO(d) FI’99
(s-subsets)

DL with Hamm. ≈ log d CPSC’00,
block moves MS’00,CM’01

Other metrics:

• Permutation distances
[Cormode-Muthukrishnan-Sahinalp’01]
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Conclusions

• We have seen lots of embeddings!

• But also main techniques used:

– Finite metrics: “witness sets”
– Normed spaces: random linear mappings
– Probabilistic trees: stitching prob. partitions into

trees

• Tools mostly taken from combinatorics and
functional analysis
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Open problems

• General open problems:

– More embeddings
– More applications of embeddings

• Specific problems:

– Planar graph metrics into l1
– O(log n) distortion for embedding metrics into

probabilistic trees
– Dimensionality reduction for l1
– Embeddings of Levenstein metric
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