Generative Models for Graph-Based Protein Design

John Ingraham, Vikas K. Garg, Regina Barzilay, Tommi Jaakkola {ingraham, vgarg, regina, tommi}@csail.mit.edu MIT CSAIL, Cambridge MA, USA

$$p(\mathbf{s}|\mathbf{x}) = \prod_{i} p(s_i|\mathbf{x}, \mathbf{s})$$

Result: Improved speed and accuracy over conventional methods

Our single chain test set (103 structures)

Method	Rec	over
Rosetta 3.10 fixbb		17.9
Ours $(T = 0.1)$		27.

Ollikainen *et al* **Benchmark** (40 structures; re-split training for 0 topology overlap)

Method	Recove
Rosetta, fixbb 1	33
Rosetta, fixbb 2	38
Ours $(T = 0.1)$	39

Result: Structure-conditioned language models can generalize to unseen 3D structures

	Perplexity (per amino acid)		
Test set	Short	Single chain	All
Structure-conditioned models			
Structured Transformer (ours)	8.54	9.03	6.85
SPIN2	12.11	12.61	-
Language models			
LSTM ($h = 128$)	16.06	16.38	17.13
LSTM ($h = 256$)	16.08	16.37	17.12
LSTM $(h = 512)$	15.98	16.38	17.13
Test set size	94	103	1120
Significant boost in statistical r	performanc	ce vs other neura	al methor

Null model Uniform Natural frequence Pfam HMM pro

Result: Comparison of features and architecture

Node features	Edge
Rigid backbone	U
Dihedrals	Dista
Dihedrals	Dista
C_{α} angles	Dista
Dihedrals	Dista
Flexible backbon	e
C_{α} angles	Cont
Simpler message) passir
Conclusior	1: D
to desig	n pi
References	
O'Connell, James, et al. networks." 2018 Conchúir, Shane Ó., et a protocols for macromole Leaver-Fay, Andrew, et	"SPIN2: al. "A wel ecular mo al. "ROS

- Vaswani, Ashish, et al. "Attention is all you need." 2017 variation." 2012

Speed (AA/s) CPU Speed (AA/s) GPU 4.88×10^{-1} N/A $2.22 imes10^2$ $1.04 imes10^4$

~ **400x** speedup on one core of CPU

~ **20,000x** speedup GPU Why so low? This set contains many NMR structures (rather than X-ray) for which conventional methods are not robust

Why so low? Sequences in test are from different *fold topologies*

	Perplexity	
	20.00	
icies	17.83	Randor
ofiles	11.64	Specific po

Conditioned on

m position in a natural protein osition in a specific protein family

efeatures	Aggregation	Short	Single chain	All
ances, Orientations	Attention	8.54	9.03	6.85
ances, Orientations	PairMLP	8.33	8.86	6.55
ances, Orientations	Attention	9.16	9.37	7.83
ances	Attention	9.11	9.63	7.87
acts, Hydrogen bonds	Attention	11.71	11.81	11.51
	<i>.</i> .		. / .	

ng aggregation offers room for improvement (Thanks, reviewer!)

Deep generative models can learn oroteins directly from structure

Predicting sequence profiles from protein structures using deep neural

b resource for standardized benchmark datasets, metrics, and Rosetta odeling and design." 2015 SETTA3: an object-oriented software suite for the simulation and design of

Marks, Debora S., Thomas A. Hopf, and Chris Sander. "Protein structure prediction from sequence